
J. Fluid Mech. (2025), vol. 1016, A40, doi:10.1017/jfm.2025.10408

Violent droplet impacts with periodic rough
substrates

Peter Daniel Hicks
1

, Alasdair Tod
1
and Richard Purvis

2

1School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
2School of Engineering, Mathematics and Physics, University of East Anglia, Norwich Research Park,
Norwich NR4 7TJ, UK
Corresponding author: Peter Daniel Hicks, p.hicks@abdn.ac.uk

(Received 16 January 2025; revised 22 May 2025; accepted 23 June 2025)

Droplet impacts with rough surfaces described by Fourier series are investigated assuming
gas cushioning is negligible. For impacts leading to a contiguous contact patch, a mixed
boundary value problem for the displacement potential is formulated by extending models
of inertially dominated droplet impacts with a flat plate. For large times after impact,
the contact line evolution for impacts with periodic rough substrates is found to tend
to the contact line evolution obtained for a droplet impact with a flat plate vertically
positioned at the average height of the rough substrate. For symmetric impacts with even
substrate geometries represented by Fourier cosine series, the contact line evolution is
given by a Schlömilch series in which the coefficients are related to the coefficients of the
corresponding Fourier series. A method for determining whether secondary impacts occur
for particular geometries is described and regime diagrams, which show the boundary of
the region of substrate parameters associated with single contiguous impacts, are obtained.
The loads associated with droplet impacts with periodic rough substrates are calculated
and compared with the loads associated with impacts with a flat plate. As the height of
the roughness increases, the load associated with an impact with a rough substrate may
initially differ significantly from the flat-plate case, although the load on a flat plate is
recovered in the limit of large time. The implications of the results for more general droplet
impacts with roughness are discussed from both a theoretical and experimental standpoint.

Key word: drops

1. Introduction
Violent droplet impacts onto rough or textured substrates have extensive applications
across nature and engineering, as well as being of fundamental scientific interest. Herein,
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a droplet impact is considered to be violent if the impact results in splash jets and
ejecta, rather than gradual spreading over the surface. We also assume that the effect
of air cushioning on the impact is negligible. The presence of surface roughness can
critically change behaviour after impact compared with the corona splashing or droplet
spreading that are associated with droplet impacts upon a smooth surface. Roughness
height has been shown to be important in determining whether a droplet impact will
result in spreading or a splash (García-Geijo et al. 2021) and roughness can also trigger
prompt splashing (Josserand et al. 2005; Xu 2007; Quetzeri-Santiago, Castrejón-Pita &
Castrejón-Pita 2019). Further practical interest is driven by the behaviour of droplets
impacting upon superhydrophobic surfaces. Inspired by the repellent properties of lotus
leaves (Gilet & Bourouiba 2014; Gart et al. 2015; Roth-Nebelsick et al. 2022), surfaces
have been engineered with periodic arrays of micro pillars (Maitra et al. 2014b; van
der Veen et al. 2014) and understanding how these superhydrophobic properties persist
during high-speed droplet impacts (rather than low- or moderate-speed impacts that are
much studied) is of critical importance to the use of such surfaces in many applications,
including preventing in-flight ice formation on aircraft. Beyond repelling droplets, textured
surfaces with heterogeneous roughness (Yang et al. 2020) and arrays of micro pillars
(Broom & Willmott 2022, 2023) have been shown to break the axisymmetry associated
with the initial stages of a droplet impact by inducing preferential flow directions, which
may open possibilities for using roughness to further control droplet impact behaviour.

A widely used modelling approach for droplet impacts onto a substrate, as well as
for water entry problems, is known as Wagner theory (Wagner 1932; Korobkin 1997;
Oliver 2002; Moore 2014). This has been extended in many directions to include
more complex substrate behaviour including elasticity (Pegg, Purvis & Korobkin 2018;
Khabakhpasheva & Korobkin 2020), porosity (Moreton, Purvis & Cooker 2024), oblique
impacts (Moore et al. 2013a) and, of most relevance to the current work, roughness. This
includes Ellis, Smith & White (2011), who provided a detailed analysis of the spreading of
an impacting droplet encountering isolated roughness after impact as well as looking at a
liquid sheet impacting onto a periodic rough surface, and Hicks (2022), who examined
droplets impacting a range of arbitrary rough substrates, including spreading over a
small number of repeated roughness elements. In the context of water entry problems
in marine hydrodynamics, Korobkin (1996) studied the effect of superimposing small
amplitude periodic cosine roughness on a parabolic impactor. In addition to experimental
and modelling work, high-fidelity simulations have started to investigate droplet impacts
with roughness (Quan & Zhang 2014; Tan 2017; Henman, Smith & Tiwari 2023), while
related problems such as a droplet impact with a mesh screen has also been studied (Liwei
et al. 2019). However, resolving flow between roughness elements makes these simulations
significantly more challenging than those for a droplet impact with a flat substrate.

The current study builds on the work of Hicks (2022) to develop the Wagner solution
for droplet impacts onto surfaces with periodic roughness. Herein, novelty stems from
describing the substrate shape with a Fourier series, and while the earlier work of Hicks
(2022) is restricted in only being able to investigate droplet impacts with a small number
of roughness elements, using a Fourier series to represent the substrate shape facilitates
the investigation of the longer term impact behaviour as a droplet encounters a periodic
array of roughness elements. Results are presented for a range of substrates, particularly
in cases where the impact is additionally symmetric, while the loads due to a droplet
impact with a rough surface are compared with loads in impacts with a flat surface.
In § 2, the salient points of Wagner theory as it applies to droplet impacts with rough
substrates are introduced, while in § 3, the simplifications that can be made to the theory
when the periodic rough surface is represented by a Fourier series are described and
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Figure 1. (a) Droplet impact with a rough substrate in dimensional variables in a frame of reference where the
droplet appears stationary in the far field and the substrate ascends towards the droplet. (b) Non-dimensional
local solution close to the initial impact point (x0, y0) at t = 0 (top) and the corresponding mixed boundary
value problem for t > 0 (bottom). The boundary condition on 1 is given by (2.2b), while the boundary
conditions on 2 are given by (2.2c) and (2.3). (c) Non-dimensional local solution close to the initial impact
point in the special case where the substrate geometry is an even function with S(0) = 0. The boundary
conditions in the primed regions match their unprimed counterparts with a(t) = −b(t) and h0 = 0.

are shown to yield an explicit solution for the contact line spreading position in terms
of Bessel functions. The large time contact line evolution for impacts with periodic
roughness modelled using Fourier series is also obtained. Section 4 begins by explaining
how the theory can be further simplified by assuming an impact with a substrate with
even periodic roughness, before going on to investigate a range of different roughness
shapes, focussing on how the height and spatial period of the roughness affect the resulting
impact. Relationships between the roughness height and spatial period for the boundary of
the regime where a contiguous impact site is expected are developed. Further discussion
and conclusions are given in § 5, which also places our findings in the context of existing
experimental results.

2. Droplet impacts with a rough substrate
The early stages of a droplet impact with a rough surface are investigated assuming the
intervening air layer initially located between the droplet and substrate has a negligible
influence on the impact dynamics. A frame of reference is used in which an idealised two-
dimensional droplet of radius R is initially stationary and a surface of shape S̃(x̃) ascends
towards the droplet with speed U (as shown in figure 1a). The problem is formulated
in this frame of reference so that in the droplet, there is zero motion in the far-field. To
facilitate the comparison of different substrate shapes, it is assumed that the highest points
of the roughness are at ỹ = 0, i.e. max(S̃(x̃)) = 0, while a time origin is chosen so that
the substrate first impacts the droplet surface when t̃ = 0. It is not initially presumed that
S̃(0) = 0, so the bottom of the droplet may need to be located a vertical distance h̃0 below
the maximum height of the surface roughness to facilitate initial touchdown when t̃ = 0,
with the initial point of touchdown being denoted (x̃0, ỹ0). Given symmetry of the surface
is also not initially assumed, there is no requirement for the initial touchdown to occur
on x̃0 = 0. Here, dimensional variables are shown with a tilde, while subsequently, the
corresponding non-dimensional variables are shown without tildes.

A small parameter ε, based on the ratio of the characteristic height of the surface
roughness to the spatial period over which the pattern of the surface roughness repeats,
is used to focus on the region close to the initial impact site at the bottom of the droplet.
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Fluid velocities are non-dimensionalised using U , while in the local region close to the
impact site, both the droplet and the horizontal extent of the surface roughness have a
length scale of εR. Given the definition of ε, the vertical height of the roughness is scaled
by ε2 R, while the same scaling is also applied to the vertical position of the droplet free
surface. The relevant time scale is that corresponding to the time taken for the substrate
to move a distance comparable to the height of the roughness, i.e. ε2 R/U , while to retain
the liquid pressure to leading order, the characteristic pressure scale is taken to be ρU 2/ε,
where ρ is the liquid density. This choice of non-dimensionalisation gives a characteristic
scale for the load on the surface of ρU 2 R. For a water droplet of radius 1 mm with an
impact velocity of 2 m s−1, the Reynolds number for the droplet ρU R/µ = 1993, the
Weber number ρU 2 R/σ = 55, the Froude number U/

√
gR = 20 and the Mach number

for the droplet U/c = 0.0058, and hence for this and other high-speed droplet impacts,
the effects of viscosity, surface tension, gravity and compressibility in the droplet can be
neglected. Here, µ denotes the dynamic viscosity of the water, σ is the surface tension
coefficient between water and air, g is the acceleration due to gravity, and c is the speed
of sound in the liquid. Consequently, with this non-dimensionalisation, the leading order
problem in ε reduces to a mixed boundary value problem in the upper half-plane, with
differing boundary conditions where the droplet and substrate are, and are not in contact.
The extent of the wetted surface at each instant is unknown and must be determined.
This mixed boundary value problem is commonly referred to as the outer problem in
Wagner theory and it is this that forms the focus of the current study. Within this outer
problem, the free surface is required to meet the substrate at the extremes of the wetted
contact patch in what is known as the Wagner condition. However, at the extremes of
this wetted contact patch, the pressure on the substrate is locally unbounded and this is
resolved asymptotically by considering a local inner region close to this point in which
there is a turnover of the free surface with liquid being ejected away from the contact line
via a splash jet (Howison, Ockendon & Wilson 1991; Oliver 2002). Given our focus on
the outer problem, when secondary impacts are considered, these will be on the scale of
the outer problem. However, the splash jets created by the impact may themselves also
undergo secondary impacts with the substrate prior to any secondary impacts related to
the outer problem. The roughness of the substrate actually increases the likelihood of this
happening and indeed is likely responsible for the phenomena of prompt splashing (Xu
2007). However, as the fluid mass associated with the splash jet is small compared with
the fluid remaining in the droplet, their secondary impacts are not considered.

A single contiguous impact over the wetted surface a(t) < x < b(t) is assumed, with no
secondary or multiple impacts occurring. As an analogy with less dynamic wetting of a
rough substrate, this is equivalent to Wenzel wetting where all the surfaces of the substrates
are coated by liquid, rather than leaving voids of gas between roughness elements (as is
observed in Cassie–Baxter wetting). For higher-speed violent impacts considered herein,
the assumption that the impact fully wets the surface is justified, as the large inertial
pressures in the droplet are expected to overcome the capillary pressures created between
the droplet free surface and the substrate roughness.

The displacement potential Φ(x, y, t), as defined by Korobkin & Pukhnachov (1988),
is related to the velocity potential φ(x, y, t), through

Φ(x, y, t) = −
∫ t

0
φ
(
x, y, t̂

)
dt̂ . (2.1)

With the non-dimensionalisation described previously, the displacement potential satisfies

Φxx + Φyy = 0 for y > 0, (2.2a)
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to leading order in the droplet. Furthermore, the kinematic boundary condition on the
wetted substrate, Bernoulli’s equation and the far-field droplet behaviour imply to leading
order

Φy = 1
2 x2 − h0 − S(x) − t for y = 0 and a(t) < x < b(t), (2.2b)

Φx = 0 for y = 0 and x < a(t) or x > b(t), (2.2c)

Φ → 0, as
√

x2 + y2 → ∞, (2.2d)

respectively, while the kinematic boundary condition on the droplet free surface implies
(Hicks 2022)

Φy = 1
2 x2 − h0 − h(x, t) for y = 0 and x < a(t) or x > b(t). (2.3)

Following Moore et al. (2013b), this mixed boundary value problem (which is summarised
in figure 1b), can be investigated by defining Υ ≡ Φ + iΨ , where Ψ is the harmonic
conjugate of the displacement potential Φ. As Υ is holomorphic, the functions Φ and Ψ

satisfy the Cauchy–Riemann equations. As y ↘ 0, the characteristic function Λ(z, t) =√
(z − b(t))(z − a(t)) with z = x + iy, implies

Λ(x, t) =

⎧⎪⎨
⎪⎩

√
(x − b(t)) (x − a(t)) for x > b(t),

i
√

(b(t) − x) (x − a(t)) for a(t) < x < b(t),

−√
(x − b(t)) (x − a(t)) for x < a(t).

(2.4)

Consequently, applying Cauchy’s integral formula to Υx (z, t)/Λ(z, t), with an anti-
clockwise semi-circular contour in the upper half-plane with a return along the x-axis
implies

Φx (x, y, t) − iΦy(x, y, t) = Λ(z, t)

2π i

∫ ∞

−∞

[
Φx (ξ, 0, t) − iΦy(ξ, 0, t)

]
dξ

Λ(ξ, t) (ξ − z)
. (2.5a)

To ensure the displacement of the droplet free surface is bounded at the contact lines
x = a(t) and x = b(t), the associated consistency conditions∫ ∞

−∞

[
Φx (ξ, 0, t) − iΦy(ξ, 0, t)

]
ξm dξ

Λ(ξ, t)
= 0 (2.5b)

for m = 0 and m = 1, must also be satisfied. The theoretical underpinning of these
equations is explained by Muskhelishvili (2008), while this formulation has previously
been used to study oblique impacts (Moore et al. 2013a) and asymmetric impacts with
individual roughness elements (Hicks 2022). An alternative but equivalent formulation
due to Scolan et al. (1999) gives a more physically intuitive explanation of why these
consistency conditions are required. Scolan et al. (1999) instead applied Cauchy’s integral
formula to Υx (z, t)Λ(z, t), which results in an integral equation in which the integral
is multiplied by 1/Λ(z, t). As 1/Λ(z, t) is unbounded when x = a(t) or x = b(t), the
integral multiplying this singular term is necessarily zero when evaluated at these points.
This gives an alternative pair of integral consistency conditions, from which (2.5b) can be
recovered.

To determine the free surface evolution for x < a(t) and for x > b(t), the integration
range is split into the free and wetted portions of the boundary, and the boundary
conditions (2.2c), (2.2b) and (2.3) are applied to the relevant sections. Upon transforming
into a frame of reference in which the droplet descends towards a stationary surface, which
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is the most convenient frame of reference in which to analyse the results, the imaginary
part of (2.5a) implies

h(x, t) = 1
2

sign(x − x0)

(
x + 1

2
(a(t) + b(t))

)√
(x − b(t)) (x − a(t))

− sign(x − x0)
√

(x − b(t)) (x − a(t))

π

∫ b(t)

a(t)

S(ξ) dξ√
(b(t) − ξ) (ξ − a(t)) (ξ − x)

,

(2.6)

for x � a(t) and x � b(t). The consistency condition (2.5b) implies

3b(t)2 + 2a(t)b(t) + 3a(t)2 − 16 (t + h0) − 16
π

∫ b(t)

a(t)

S(ξ) dξ√
(b(t) − ξ) (ξ − a(t))

= 0

(2.7a)

for m = 0, while for m = 1,

(b(t) + a(t))
(
5b(t)2 − 2a(t)b(t) + 5a(t)2 − 16 (t + h0)

)
− 32

π

∫ b(t)

a(t)

S(ξ) ξ dξ√
(b(t) − ξ) (ξ − a(t))

= 0. (2.7b)

For a given substrate shape S(x), (2.7a) and (2.7b) form an algebraic system for the contact
line positions a(t) and b(t), which can be solved for t > t0. Once a(t) and b(t) are known,
(2.6) can be used to determine the associated droplet free surface shape. Solutions of the
outer problem of this form satisfy the Wagner condition as the free surface meets the
substrate at x = a(t) and x = b(t).

Solving the corresponding related mixed boundary value problem for the velocity
potential, one can show that the load on the substrate is given by (Hicks 2022)

L(t) = π

4

(
ḃ(t) − ȧ(t)

)
(b(t) − a(t)) , (2.8)

which can be calculated once the contact line positions are determined from (2.7a) and
(2.7b). Consequently, under the assumption that there is a single contiguous impact region,
the load on the surface can be conveniently calculated using just the consistency conditions
without determining the shape of the droplet free surface away from the contact points.
This makes it significantly simpler to calculate the impact load than the shape of the droplet
free surface. For a flat plate, L(t) = 2π as b(t) = −a(t) = 2

√
t .

3. Impacts with periodic roughness represented by a Fourier series
A periodic surface whose shape can be represented as the Fourier series

S(x) = 1
2α0 +

∞∑
n=1

αn cos
(nπx

L

)
+ βn sin

(nπx

L

)
, (3.1)

is now considered. The maximum height of the substrate is taken to be y = 0 to ensure
consistency between the different shapes investigated although, without loss of generality,
an arbitrary vertical translation can be applied to shift the substrate and droplet position
to any other desired height. The spatial period of the substrate shape is 2L , while the
coefficients

αn = 1
L

∫ L

−L
S(x) cos

(nπx

L

)
dx and βn = 1

L

∫ L

−L
S(x) sin

(nπx

L

)
dx (3.2a,b)
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for n � 0. Attention is restricted to substrates whose surface is continuous and for which
the derivative of the surface is a piecewise continuous function. This is done for both
theoretical and practical considerations. First, if the contact line and droplet free surface
reach a forward-facing step on the substrate surface (where the surface downstream of
the step is higher than upstream), then a secondary impact of the form described by Ellis
et al. (2011) is inevitable, invalidating the assumption that there is a single contiguous
wetted contact patch. Furthermore, if a contact line meets a backwards-facing step (where
the surface downstream of the step is lower than upstream), it is unclear whether the
droplet can wet the face of the step while retaining a contiguous wetted impact patch
or whether a secondary impact occurs which results in an unwetted void adjacent to the
face of the step. The local flow of the droplet around a step on the substrate surface merits
further study in its own right and is beyond the scope of this paper. The restrictions on
the surface shape also ensure uniform convergence of the corresponding Fourier series
and, consequently, integrals of this series equal the series formed by integrating each term
in turn. Additionally, on a practical level, Fourier series approximations of discontinuous
functions give rise to Gibbs phenomena on either side of the discontinuity, and significant
issues would occur as the contact line traverses this region. Consequently, this condition
places a limit on the degree of roughness which can be considered by the current theory,
as rougher substrates inherently necessitate multiple impact sites with the droplet.

If the average of the contact line positions is defined to be c(t) = (1/2) (b(t) + a(t)) and
the half-length of the wetted contact patch is defined to be d(t) = (1/2) (b(t) − a(t)), then
upon substituting the Fourier series approximation (3.1) into the consistency conditions
(2.7a) and (2.7b), and using Gradshteyn & Ryzhik (2000, (3.753.2) and (3.753.5)), it is
found that

2c(t)2 + d(t)2 − 4 (t + h0) − 2α0

− 4
∞∑

n=1

(
αn cos

(
nπc(t)

L

)
+ βn sin

(
nπc(t)

L

))
J0

(
nπd(t)

L

)
= 0 (3.3a)

and

c(t)
[
2c(t)2 + 3d(t)2 − 4 (t + h0) − 2α0

]

− 4c(t)
∞∑

n=1

(
αn cos

(
nπc(t)

L

)
+ βn sin

(
nπc(t)

L

))
J0

(
nπd(t)

L

)

+ 4d(t)
∞∑

n=1

(
αn sin

(
nπc(t)

L

)
− βn cos

(
nπc(t)

L

))
J1

(
nπd(t)

L

)
= 0. (3.3b)

Upon substituting for the Fourier series in the free surface (2.6), simple expressions for the
integrals involving each term of the series are not readily available. However, as each term
in the series is smooth throughout the integration range, once a(t) and b(t) are known,
the integration range can be mapped to the range −1 to 1, allowing the use of Gauss–
Chebyshev quadrature to accurately evaluate each term in turn.

To illustrate the contact line evolution and the corresponding droplet free surface shapes,
a substrate with the shape of the rectified half-sine wave (shifted vertically to ensure
max(S(x)) = 0), is considered, i.e. S(x) = H(max(sin((πx)/L), 0) − 1), where H is the
height and 2L is the spatial period of the roughness. The Fourier coefficients for this
substrate shape are
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Figure 2. (a) Contact line evolution, (b) free surface profiles and (c) impact load for a droplet impact with
surface defined by the rectified half-sine wave S(x) = H(max(sin((πx)/L), 0) − 1) with H = 3 and L = 3.
Free surface profiles are shown at non-dimensional time increments �t = 2, after initial touchdown at the
instants marked by circles in panel (a). The dotted line in panels (a) and (c) shows the contact line evolution
and load for a droplet impact with a flat plate at the average height of the surface roughness (denoted by the
horizontal dashed line in panel (b). The dash-dotted line in panel (a) shows the contact line evolution for
impact with a parabolic approximation of the substrate shape about the initial touchdown site. To facilitate
comparison with an impact with a flat plate, panels (a) and (c) are plotted with an adjusted time origin, with
τ = 0 corresponding to the instant the minimum point on the droplet free surface first crosses y = 0.

αn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2H (π − 1)

π
n = 0,

− 2H

π
(
n2 − 1

) n even and n > 0,

0 otherwise,

and βn =
⎧⎨
⎩

H

2
n = 1,

0 otherwise.
(3.4a,b)

Here and subsequently, the Fourier series is truncated after sufficient terms to ensure
that the maximum vertical discrepancy between the actual surface shape and its Fourier
series representation is less than 5 × 10−4 H on the spatial grid points used to display
the results. Convergence checks using finer spatial grids and lower tolerances on the
discrepancy between the surface and its Fourier series have been found to not change the
result significantly, while a tolerance relative to H is used to ensure that for a particular
surface shape, the number of terms in the Fourier series is unchanged as the height of the
roughness is increased. Depending on the substrate geometry, this condition gives between
353 and 636 terms in each Fourier series.

Figure 2 shows the contact line evolution for H = 3 and L = 3 in panel (a), alongside
the free surface shape at initial touchdown and at subsequent time intervals of two non-
dimensional time steps in panel (b). Immediately after impact, the wetted portion of the
substrate shape can be approximated locally by the parabola −k(x − c)2 + hT S , where the
coefficients k, c and hT S are determined by comparing this parabolic profile to a Taylor
series expansion of the actual substrate shape about the initial impact site that is truncated
after the quadratic term. Hicks (2022) investigated the problem of a droplet impact with
a single parabolic roughness element with shape S(x) = −k(x − c)2 and found that the
contact line evolution was given by

a(t) = x0 − 2
√

t

2k + 1
and b(t) = x0 + 2

√
t

2k + 1
for t > 0, (3.5a,b)
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indicating that the contact line velocity after impact is independent of the initial horizontal
offset between the droplet and the parabola c. After adjusting for the vertical offset, the
contact line evolution resulting from approximating the substrate shape surrounding the
initial touchdown site by a locally parabolic surface is shown in figure 2(a) as a dash-dotted
line. Excellent agreement is obtained for a short time immediately following touchdown
indicating that the contact line evolution at the earliest stage of impact can be determined
by approximating the substrate shape in this way. For large t , the contact line behaviour
tends towards that observed for a droplet impact with a flat plate vertically situated at the
average height of the roughness (for which the corresponding contact line evolution is
shown as the black dashed line in figure 2a).

Figure 2(c) shows the evolution of the load (as defined by (2.8)) for both the impact
with the rectified half-sine wave (solid line) and the corresponding flat plate at the average
roughness height (dashed line). As with the contact line evolution, the load tends towards
the behaviour observed for a flat plate (the dashed line is located at 2π). However, the
decay to the long-term behaviour is slower than with the contact line evolution, while in
the initial stages of the impact, there are much more significant departures from the load
obtained, with the maximum instantaneous load being nearly 50 % greater than the large-
time behaviour. This illustrates that surface roughness, even with comparatively smooth
forms considered herein (in which contact patches are assumed to be contiguous), can
result in significant excess loads on surfaces. The effect of surface roughness on the
maximum instantaneous impact load will be discussed further in subsequent sections.

3.1. Large-time contact line evolution for droplet impacts with periodic roughness
To formally determine the contact line evolution for large times, the first consistency
condition (3.3a) is multiplied by c(t), and upon subtracting the result from the second
consistency condition (3.3b), it can be deduced that

c(t) = − 2
d(t)

∞∑
n=1

(
αn sin

(
nπc(t)

L

)
− βn cos

(
nπc(t)

L

))
J1

(
nπd(t)

L

)
. (3.6)

As the trigonometric terms in this equation are bounded and J1(nπd(t)/L) ∼ d(t)−1/2

as t → ∞ (Abramowitz & Stegun 1972, (9.2.1)), this implies that c(t) ∼ d(t)−3/2 as
t → ∞. Consequently, as the size of the wetted contact patch increases over time, d(t)
also increases with t and, thus, c(t) → 0 as t → ∞. Therefore, neglecting quadratic and
higher order terms in c(t) in (3.3a),

d(t)2 − 4 (t + h0) − 2α0 − 4
∞∑

n=1

(
αn + βn

nπc(t)

L

)
J0

(
nπd(t)

L

)
∼ 0 as t → ∞.

(3.7)

Furthermore, as J0(z) exhibits oscillatory decay to zero for large z, this implies

d(t)2 ∼ 4
(

t + h0 + α0

2

)
as t → ∞. (3.8)

Given that c(t) → 0 as t → ∞, it is deduced that d(t) ∼ b(t) ∼ −a(t), as t → ∞, and
hence the contact line evolution

b(t) ∼ 2
√

t + h0 + α0

2
as t → ∞. (3.9)
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A clearer physical interpretation of this result is obtained by noting that (1/2)α0 is the
average height of the surface roughness and by defining a modified time τ = t + h0, for
which τ = 0 is the first instant the droplet surface intercepts y = 0. Consequently, (3.9)
indicates that the contact line tends towards the contact line behaviour expected for a
droplet impact with a flat plate vertically situated at the average height of the roughness,
generalising the behaviour seen in figure 2 to arbitrary periodic substrate geometries,
provided the impact patch is contiguous and secondary impacts do not occur. Hicks (2022)
previously found a similar result for a symmetric double impact with a periodic even
surface shape formed of an inverted parabola. Further discussion of why the contact line
evolution tends to the behaviour observed in an impact with a flat plate is given in § 5. As
the contact line position tends to the contact line position for an impact with a flat plate
at the average height of the roughness for large time, (2.8) implies that the load on the
surface tends to the load on a flat plate (2π), as observed in figure 2(c).

4. Symmetric impacts
For even roughness shapes, symmetry dictates that a(t) = −b(t), with the initial
touchdown occurring at x = 0. Furthermore, it is assumed that S(0) = 0, so that initial
touchdown occurs at (0, 0) when t = 0. With this simplified configuration, which is shown
in figure 1(c), the contact line evolution, which is governed by the consistency condition
(2.7a), becomes

t = b2

4
− 1

π

∫ b(t)

−b(t)

S(ξ) dξ√
b(t)2 − ξ2

= 0, (4.1)

while the free surface shape (2.6) also simplifies to become

h(x, t) =1
2

|x |
√

x2 − b(t)2 − sign(x)
√

x2 − b(t)2

π

∫ b(t)

−b(t)

S(ξ) dξ√
b(t)2 − ξ2 (ξ − x)

(4.2)

for |x | > b(t). The final integral in the consistency condition for m = 1 is identically zero
and thus (2.7b) is automatically satisfied. For symmetric impacts, the roughness can be
represented by a Fourier cosine series, so the coefficients βn in (3.1) are identically zero.
Simple generalisations of the model exist if S(0) < 0 and the initial touchdown occurs at
(0, −h0) before going on to form a single contiguous wetted surface, while Hicks (2022)
looked at symmetric impact problems in which a droplet simultaneously impacts an even
substrate in two different locations. Upon substituting for a Fourier cosine series in the
consistency condition for the symmetric impact problem (4.1),

t = b2

4
− α0

2
−

∞∑
n=1

αn J0

(
nπb

L

)
. (4.3)

Series of Bessel functions with the form

f (b) = α0

2
+

∞∑
n=1

αn J0

(
nπb

L

)
(4.4)

are known as Schlömilch series and this series converges to (Watson 1922, chapter 19)

f (b) = 2
L

∫ L
2

0
S

(
b sin

(
πθ

L

))
dθ, (4.5)
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where α0 and the αn are the coefficients of the Fourier cosine series of S(x). However, this
is of limited practical value as the integral term in (4.5) is the same as the integral term
in (4.1) up to the substitution ξ = b(t) sin((πθ)/L), and if either integral could readily be
evaluated directly, then there would be limited value in representing the substrate shape as
a Fourier cosine series. Regardless, from (4.3), it is once again clear that the evolution of
the contact lines for large t tend to those associated with an impact with a flat plate at the
average roughness height, as J0(nπb(t)/L) → 0 as b(t) → ∞. This contact line evolution
is valid until non-contiguous secondary impacts occur between the free surface and the
dry substrate, which corresponds to b(t) becoming a multivalued function of t (Ellis et al.
2011). Consequently, a single contiguous impact requires

dt

db
= b

2
+

∞∑
n=1

αnnπ

L
J1

(
nπb

L

)
� 0 (4.6)

for all values of b in the contact patch, with equality corresponding to an unbounded
contact line velocity, at which point, further increases in roughness height result in
secondary impacts.

4.1. Droplet impact with a cosine-shaped surface
The simplest useful non-flat periodic even surface shape is formed by the cosine wave

S(x) = H

2

(
cos
(πx

L

)
− 1

)
, (4.7)

where the surface is offset vertically to ensure S(0) = 0, while H is the roughness height
and 2L is the roughness period. Trivially, this shape corresponds to the Fourier cosine
series of period 2L , in which α0 = −H , α1 = H/2 and αn = 0 for n � 2. In the context
of marine hydrodynamics, the related problem of a parabolic body covered by cosine-
shaped roughness of small amplitude entering an initially quiescent liquid has previously
been studied by Korobkin (1996), who obtained an equation for the resulting contact line
evolution equivalent to truncating the series in (4.3) after one term, as well as determining
the corresponding load on the body. Figures 3(a)–3(c) show the free surface profile for
L = 1.5 as the height of the roughness increases from H = 2.4 to H = 4.8, respectively.
As the height of the roughness increases, panel (a) shows a single impact region as the
contact line passes smoothly over the roughness elements, panel (b) shows the maximum
possible roughness height for which there remains a single impact, with the marginal free
surface profile closest to a secondary impact being shown as a blue dashed line, while
panel (c) shows a secondary impact for a larger substrate roughness height in which the
droplet impacts the second roughness element trapping a void between the droplet and
substrate. In panel (c), the free surface profile when secondary impact occurs is shown as
an orange dashed line. After secondary impact, the theory proposed herein breaks down, as
the subsequent droplet evolution requires multiple wetted contact patches between droplet
and substrate invalidating the assumption that there is a single contiguous wetted contact
patch. In each panel, the average height of the roughness is indicated by a horizontal
dashed line.

The surface parameters associated with the transition to secondary impacts can be found
explicitly by noting that if B(t) is defined to be B(t) = πb(t)/L , then (4.6) indicates that
secondary impacts are avoided at time t for this substrate shape, providing

L2

H
�−π2 J1(B(t))

B(t)
, (4.8)
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Figure 3. (a–c) Droplet impacts with a surface formed by a vertically offset cosine wave. Profiles are shown
at t = 0 and then at subsequent non-dimensional time increments �t = 2. The average height of the surface
roughness is indicated by the horizontal dashed line. (d) Contact line evolution for the cases shown in panels
(a)–(c), with the secondary impact for the case in panel (c) marked by an orange circle. The dashed lines
denote the corresponding contact line evolution for a droplet impact with a flat plate at the average height
of the roughness. (e) A regime diagram showing the boundary of the region in which secondary impacts are
located, as well as the locations of the cases in panels (a)–(c) in the parameter space. ( f ) Contact line evolution
for variations in L , while H and the average height of the roughness remain constant.

where the right-hand side of this expression is independent of the substrate geometry
parameters. Secondary impacts are thus avoided at all times provided the left-hand side
of this expression is greater than the global maximum of −π2 J1(B)/B for B > 0. Using
properties of Bessel functions, −J1(B)/B takes its maximum value when B = j2,1, where
j2,1 ≈ 5.13562 is the first zero of J2(B). Consequently, secondary impacts are avoided for
all times providing

L2 �
π2
∣∣J1
(

j2,1
)∣∣

j2,1
H. (4.9)

For L = 1.5, equality in this expression occurs when H = 3.4468, and this maximum
roughness height for which secondary impacts do not occur is shown in figure 3(b), with
the contact line position associated with the most marginal free surface profile being
located at b = j2,1L/π when t = 3.4546. A similar approach is used by Korobkin (1996) to
determine the maximum amplitude of cosine-shaped roughness for which a finite impact
load is obtained.

Figure 3(d) shows the contact line evolutions for the cases shown in panels (a)–(c).
As the height of the roughness increases, the contact line moves faster as it ascends
the roughness elements, eventually leading to an instantaneously unbounded velocity in
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the (blue) profile for H = 3.4468 and L = 1.5 marked by a vertical blue dotted line.
Further increases in roughness height lead to secondary impacts, and this is illustrated
by the orange contact line evolution for H = 4.8 becoming a multivalued function of time.
The instant of secondary impact is marked by an orange circle, while the subsequent
contact line evolution (shown as a dash-dotted line) is unphysical as a result of the
modelling assumptions. However, for the three contact line evolutions shown, including
in the case of involving secondary impacts, the large time contact line evolution tends
towards the contact line evolution observed with a flat plate situated at the average height
of the roughness (which is shown as a dashed line of matching colour in figure 3d). The
average height of the roughness is marked by a horizontal dashed line in figures 3(a)–3(c),
illustrating the behaviour inherent in (4.3).

A regime diagram showing the boundary of the region in which secondary impacts are
present is shown in figure 3(e) and, as one would expect, as the height of the roughness
increases, the period of the roughness also needs to increase to avoid secondary impacts,
although the exact nature of this relationship is now quantified for this substrate geometry.
Figure 3( f ) shows the contact line as the roughness period 2L varies and the roughness
height H remains constant. As the average height of the roughness is the same in the two
cases presented, the contact line evolution for both values of L tend to the same large-time
behaviour, which again corresponds to an impact with a flat plate at the average height of
the roughness (shown as a black dashed line).

4.2. Droplet impact with an even triangle wave shaped surface
To illustrate the usefulness of this analysis, a more complicated substrate shape is now
considered. Figure 4 shows droplet impacts with a surface formed by the even triangle
wave

S(x) = H

(
1
π

arcsin
(

cos
(πx

L

))
− 1

2

)
, (4.10)

where H is the height and 2L is the spatial period of the surface roughness. The
corresponding Fourier cosine series coefficients are

α0 = −H and αn = 2H
(
1 − (−1)n)
n2π2 for n ≥ 1. (4.11)

Roughness profiles of this form are used by Maitra et al. (2014a) as a schematic
representation of actual surface roughness in droplet impact experiments with
superhydrophobic etched aluminium. Figures 4(a)–4(c) show free surface profiles for
H = 4 as the period of the substrate roughness changes. For roughness with a large period
(as shown in panel a), the contact line moves smoothly over the substrate with a bounded
velocity, but as the period of the roughness decreases, interactions with the substrate
accelerate the contact line motion until it becomes unbounded on the ascending face of
the triangle adjacent to the initial impact site (as shown by the blue dashed line in panel
b). Subsequently, further decreases in the period of the roughness result in secondary
impacts, as shown in panel (c), where the droplet free surface makes additional contact
with the roughness before the original contact line reaches this point, leading to a trapped
void between the droplet and substrate roughness. For the case in panel (c), the free surface
profile at the instant of secondary impact is shown as an orange dashed line. In each panel,
the average height of the roughness is indicated by a black horizontal dashed line.

Figure 4(d) shows the corresponding contact line evolution. Vertical dotted blue and
orange lines mark the instants when the contact line velocity becomes instantaneously
unbounded and when secondary impact occurs, respectively. After secondary impact, the
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Figure 4. (a–c) Droplet impacts with a surface form by the even triangle wave S(x) =
H(1/π arcsin(cos(πx/L)) − 1/2). Profiles are shown at t = 0 and then in subsequent non-dimensional
time increments �t = 2. The average height of the surface roughness is marked by a horizontal dashed line.
(d) Contact line evolutions for the cases shown in panels (a)–(c), with the instant of secondary impact for
the case in panel (c) marked by an orange circle. The black dashed line denotes the contact line evolution
for a droplet impact with a flat plate at the average height of the roughness. (e) A regime diagram showing
the boundary of the parameter region in which single contiguous impact patches are expected. ( f ) Contact
line evolution with changing H/L (solid lines), with the corresponding contact line evolution for impacts
with a flat plate at the average roughness height being shown by the dashed lines of the same colour. The
black dash-dotted line shows the contact line evolution for a droplet impact with a single inverted wedge
S(x) = −H |x |/L .

contact line becomes double valued and this is denoted by an orange dash-dotted line.
In all cases, even with the unphysical contact line evolution after the secondary impact, the
contact line behaviour tends towards that observed for a flat plate situated at the average
height of the surface roughness (shown by a black dashed line).

Figure 4(e) shows the parameter regimes for which a single contiguous impact patch is
expected. The boundary of this region is found by noting that if secondary impacts occur,
then they take place while b(t)� 2L , as the deviations of the contact line evolution from
the behaviour observed with a flat plate are greatest in the earliest stages of impact, and if
dt/db has not become unbounded in this range, then as the result of the decay of Bessel
functions, it will not subsequently become unbounded. For b(t)� 2L , direct integration
with the exact substrate shape (rather than its Fourier series representation), produces the
contact line evolution

t = b2

4
+ 2Hb

π L
+ 2H

π L

(
π L − 2

√
b2 − L2 − 2L arcsin

(
L

b

))
u(b − L) , (4.12)
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where u(x) is the unit step function. Again, secondary impacts in the range L � x � 2L
are avoided providing dt/db � 0, and thus if B(t) = b(t)/L , then secondary impacts are
avoided providing

π L2

2H
� 4

√
B2 − 1
B2 − 2

B
(4.13)

for all 1 � B � 2. The maximum value of the right-hand side of this expression occurs
when

Bmax =
√

15 + √
33

6
≈ 1.8594, (4.14)

which is independent of the substrate geometry parameters, and thus secondary impacts
are avoided providing

L2 � 8
π B2

max

(√
B2

max − 1 − Bmax

2

)
H. (4.15)

This regime boundary is shown in figure 4(e). As a prelude to secondary impact,
the contact line velocity becomes instantaneously unbounded when dt/db = 0, and the
contact line position when this occurs is bmax = Bmax L . In the particular case that
H = 4, secondary impacts are avoided providing L � 1.3709, with the case corresponding
to equality in this expression being shown in figure 4(b). As with impacts with a
substrate shaped like a cosine function, in the marginal case of instantaneously unbounded
contact line velocity, L2 is again proportional to H (although with differing constants of
proportionality). The circumstances under which similar relationships might hold for other
substrate shapes will be discussed subsequently.

In figure 4( f ), the height of the roughness and its period are both varied in proportion,
and consequently, the contact line evolution for large time tends to the respective behaviour
associated with the contact line evolution for an impact with a flat plate at each average
height of the roughness (shown as dashed lines of matching colour). However, as the
gradients for each of the triangles in both of the roughness cases presented are the same,
the contact line evolutions are initially identical until the contact line encounters the
first minima on the substrate, or alternatively, a secondary impact occurs. This initial
contact line evolution matches that observed for a droplet impact with a single inverted
wedge of shape S(x) = −k|x |, where k = H/L , and the associated contact line evolution
is b(t) = (

2
√

π2t + 4k2 − 4k
)
/π (see the black dash-dotted line).

4.3. Droplet impact with other even surface shapes
To assess how a wider variety of shapes affect the contact line evolution, the likelihood of
secondary impacts and the impact load, two further shapes are now compared. Figure 5
shows droplet free surface profiles and the corresponding contact line evolution for:

(i) a rectified half-cosine substrate shape S(x) = H(max(cos((πx)/L), 0) − 1), for
which the Fourier coefficients

α0 = 2H (1 − π)

π
, α1 = H

2
and αn = −2H cos

(
πn
2

)
π
(
n2 − 1

) for n � 2; (4.16a,b,c)

(ii) a substrate formed of periodic isosceles trapezia of the form
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Figure 5. Droplet impacts (a,c,d) with a rectified half-cosine wave substrate and (b,d,f ) with a periodic
isosceles trapezia substrate. Free surface profiles are shown at t = 0 and then in subsequent non-dimensional
time increments �t = 2 in panels (a) and (b), while the contact line evolution for L = 3 is shown in panels
(c) and (d) as the height of the roughness is increased. The load associated with each of these contact line
evolutions are shown in panels (e) and ( f ).

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 0 � x � L1,

H (x − L1)

L1 − L2
L1 < x � L2,

−H L2 < x � L ,

(4.17)

for which the Fourier coefficients

α0 = H (L1 + L2 − 2L)

L
and αn =

2H L
(

cos
(

nπ L1
L

)
− cos

(
nπ L2

L

))
n2π2 (L2 − L1)

for n � 1.

(4.18a,b)
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In the cases shown in figure 5(a,b), L = 3, while the value of H is chosen so that the
average height of the surface roughness is at y = −2, i.e. α0 = −4, and this height is
marked by a horizontal black dashed line. As the average height of the surface is the
same in both cases, the large-time behaviour of the contact line evolution is necessarily
the same in both cases.

To determine the conditions leading to secondary impacts B(t) is once again defined
such that B(t) = b(t)/L . Furthermore, if the substrate geometry is expressed in the form
S(x) = H S̄(x), then (4.6) implies

L2

H
�−

∞∑
n=1

2ᾱnnπ

B
J1(nπ B) , (4.19)

where ᾱn are the coefficient of the Fourier cosine series of S̄(x). Consequently, in cases
where the Fourier coefficients ᾱn are independent of the substrate geometry parameters,
secondary impacts are avoided providing this inequality is satisfied for all values of B, i.e.
providing

L2 � cH, where c = max
B

(
−

∞∑
n=1

2ᾱnnπ

B
J1(nπ B)

)
. (4.20)

The value of B which produces the constant c is denoted Bmax = bmax/L , where bmax
is the contact line position when the contact line velocity becomes unbounded.
A difference is now found between the behaviour associated with the rectified half-cosine
wave substrate and the periodic isosceles trapezia substrate, as in the former case, the
Fourier coefficients ᾱn are independent of L and H , and hence the boundary of the single
impact regime is marked by (4.20) with a numerically computed value of c = 0.914. For
L = 3, this gives a maximum substrate roughness height for a single contiguous impact of
Hmax = 9.851, with an instantaneously unbounded contact line velocity being obtained in
this case at tmax = 13.945 when bmax = 5.184. The evolution of the contact line position
as a function of time for the rectified half-cosine wave is shown in figure 5(c) with L = 3
and H increasing up to Hmax , with deviations from the flat-plate case increasing with
roughness height. The vertical dotted line marks the instant of unbounded contact line
velocity, while the horizontal dotted line marks the contact line position at which this
occurs.

More complicated behaviour occurs for the periodic isosceles trapezia substrate as
in this case, the Fourier coefficients ᾱn retain dependence upon L1 and L2, and so
the value of c in (4.20) is a function of these additional substrate parameters. Given
the form of the Fourier coefficients in (4.18), the parameter c takes a constant value
as the substrate parameters are varied, provided L1/L and L2/L remain constant.
A substrate parameter variation with this restriction corresponds to horizontally stretching
the substrate geometry such that the horizontal extent of each section remains in proportion
with the other sections. In particular, for a periodic isosceles trapezia substrate with
L1/L = 1/3 and L2/L = 8/15 (as shown in figure 5b), the numerically computed value
of c = 1.695. For L = 3, L1 = 1 and L2 = 8/5, this gives a maximum roughness height
before secondary impacts occur of Hmax = 5.324. With roughness of this maximum
height, an instantaneously unbounded contact line velocity occurs when bmax = 5 at time
tmax = 9.568, with further increases in roughness height giving rise to secondary impacts.
Here, the contact line position is located at the top left corner of the second trapezium
on the substrate when the transition to secondary impacts occurs. As the derivative of the
substrate shape is discontinuous at the corners of the trapezia, direct integration is used to

1016 A40-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
40

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10408


P.D. Hicks, A. Tod and R. Purvis

verify that the Fourier series prediction is unaffected by Gibbs phenomenon. The contact
line evolution for a periodic isosceles trapezia substrate with L = 3 is shown in figure 5(d),
for various roughness heights up to Hmax . Again, the deviations from the flat-plate case
increase as the height of the roughness increases, while the horizontal and vertical dotted
lines mark bmax and tmax , respectively.

Finally, the loads associated with the two different substrate geometries are shown in
figures 5(e) and 5( f ) as the roughness height increases, while L , and in the case of
the isosceles trapezia L1 and L2, remain constant. For both substrate geometries, the
maximum roughness height shown corresponds to the value of Hmax associated with each
substrate geometry. The loads obtained are qualitatively similar to the results of Korobkin
(1996), with the variations in the exact form of the load being attributable to differences in
the roughness shape. For an impact with a flat plate, the load equals 2π , and this marked
by a horizontal black dashed line. However, the time origin marks the instant the droplet
free surface initially touches down on the rough substrate, and so additional time must pass
before a droplet would impact a flat plate vertically situated at the average height of the
surface roughness. Consequently, circles with colours corresponding to each roughness
height mark the instant on the load profile that the flat plate is first subjected to the impact
load. As the roughness height increases, increasing deviations from the load experienced
by a flat plate are predicted until both the contact line velocity and the load become
unbounded at some instant after initial touchdown. This is because after the initial instant
of touchdown, the extent of the wetted surface is non-zero, and so unbounded contact line
velocities result in the integral used to calculate the load being undefined. However, even
in the case of rather small substrate roughness, short duration variations in loads can still
be considerable and this has significant potential consequences for calculating the loads on
weathered surfaces. In addition to possibly becoming unbounded if the roughness height is
sufficiently large, the contact line velocity may also be unbounded at the initial instant of
touchdown. However, at the instant of touchdown, the load is not necessary unbounded as
the extent of the contact patch is very small. For the case of the periodic isosceles trapezia
substrate, the load initially equals 2π until the contact line position reaches L1, as until this
point, the impact is indistinguishable from that with a flat plate. Smaller loads are initially
generated for the rectified half-cosine wave as the substrate geometry curves away from
the oncoming droplet about the point of initial touchdown that results in lower contact line
velocities.

5. Conclusions and further discussion
An idealised two-dimensional droplet impact with roughness that forms a single
contiguous wetted contact patch has been investigated by extending Wagner theory for
liquid–solid impacts to incorporate a periodic rough substrate described by a Fourier
series. Representing the substrate by a Fourier series is shown to produce analytical
expressions for the contact line evolution involving a series of Bessel functions, alongside
readily computable expressions for the free surface profiles. In particular, for symmetric
impacts with even substrates represented by Fourier cosine series, the resulting contact line
evolution is found to be a Schlömilch series in which the coefficients match the coefficients
of the corresponding Fourier cosine series for the substrate shape. With these relationships
established, the contact line evolution across a rough surface is shown to tend towards the
contact line evolution for an impact with a flat plate situated vertically at the average
height of the roughness, in the limit of large time. The variation in load induced by surface
roughness has also been quantified and compared with the load experienced by a flat
plate.
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A method for determining the boundary of the region associated with a single
contiguous wetted contact patch in a symmetric droplet impact with a periodic substrate
with even roughness is established, and this is found to be applicable when the substrate
shape is parametrisable by the roughness height H and the spatial period of the roughness
2L . This is tested across a range of different substrate shapes and, for shapes satisfying
this criteria, it is found that secondary impacts are avoided provided that L2/H is greater
than a geometry dependent constant. Moreover, in cases where additional independent
parameters are required to characterise the substrate shape, the boundary of the region
associated with a single contiguous wetted contact patch is found to be more complicated.

The key issue with the two-dimensional approach taken herein is that lateral fluid flow
is only possible above the substrate roughness, whereas in genuinely three-dimensional
droplet impacts, fluid can flow both above and between individual roughness elements.
Extensions of the approach used here to model droplet impacts with three-dimensional
substrates are not currently viable even when the substrate roughness height is assumed
to be a continuous function. Droplet impacts with axisymmetric roughness formed of
concentric circular barriers could be investigated using a variant of the current theory
designed for axisymmetric problems (see Moore (2014) for details on the application of
Wagner theory to axisymmetric impacts). However, as with two-dimensional substrates,
lateral fluid flow in impacts with axisymmetric substrates would once again be restricted
to flowing over, rather than between, roughness elements, so an axisymmetric analysis
would share the deficiency inherent in a two-dimensional approach. Furthermore, in an
experimental investigation, consistently ensuring the droplet impacts at the centre of an
axisymmetric roughness pattern is expected to be challenging and while axisymmetric
roughness could be manufactured, it is unclear that there are physical applications in which
the roughness is axisymmetric. Any deviation of the descending droplet from the axis of
symmetry in an axisymmetric impact would result in a three-dimensional impact, which
is beyond the scope of current analytical methods. However, two-dimensional modelling
approaches are advantageous here, as while there are significant simplifications when
impacts occur along a line of symmetry, progress can still be made on the more general
problem of asymmetric impacts, as is shown in § 3.

The implications of this work for experimental studies of droplet impact are now
considered. For droplet impacts with rough substrates, a range of behaviours that differ
from droplet impacts with a flat plate have been observed experimentally. Most notably,
when a droplet impacts a rough substrate, prompt splashes are observed in which
microdroplets are ejected from the outset of the impact, rather than being ejected from
splash jets as found with corona splash forming droplet impacts with flat plates (Xu 2007;
Quetzeri-Santiago et al. 2019). However, while the nature of ejecta from droplet impacts
has been studied, experiments with sufficient time resolution to resolve the contact line
position (from which splash jets and microdroplet ejecta emanate) are less common,
particularly in impacts with rough substrates. For impacts with flat plates, there is
sufficient temporal resolution of the evolution of the central bubble trapped beneath
the droplet as a result of pre-impact gas cushioning to compare against theory (Li &
Thoroddsen 2015), but even in these cases, while the evolution of the inner contact line
surrounding the central bubble can be measured, the much faster motion of the outer
contact line means that on intermediate length scales between the scale of the central
bubble and the full droplet, the time resolved evolution of the outer contact line is not
generally available and this is particularly apparent in the case of impacts with rough
surfaces.

While the evolution of the outer contact line for droplet impacts with rough surface
has not been tracked experimentally with sufficient temporal resolution to facilitate
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direct comparison with Wagner theory, instantaneous snapshots of the contact lines
associated with droplet impacts with rough substrates have been photographed and these
are roughly axisymmetric, with deviations from axisymmetry being observed on the scale
of individual roughness elements, while the equivalent of a central trapped bubble is also
observed albeit now pierced by elements of the substrate roughness (Maitra et al. 2014b;
van der Veen et al. 2014). The observation that experiments of droplet impacts with rough
substrates show deviations from an axisymmetric contact line on the length scale of the
roughness elements explains why the contact line evolutions obtained herein deviate most
significantly from their equivalent for an impact with a flat plate very shortly after initial
touchdown, as there initially exists a short period after touchdown in which the roughness
length scale is comparable to the length scale associated with the contact patch for impact
with a flat plate, and thus the deviations due to roughness can form a bigger proportion
of the actual length scale associated with the contact patch for an impact with a rough
substrate.

For a normal axisymmetric droplet impact in the regime where Wagner theory is
applicable, once the radius of the contact patch is larger than the length scale associated
with the roughness, one would expect the non-dimensional contact line position to satisfy√

αt , where employing the non-dimensionalisation used herein, the prefactor α is in the
range 2 < α � 3. Here, the lower limit is the radius of a circle formed by the intersection
of a sphere moving with constant speed towards a stationary plane, which physically
corresponds to the case in which the solid volume of the roughness is small compared
with the space between the roughness elements, allowing a spherical droplet to continue
moving through the roughness without being impeded and deforming. Conversely, the
upper limit is the prediction of Wagner theory for an axisymmetric droplet impact with a
flat plate (Moore 2014). Therefore, this prefactor is affected by the extent the roughness
forms a blockage that impedes the continued motion of the droplet towards the substrate.
In this study, fully wetted roughness, equivalent to Wenzel wetting, is assumed, so the
original motion of the droplet towards the substrate is completely restricted as there are no
further voids into which the liquid from the droplet can descend and occupy, and thus one
would expect the prefactor (or in the case of this study, its two-dimensional counterpart)
to be at the top end of the permissible range as is observed, with the contact line evolution
for an impact with roughness approaching the contact line evolution for an impact with a
flat plate.

In addition to the blockage in the pre-impact flow direction roughness provides to
decelerate an impacting droplet and the affect this has on the contact line, regular arrays of
micropillars have been shown to produce preferential lateral flow directions in which the
droplet can spread (Tan 2017; Broom & Willmott 2022, 2023), with fingers of protruding
fluid from the droplet forming in directions parallel to corridors between an array of
pillars. This indicates that the radius of the contact patch can additionally have an angular
dependence, at least for some substrate geometries, and that the substrate roughness can
partially channel the flow. Asymmetries in droplet impacts have also been induced through
other forms of surface heterogeneity, including by Yang et al. (2020), who induced a
preferential flow direction in an impacting droplet through the use of a wedge-patterned
biphilic surface, and by Zhao et al. (2023), who used asymmetric surface wettability to
induce lateral motion in a droplet rebounding from a normal impact. Such complexities
cannot be explained by the idealised two-dimensional model presented here, but this
does serve to illustrate once again why the radius of the contact line in an impact with
a rough surface might differ from the prediction for an impact with a flat plate. Despite
this, following experiments of droplet impacts with rough irregular substrates formed of
sandpaper with varying grit sizes, García-Geijo et al. (2021) produced a model for droplet
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spreading that includes the Wagner contact line position for an axisymmetric droplet
impact with a flat plate b(t) = √

3t , with the time origin set so that t = 0 is the instant the
droplet first contacts the roughness, and obtained good agreement with their experiments.
Setting the time origin to coincide with the initial contact of the droplet with the top of the
roughness elements is consistent with Cassie–Baxter wetting, although experiments show
liquid penetration into the roughness and can lead to full Wenzel wetting of the substrate
(Maitra et al. 2014b; van der Veen et al. 2014). The successful use of the predicted contact
line position from an impact with a flat plate in the context of a model for the spreading of
a droplet on rough substrate indicates that the prediction from the flat-plate case is relevant
for at least some types of roughness. However, even though the radius of the contact patch
in an axisymmetic impact with a flat plate can be useful when modelling droplet spreading
on a rough substrate, unlike for the current theory, it does not seem feasible to determine
the vertical location of the flat plate that ensures the best long-time match with a rough
substrate using the existing experiments. This is because in the experiments of García-
Geijo et al. (2021), the largest grit size of the sandpaper used was 68 µm and the slowest
impact velocity was 1.36 m s−1, and consequently the longest time scale for an undeformed
droplet to traverse a distance comparable to the half-maximum height of the grit, i.e. to
reach the approximate average height of the roughness, is a mere 26 µs. Compared with a
contact radius that is half the radius of the undeformed droplet, offsetting the time origin
for the Wagner contact patch radius by 26 µs would decrease the radius of the contact patch
by 15.3 %, and this number falls to just 3.6 % when the contact patch radius equals the
initial undeformed droplet radius (although by this stage, one would not expect the Wagner
prediction for a flat plate to be valid anyway). The modelling predictions of García-Geijo
et al. (2021) are only compared with experiments at much later times and consequently,
the time offset in the Wagner theory induced by the roughness is unlikely to be detected in
experiments like these unless there is significantly great temporal resolution of the early
time contact line evolution.

Beyond rigid flat plates and rigid rough substrates, direct comparison with the
√

3t
prediction of axisymmetric Wagner theory has been undertaken for droplet impacts with
soft substrates (Howland et al. 2016). In this case, the experimental observations slightly
under-predict Wagner theory, which is again indicative of the motion of the droplet towards
the substrate not being completely retarded, albeit in this case, this is the result of the
droplet deforming the soft substrate out of the path of the oncoming droplet, rather than
liquid from the droplet penetrating between rigid roughness elements on the substrate.

In the current work, attention has been restricted to substrate geometries that can
be represented by a continuous function of the spatial position and, in practice, many
practically important surface geometries, such as those formed by regular arrays of vertical
pillars, contain discontinuities that inevitably result in secondary impacts. While multiple
impacts can be incorporated into Wagner theory, the complexity added by each additional
impact means that in practice, this kind of theory would struggle to handle the multitude
of droplet touchdowns that occur on many rough surfaces. Furthermore, while two-
dimensional studies like the current work can be used to make inferences on how droplets
impacting roughness behave, droplet impacts with real rough surfaces are inherently three-
dimensional, while only a very limited range of geometries can be studied by direct
application of Wagner theory in three dimensions. However, despite these limitations, the
key finding of the current work – that the contact line evolution for a droplet impact with
a rough substrate tends to the contact line evolution for a droplet impact with a flat plate
at large times – has been incorporated successfully as part of an experimentally validated
model of a droplet impact with a rough surface (García-Geijo et al. 2021). However, further
consideration needs to be given towards determining the forms of substrate roughness for
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which the contact line evolution for a droplet impact with a flat plate is a useful predictive
tool for an impact with a rough surface, and we hope that this current work provides an
impetus for further work in this area.
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