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Abstract:

Hydraulic falls on the interface of a two-layer density stratified fluid flow in the

presence of bottom topography are considered. We extend the previous work [1]

to two successive bottom obstructions of arbitrary shape. The forced Korteweg-de

Vries and modified Korteweg-de Vries equations are derived in different asymptotic

limits to understand the existence and classification of fall solutions. The full Euler

equations are numerically solved by a boundary integral equation method. New

solutions characterized by a train of waves trapped between obstacles are found for

interfacial flows past two obstacles. Their wavelengths agree well with predictions

of the linear dispersion relation. In addition, the effects of the relative location,

aspect ratio, and convexity-concavity property of the obstacles on interface profiles

are investigated.
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I. INTRODUCTION

The problem of a constant-moving flow over a bottom obstacle in an open channel has a

long history in hydrodynamics. Studies of the existence and stability of steady solutions are

an important step towards understanding the whole problem. For free surface flows over a

single localized obstacle, solutions depend on the Froude number F defined as F = U/
√
gH,

where U is the uniform upstream/downstream velocity of the fluid, H stands for the uniform

upstream/downstream fluid depth, and g is the acceleration due to gravity. The uniform

flow at infinity is called supercritical for F > 1 and subcritical for F < 1. Four basic flows

were identified by Dias and Vanden-Broeck [2]: supercritical flow on both sides, subcriti-

cal flow upstream and waves downstream, subcritical flow upstream and supercritical flow

downstream (hydraulic fall), and waves upstream and supercritical flow downstream (gen-

eralized hydraulic fall). The first three types of solution in the steady Euler equations have

been numerically studied previously by many groups. Forbes and Schwartz [3] computed

the first two types of solution in the presence of a semi-circular obstruction. Vanden-Broeck

[4] further explored the first type and found that supercritical solutions can exist only for

values of the Froude number greater than some threshold. And for some Froude numbers,

there are two solutions, one being a perturbation of a uniform stream and the other being a

perturbation of a solitary wave. In the nearly critical regime, hydraulic falls were calculated

by Forbes [5], who found that as the radius of the submerged obstacle is increased, the

speed of the downstream portion of the flow increases, with a consequent reduction in the

upstream Froude number. For a submerged triangular obstacle, Dias and Vanden-Broeck

[6] studied waves of permanent form without oscillation in the far-field, and they found that

solutions exist for triangles of arbitrary size.

Solutions of the fourth type were computed by Dias and Vanden-Broeck [7]; however, as

they pointed out, the generalized hydraulic falls lack physical meaning because waves on the

free surface do not satisfy the radiation condition. Nevertheless, Dias and Vanden-Broeck

[2] argued that the radiation condition could be satisfied by introducing a second obstacle

in the channel. Therefore these generalized hydraulic falls can be used to describe locally

the flow past two successive obstacles resulting in trapped waves. Shortly after, Binder

et al. [8] revisited the same problem and discovered more configurations of hydraulic falls

with trapped waves between submerged obstacles and forced solitary waves through weakly
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nonlinear analysis and numerical computations of the fully nonlinear equations. Page and

Părău [9] examined the stability property of gravity trapped waves upstream of a hydraulic

fall using direct numerical simulations for the unsteady Euler equations, indicating that

they are stable. When other restoring forces are included in addition to gravity, trapped

waves between two submerged obstructions were later investigated by Page et al. [10, 11]

for capillary-gravity waves and flexural-gravity waves, respectively.

Hydraulic falls occurring in the interiors of oceans as stratified tidal flows pass sills or

submarine ridges also attract research attention due to their associations with ocean mixing

as well as the generation of nonlinear internal waves or wave trains (see [12], for exam-

ple). Figure 1 shows the field observation of a stratified flow over topography in Knight

Inlet (British Columbia, Canada) measured by Farmer and Armi [12], illustrating the down-

stream formation of an undular internal hydraulic jump. A simple mathematical idealization

for studying internal waves is the wave propagation on the sharp density discontinuity be-

tween two immiscible fluids. Under this simplification, interfacial hydraulic falls have been

considerably investigated in numerics, theory, and experiment over the past several decades.

The first interfacial waterfall-like solution over a semi-circle obstruction was numerically

found in the full Euler equations by Forbes [13] in the trans-critical regime based on the

conformal mapping technique. For the same problem, Sha and Vanden-Broeck [14] com-

puted forced interfacial solitary waves based on a novel boundary integral equation method

with the arc-length parametrization of the interface and found two limiting configurations:

broadening and overhanging. On the theoretical side, Shen [15] used a forced KdV equation

to obtain solitary and hydraulic solutions for two-layer flows over a bottom obstruction.

Notably, he allowed the upper layer to be bounded above by a free surface rather than the

rigid-lid assumption. Dias and Vanden-Broeck [1, 16] combined theory and computation,

i.e., the weakly nonlinear results obtained by integrating the forced KdV equation or the

forced modified KdV equation are validated by comparison with numerical results obtained

by solving the full Euler equations. Consequently, they found new branches of solutions akin

to the single-layer situation. Moreover, considerable understanding of two-layer flow over an

obstacle was also gained from controlled experiments, notably the towing-tank experiments

of Long [17] and Baines [18] and the fixed-obstacle experiments of Lawrence [19]. It is also

worth mentioning that when the bottom obstacle is of significant height, and thus outside

the range of application of the forced KdV theory, a situation occasionally occurs in real
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Figure 1. A field observation of internal hydraulic jump obtained by Farmer and Armi near the

sill in Knight Inlet in Autumn 1995 (see Figure 7d in [12]).

oceans, numerical and experimental studies were also carried out. For example, Cummins

et al. [20] and Cabeza et al. [21] performed experimental measurements for two-layer flows

past pronounced obstacles and simulated the observed phenomena using the incompressible

Navier-Stokes equation with Boussinesq approximation for buoyancy terms.

Though Dias and Vanden-Broeck [1, 16] conducted extensive numerical simulations on

steady interfacial hydraulic falls, computations of two-layer flows past two successive ob-

stacles and the resultant trapped interfacial waves remain lacking. Furthermore, the effect

of the combination mode of two obstructions (convex or concave) at the bottom merits an

investigation. In the present paper, we report numerical results of steady hydraulic falls

for two-layer flow over bottom obstacles and pay particular attention to trapped waves be-

tween two obstructions. Direct numerical computations of the primitive Euler equations

are performed based on the boundary integral equation method proposed by Belward and

Forbes [22], a scheme applicable to arbitrary bottom topography. Our numerical results also

confirm the predictions of the weakly nonlinear theory.

The rest of the article is structured as follows. The mathematical formulation of the
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problem is described in II. The theoretical results are presented in III, including the linear

dispersion relation and the weakly nonlinear theory leading to the forced KdV equation and

the forced mKdV equation based on the small-amplitude assumption on both interface and

obstacle. IV begins with computations of interfacial hydraulic falls over a single obstacle

in the full Euler equations. The goal is threefold: to validate the numerical scheme of the

boundary integral formulation, to understand the influence of obstacle’s aspect ratio on

falls, and to gain iterative initial data of Newton’s method for computations of trapped

waves. Next, trapped interfacial waves between two obstacles of different aspect ratios and

combination modes are numerically solved, where the predictions of the KdV theory are

used to guide the computations of the fully nonlinear equations. Finally, a conclusion is

given in V.

II. DESCRIPTIONS OF PROBLEM

Two inviscid, incompressible, and immiscible fluids are bounded together in a two-

dimensional channel of finite vertical extent and infinite horizontal extent. A sketch of

the system is shown in Fig. 2. The top boundary is flat, and the topographic relief at

the bottom is locally confined. We introduce a Cartesian coordinate system such that the

x−axis is parallel to the rigid top wall and the y−axis is parallel to the opposite direction of

gravity. We denote by y = H1 +H2 and y = b(x) the upper and lower boundaries, respec-

tively, where b(x) is a function with compact support. And the interface between two fluids

is denoted as y = H1+ ζ(x). The subscripts 1 and 2 refer to fluid properties associated with

the lower and upper fluid layers, respectively. The fluid density in each layer is supposed to

be constant, designated by ρj (j = 1, 2), and the system is in a stable density configuration,

namely ρ2 < ρ1. The depth of each layer at infinity is denoted by Hj for upstream and hj

for downstream. The upstream and downstream velocities are supposed to be uniform and

are designated as Uj and Vj , respectively.

The motion of each fluid is assumed to be irrotational; thus, we can introduce velocity

potentials φ1 and φ2, which satisfy the Laplace equation in the corresponding layers, namely

φ1xx + φ1yy = 0 , for b(x) < y < H1 + ζ(x) , (1)

φ2xx + φ2yy = 0 , for H1 + ζ(x) < y < H1 +H2 . (2)
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Figure 2. Schematic description of the physical problem.

The impermeability boundary conditions at the top and bottom are written as

φ1y = φ1xbx , at y = b(x) , (3)

φ2y = 0 , at y = H1 +H2 . (4)

Since we search for steady solutions in the present paper, the kinematic boundary conditions

at the interface can be written as

0 = φ1y − φ1xζx = φ2y − φ2xζx , at y = H1 + ζ(x) , (5)

indicating the continuity of the normal velocity across the media. The dynamic boundary

condition resulting from the continuity of the pressure across the interface reads

1

2

[
ρ1

(
φ2
1x + φ2

1y

)
− ρ2

(
φ2
2x + φ2

2y

)]
+ g(ρ1 − ρ2)ζ −

1

2

(
ρ1U

2
1 − ρ2U

2
2

)
= 0 , (6)

where the Bernoulli constants at infinity are used. In addition, the conservation of mass and

height yields

H1 +H2 = h1 + h2 , U1H1 = V1h1 , U2H2 = V2h2 . (7)

Equations (1)–(7) form a closed system for steady internal hydraulic falls. Finally, for the

convenience of later discussion, we introduce dimensionless parameters including the density

ratio, the depth ratio, the velocity ratios, the Froude numbers upstream, and the Froude

numbers downstream as

R =
ρ2
ρ1
, Θ =

H2

H1
, β =

U2

U1
, β1 =

V1
U1

, β2 =
V2
U2

,
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F1u =
U1√
gH1

, F2u =
U2√
gH2

, F1d =
V1√
gh1

, F2d =
V2√
gh2

,

where the subscripts u and d refer to the parameters associated with the flows upstream

and downstream, respectively.

III. THEORETICAL ANALYSIS

A. Linear analysis

In the subsequent analyses, we investigate the problem from the linear perspective. First,

the smallness assumption is made on wave amplitude, ζ/H1 ∼ O(ǫ), and on bottom topog-

raphy, b/H1 ∼ O(ǫ2), where ǫ≪ 1 is a small parameter. We then linearize the whole system

around the trivial solution φj = Ujx and ζ = 0. The perturbations of velocity potentials

and interface are chosen to be expressed in the form of separated variables, i.e.,

ζ = ǫ ζ̂ eikx , φj = Ujx+ ǫ φ̂j(y) e
ikx , (8)

where j = 1, 2 and k is the wavenumber. Next, we drop nonlinear terms in Eqs. (1)–(7) and

solve the problem in a uniform channel. Substituting the solution ansatz into the Laplace

equations (1)–(2) and the impermeability boundary conditions (3)–(4), one obtains

φ̂1 = α cosh (ky) , φ̂2 = −αβ sinh (kH1)

sinh (kH2)
cosh (kH1 + kH2 − ky) , (9)

where α is a free parameter. Furthermore, using the kinematic boundary conditions at the

interface, ζ can be solved as

ζ =
ǫα

iU1
sinh (kH1) e

ikx . (10)

Then, substituting the expressions of φj and ζ into the linearized dynamic boundary condi-

tion yields a linear dispersion relation

F 2
1u =

(1− R) tanh (K) tanh (ΘK)

K tanh (ΘK) +Rβ2K tanh (K)
, (11)

where K = kH1 is the normalized wavenumber. The critical Froude number for the lower-

layer upstream can be defined by taking the limit K → 0, i.e.,

F ∗

1u
2 =

Θ(1−R)

Θ +Rβ2
. (12)
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A similar derivation can be applied to the quantities downstream, and the dispersion relation

reads

F 2
1d =

(1− R) tanh
(

K
β1

)
tanh

(
ΘK
β2

)

K
β1

tanh
(

ΘK
β2

)
+Rβ2K

β2

2

β3

1

tanh
(

K
β1

) , (13)

where K = kh1 is the corresponding wavenumber.

B. Weakly nonlinear analysis

In this part, the forced Korteweg-de Vries type models are derived via asymptotic analy-

ses in the long-wave approximation. These models will be used in the next section to guide

the numerical computations for the full Euler equations and provide qualitative understand-

ings of interfacial hydraulic falls. Our analyses are based on a fundamental assumption

that both fluid layers are thin compared with a characteristic wavelength. Small parameters

ǫ = a/H1 ≪ 1 and µ = H1/l ≪ 1 are defined to measure the nonlinearity and dispersion,

respectively, where l is a characteristic wavelength in the x−direction and a is a typical

amplitude of the interface displacement. We consider the classic Boussinesq scaling:

x = lx′ , y = H1y
′ , ζ = aζ ′ , b = ǫ2H1b

′ , U1 =
√
gH1F1u , U2 =

√
gH1F1uβ ,

φ1 =
√
gH1F1ulx

′ +
agl√
gH1

φ′

1 , φ2 =
√
gH1F1uβlx

′ +
agl√
gH1

φ′

2 .

It is noted that velocity potentials have been expressed as a sum of a background term and

a perturbation term. Using these dimensionless variables and dropping the apostrophes for

the ease of notations, the field equations and the wall boundary conditions become

µ2φ1xx + φ1yy = 0 , for 0 < y < 1 + ǫζ ,

µ2φ2xx + φ2yy = 0 , for 1 + ǫζ < y < 1 + Θ ,

φ1y = ǫµ2F1ubx + ǫ2µ2φ1xbx , at y = ǫ2b ,

φ2y = 0 , at y = 1 + Θ .

(14)

At the same time, the kinematic and dynamic boundary conditions at the interface y = 1+ǫζ

are recast to

0 = µ2F1uζx + ǫµ2φ1xζx − φ1y = µ2F1uβζx + ǫµ2φ2xζx − φ2y , (15)
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0 =
1

2

[
2F1uφ1x + ǫφ2

1x +
ǫ

µ2
φ2
1y − R

(
2βF1uφ2x + ǫφ2

2x +
ǫ

µ2
φ2
2y

)]
+ ζ(1− R) . (16)

Small parameters are chosen to satisfy ǫ = µ2 to balance dispersion and nonlinearity. Based

on the system (14), we can write the asymptotic expansions of φ1 and φ2 to

φ1 = f1(x)−
ǫ

2
f1xxy

2 +
ǫ2

24
f1xxxxy

4 + ǫ2F1ubxy +O(ǫ3) , (17)

φ2 = f2(x)−
ǫ

2
f2xx(y − 1−Θ)2 +

ǫ2

24
f2xxxx(y − 1−Θ)4 +O(ǫ3) , (18)

where f1(x) and f2(x) are the velocity potentials at the bottom and top walls, respectively.

Substituting the expressions (17) and (18) into Eqs. (15) and (16) and retaining terms valid

up to the next-to-leading order for each equation, one obtains

ζx +
1

F1u

f1xx +
ǫ

F1u

(
f1xζx + f1xxζ −

1

6
f1xxxx

)
= ǫbx , (19)

βζx −
Θ

F1u
f2xx +

ǫ

F1u

(
f2xζx + f2xxζ −

Θ3

6
f2xxxx

)
= 0 , (20)

1−R

F1u
ζ + f1x − Rβf2x + ǫ

(
1

2
f1xxx +

RβΘ2

2
f2xxx +

1

2F1u
f 2
1x −

R

2F1u
f 2
2x

)
= 0 . (21)

Firstly, the solvability condition for the linearized system of (19)–(21) indicated F1u =

F ∗

1u + ǫλ, where λ = O(1) is a newly introduced parameter. Then it is a little tedious but

straightforward to convert (19)–(21) to a single equation, the steady forced KdV equation.

Eliminating f1 and f2 in Eq. (21) by virtue of (19)–(20) and retaining terms valid up to

O(ǫ), one obtains

− Θ

2(Θ +Rβ2)
bx = − λ

F ∗

1u

ζx +
3

2

Θ2 − Rβ2

Θ(Θ+Rβ2)
ζζx +

1

6

Θ(1 +Rβ2Θ)

Θ +Rβ2
ζxxx , (22)

which can be transformed to the standard form

−1

2
bx = −λζx ±

3

2
ζζx +

1

6
ζxxx . (23)

The derivation is rather standard, and the interested readers are referred to [23] for more

details. If we assume the topography b(x) is a Dirac delta function of weight Q, namely

b(x) = Qδ(x), then integrating Eq. (23) yields

ζxx ±
9

2
ζ2 − 6λζ = −3Qδ . (24)

Again, integrating Eq. (24) over a small interval including the original point, from −ε to ε

with ε → 0 say, gives

ζx(0
+)− ζx(0

−) = −3Q , (25)
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indicating that the derivative of the interface features a jump at the position of the bottom

obstruction. Furthermore, solutions to the homogenous KdV equation (Q = 0) can be

described by an autonomous system

dA

dx
= B ,

dB

dx
= ∓9

2
A2 + 6λA , (26)

with two equilibrium/saddle points: ζ = 0 and ζ = ±4
3
λ.

It is well known that the KdV equation is obtained by balancing dispersive and nonlin-

ear effects. However, when Θ ≈
√
Rβ2, the nonlinear term is very close to zero, and hence

rescaling is required in the asymptotic analysis to achieve a new balance. Under this par-

ticular situation, we should choose ǫ = µ and assume Rβ2 = Θ2 + ǫσ, F1u = F ∗

1u + ǫ2λ, and

b = ǫ3H1b
′ to introduce a higher-order nonlinearity to balance the dispersion (see, for exam-

ple, Ref. [16] for more details). Following a similar asymptotic procedure, a forced modified

Korteweg-de Vries (mKdV) equation including the cubic nonlinearity can be obtained

− bx
2(1 + Θ)

= − λ

F ∗

1u

ζx +
3σ

Θ2 +Θ
ζζx −

3(1−Θ)

Θ2 +Θ
ζ2ζx +

1−Θ+Θ2

6
ζxxx . (27)

The above equation can be rewritten in a more revealing form via rescaling

−1

2
bx = −λζx +

3

2
σζζx −

3

4
ζ2ζx +

1

6
γζxxx , (28)

where γ = (1 − Θ + Θ2)F ∗

1u. By neglecting the external forcing, the dynamical system

has three equilibrium/saddle points, ζ = 0 and ζ = 3
2
σ ± 1

2

√
9σ2 − 16λ, when λ < 16

9
σ2.

However, the number of the equilibrium points reduces to two and one for λ = 16
9
σ2 and

λ > 16
9
σ2, respectively.

We emphasize that the weakly nonlinear results described in this section are not new but

are included here for completeness (see [1, 16] for more details). The hydraulic solutions can

be divided into six categories in terms of F1u and Θ. The flow upstream can be subcritical

if F1u < F ∗

1u or supercritical if F1u > F ∗

1u. We define a case as the ‘thick upper layer’ for

Θ >
√
β2R, the ‘thick lower layer’ for Θ <

√
β2R, and the critical case for Θ =

√
β2R.

This paper is primarily devoted to the numerical evidence and basic properties of interfacial

hydraulic falls. Using a phase diagram of (λ,Q) of the KdV equation, Dias and Vanden-

Broeck show that the hydraulic solutions exist only when |Q| = 4
9

√
2|λ|3/2 (see Ref. [1]

for more details). Their theoretical prediction classifies the solutions and associates each

with a corresponding region. In this paper, the parameter β is fixed as β = 1, and we
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focus on far-field wave-free solutions. Four typical regimes will be considered, and they are

denoted as follows: Regime (I) subcritical flow upstream and thick upper layer; Regime (II)

supercritical flow upstream and thick upper layer; Regime (III) subcritical flow upstream and

thick bottom layer; and Regime (IV) subcritical flow upstream and critical depth. Finally,

we should point out that we did not manage to find the numerical solutions in the full Euler

equations for the other two cases, namely supercritical flow upstream with a critical depth

and supercritical flow upstream with a thick bottom layer, which are left for future studies.

IV. NUMERICAL RESULTS

A. Numerical scheme

The fully nonlinear problem can be numerically solved by using the boundary inte-

gral equation method with the arclength parameterization of the interface. This numerical

scheme was first proposed by Forbes and Schwartz in Ref. [3] and was widely used to search

for steady hydraulic falls on the water surface. We briefly introduce the numerical scheme,

and the interested readers are referred to [16, 22] for more details. It is convenient to choose

H1 and H1U1 as the units of length and velocity potential, respectively. Following [22], the

fluid interface is first parametrized by writing x = X(s) and y = 1 + ζ(x) = Y (s) so that

the following condition is satisfied automatically

(
dX

ds

)2

+

(
dY

ds

)2

= 1 . (29)

Thus the parameterized dynamic boundary condition can be rewritten as

1

2

(
dφ1

ds

)2

− R

2

(
dφ2

ds

)2

− 1

2
(1−Rβ2) +

1

F 2
1

(1− R)(Y − 1) = 0 . (30)

Secondly, we introduce the complex velocity potential wi(z) = φj(x, y) + iψj(x, y) for

j = 1, 2, where z = x + iy is a point on the complex plane, and ψj(x, y) stands for the

stream function in each fluid layer. Following Belward and Forbes [22], we introduce the

complex velocity as

χj =





dwj

dz
− 1 = φjx − iφjy − 1 , j = 1 ,

dwj

dz
− β = φjx − iφjy − β , j = 2 ,

(31)
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(a) (b)

Figure 3. Sketch of the contour of integration: (a) for the lower fluid; (b) for the upper fluid.

The Cauchy integral formula is applied to χ1 for the lower fluid layer, and a sketch of the

integration contour C is shown in Fig. 3(a). It consists of the interface, channel bottom, and

vertical lines joining them at x = ±L with L→ ∞. Since we are interested in the values of

χ1 on the interface and the bottom are interested, the Cauchy integral formula gives

π(Φ′

1X
′(s)− 1)

=

∫
∞

−∞

(Φ′

1(σ̂)−X ′(σ̂))(Y (σ̂)− Y (s)) + Y ′(σ̂)(X(σ̂)−X(s))

(X(σ̂)−X(s))2 + (Y (σ̂)− Y (s))2
dσ̂

−
∫

∞

−∞

[u(σ̂)(1 + bx(σ̂)
2)− 1](b(σ̂)− Y (s)) + bx(σ̂)(σ̂ −X(s))

(σ̂ −X(s))2 + (b(σ̂)− Y (s))2
dσ̂ ,

(32)

and

π(u(x)− 1)

=

∫
∞

−∞

(Φ′

1(σ̂)−X ′(σ̂))(Y (σ̂)− b(x)) + Y ′(σ̂)(X(σ̂)− x)

(X(σ̂)− x)2 + (Y (σ̂)− b(x))2
dσ̂

−
∫

∞

−∞

[u(σ̂)(1 + bx(σ̂)
2)− 1](b(σ̂)− b(x)) + bx(σ̂)(σ̂ − x)

(σ̂ − x)2 + (b(σ̂)− b(x))2
dσ̂ ,

(33)

where σ̂ represents the value of the arclength at the varying point on the contour, the

evaluation points s and x are placed on the interface and the bottom, respectively, Φ1 is the

velocity potential at the interface, and u(σ̂) stands for the horizontal velocity at the channel

bottom.

Next, the Cauchy integral formula is applied to the function χ2 for the upper fluid layer.

A modification to The integration path is modified to avoid setting mesh points on the

top wall. Indeed, the impermeability boundary conditions can be satisfied automatically

by using the method of images. Figure 3(b) shows a sketch of the new integration path.
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Denoting the velocity potential at the interface by Φ2, the Cauchy integral formula thus

leads to

π(Φ′

2(s)X
′(s)− β)

=

∫
∞

−∞

−(Φ′

2(σ̂)− βX ′(σ̂))(Y (σ̂)− Y (s))− βY ′(σ̂)(X(σ̂)−X(s))

(X(σ̂)−X(s))2 + (Y (σ̂)− Y (s))2
dσ̂

−
∫

∞

−∞

−(Φ′

2(σ̂)− βX ′(σ̂))(2 + 2D − Y (σ̂)− Y (s))− βY ′(σ̂)(X(σ̂)−X(s))

(X(σ̂)−X(s))2 + (2 + 2Θ− Y (σ̂)− Y (s))2
dσ̂ .

(34)

Since we confine our attention to hydraulic falls in the present paper, the solution ap-

proaches constant states on both sides in the far-field. It is sufficient to perform numerical

computations in a truncated domain. We introduce a set of mesh grids equally distributed

on the interface, denoted as sj , j = 1, 2, · · · ,M , and the corresponding unknowns

dΦ1

ds
(sj) ,

dΦ2

ds
(sj) ,

dY

ds
(sj) .

X ′(sj) can be obtained through the parametric equation (29). Similarly, the N mesh points

xj , j = 1, 2, · · · , N , can be defined at the bottom, and u(xj) are the associated unknowns.

To avoid the singularities in computations of the Cauchy integrals, we introduce the other

two sets of mesh grids

smj =
sj + sj+1

2
, j = 1, 2, · · · ,M − 1 ,

xmj =
xj + xj+1

2
, j = 1, 2, · · · , N − 1 , .

Evaluating Eqs. (32)–(34) at the midpoints results in 2M +N − 3 algebraic equations, and

the dynamic boundary condition at the interface (30) provides additionalM equations while

being evaluated at the mesh points {sj}. We can determine β1 by enforcing β1 = 1
Y (sM )

to

satisfy the downstream far-field condition. We can further obtain β2 based on conservation

of the total fluid height in the far-field, namely solving for β2 from

1 + Θ =
1

β1
+

Θ

β2
. (35)

Then, substituting the downstream far-field state into the dynamic boundary yields

1

2
F 2
1uRβ

2(1− β2
2) +

1

2
F 2
1u(β

2
1 − 1) + (1− R)

(
1

β1
− 1

)
= 0 , (36)

which gives the value of F1u. Finally, to solve the system by Newton iterations, three more

equations describing the flow in the far-field are needed to close the system. These equations
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can be defined depending on the form of solution to be found; for example, Y ′(1) = 0,

u(1) = 1, and Φ′

2(1) = γ (see [2, 16] for details). This numerical scheme was successfully

implemented by [2, 7, 10, 11] for computing free-surface hydraulic falls and [16, 22] for

interfacial waves over a single obstacle.

B. Results

Following [2, 10, 11], the numerical computations are performed by assuming that the

bottom topography features a combination of separated half-period cosine-type profiles,

namely

b(x) =





A1 cos
2

(
π(x− x1)

L1

)
, for − L1

2
< x− x1 <

L1

2
,

A2 cos
2

(
π(x− x2)

L2

)
, for − L2

2
< x− x2 <

L2

2
,

0 , for |x− x1| >
L1

2
, |x− x2| >

L2

2
,

(37)

where Ai and Li are the height and width of obstacles, respectively, and two obstacles are

centered at x = x1 and x = x2. The height of the obstacle may be positive, negative, or

zero, but two heights cannot be zero simultaneously.

1. Single obstacle

Hydraulic falls of a two-layer flow over a single obstacle are numerically calculated and

compared to the theoretical results predicted by the forced KdV equation. In this section, A2

is chosen to be zero so that only one obstacle exists at the bottom. The parameter R = 0.6 is

fixed and we select Θ = 2 for the case of the thick upper layer and Θ = 0.5 for the case of the

thick lower layer, and accordingly, the critical Froude numbers are F ∗

1u = 0.55 and F ∗

1u = 0.43,

respectively. The initial guess for Newton’s iteration is essential in our computations. To

overcome this difficulty, solutions to the associated KdV equation that provide qualitative

approximations to the full Euler equations, are analyzed before performing direct numerical

simulations. For example, the parameter β1 is chosen to be greater than one if the weakly

nonlinear theory predicts that the depth downstream is smaller than upstream. Interfacial

hydraulic falls resulting from various heights and widths of the obstacle will be investigated

to illustrate the effects of the spatial scale characteristics of the obstruction.
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Figure 4. Interfacial hydraulic falls over one obstacle in Regime (I). (a) Phase portrait for the

KdV equation with the topography approximated by a positive Dirac delta function. (b) Wave

profiles of the full Euler equations for convex obstacles with different sizes: A1 = 0.1, L1 = 5,

F1u = 0.4 (solid line); A1 = 0.1, L1 = 2, F1u = 0.46 (dotted line); A1 = 0.02, L1 = 2, F1u = 0.52

(dashed line). (c) Phase portrait for the KdV equation with the topography approximated by a

negative Dirac delta function. (d) Wave profiles of the full Euler equations for concave obstacles

with different widths: A1 = −0.02, L1 = 5, F1u = 0.51 (solid line); A1 = −0.02, L1 = 2, F1u = 0.53

(dotted line).

We first consider Regime (I): subcritical flow upstream with a thick upper layer. Figure

4(a) shows the phase portrait of the homogeneous KdV equation plotted using the system

(26) with the negative nonlinear term and γ < 0. When the equation is forced by a to-

pography described as a positive Dirac delta function, since the flow is uniform upstream

with ζ = 0, the solution must jump downwards to satisfy the jump condition (25) and then

move along the trajectory to the saddle point. Thus, a hydraulic fall is obtained. Figure

4(b) demonstrates that interfacial hydraulic falls calculated numerically with the full Euler
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Figure 5. Interfacial hydraulic falls over one obstacle in Regime (II). (a) Phase portrait for the

KdV equation with the topography approximated by a positive Dirac delta function. (b) Wave

profiles of the full Euler equations for convex obstacles with different widths: A1 = 0.1, L1 = 5,

F1u = 0.63 (solid line); A1 = 0.1, L1 = 2, F1u = 0.61 (dotted line). (c) Phase portrait for the

KdV equation with the topography approximated by a negative Dirac delta function. (d) Wave

profiles of the full Euler equations for concave obstacles with different widths: A1 = −0.02, L1 = 5,

F1u = 0.58 (solid line); A1 = −0.02, L1 = 2, F1u = 0.57 (dotted line).

equations are qualitatively similar to the weakly nonlinear theory. Results of various sizes of

the obstacle are compared. It is evident in Fig. 4(b) that for a positive, convex obstacle, as

the width L1 enlarges, the upstream Froude number F1u decreases, and the vertical drop of

the fall (namely |H1 − h1|) becomes more significant. In addition, increasing the obstacle’s

height leads to a reduction of F1u and an amplification of |H1 − h1|. When the obstacle

is concave (Q < 0), the solution must jump upwards in the weakly nonlinear analysis to

satisfy the jump condition. So a non-equilibrium stationary point corresponding to the peak

of the solution is passed before reaching the saddle point. In this case, hydraulic falls are
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Figure 6. Interfacial hydraulic falls over one obstacle in Regime (III). (a) Phase portrait for the

KdV equation with the topography approximated by a positive Dirac delta function. (b) Wave

profiles of the full Euler equations for convex obstacles with different widths: A1 = 0.1, L1 = 5,

F1u = 0.33 (solid line); A1 = 0.1, L1 = 2, F1u = 0.35 (dotted line). (c) Phase portrait for the

KdV equation with the topography approximated by a negative Dirac delta function. (d) Wave

profiles of the full Euler equations for concave obstacles with different widths: A1 = −0.02, L1 = 5,

F1u = 0.39 (solid line); A1 = −0.02, L1 = 2, F1u = 0.40 (dotted line).

expected to rise and fall over the obstacle, with the depth of the lower fluid being smaller

downstream than upstream (see Fig. 4c). For concave bottom obstructions, Fig. 4(d) shows

the full Euler computations with the solutions featuring a non-monotonic structure which

agrees well with the theoretical prediction. Tendencies similar to Fig. 4(b) are also found

when the aspect ratio of the obstruction is changed.

In the same vein, the KdV-based analysis can be carried out for the other three cases (see

the phase portraits in Figs. 5-7), and the details will not be repeated hereafter. Interfacial

hydraulic falls in Regime (II), supercritical flow upstream with a thick upper layer, show a
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Figure 7. Interfacial hydraulic falls over one obstacle in Regime (IV) with Θ =
√

3/5 and F ∗

1u =

0.48. (a) Phase portrait for the KdV equation with the topography approximated by a positive

Dirac delta function. (b) Wave profiles of the full Euler equations for convex obstacles with different

widths: A1 = 0.02, L1 = 5, F1u = 0.45 (solid line); A1 = 0.02, L1 = 2, F1u = 0.46 (dotted line).

more significant depth of the lower fluid downstream than upstream, meaning that they are

‘jump-ups’. In Fig. 5(b,d), F1u and |H1 − h1| increase with the broadening of the obstacle.

For concave obstacles, hydraulic falls feature a bulge structure rather than a monotonic

increasing curve. This phenomenon differs slightly from Regime (I) since the lower layer

ultimately reaches a higher level as x → +∞, namely h1 > H1. The results of Regime

(III) - subcritical flow upstream with a thick lower layer - and Regime (IV) - subcritical

flow upstream with a critical depth - are presented in Figs. 6 and 7, respectively. Similar

behaviors akin to Regime (I), a reduction of F1u and an amplification of |H1 −h1| alongside
the increase of L1, are observed. It is worth mentioning that, though not presented in the

paper, the concave obstruction can lead to hydraulic jump-ups in Regime (IV). That is

because the flow upstream has to jump upwards at the equilibrium point (ζ = 0, ζx = 0) to

satisfy the jump condition (25) and moves to the right saddle point in the phase portrait of

the forced mKdV equation (see Fig. 7a).

In summary, broadening the obstacle increases the vertical jump of the interfacial hy-

draulic fall. At the same time, it decreases the Froude number upstream for subcritical flows

and increases the Froude number upstream for supercritical flows. The numerical solutions

are coherent with the phase portraits based on the KdV or mKdV equation, partially val-

idating our numerical algorithms. The solutions obtained in this subsection provide good

initial data for the Newton iteration when computing trapped waves between two successive



19

obstacles in the next subsection.

2. Two successive obstacles

We extend the problem to a two-layer flow past two successive obstacles, one of which

is placed at the origin, and the other can be placed upstream or downstream. The main

focus of this part is on the existence and wavelength of trapped waves. The influences

of horizontal and vertical sizes of the obstacles and their relative distance are considered.

We find that the solutions are very sensitive to the initial conditions we choose. For our

code to converge quickly, the hydraulic fall solutions over a single obstacle computed in

the precedent subsection are used as the initial data for the Newton iteration. And the

second obstacle can be introduced using a numerical homotopy continuation by increasing

its amplitude gradually until the desired value. The wavelengths of trapped waves, denoted

by λ, can be predicted theoretically with the dispersion relation given in Eqs. (11) and (13),

and the predictions are compared with the numerical results of the full Euler equations. The

parameters Θ and R remain the same as the previous subsection for four different regimes.

When the flows upstream are in Regime (I), interfacial hydraulic falls over two successive

convex obstacles are numerically computed, with fixed geometrical parameters (A1 = 0.1,

L1 = 5, and x1 = 0) for one obstacle and variable sizes and locations for the other. Since

the upstream flow is subcritical, the linear theory predicts that the second obstacle must be

placed upstream of the hydraulic fall to obtain trapped waves, confirmed by the numerical

experiments of the full Euler equations shown in Fig. 8. Indeed, when the second obstacle

is placed downstream, there are no trapped waves between the two. The interface features

a soliton-like form right above the second obstacle (see Fig. 8a), akin to the phenomenon

occurring in free-surface hydraulic falls described in Ref. [2]. A train of trapped waves

appears upstream when the second obstacle is placed upstream (see Fig. 8c). It is observed

that a variation in the horizontal or vertical size of the second obstacle only results in the

change of amplitude of the trapped waves does not influence the wavelength significantly.

It is not surprising that the higher the second obstacle is, the larger the trapped waves’

amplitude; however, the width of the second obstacle has little impact on wave amplitude.

Furthermore, cases for two obstacles having different polarities are calculated with A1 =

±0.1 and A2 = ∓0.1 (see Fig. 9). The numerical result for A1 = A2 = 0.1 is also presented in
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Figure 8. Interfacial hydraulic falls over two convex obstacles in Regime (I) with A1 = 0.1, L1 = 5,

and x1 = 0. (a, b) A soliton-like solution and its phase portrait in the full Euler equations with

A2 = 0.02, L2 = 2, and x2 = 15. (c, d) Trapped wave solutions and their phase portraits for

x2 = −15 and various aspect ratios of the second obstacle: A2 = 0.02, L2 = 2,λ ≈ 4.3 (solid line);

A2 = 0.02, L2 = 5, λ ≈ 4.3 (dotted line); A2 = 0.1, L2 = 2, λ ≈ 4.2 (dashed line).

the same figure for comparison purposes. It is shown that for a convex obstacle at the origin,

changing the polarity of the second obstacle results in a similar wavelength of the generated

trapped waves, but not vice versa, indicating that the wavelength of the trapped waves

upstream under this situation depends primarily on the obstacle at the origin. However, the

phase portraits in Fig. 9(b) show that the polarity of the second obstruction determines the

sign of ζx when leaving the equilibrium point (ζ, ζx) = (0, 0).
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Figure 9. Interfacial hydraulic falls over two successive obstacles of mixed type in Regime (I). The

wave profiles (a) and phase portraits (b) are obtained by solving the full Euler equations with

L1 = L2 = 2, x1 = 0, and x2 = −15; other parameters are: A1 = 0.1, A2 = −0.1, λ ≈ 6.6

(solid line); A1 = −0.1, A2 = 0.1, λ ≈ 8.1 (dotted line). The numerical results with two successive

convex obstacles are presented for comparison and the parameters are A1 = −0.1, A2 = 0.1, λ ≈ 6.2

(dashed line).

The dispersion relations in Eqs. (11) and (13) are presented in Fig. 10. The theoretical

wavelength of upstream trapped waves can be estimated via solving for K in Eq. (11) based

on the computed upstream Froude number F1u, namely the intersection point of F = F1u

and the dispersion relation F = F1u(K). Similarly, the intersection point of the horizontal

line F = F1d and the dispersion curve F = F1d(K) given in Eq. (13) is used if a train

of trapped waves exits downstream. We denote by λt the theoretical prediction of the

wavelength. It is shown in Fig. 10(a) that the upstream Froude number intersecting the

upstream linear dispersion relation results in λt ≈ 4.3, which offers good agreement with

the numerical results shown in Fig. 8(c,d). Similarly, λt ≈ 6.5 and λt ≈ 8.2 are predicted

(see Fig. 10b) for the cases presented in Fig. 9. Note that for hydraulic falls in Regime

(I), the downstream Froude numbers are larger than the critical value, meaning that the

downstream Froude number cannot intersect with the downstream dispersion relation, which

explains why no periodic wave train appears downstream.

Similar numerical experiments are carried out for the other three regimes of upstream

flow. The results of hydraulic falls over two successive convex obstacles when the upstream
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Figure 10. Dispersion relations, F1u (solid lines) and F1d (dotted line) given in Eqs. (11) and

(13) with (Θ, R, β) = (2, 0.6, 1), and predicted wavenumbers for Regime (I). (a) The theoretical

prediction of the wavenumber for the solid-line case in Fig. 8c. The obtained upstream Froude

number (horizontal dashed line) and downstream Froude number (horizontal dash-dotted line)

indicate trapped waves upstream with λt ≈ 4.3. (b) For the cases in Fig. 9, the computed upstream

Froude numbers (horizontal dashed and dash-dotted lines) intersecting the dispersion relation (11)

gives the theoretical wavenumbers of trapped waves: λt ≈ 6.5 for (A1, A2) = (0.1,−0.1) and

λt ≈ 8.2 for (A1, A2) = (−0.1, 0.1).

flows are in Regime (II) are presented in Fig. 11. The geometrical parameters of the

obstacle at the origin are fixed as A1 = 0.1 and L1 = 2. Since Regime (II) demands

supercritical upstream flows, it is impossible to have an intersection point between the

upstream Froude number F = F1u and the upstream dispersion curve F = F1u(K) (see the

solid curve and horizontal dashed line in Fig. 13a), indicating that trapped waves can only

appear downstream. A typical trapped wave solution is shown in Fig. 11(c). These waves

feature a greater wavelength than those in Regime (I), so a more extended computational

domain is required. Numerical examples when bottom obstacles are of opposite phases are

demonstrated in Fig. 12. To estimate the wavelength of trapped waves, we place the second

obstruction further downstream from the origin, say x2 = 30, in Figs. 11 and 12. For

A1 = 0.1 fixed, as shown by the solid lines in Figs. 11(c) and 12(a), the generated trapped

waves have similar wavelengths regardless of the sign and size of A2. This fact implies that

changing the phase of the obstacle closer to the subcritical flow does not exert a noticeable
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Figure 11. Interfacial hydraulic falls over two successive convex obstacles in Regime (II), computed

in the full Euler equations with (A1, L1, x1) = (0.1, 2, 0) and (A2, L2, x2) = (0.02, 2,±30). (a, b)

Wave profile and phase portrait for x2 = −30. (c, d) Wave profile and phase portrait for x2 = 30,

exhibiting trapped waves downstream with λ ≈ 15.2.

influence on the wavelength. The theoretical predictions of wavelength calculated using the

linear theory are λt ≈ 15.0 for the case in Fig. 11(c) and λt ≈ 15.0, 16.1 for the cases

in Fig. 12, which again show good agreement with the numerical results of the primitive

equations. From Figs. 11(c) and 12(a), we can remark that for a fixed L2, a larger size of

the second obstacle results in larger amplitude trapped waves, and reversing the phases of

the two obstacles have a considerable impact on the amplitude and wavelength of trapped

waves.
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Figure 12. Trapped wave profiles (a) and phase portraits (b) of interfacial hydraulic falls over

two successive obstacles of mixed type in Regime (II). Solid lines: (A1, L1, x1) = (0.1, 2, 0),

(A2, L2, x2) = (−0.1, 2, 30), and λ ≈ 15.8; dotted lines: (A1, L1, x1) = (−0.1, 2, 0), (A2, L2, x2) =

(0.1, 2, 30), and λ ≈ 17.3.

Numerical results for upstream flows in Regime (III) are presented in Figs. 14 and 15.

According to the dispersion relations shown in Fig. 16, trapped waves only appear upstream.

The effect of the size of the second obstacle placed downstream can be observed from Fig.

14(a,b): increasing the height of the second obstacle leads to a slight rise in amplitude of the

soliton-like wave right above it. The effect of the distance between two obstacles on trapped

waves is shown in Fig. 14(c,d). It is found that the variation of the distance between

the obstacles only influences the number of waves trapped between the two but has little

impact on the wavelength and amplitude of the waves. This is comparable with the results

of the single-layer case; see Vanden-Broeck and Dias [2] for the fully nonlinear solutions and

Pratt [24] for experimental results. Similar to Regime (I) associated with subcritical flows

upstream, the predictions of wavelength are made by using the intersection point between

the upstream Froude number and the upstream dispersion relation. The corresponding

results, λt ≈ 3.4 for the cases in Fig. 14(c,d) and λt ≈ 3.8, 5.0 for the cases in Fig. 15, agree

well with the numerical solutions.

Figure 17 shows the numerical results for Regime (IV), namely subcritical flow upstream

with critical depth past two successive obstacles. Similar to Regimes (I) and (III), trapped

waves in Regime (IV) only exist upstream (see Fig. 17c). This train of waves is predicted
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Figure 13. Dispersion relations with (Θ, R, β) = (2, 0.6, 1) and predicted wavenumbers for Regime

(II). (a) Theoretical result (λt ≈ 15.0) for the case of Fig. 11c: dispersion curve F1u(K) (solid line),

dispersive curve F1d(K) (dotted line), computed upstream Froude number (horizontal dashed line),

and computed downstream Froude number (horizontal dash-dotted line). (b) Theoretical result

(λt ≈ 15.0) for the solid-line case of Fig. 12: dispersion curve F1d(K) (solid line) and computed

downstream Froude number (horizontal dashed line); theoretical result (λt ≈ 16.1) for the dotted-

line case of Fig. 12: dispersion curve F1d(K) (dotted line) and computed downstream Froude

number (horizontal dash-dotted line).

by the linear dispersion relation shown in Fig. 18. The wavelength of the trapped waves

is in rough agreement with the wavelength indicated by the linear theory. In this case,

the difference between wavelengths of trapped waves computed with different phases of the

second obstacle is considerable (see Fig . 17c), implying that the second obstacle may play

a role when its amplitude becomes comparable with the one at the origin.

V. CONCLUSIONS

Most existing studies on hydraulic falls for a steady flow past localized bottom topog-

raphy focus on one-layer flow past one obstacle or two successive obstacles and two-layer

flow past a single obstruction. We have extended the configuration to a two-layer flow past

two successive obstacles in the present paper. We first followed the conventional wisdom to

derive the weakly nonlinear theory (the KdV type equations with the bottom topography
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Figure 14. Wave profiles of interfacial hydraulic falls over two successive convex obstructions

and phase portraits in Regime (III), computed with the full Euler equations with (A1, L1, x1) =

(0.1, 5, 0) and L2 = 2. Other parameter are: (a, b) A2 = 0.02, x2 = 10 (solid line) and A2 = 0.1,

x2 = 10 (dotted line); (c, d) A2 = 0.02, x2 = −10, λ = 3.3 (solid line) and A2 = 0.02, x2 = −15,

λ = 3.4 (dotted line).

served as the external forcing) to understand the mechanisms of existence and classification

of hydraulic fall solutions. Interfacial hydraulic fall solutions over a single obstacle can be

divided into six categories according to flow properties upstream, four of which have been

carefully studied in the paper: subcritical flow upstream with a thick upper layer, supercrit-

ical flow upstream with a thick upper layer, subcritical flow upstream with a thick bottom

layer, and subcritical flow upstream with critical depth. The phase portrait analyses of the
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Figure 15. Trapped wave profiles (a) and phase portraits (b) of interfacial hydraulic falls over

two successive obstacles of mixed type in Regime (XXIII). Solid lines: (A1, L1, x1) = (0.1, 2, 0),

(A2, L2, x2) = (−0.1, 2,−15), and λ ≈ 4.0; dotted lines: (A1, L1, x1) = (−0.1, 2, 0), (A2, L2, x2) =

(0.1, 2,−15), and λ ≈ 4.7.

KdV type equations with the force of the delta-function form indicate that the convexity-

concavity property of the obstacle can lead to different interface profiles. This statement

has been confirmed by the numerical computations of the full Euler equations based on a

boundary integral equation method. It has also been shown numerically that increasing the

vertical or horizontal size of the obstacle increases the vertical drop of the fall.

When the second obstacle is added to the system, the existence of trapped waves depends

on its position. Numerical computations of the fully nonlinear equations show that the

second obstruction has to be placed on the subcritical side of the fall to generate trapped

waves. Varying the horizontal or vertical size of the second obstacle or its relative distance

to the first obstacle exerts little influence on the wavelength of the generated trapped waves

though the amplitude may change significantly. However, changing the phase of the first

obstacle from convex to concave can considerably affect the wavelength. The wavelength of

trapped waves can also be estimated based on the linear theory by intersecting the computed

subcritical Froude number with the linear dispersion curve. The prediction can be accurate

enough with less than a few percent relative error.

When the upstream is supercritical, the numerics for the full Euler equations seem more

challenging. We did not manage to find solutions in the rest two regimes: supercritical flow
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Figure 16. Dispersion relations with (Θ, R, β) = (0.5, 0.6, 1) and predicted wavenumbers for Regime

(III). (a) Theoretical result (λt ≈ 3.4) for the solid-line case of Fig. 14c: dispersion curve F1u(K)

(solid line), dispersion curve F1d(K) (dotted line), computed upstream Froude number (horizontal

dashed line), and computed downstream Froude number (horizontal dash-dotted line). (b) Theo-

retical predictions of wavenumber for the examples shown in Fig. 15: λt ≈ 3.8 for the case A1 = 0.1

and λt ≈ 5.0 for the case A1 = −0.1. Solid line: dispersion curve F1u(K); horizontal dashed line:

computed upstream Froude number for the case A1 = 0.1; horizontal dash-dotted line: computed

upstream Froude number for the case A1 = −0.1.

upstream with a thick bottom layer and supercritical flow upstream with critical depth.

These two cases are also interesting and merit further investigation. Additionally, recent

work on modeling and field observations of hydraulic fall for three-layer flow past a bottom

obstacle (see Chesnokov [25], for example) also stimulates us to find steady solutions in the

same configuration.
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Figure 17. Wave profiles of interfacial hydraulic falls over two successive obstructions and phase

portraits in Regime (IV), computed with the full Euler equations with (A1, L1, x1) = (0.02, 5, 0).

Other parameter are: (a, b) (A2, L2, x2) = (0.02, 2, 25); (c, d) (A2, L2, x2) = (0.02, 2,−25), λ = 10.4

(solid line) and (A2, L2, x2) = (−0.02, 2,−25), λ = 9.1 (dotted line).
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