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ABSTRACT 14 

Aim: Migratory species rely on multiple ranges across the annual cycle, rendering them vulnerable to a 15 

wide range of spatially disparate anthropogenic threats. The spatial distribution of these threats will 16 

strongly influence the magnitude of their population-scale effects, but this has not been quantitatively 17 

assessed for most species.  18 

Location: Europe, Central Asia, Western Asia, Africa. 19 

Time period: Modern. 20 

Major taxa studied: Aves. 21 

Methods: We combined remote-sensed data and expert opinion to map sixteen anthropogenic threats 22 

relevant to migratory birds across Europe, Africa and the Middle East – including the first spatially-23 

explicit pan-continental assessment of relative hunting pressure. By combining the resulting composite 24 

threat maps with species range polygons and morpho-behavioural traits-based weightings (reflecting 25 

relative threat susceptibility), we created species-specific risk maps for 103 Afro-Palaearctic migratory 26 

birds breeding in Europe and evaluated how spatial threat vulnerability relates to long-term population 27 

trends. 28 

Results: We found that greater vulnerability to direct mortality threats (including hunting pressure, 29 

infrastructure and nocturnal lights), especially in the non-breeding season, is associated with declining 30 

bird population trends. 31 

Main conclusions: Our results emphasise the importance of spatially explicit approaches to quantifying 32 

anthropogenic drivers of population declines. Composite risk maps represent a valuable resource for 33 

spatial analyses of anthropogenic threats to migratory birds, allowing for targeted conservation actions. 34 

Keywords: threat mapping, migratory birds, Afro-Palaearctic, breeding, non-breeding, anthropogenic 35 

change, hunting  36 
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1 INTRODUCTION 37 

Increasingly sophisticated modelling of satellite-derived data has transformed biodiversity monitoring 38 

and conservation (Goldewijk et al., 2011; Hansen et al., 2013; Turner, 2014), allowing high-resolution 39 

mapping of anthropogenic impacts on the natural world. Studies often focus on evaluating spatial 40 

exposure of populations to individual threats (Buchanan et al., 2020; Møller et al., 2014; Tracewski et 41 

al., 2016), but effects of these can be difficult to detect when viewed in isolation, especially if different 42 

threats are interactive or their effects only manifest cumulatively (Akresh et al., 2019; Howard et al., 43 

2020; Kennedy et al., 2019; Mahon et al., 2019; Raiter et al., 2014). Large-scale mapping of combined 44 

stressors offers a powerful approach to gain a more holistic understanding of human impacts on 45 

biodiversity, including composite threat assessment for terrestrial and marine ecosystems (Bowler et 46 

al., 2020; Halpern et al., 2008; Theobald, 2013; Venter et al., 2016), freshwater threats and water 47 

security (Vörösmarty et al., 2010), and conservation prioritisation (Allan et al., 2013; Kennedy et al., 48 

2019). Here we present the first application of this multidimensional spatial approach to threat 49 

evaluation in migratory bird species. 50 

Migrants’ reliance on resources found in geographically distinct areas throughout the annual cycle may 51 

render them particularly vulnerable to human-induced threats (Newton, 2004; Robinson et al., 2009; 52 

Wilcove & Wikelski, 2008), necessitating more spatially-nuanced conservation efforts than are needed 53 

for non-migratory species (Runge et al., 2014, 2015; Sanderson et al., 2016). Migratory birds breeding 54 

in Europe and North America – especially long-distance migrants – are declining at a greater rate than 55 

non-migratory species (Laaksonen & Lehikoinen, 2013; Robbins et al., 1989; Sanderson et al., 2006; 56 

Vickery et al., 2014), potentially as a result of their cumulative exposure to spatially disparate threats.   57 

A suite of anthropogenic threats are known to impact bird populations, ranging from human settlement 58 

and associated infrastructure, overharvesting, land-use change, and anthropogenic climate change 59 

(Bairlein, 2016; Kirby et al., 2008; Loss et al., 2015; Maxwell et al., 2016). Accounting for spatial variation 60 

in the degree of vulnerability to threats is essential in pinpointing areas for conservation intervention 61 
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(Tulloch et al., 2015). Identifying the relative importance of conditions within migrants’ spatially 62 

disparate seasonal ranges is necessary to understand and counter mechanisms driving negative 63 

population trends. Pronounced declines in long-distance migrants suggest a substantial influence of 64 

conditions during migration or on the non-breeding grounds, with population trends being sensitive to 65 

migratory routes (Hewson et al., 2016; Newton, 2006; Tøttrup et al., 2008), as well as non-breeding 66 

climatic conditions (Ockendon et al., 2012) and habitat change (Adams et al., 2014; Cresswell et al., 67 

2007). However, influential anthropogenic threats may occur throughout the annual cycle (Sergio et 68 

al., 2019; Thaxter et al., 2010), and seasonal effects can interact with potential carryover effects from 69 

conditions experienced earlier in the annual cycle (Buchan et al., 2021; Morrison et al., 2013). This 70 

potential for between-season cumulative and/or synergistic effects highlights the need for full-cycle 71 

approaches for understanding – and ultimately, targeting – threats to migratory species (Calvert et al., 72 

2009; Marra et al., 2015; Martin et al., 2007; Small-Lorenz et al., 2013; Zurell et al., 2018).  73 

Here, we combine a suite of large-scale data sources to generate novel composite risk maps for 74 

anthropogenic threats across the Afro-Palearctic region, including the first spatially explicit map of 75 

hunting pressure for migratory birds. We then examine the extent to which spatially explicit indices of 76 

threat vulnerability correlate with breeding population trends for 103 Afro-Palaearctic migratory birds. 77 

We assess cumulative exposure to risk by grouping threats according to whether they pose direct 78 

mortality threats to birds (Loss et al., 2012; 2015) (e.g. overharvesting, collision risks), threats mediated 79 

through diffuse impacts of environmental change (habitat degradation, e.g. through loss of foraging 80 

resources) or the potential for both (climate change, e.g. extreme events, decline in resource 81 

availability). By grouping the threats in this manner, we aim to isolate elements of anthropogenic 82 

change that pose immediate survival threats from those that may pose more chronic and indirect 83 

threats, and from climate threats which may pose a complex combination of direct and indirect threats 84 

and potential benefits. Following Foden et al. (2013), we define vulnerability as the combination of 85 

exposure, sensitivity and capacity to respond to environmental change. We use traits-based weightings 86 

as measure of species sensitivity, combined with range-level threat exposure, to calculate combined 87 
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risk vulnerability across species’ seasonal ranges, allowing us to partition the effects of different 88 

anthropogenic risks on population trends, and evaluate the extent to which these vary between the 89 

breeding and non-breeding ranges.  90 
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2 METHODS 91 

2.1 Data layers 92 

2.1.1 Overview of risk mapping 93 

We assembled sixteen spatial datasets covering the Afro-Palaearctic region (see Supplementary 94 

Materials: Data Layers) representing three broad anthropogenic threat types: direct mortality, habitat 95 

change and climate change. Each layer measured the current distribution (median measurement 2017, 96 

range 2013–2020) of human modification of the natural environment, relative either to an historic 97 

baseline period (mean of 1961–1990 for climate variables, 1985 for afforestation), or to an equivalent 98 

un-modified landscape (i.e. with no human land-use change or infrastructure development) (Table 1). 99 

We combined the constituent layers for each threat type into composite surfaces using either linear 100 

summation for threats posing additive risks or fuzzy algebraic summation for potentially correlative 101 

threats (Kennedy et al., 2019) – see 2.4 Composite risk-mapping algorithm. We adapted generic threat 102 

maps into species-specific risk surfaces (where risk is the combination of threat with vulnerability) by 103 

applying trait-based threat vulnerability weightings (D’Amico et al., 2019; Foden et al., 2013; Mason et 104 

al., 2019) (see 2.3 Species’ threat-vulnerability weightings) for each constituent threat layer (Figure 1). 105 

2.1.2 Direct mortality threats 106 

Infrastructure associated with human settlement poses significant collision mortality risks – particularly 107 

to nocturnally migrating birds – in the form of roads (Erritzoe et al., 2003; Loss, Will, & Marra, 2014; 108 

Santos et al., 2016) and buildings (Loss et al., 2015; Loss et al., 2014). To capture these threats, we used 109 

maps of urbanisation (Corbane et al., 2018) and total roads density (Meijer et al., 2018), combining all 110 

road types. For species that make nocturnal movements, bird-building collision risks are exacerbated 111 

by artificial light at night (Lao et al., 2020; Van Doren et al., 2017); we mapped this using the DMSP-OLS 112 

Nighttime Lights Time Series (NOAA, 2013). We used human population density (CIESIN, 2018) as an 113 

index to capture other direct anthropogenic mortality risks  (Anadón et al., 2010; Kerr & Currie, 1995; 114 
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McKee et al., 2004) including disturbance (Gill, 2007; Mallord et al., 2007) and invasive species 115 

(Newbold et al., 2015; Spear et al., 2013) – in particular the impacts of domestic and feral cats (Felis 116 

catus) (Aegerter et al., 2017; Loss et al., 2012, 2013b).  117 

Bird mortality due to powerline collision or electrocution can occur at rates sufficient to have 118 

population-level effects (Bernardino et al., 2018; Loss et al., 2012; Schaub et al., 2010), and bring about 119 

changes in migratory behaviour (Palacín et al., 2017). To map overhead powerlines we combined World 120 

Bank (World Bank, 2017) and OpenStreetMap (Garrett, 2018) datasets. Windfarms also pose direct 121 

collision risks to birds (Loss et al., 2013a, 2015; Zimmerling et al., 2013), which we mapped using a 122 

OpenStreetMap-derived global windfarm dataset available from Dunnett et al. (2020). 123 

Overharvesting is among the most significant direct threats to birds (Kirby et al., 2008), linked to 124 

population declines (Jiguet et al., 2019; Kamp et al., 2015) and even extinction (Hung et al., 2014). While 125 

it is well known that high levels of hunting occur in Palaearctic/Eurasian hotspots, e.g. of waterfowl in 126 

Gyzylagach Bay in Azerbaijan, and of passerines in Mediterranean island nations (Brochet et al., 2016; 127 

Brochet, Jbour, et al., 2019; Schneider-Jacoby & Spangenberg, 2010), and in parts of Africa e.g. of 128 

raptors and hornbills in West African markets and forest hunting camps (Buij et al., 2016; Whytock et 129 

al., 2016), relative hunting pressure has not previously been systematically mapped for migratory birds. 130 

To map hunting threats at a pan-continental scale, we surveyed expert opinion on legal and illegal 131 

hunting of migratory birds within each country in the study region. We targeted specific experts for this 132 

survey by approaching the BirdLife International partner organisations and their contacts, other local 133 

ornithological institutes and conservation NGOs monitoring bird hunting, hunters and hunting 134 

federations, and academics researching bird hunting in the relevant areas. We received 137 responses 135 

for 98 countries, with high agreement among responses for multi-expert nations (Supplementary 136 

materials: Data layers). Hunting pressure varies between species as well as spatially (Brochet, Van Den 137 

Bossche, et al., 2019; Schneider-Jacoby & Spangenberg, 2010); we therefore asked respondents to rank 138 

country-level and within-country regional variation in the relative levels of hunting of small- and large-139 
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bodied birds separately (size relative to a feral pigeon), and modified the resulting spatial hunting 140 

indices according to metrics of accessibility (roads and human population density – see Supplementary 141 

materials: Data layers) (Milner-Gulland et al., 2003; Venter et al., 2016). Following Benítez-López et al. 142 

(2019), we masked areas  with >90% urban cover (Corbane et al., 2018) or with the highest levels of 143 

protected area status (UNEP-WCMC and IUCN, 2019) from hunting pressure surfaces due to low 144 

likelihood of hunting taking place there (Figure 2). We validated the results of the hunting survey by 145 

relating country-level responses to the estimated number of birds illegally killed given in Brochet et al. 146 

(2016), Brochet, Jbour, et al. (2019), and Brochet, Van Den Bossche, et al. (2019), showing moderate 147 

correlation (Spearman’s ρ values between 0.43 and 0.64, see Supplementary Table S4) between our 148 

estimates and published values for the subset of countries for which quantitative hunting values are 149 

available – see Supplementary materials: Data layers. 150 

2.1.3 Habitat change 151 

Conversion of natural habitat to agricultural land has previously been linked to declines in migratory 152 

birds (Adams et al., 2014; Cresswell et al., 2007; Vickery et al., 2014; Walther, 2016), as has afforestation 153 

for farmland, steppe and wetland specialists (Butler et al., 2010; Goriup & Tucker, 2007; Gunnarsson et 154 

al., 2006; Voříšek et al., 2010); we mapped agricultural expansion using cropland and grazing layers for 155 

2017 produced by Klein Goldewijk et al. (2017). As no single land-cover dataset had the temporal spread 156 

necessary to measure long-term change in forest cover, we mapped afforestation (forest regeneration, 157 

maturation and plantations) as the positive change in forest land cover between an historic baseline 158 

map for 1985, created to provide land cover estimates consistent with modern satellite imagery  159 

(Meiyappan & Jain, 2012), and a 2017 forest layer created from MODIS land cover data (Friedl & Sulla-160 

Menashe, 2015) (Supplementary Table S1 and accompanying text). We used the urbanisation layer 161 

created for the direct mortality threats (see above) to map natural habitat converted to urban land, to 162 

which fewer avian species can adapt (Chace & Walsh, 2006). 163 
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The use of agrochemicals (particularly pesticides and fertilizers) associated with agricultural 164 

intensification may also affect species through toxicity (Calvert et al., 2013; Mineau & Whiteside, 2013), 165 

reduction in prey availability (Bright et al., 2008; MacDonald, 2006), and habitat degradation (Vickery 166 

et al., 2001). We mapped pesticide and fertilizer use within agricultural lands (see above) using United 167 

Nations estimates of mean per-country tonnage per km2 for the years 2009-2017 (masked to cropland 168 

only for pesticides, cropland and grazing land for fertilizers) (FAO, 2019a, 2019b). 169 

2.1.4 Climate change 170 

Climate change, including more frequent extreme climatic events (Ummenhofer & Meehl, 2017), can 171 

have a range of negative demographic impacts on birds (Both et al., 2006, 2010; Møller et al., 2008; 172 

Szép, 1995; Tøttrup et al., 2012; Van Gils et al., 2016), but the speed and magnitude of climatic change 173 

varies considerably in space (IPCC, 2013). We mapped climate change threats using CRU TS Version 174 

4.03 (Harris et al., 2020), generating monthly temperature and precipitation anomalies for each grid 175 

cell by subtracting monthly mean values for 1961–1990 (baseline period) from monthly mean values 176 

for 2009–2018 (modern period). To quantify changes in within-year climatic variability at the cell level, 177 

we also calculated the standard deviation around mean monthly values for the modern and baseline 178 

periods, and subtracted the baseline standard deviations from the modern standard deviations to yield 179 

monthly series of temperature and precipitation variability anomalies as a metric of changes in climatic 180 

volatility (Foden et al., 2013; IPCC, 2013). We converted each monthly series (temperature anomaly, 181 

temperature variability anomaly, precipitation anomaly, precipitation variability anomaly) to absolute 182 

anomalies (larger values indicating size of anomaly in either direction), and finally averaged these for 183 

the temperate breeding season (March–August) and non-breeding season (September–February) 184 

(Devictor et al., 2008; Lehikoinen et al., 2021). 185 

2.2 Relating risk vulnerability to population trends  186 

The Pan-European Common Bird Monitoring Scheme (PECBMS) collates national survey data to create 187 

population trends and indices for 170 bird species breeding in Europe (EBCC/BirdLife/RSPB/CSO, Brlík 188 
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et al., 2021; Gregory et al., 2005). We obtained the European Long-term Trends (calculated from a 189 

median base year of 1980, https://pecbms.info/trends-and-indicators/species-trends/) for the 124 190 

PECBMS species classified as migrants by BirdLife International (BirdLife International, 2020), together 191 

with their seasonal range polygons (BirdLife International & Handbook of the Birds of the World, 2019), 192 

which we then filtered to 103 non-pelagic migratory species with extant breeding and non-breeding 193 

(wintering) ranges within the Afro-Palaearctic region (Figure 3, see Supplementary Table S6 for species 194 

exclusion criteria). We did not include passage areas as these are poorly defined for many species; we 195 

included resident ranges in both the breeding and non-breeding ranges. We used the PECBMS Long-196 

term Trends calculated up to 2019 (n=94) – or up to 2016 (n=9) for species excluded from the 2019 197 

PECBMS update – as these are temporally representative of the impacts captured in our risk layers, 198 

which are measured relative to a long-term baseline or unmodified landscape (see 2.1 Data layers). 199 

 2.3 Species’ threat-vulnerability weightings 200 

We generated species susceptibility weightings for each of the sixteen threat layers (Figure 1) to 201 

account for among-species variation in threat relevance. Each layer was min-max bounded so that 202 

values fell between 0 (lowest/no threat) to 1 (maximum threat). For each threat, weightings were also 203 

min-max bounded, with 0 representing the lowest susceptibility to a given threat, and 1 the highest 204 

susceptibility across our species pool. Resulting maps therefore reflect relative risk vulnerability, rather 205 

than absolute risk magnitude – where risk vulnerability is the combination of threat exposure with 206 

susceptibility (Foden et al. 2013). 207 

2.3.1 Direct mortality 208 

We weighted species sensitivities to collisions with buildings using vulnerability scores previously 209 

calculated by Loss et al. (2014) as a function of morphology and behavioural traits, assigning the values 210 

of the nearest ecological and morphological equivalents to species not included in their dataset 211 

(Supplementary Table S7 and accompanying text). For susceptibility to nocturnal lights, we used these 212 

same building collision weightings, but reduced the weighting to zero for species that do not migrate 213 
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at night (Families: Accipitridae (minus Circus sp. (Spaar & Bruderer, 1997)), Ciconidae and Gruidae) 214 

(Cramp et al., 1994). Species that regularly persist in urban areas are considered less vulnerable to 215 

negative effects of human disturbance (Bonier et al., 2007; Samia et al., 2015), while flocking species 216 

are thought more vulnerable to disturbance. To reflect this, we weighted species’ sensitivity to roads 217 

and human population density using a score derived from the combination of these two traits using 218 

information extracted from Cramp et al. (1994) and D’Amico et al. (2019) – see Supplementary 219 

materials: Species’ threat-vulnerability weightings.  220 

To weight direct risks from powerlines and windfarms, we used a combination of morphological and 221 

behavioural traits considered indicative of collision vulnerability (e.g. wingload proxy, vision and flight 222 

characteristics), adapted from the powerline collision susceptibility weightings developed by D’Amico 223 

et al. (2019) – see Supplementary materials: Species’ threat-vulnerability weightings. Taxonomic orders 224 

revealed by this method to be most at-risk to windfarm collisions broadly aligned with those found 225 

elsewhere (Desholm, 2009; Thaxter et al., 2017). We did not create species-specific weightings for 226 

hunting susceptibility as many of the most widely-used methods (e.g. mist netting) are indiscriminate. 227 

For each species, we therefore used mass to determine the relevant hunting layer (small- or large-228 

bodied); corvids (Family: Corvidae), raptors (Order: Accipitriformes) and waders (Order: 229 

Charadriiformes) were all considered ‘large-bodied’ species, regardless of mass. 230 

2.3.2 Habitat change 231 

Anthropogenic conversion of habitats only poses a significant risk to species that are unable to exploit 232 

the novel habitat. We therefore extracted habitat-use traits for each species from Cramp et al. (1994) 233 

and weighted each anthropogenic land-use according to binary indices indicating whether or not they 234 

are regularly used by the species (cropland, grassland, forest cover and urban areas). For agrochemicals, 235 

only species that use cropland habitats were assumed to be vulnerable to pesticides, whereas 236 

vulnerability to fertilizers was also extended to species that use pastoral habitat (Vickery et al., 2001). 237 

For species whose use of anthropogenic habitat varies between seasons (Cresswell, 2014; Pérez-Tris & 238 
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Tellería, 2002), we created separate season-specific habitat vulnerability maps. Finally, evidence 239 

indicates that habitat generalist species are less susceptible to the effects of land-use change (Blackburn 240 

& Cresswell, 2015; Hewson & Noble, 2009). We therefore multiplied the overall combined habitat 241 

change risk surface for each species by a habitat specialism score (min-max bounded within the subset 242 

of our species) extracted from Morelli et al. (2019).  243 

2.3.3 Climate change 244 

Ecological specialism can influence species vulnerability to climate change (Foden et al., 2008; Pearce-245 

Higgins et al., 2015), as can dispersal ability (Foden et al., 2013). We used ordinal dispersal scores for 246 

each species created by Foden et al. (2013) to give more dispersal-limited species higher vulnerability 247 

weightings to climate change. We extracted the dietary and habitat specialism scores from Morelli et 248 

al. (2019) to calculate the final climate risk weighting for each species as the natural log of the product 249 

of degree of dietary specialism, degree of habitat specialism and dispersal vulnerability. 250 

2.4 Composite risk-mapping algorithm 251 

Composite risk mapping is complicated by the possibility that risks posed by certain threat layers might 252 

be increasive but non-additive, meaning that the presence of multiple spatially contiguous threats may 253 

increase the total risk, but to a lesser degree than would be implied by direct summation of threat 254 

values (Kennedy et al., 2019). To account for this, we grouped risk layers whose threats were likely to 255 

pose non-independent threats (e.g. human population density, roads and urbanisation), and combined 256 

them using fuzzy algebraic sums (Theobald 2013, 2016). The fuzzy algebraic sum of a set of values 257 

between 0 and 1 is given by 1 minus the product of (1-x), where x is each member of the set, such that 258 

the final fuzzy summed value is less than the literal sum of its parts, and tends towards a maximum 259 

value of 1 (Bonham-Carter 2014). In cases where threats were independent and thus truly additive (e.g. 260 

threat posed by hunting pressure) we used simple summation. As the structure of independent and 261 

non-independent threats varied between the three risk types (Supplementary Figure S2), final risk 262 

surfaces were given by three different formulae. In all cases, where 𝑠 is species and 𝑖 is a cell: 263 
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𝐷𝑖𝑟𝑒𝑐𝑡 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑖𝑠𝑘𝑠,𝑖 = [1 − ∏(1 − 𝑀𝑖,𝑗𝐶𝑠,𝑗)

5

𝑗=1

]  + 
𝑁𝑖𝐷𝑠

𝑛(𝑗)
 + 

𝐻𝑖,𝑠 

𝑛(𝑗)
 264 

Where 𝑗 (1 ≤ 𝑗 ≤ 5) indicates one of five non-independent direct mortality layers: {urbanisation, 265 

population density, roads, windfarms, powerlines}. 𝑀𝑖,𝑗 is therefore the value for threat layer j in cell 𝑖. 266 

𝐶𝑠,𝑗 is the vulnerability weighting (between 0 and 1) for species 𝑠 with respect to layer 𝑗. 𝑁 is the 267 

nocturnal lights layer, and 𝐷𝑠 is the nocturnal lights weighting coefficient for species 𝑠. 𝐻𝑖,𝑠 is the 268 

hunting risk for species 𝑠 in cell 𝑖, which varies spatially and between species (see 2.3 Species’ threat-269 

vulnerability weightings). 𝑛(𝑗) denotes the number of layers within 𝑗, in this case five. 270 

𝐻𝑎𝑏𝑖𝑡𝑎𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑖𝑠𝑘𝑠,𝑖 =  {1 − [1 − ∑(𝐴𝑖,ℎ𝐸𝑖,𝑠,ℎ)

5

ℎ=1

][1 −
𝐹𝑖𝐺𝑖,𝑠

𝑛(ℎ)
]} × 𝑊𝑠 271 

Where ℎ (1 ≤ ℎ ≤ 5) indicates one of five independent habitat layers: {pesticides, cropland, afforestation, 272 

urbanisation, grazing}, with 𝐴𝑖,𝑗 being the value for layer j in cell 𝑖. 𝐸𝑖,𝑠,ℎ is a season-specific weighting 273 

coefficient for species 𝑠 in cell 𝑖 with respect to layer ℎ. 𝐹 is fertilizer and 𝐺𝑖,𝑠 the season-specific 274 

fertilizer weighting coefficient for species 𝑠 in cell 𝑖. 𝑊𝑠 is the habitat specialism weighting for species 275 

𝑠. 𝑛(ℎ) denotes the number of layers within ℎ, in this case five. 276 

𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑖𝑠𝑘𝑠,𝑖 = [2 − (1 − 𝑃𝑠,𝑖)(1 − 𝑉𝑠,𝑖) − (1 − 𝑇𝑠,𝑖)(1 − 𝑌𝑠,𝑖)] 𝑍𝑠 277 

Where 𝑃𝑠,𝑖 is anomaly in precipitation, 𝑉𝑠,𝑖 is anomaly in precipitation variability, 𝑇𝑠,𝑖 is anomaly in 278 

temperature and 𝑌𝑠,𝑖 is anomaly in temperature variability. 𝑍𝑠 is the climate sensitivity weighting for 279 

species 𝑠. 280 

We clipped the resulting risk surfaces to the relevant species’ breeding and non-breeding distribution 281 

polygons (BirdLife International & Handbook of the Birds of the World, 2019), using these to calculate 282 

mean season-specific vulnerability for direct mortality risk, habitat change risk and climate change risk 283 

for each species. 284 

2.5 Statistical analysis 285 



14 
 

We calculated zonal statistics to summarise broad geographic patterns and those in relation to 286 

elevation. We used linear models with a Gaussian distribution to assess the influence of direct mortality, 287 

habitat change and climate change risk vulnerability on species population trends. We weighted 288 

population trends by their inverse standard error, thereby giving greater emphasis in the model to more 289 

accurate trend estimates. We also included migratory distance and (logged) body size in all models to 290 

control for population trend variation driven by threats arising during the active phase of migration (e.g. 291 

energetic costs) and life history characteristics outside those captured in our threat maps. Migratory 292 

distance was calculated as the great circle distance between the centroids of the breeding and 293 

nonbreeding ranges (Vágási et al., 2016). To avoid over-parameterisation, we created a series of models 294 

containing up to eight predictors, considering all plausible eight-way combinations of predictor 295 

variables, as well as the effects of biologically relevant two-way interactions between variables, 296 

ensuring any correlated variables (ρ > 0.7) were not present within the same model. We tested for 297 

phylogenetic autocorrelation by modelling the residuals of the two final models as a function of 298 

taxonomic Order, finding no evidence for any phylogenetic signal (likelihood ratio tests P > 0.05 in both 299 

cases). Elsewhere, little evidence has been found for a phylogenetic structure to the PECBMS 300 

population trends (Morelli et al., 2020).  301 

We followed an information theoretic approach (Burnham & Anderson, 2002), in which for each model, 302 

a set of reduced models are ranked using Akaike’s Information Criterion adjusted for small sample size 303 

(AICc) – considering models within two AICc units competitive. To avoid model-averaging over 304 

interaction terms (Cade, 2015), we based inference on models with the fewest parameters within two 305 

AICc units of the top model (Burnham & Anderson, 2002). We scaled and centred all continuous 306 

variables via z-score transformation prior to analysis.  307 

Statistical and spatial analyses were undertaken using R (R Core Team, 2018), with particular reliance 308 

on packages ‘MuMIn’ (Bartoń, 2019) and ‘raster’ (Hijmans, 2020). 309 

  310 
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3 RESULTS 311 

3.1 Spatial threat patterns 312 

At broad spatial scales, Europe consistently emerged as having higher levels of most threat categories 313 

than elsewhere within the Afro-Palearctic region (Supplementary Table S8); all threat layers showed 314 

considerable local-scale variation (Figure 4). Lower values of habitat change threats were related to 315 

elevation (Supplementary Table S9), with the Alps, Carpathians, Cantabrians and Dinarides mountain 316 

ranges all having noticeably lower levels of habitat change than surrounding regions (Figure 4, 317 

Supplementary Figure S3, (Danielson & Gesch, 2010). The reverse was true for climate change threats, 318 

where the smallest anomalies were generally found in lower altitude regions (Figure 4, Supplementary 319 

Figure S4, Supplementary Table S9). Hotspots of high composite threat levels also exist in the Nile delta, 320 

Western Levant and Indus valley, where concentrated direct mortality risks such as human population 321 

density, associated infrastructure and intensive land-use also notably coincide with high species 322 

richness of migratory birds (Figure 3, Supplementary Figure S5).  323 

3.2 Population trend analysis 324 

Species-specific estimates of breeding season climate change vulnerability and non-breeding season 325 

climate change vulnerability were strongly correlated (ρ = 0.92) and therefore not included within the 326 

same models. Of the four models within two AICc units (Supplementary Table S10), three were nested 327 

subsets of the same model, we therefore base inference on the model with the fewest parameters; the 328 

other model was not a subset, and contained a different plausible interaction. This left us with two 329 

similarly well-performing minimum adequate models that were indistinguishable by AICc 330 

(Supplementary Table S10). In both models, population trends increased with body size, and decreased 331 

with migratory distance and vulnerability to non-breeding range direct mortality (Figure 5); coefficient 332 

size and direction for these parameters were similar between the models (Table 2). Both competitive 333 

models retained an additional (but different) two-way interaction. Model1 retained a negative 334 
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influence of non-breeding climate change that weakened with increasing migratory distance (Figure 335 

5b). Model2 retained a negative effect of direct mortality risk vulnerability in the breeding range, 336 

mediated by the extent of breeding range habitat change (weaker for species whose ranges had lower 337 

levels of habitat loss; Figure 5d). We generated bivariate maps to show the relative co-occurrence of 338 

each risk type in space (Figure 6). These maps highlight the relatively low vulnerability to climate change 339 

for long-distance migrants wintering in parts of central Africa (yellow cells in Figure 6a) relative to those 340 

travelling to eastern and southern Africa where composite climate anomalies are greater (purple tones 341 

in Figure 6a). They also highlight the high congruence of direct mortality and habitat change threats for 342 

species wintering in the Sahel region (purple tones in Figure 6b), with humid zones of central Africa 343 

showing higher direct mortality risks but lower habitat change (blue tones in Figure 6b) and the 344 

opposite in southern Africa (yellow tones in Figure 6b). 345 

  346 
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4 DISCUSSION 347 

Our composite threat maps demonstrate the variation in intensity and spatial distribution of threats to 348 

migratory birds across species’ seasonal ranges. Range-scale species risk vulnerability explained 349 

important variation in population trends across species. We found a consistent negative relationship 350 

between population trends and range-scale vulnerability to direct mortality risks during the non-351 

breeding season, suggesting that anthropogenic factors influencing survival during winter and during 352 

migration (including hunting, nocturnal lights and infrastructure) play an important role in driving 353 

declines. We also found some evidence for a negative effect of non-breeding range climate change, 354 

mediated by migratory distance, and a negative effect of breeding range direct mortality risk, mediated 355 

by extent of habitat change. 356 

Non-breeding season direct mortality 357 

Our results represent the first evidence for overarching population-scale effects of anthropogenic 358 

sources of mortality on avian migrants at a continental scale (see also US bird mortality estimates 359 

presented in Loss et al. (2012; 2015)). Despite relative threat levels being slightly lower across non-360 

breeding range areas than breeding ranges on average (Figure 4, Supplementary Figure S6), non-361 

breeding season direct mortality risk vulnerability more consistently explained variation in population 362 

trends than that for the breeding season (Table 2). As our models accounted for a negative effect of 363 

migratory distance on population trends, this result indicates that vulnerability to direct mortality risks 364 

may have particularly acute effects on individuals in the non-breeding season (though this may include 365 

threats faced during migratory transit within the non-breeding range). This finding could be related to 366 

differences in behaviour, movement or local habitat use between seasons – for example, as birds are 367 

generally central place foragers in the breeding season (with movements limited by proximity to nest), 368 

their vulnerability to direct mortality risks such as infrastructure collision and hunting may be reduced 369 

relative to the non-breeding season. Birds are typically more itinerant outside of the breeding season, 370 

possibly putting them at greater risk of exposure to direct mortality threats within their surroundings 371 
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(Silva et al., 2014; Thaxter et al., 2019); at a population scale, trends of species with low migratory 372 

dispersion may be particularly susceptible to any adverse effects of non-breeding season conditions 373 

(Gilroy et al., 2016). 374 

Climate change effects mediated by migratory distance 375 

We found a negative effect of climate change risk vulnerability on the non-breeding grounds, but only 376 

for short distance migratory birds (Figure 5b). The shorter-distance migrants within our dataset largely 377 

remain within Europe year-round; these species therefore generally face greater exposure to climate 378 

anomalies than those reaching sub-Saharan Africa in the temperate winter (Figure 6a). Population 379 

trends of the longest distance migrants in our dataset were less negatively influenced by non-breeding 380 

climate change (although with considerable uncertainty around these slopes). Many long-distance 381 

migrants have previously shown to be highly sensitive to non-breeding season climate, particularly 382 

rainfall levels within the Sahel (Szép, 1995; Winstanley et al., 1974). There is some evidence for 383 

increased rainfall and greening in the Sahel in recent decades (Biasutti, 2019; Maidment et al., 2015; 384 

Olsson et al., 2005), as well as in Southern Africa, where climate anomaly levels were high (Figure 6d), 385 

potentially improving wintering conditions for migrants to these regions. This result contrasts with that 386 

of Howard et al. (2020), who found population trends of short-distance migrants were better explained 387 

by breeding season climate than non-breeding season. This divergence may be explained by the use of 388 

different methodology to quantify habitat and climate change, and our inclusion of direct mortality 389 

threats as a predictor (not accounted for in the models of Howard et al. (2020)), as this variable explains 390 

a significant amount of trend variation, and may therefore influence the direction or magnitude of 391 

patterns detected for other variables. 392 

Breeding season direct mortality mediated by habitat change 393 

We found a synergistic interaction between vulnerability to direct mortality risks and habitat change 394 

risks within the breeding range, with a negative effect of direct mortality vulnerability on population 395 

trends exacerbated by greater habitat change vulnerability (Figure 5d). Populations inhabiting low-396 
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quality habitats may be more vulnerable to stochastic mortality, while those in high quality sites may 397 

be buffered from population-level effects of direct mortality (Morrison et al., 2013), perhaps through 398 

compensatory density dependent effects (McGowan et al., 2011; Péron et al., 2012). Species whose 399 

breeding ranges have undergone high levels of habitat change may also be more vulnerable to direct 400 

mortality, via, for instance, increased foraging distance (Tremblay et al., 2004) leading to greater 401 

exposure to sources of direct mortality such as human infrastructure within home ranges.  402 

This between-threat interaction was not detected for the non-breeding range, again potentially 403 

indicating seasonal differences in threat relevance, as detected elsewhere (Howard et al., 2020; Vickery 404 

et al., 2014). Our findings contrast with recent evidence for the importance of non-breeding season 405 

land-cover for population trends (Howard et al., 2020), but again this may be explained by the inclusion 406 

of non-breeding direct mortality threats in our analysis. Our risk surfaces suggest that habitat in Africa 407 

has generally undergone less drastic habitat degradation than in Europe (Figure 4), perhaps explaining 408 

the weaker interaction with direct mortality. Also, avian habitat requirements during the non-breeding 409 

season are typically more generalist than in the breeding season (Blackburn & Cresswell, 2015), 410 

potentially making migrants less vulnerable to habitat change outside the breeding season.  411 

Hunting patterns  412 

Hunting is a complex and sensitive cultural issue, with a wide variety of drivers (subsistence/bushmeat, 413 

sport, tradition/heritage, magic/fetish), each varying and interacting with culture and geography (Buij 414 

et al., 2016; Hirschfeld & Heyd, 2005; Milner-Gulland et al., 2003). Our relative bird hunting pressure 415 

maps (Figure 2) broadly align with local patterns identified elsewhere (Brochet et al., 2016; Brochet, 416 

Jbour, et al., 2019; Brochet, Van Den Bossche, et al., 2019; Schneider-Jacoby & Spangenberg, 2010). In 417 

sub-Saharan Africa, demand for bushmeat is increasing (Whytock et al., 2016), as is accessibility through 418 

construction of roads (Milner-Gulland et al., 2003). We show Nigeria, Malawi and the Republic of 419 

Guinea to be particular hotspots for bird hunting, with survey respondents noting drivers relating to 420 

subsistence, fetish (see Buij et al. (2016)), increasing availability of guns, and a particularly significant 421 
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culture of hunting in the Republic of Guinea. In contrast, our survey revealed low relative levels of bird 422 

hunting in Eritrea and Djibouti, and respondents pointed to the demilitarisation of Mozambique as 423 

contributing to low hunting pressure there. Hunting of large-bodied species – particularly waterfowl – 424 

was generally greater in northern and eastern European countries, and hunting small-bodied species 425 

generally more intense in southern Europe (Figure 2), where respondents noted the prevalence of 426 

trapping small passerines for the songbird trade, and specifically mentioned the locations of hunting 427 

hotpots being driven by the stopover sites of migrating turtle doves (Streptopelia turtur); respondents 428 

for many European nations also noted poor enforcement of hunting legislation. Ultimately, our findings 429 

reinforce that drivers of hunting pressure are complex interactions of geographical, cultural, political, 430 

and socioeconomic factors. 431 

Study limitations  432 

The results presented here are only as reliable as the underlying data. Greater knowledge of species’ 433 

ecology outside breeding ranges could improve the fine-tuning of threat vulnerability (Faaborg et al., 434 

2010), particularly for non-breeding season ecological requirements, as well as better-defined 435 

wintering areas and migratory routes / connectivity (Martin et al., 2007). Indeed, other studies have 436 

identified high rates of mortality on migration (Klaassen et al., 2014; Sillett & Holmes, 2002), and strong 437 

links between migratory route and population trends (Hewson et al., 2016; Lisovski et al., 2020). 438 

Explicitly combining the threat layers assembled here with detailed tracking data will shed light on the 439 

processes underlying declines of migratory species. The approaches demonstrated here are robust for 440 

the species within our dataset, but could be extended to include more detailed species-level 441 

assessment of threat-sensitivity, which is likely to be particularly complex among highly specialised taxa 442 

(e.g. more pronounced effects of climate change on high-altitude specialists).  443 

We adopted a uniform approach to capturing change across species’ breeding and non-breeding 444 

ranges, aiding interpretation of the resultant maps, and facilitating wider applicability to other systems. 445 

Our approach is unable, however, to account for variation in threat sensitivity within a species’ range. 446 
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This limitation may be particularly pertinent for climate change risks, where the impacts of local climate 447 

anomalies may be highly non-uniform depending on whether they occur in areas at the centre of margin 448 

of a species’ climatic niche. Future work could address these potential spatial biases in susceptibility 449 

through more nuanced methods, such as within-species climate niche modelling (Ruegg et al., 450 

2021).Our threat layers almost certainly under-estimate some risks, particularly in regions outside of 451 

Europe where non remote-sensed data is often more coarse. While our hunting layer is the first 452 

assessment of pan-continental bird hunting pressure, it relies on expert opinion and may therefore be 453 

vulnerable to bias. Limitations in the number of species for which we could obtain population trend and 454 

threat-susceptibility data meant we were unable to explore interactive and non-additive effects of 455 

threats within each of the three risk groupings.  456 

For certain species included in our analysis, parts of the non-breeding range are occupied by individuals 457 

from populations breeding outside of the PECBMBS geographic range – particularly in the earlier years 458 

of 35-year trend calculation period, as western European countries’ monitoring schemes often started 459 

earlier than those of eastern European countries. However, evidence indicates that migratory 460 

connectivity is weak in most Euro-African migrants (Finch et al., 2017) – such that sub-populations 461 

intermix across the whole non-breeding range after passing through the migratory flyway bottlenecks 462 

– limiting the effect any such bias may have on our results. Our trend analyses may also be sensitive to 463 

the timescale over which impacts have occurred. Certain threats, particularly energy infrastructure, 464 

have accelerated in recent years, the effects of which may be only weakly reflected (if at all) in the c. 465 

35-year PECBMS trends. The inverse may also be the case, if PECBMS trends suffer ‘shifting baseline 466 

syndrome’ (Papworth et al., 2009). The period over which the PECBMS trends are calculated begins in 467 

1980; elsewhere, analysis of species breeding in England has found that the greatest declines in trans-468 

Saharan migrants occurred prior to 1986, particularly in those migrants to arid-savannah regions 469 

(Thaxter et al., 2010). In general, species’ responses to anthropogenic threats may be non-linear, 470 

idiosyncratic, and suffer from time-lag effects (Bonnet-Lebrun et al., 2021; Buchanan et al., 2020; 471 

Menéndez et al., 2006), weakening our ability to detect overarching population-scale effects. 472 
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Conclusions  473 

We present a macroecological approach to comprehensive risk mapping for migratory species. Spatially 474 

explicit risk mapping allowed us to detect novel evidence for population-level effects of direct mortality 475 

risks among Afro-Palaearctic migratory birds, and novel patterns of between-risk synergy. Our results 476 

point to the potential for cumulative and interactive effects of different direct mortality threats, with 477 

both habitat loss and climate change being important in mediating more direct threats such as hunting 478 

and infrastructure development. Risks posed by direct mortality threats may be both the easiest to 479 

detect and the easiest to mitigate, due to the ‘acute’ nature of immediate mortality threats in contrast 480 

to chronic, insidious effects of changes to habitat and climate (Doherty et al., 2021). Successful 481 

mitigation of threats to migratory species will rely on comprehensive understanding of potentially 482 

complex interactions between threats; our results emphasise the importance of full-season and 483 

spatially explicit approaches to quantifying anthropogenic drivers of population declines. 484 

  485 
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TABLES 1056 

Table 1 – Summary of risk layers and respective data sources. Spatial resolutions are of the raw input 1057 

data for each raster layer, these were transformed and resampled where necessary to ensure a single 1058 

spatial resolution of 5’ – see Supplementary materials: Data layers.  1059 

Threat layer Risk type Data source(s) Reference Timeframe Spatial 

resolution 

Roads Direct mortality GLOBIO GRIP4  Meijer et al., 2018 2018 5’ 

Nocturnal lights Direct mortality DMSP OLS NOAA, 2013 2013 0.5’ 

Human population 

density 

Direct mortality GPW 4.11  CIESIN, 2018 2015 2.5’ 

Hunting Direct mortality Survey of expert opinion - 2020 NA 

  UNEP Protected Planet* UNEP-WCMC and 

IUCN, 2019 

2019 NA 

  GLOBIO GRIP4* Meijer et al., 2018 2018 5’ 

  GPW 4.11* CIESIN, 2018 2015 2.5’ 

  EC JRC GHS-BUILT* Corbane et al., 2018 2014 250 m 

Powerlines Direct mortality OpenInfra Garrett, 2018 2018 NA 

  World Bank World Bank, 2017 2017 NA 

Windfarms Direct mortality Global wind 2020  Dunnett et al., 2020 2020 NA 

Urbanisation Direct mortality 

and habitat 

change 

EC JRC GHS-BUILT  Corbane et al., 2018 2014 250 m 

Cropland Habitat change HYDE 3.2.1  Klein Goldewijk et al., 

2017 

2017 5’ 

Grazing land Habitat change HYDE 3.2.1  Klein Goldewijk et al., 

2017 

2017 5’ 

Fertilizer use Habitat change UN FAO FAO, 2019a 2009–

2017 

NA 

  HYDE 3.2.1 Klein Goldewijk et al., 

2017 

2017 5’ 

Pesticide use Habitat change UN FAO  FAO, 2019b 2009–

2017 

NA 

  HYDE 3.2.1 Klein Goldewijk et al., 

2017 

2017 5’ 

Afforestation Habitat change ISAM LUCC Meiyappan & Jain, 

2012 

1985 30’ 

  NASA MODIS Friedl & Sulla-

Menashe, 2015 

2017 3’ 
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Absolute 

temperature 

anomaly  

Climate change CRU TS 4.03 

Harris et al., 2020 1961–

1990 

2009–

2018 

30’ 

Absolute 

temperature 

variability anomaly 

Climate change CRU TS 4.03 

Absolute 

precipitation 

anomaly 

Climate change CRU TS 4.03 

Absolute 

precipitation 

variability anomaly 

Climate change CRU TS 4.03 

*for masking out protected areas, accessibility and urban concentrations. See text for full 

description of creation of hunting layer 

 

 1060 

  1061 
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Table 2 – Coefficient estimates (β) and associated standard errors (SE), 95% confidence intervals (L95 1062 

and U95), t-statistic (t) and p-values (P) for the two best-supported models to explain species population 1063 

trends. Bold text indicates variables significant/important in the model (alpha level = 0.05/confidence 1064 

intervals excluding zero). NBR: non-breeding season vulnerability, BR: breeding season vulnerability. 1065 

 Coefficient Figure β SE L95 U95 t P 

Model1  

Adj. R2: 0.18 
        

 Intercept - 0.06 0.08 -0.09 0.20 0.81 0.420 

 Migratory distance - -0.28 0.08 -0.44 -0.13 -3.60 < 0.001 

 Body mass - 0.22 0.09 0.05 0.40 2.59  0.011 

 Direct mortality NBR 5a -0.32 0.09 -0.50 -0.14 -3.59 < 0.001 

 Climate change NBR - -0.10 0.08 -0.25 0.06 -1.25 0.213 

 
Climate change NBR : 

Migratory distance 
5b 0.18 0.07 0.03 0.32 2.41 0.018 

Model2 

Adj. R2: 0.18 
    

  
  

 Intercept - 0.10 0.08 -0.07 0.26 1.15 0.255 

 Migratory distance 5c -0.22 0.07 -0.37 -0.07 -2.98 0.004 

 Body mass - 0.27 0.09 0.09 0.44 3.07 0.003 

 Direct mortality NBR - -0.27 0.13 -0.53 -0.01 -2.08 0.040 

 Habitat BR - -0.04 0.11 -0.25 0.18 -0.33 0.740 

 Direct mortality BR - -0.05 0.13 -0.31 0.22 -0.36 0.717 

 
Direct mortality BR : 

Habitat BR 
5d -0.24 0.09 -0.42 -0.06 -2.60 0.011 

  1066 
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FIGURES 1067 

 1068 

Figure 1 – Schematic illustrating the process of deriving composite risk surfaces from individual 1069 

constituent threat layers for each of the three risk types (direct mortality, habitat change and climate 1070 

change; Table 1) for each species’ (n=103) breeding and non-breeding ranges. 1071 

  1072 
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Figure 2 – Relative levels of hunting of small- and large-bodied birds across the study region, where 0 1073 

represents no hunting threat and 1 represents the maximum relative threat. 1074 

  1075 
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Figure 3 – Species richness of breeding and non-breeding ranges of the 103 species included in the 1076 

analysis across the Afro-Palaearctic study area. 1077 

  1078 
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Figure 4 – Composite maps for the three risk layer groups. In all cases, 1 indicates the maximum 1079 

relative risk level and 0 indicates minimum relative risk level. Climate anomalies vary seasonally, so we 1080 

created separate risk surfaces for the breeding and non-breeding seasons. Maps represent the 1081 

unweighted combination of their constituent layers, i.e. with no species-specific information fed into 1082 

their creation. 1083 

  1084 
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 1085 

Figure 5 – Effects of spatially quantified threats on species population trends: a) Non-breeding direct 1086 

mortality risk vulnerability; b) non-breeding climate change risk vulnerability, with model-predicted 1087 

slopes for short (10th percentile), mean and long (90th percentile) migration distances; c) Migratory 1088 

distance; d) Breeding range direct mortality risk vulnerability, with slopes predicted for low (10th 1089 

percentile), mean and high (90th percentile) levels of breeding range habitat change. Dashed lines 1090 

represent associated 95% confidence intervals, and points indicate raw values for each species.  1091 
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 1092 

Figure 6 – a) Bivariate map showing the unweighted climate change risk surface for the non-breeding 1093 

season (grey to blue y-axis) and the mean migratory distance undertaken by PECBMS species occurring 1094 

in each cell in the non-breeding season (grey to yellow x-axis). Purple and red regions indicate where 1095 

high levels of non-breeding climate change coincide with longer-distance migratory species; b) Bivariate 1096 

map showing the unweighted risk surface for habitat change (grey to yellow x-axis) and unweighted risk 1097 

surface for direct mortality (grey to blue y-axis). Purple and red regions indicate where high levels of 1098 

both direct mortality risk and habitat change risk coincide. 1099 
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