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Sea ice attenuates waves propagating from the open ocean. Here we model the evolution of energetic unidirectional
random waves in the marginal ice zone with a nonlinear Schrödinger equation, with a frequency dependent dissipative
term consistent with current model paradigms and recent field observations. The preferential dissipation of high fre-
quency components results in a concurrent downshift of the spectral peak that leads to a less than exponential energy
decay, but at a lower rate compared to a corresponding linear model. Attenuation and downshift contrast nonlinearity,
and nonlinear wave statistics at the edge tend to Gaussianity farther into the marginal ice zone.

Waves formed in the open ocean penetrate sea ice defining
an extremely dynamical sea ice region, known as marginal
ice zone (MIZ)1. Around Antarctica, where large waves are
generated all year round in the Southern Ocean, the MIZ
can reach hundreds of kilometres2,3 (with winter averages
> 200 km), therefore playing a substantial role in the cli-
mate system by regulating heat and momentum exchanges be-
tween ocean and atmosphere at large spatial scales4,5. The
urgent need to understand the often baffling sea ice trends6,7

prompted development of next-generation coupled waves and
sea ice models and stimulated a surge of observational cam-
paigns in recent years, e.g.8,9. In the MIZ, the interplay be-
tween waves and sea ice activates feedback mechanisms that
affect their respective properties. On one hand, waves break-
up large floes10 and limit the growth of the newly formed
ones11, also maintaining an unconsolidated sea ice cover12.
On the other hand, sea ice attenuates incoming waves via scat-
tering and dissipation13, at different rates, depending on ice
concentration, thickness and floes size.

Field measurements in the Arctic and Antarctic show expo-
nential wave attenuation9,10, and at a rate function of the wave
period14,15 (shorter waves attenuate faster). For floes much
smaller than the wavelength, as commonly found in the outer
MIZ16, the dominant attenuation mechanisms is assumed to
be viscous wave dissipation17 (scattering is dominant when
floes are of the same size of the wavelength13). The ice cover
is modelled as an homogeneous layer of constant, averaged,
properties18, i.e. individual floes are not resolved, and viscos-
ity is an effective viscosity (higher than molecular viscosity)
that accounts for floes collisions, eddies, small scale turbu-
lence and sea ice properties19. In this family of models, a
wave dispersion relation with complex wave number is found,
in which the imaginary part defines the frequency dependent
wave attenuation rate. A power law attenuation with respect
to the wave frequency is recovered18, with scaling depending
on the physical dissipation mechanism.

The Nonlinear Schrödinger Equation (NLS), an univer-
sal model for weakly nonlinear waves dynamics in the open
ocean20 (despite not reproducing wave breaking), is also
widely used to describe wave propagation in the presence
of dissipation21–23. The dissipative NLS (dNLS) includes a
damping term, due to viscosity or other sources, that matches
the decay rate of the linear wave amplitude22,24. Damping

stabilises the modulational instability, to which the NLS is
naturally subjected, by diminishing the unstable region of
disturbances24. It is worth noting that a NLS-type equation
for waves in sea ice has been derived by Liu and Mollo-
Christensen 25 , but for waves propagating on an ocean covered
by an elastic plate, and better represent compact ice conditions
(floes much larger than the waves) towards the interior of the
MIZ.

Here we propose a dNLS for waves in the MIZ, in which the
damping term is derived from current sea ice model paradigms
for a sea ice zone comprised of small floes (relative to wave-
length) and for which viscous losses are the main dissipation
mechanism13. We study the dynamics of energetic waves,
using random simulations for two sea ice conditions (cor-
responding to low and high dissipation respectively as de-
fined by the recent empirical formulations derived by Kohout
et al. 9 ) that qualitatively reproduce field observations during
Southern Ocean storm conditions9,10,26. We show that the ap-
parent downshift of the energy, due to the higher attenuation
of shorter waves, slows down the total wave energy decay that,
as a consequence, deviates from the exponential behaviour.

The NLS for surface gravity waves propagating in space,
i.e. analogous to the hydrodynamic wavemaker problem27, in
deep water conditions and without dissipation is:
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where B(x, t) is the slowly varying complex amplitude of the
surface elevation in space (x) and time (t), cg and k the group
speed and wavenumber of the carrier wave (the fast oscilla-
tion), and g is the gravitational acceleration. The boundary
condition is defined by B0 = B(x0, t).

Attenuation is introduced in Eqn. 1 as an additional damp-
ing term using an heuristic approach22. In open water, damp-
ing formally derives from adding viscous dissipation to the
dynamic free surface boundary condition of the standard po-
tential flow problem24. Viscous models of the form φ and
∂ 2φ/∂ z2 (φ denotes the free surface velocity potential and
z the vertical coordinate) have been proposed24. In sea ice,
damping has the same form of viscous dissipation but derives
from the additional ice-induced pressure at the free surface18.
In a recent review, Meylan et al. 18 proposed a model paradigm
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with ice-induced pressure of the form ∂φ/∂ z (derived assum-
ing that the wave energy loss is proportional to the square
horizontal velocity times the ice thickness hi) that leads to a
dispersion relation in which the imaginary part of the wave
number, i.e. the one defining the exponential attenuation rate,
is:

kI =
hiρiν

ρwg2 ω
3, (2)

where ω is the wave angular frequency, ρi and ρw the ice and
water density, and ν a property of the sea ice (in s−1). The
real part of the dispersion relation coincides with the open wa-
ter one (k = ω2/g), therefore group velocity does not change
in response to dissipation, in agreement with measurements
in thin ice for wave components longer than ≈ 5 s15. Other
model paradigms exist that lead to different dependency on the
angular frequency (of the type ωn), but this model is chosen
because the ω3 dependency agrees with field measurements18.
Adding dissipation to Eqn. 1 yields to the dNLS:
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To reproduce Southern Ocean storm waves, without loss of
generality, the initial energy distribution is defined by a Gaus-
sian swell spectrum28:
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where σ denotes the width of the spectrum and a2 a scaling
parameter proportional to the wave energy. The initial, lin-
ear, condition is obtained from amplitudes directly extracted
from the spectrum and phases randomly generated with a uni-
form distribution in [0,2π). To match waves at the ice edge
reported in Alberello et al. 26 , a is chosen to give significant
wave height HS = 7.3 m (HS = 4

√
m0, m0 is the zeroth or-

der moment of the spectrum) and the peak wave period is set
to T0 = 12 s (ω0 = 2π/T ; the corresponding wavelength is
λ = 225 m).The characteristic wave steepness (ε = πHS/λ ),
is 0.10, a typical value for storm waves in the Southern Ocean.
Spectral width is set to σ = ω0/8.

Two sea ice conditions are tested, corresponding to low
and high dissipation respectively, to qualitatively mimic wave
height decay for low (< 80%) and high (> 80%) sea ice con-
centration in the MIZ reported by Kohout et al. 9 , i.e. wave
height at 50 km (or ≈ 200 wavelengths) is ≈ 75% and ≈ 20%
of the open ocean one for waves shorter than 14 s. The em-
pirical formulation by Kohout et al. 9 , based on a large dataset
of recent field observations in the Southern Ocean MIZ, pro-
vides a suitable benchmark for our simulations. The two dis-
sipation regimes are achieved by maintaining constant and
homogeneous ice thickness (hi = 0.3 m), ice and water den-
sity (ρi = 900 kg m−3 and ρw = 1027 kg m−3), and varying ν

from 0.02 to 0.2 s−1 (low to high dissipation). Ice concentra-
tion is implicitly incorporated by ν , which can be rewritten as
the product of ν100 (in 100% sea ice) and ice concentration,
i.e. ν = ν100ci. Water and sea ice properties are typical of the

MIZ29. The parameter ν relates to the viscous losses but its
physical meaning is more uncertain and not directly measured
in the field30, and usually inferred from model inversion31. It
is worth noting that the exterior of the MIZ, which we model,
is formed by floes much smaller than the characteristic wave-
length of Southern Ocean waves (tens of meters versus hun-
dreds of meters), and therefore viscous losses dominate13. Re-
flection at the sea ice edge are instead linked to scattering,
when wavelength and floe size are of the same order13, which
is not the case for conditions considered in this Letter.

Eqn. 3 is solved advancing B(x, t) in space using a fourth or-
der Runge-Kutta method. The time derivatives are efficiently
computed in the Fourier space. Careful considerations should
be given to the solution of ω3B (dissipative term). The shift
between the spectrum of the slowly varying envelope (cen-
tred around ω = 0) and the fast oscillation (centred around
ω = ω0) should be reintroduced in the Fourier space. Coeffi-
cients cg and k are updated at each spatial step to account for
spectral changes. Simulations are performed over a 55 km do-
main with resolution ∆x = 1 m. The first 5 km reproduce open
ocean to allow the development of wave nonlinearity from the
initially linear sea state over a distance of ≈ 20 wavelengths,
therefore creating more realistic waves at the sea ice edge.
The transition to sea ice is achieved by activating dissipation
in sea ice only (equivalent to using Eqn. 1 in open ocean). A
periodic temporal domain of 512T0 (t = 6144 s) is used, dis-
cretised in 212 elements (∆t = 1.5 s). Temporal and spatial res-
olution guarantee numerical stability, and conservation of the
wave energy in the open ocean. To obtain statistically robust
results, for each of the two sea ice conditions, 10 realisations
are generated. The amount of data generated allows to reliably
assess probability levels as low as 2× 10−4, a larger number
of simulations is only needed to investigate even lower proba-
bility levels.

A sample of the wave surface elevation, expressed by the
modulus of the wave envelope normalised by the mean wave
amplitude (|B|/〈B0〉), is shown in Fig. 1a and b for low and
high dissipation respectively. In open ocean (x < 0 km) the
evolution is governed by the NLS (Eqn. 1), and in sea ice
(x > 0 km) by the dNLS (Eqn. 3). In the low dissipation
regime energetic wave groups are detected deep in sea ice
(amplification |B|/〈B0〉 > 1; Fig. 1a), albeit less frequently
than at the edge. The oblique lines that highlight energetic
wave groups (the slope of which corresponds to the group
speed) become sparser farther from the ice edge. In the high
dissipation regime wave groups decay faster (Fig. 1b), and
|B|/〈B0〉< 1 for x > 20 km.

The spatial evolution of the dimensionless wave amplitude
is shown in Fig. 2a. The energy is conserved over the first
5 km of propagation (in the open ocean), confirming the ro-
bustness of the numerical code. For low dissipation (blue
line), the wave amplitude decays to 0.716 at 50 km almost ex-
ponentially, i.e. a straight line with the y-axes in logarithmic
scale. The scatter amongst the 10 simulations, denoted by the
shaded area, remains narrow (from 0.705 to 0.743 at 50 km).
For high dissipation (red line), the attenuation is more sub-
stantial and the trend less than exponential, denoting a reduc-
tion of the decay rate as wave progress in sea ice. At 50 km
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FIG. 1. Space time evolution of the wave envelope for low (a) and
high dissipation (b). The dashed line denotes the sea ice edge.

the wave amplitude is 0.235 and the scatter almost doubles
compared to the low dissipation case (from 0.203 to 0.272). It
is not surprising that differences in wave attenuation between
low and high dissipation are of the same order of magnitude
of variation in ν .

For reference, dNLS simulations are compared against so-
lutions obtained from a linear model with the same frequency
dependent attenuation rate and with the same conditions at
x = 0 km, i.e. B̂lin(x;ω) = B̂(x = 0;ω)exp(−kIx). The lin-
ear model (thin line in Fig. 2a) also displays a less than ex-
ponential decay, however the dNLS is less dissipative than the
corresponding linear model, indicating that nonlinearity slows
down the energy attenuation, likely by shifting energy to less
dissipative wave components at lower frequencies. For low
dissipation the difference between linear and nonlinear model
at x = 50 km is ≈ 0.04, but for high dissipation is more sub-
stantial and the dNLS predicts double the amplitude (≈ 0.24
versus ≈ 0.12).

Attenuation obtained from the dNLS simulations is also
benchmarked against predictions based on constant exponen-
tial rates at the initial peak (Eq. 2 for T = 12 s gives kI,l =

7.8×10−6 m−1 and kI,h = 78.5×10−6 m−1 which correspond
to dissipation lengthscale of 800 km and 80 km respectively;
subscript h and l stand for high and low dissipation) and
parametrisations based on field data9 (kK,l = 5.0× 10−6 m−1

and kK,h = 32.7×10−6 m−1 for T < 14 s; dissipation length-
scale of 1250 km and 190 km respectively) that do not cap-
ture the slow-down of attenuation. Note that low and high
dissipation in Kohout et al. 9 correspond to sea ice concen-
tration lower and higher than 80%, whereas the simulations
implicitly account for it in ν . The attenuation rates at the peak
(dashed lines in Fig. 2a) result in lower wave amplitudes com-
pared to the dNLS simulations (and also the linear model).
For low dissipation, the difference between attenuation at the
peak and simulations is small, 0.675 versus 0.716 at 50 km,
but for high dissipation the difference is more conspicuous,

and the residual wave amplitude at 50 km differs by one order
of magnitude (0.02 versus 0.235). By design, the attenuation
by Kohout et al. 9 (dotted lines in Fig. 2a) closely matches
the dNLS simulations at 50 km but under-predicts attenuation
rates close to the sea ice edge and over-predicts them farther
into the sea ice, particularly in high dissipation, because of its
constant attenuation rate.

The wave peak period increases in sea ice (Fig. 2b). For low
dissipation peak period increases by ≈ 10% at 50 km, and for
high dissipation by ≈ 35%. Most of the increase is attributed
to the stronger attenuation of short period waves18. It should
be noted that already at the sea ice edge T/T0 > 1 because
the NLS reproduces nonlinear wave-wave interactions leading
to the downshift of the spectral peak and the energy cascade
towards the high frequency tail32.

The attenuation rate at the sea ice edge from the dNLS
matches the one at the initial peak (kI,l and kI,h), i.e. the curves
have the same slope. The increasing peak period in sea ice re-
sults in a lower attenuation of the dominant wave component
(kI ∝ ω3 = 1/T 3), and for strong dissipation the ≈ 35% in-
crease corresponds to ≈ 2.45 times weaker attenuation rate at
the peak after 50 km (or ≈200 wavelengths). To a certain ex-
tent, the shift towards higher peak periods explains the slow-
down of the wave energy decay deeper in sea ice, suggesting
that the dissipation at the peak can be representative of the
entire spectral attenuation if the peak period evolution is also
reproduced.

Wave dissipation and peak period increase both contribute
to the reduction of the wave steepness (ε) in sea ice (Fig. 2c).
In the less dissipative sea ice regime the steepness is reduced
by≈ 40% over the 50 km propagation, from 0.10 to 0.06. The
reduction is more substantial in the more dissipative regime
(≈ 85%; from 0.10 to 0.015). The breaking probability, al-
ready low for ε = 0.1033, is further reduced in sea ice (field
observations under conditions similar to those of the simula-
tions revealed no breaking in the MIZ26), meaning that the
weakly nonlinear model is a suitable tool to investigate wave
dynamics in the MIZ. Reduction of wave nonlinearity deeper
in the MIZ, particularly in the high dissipation regime, also
means that dissipation contributes to stabilising modulational
instability.

The wave spectral evolution in sea ice is shown in Fig. 3a–
b, for low and high dissipation respectively. Long waves (to
the left of the peak) undergo low dissipation, even in the more
dissipative case, in contrast to short waves (to the right of the
peak). Whereas most of the spectral changes can be attributed
to the frequency dependent dissipation, consistent with field26

and laboratory measurements34, wave nonlinearity also con-
tribute to energy exchanges between energy modes35, albeit
its effect weakens when wave energy content decays.

Evolution of individual modes is shown in Fig. 3c–d, for
low and high dissipation respectively. Despite the imposed at-
tenuation is ∝ ω3, the modes deviate from this scaling (the
lines depart from the straight dashed lines in the logarith-
mic plot that denote linear predictions from Meylan et al. 18 ),
particularly for high dissipation (Fig. 3d). The modes more
closely follow the trend given by linear prediction for low dis-
sipation (Fig. 3c). At low frequencies (green line), the ampli-
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FIG. 2. Spatial evolution of the wave amplitude (a; in logarithmic
scale), peak period (b) and wave steepness (c) for low (blue) and
high dissipation (orange). The average from the random simula-
tions are denoted by a solid line (shaded area in (a) denote range
from all simulations), and the dashed vertical line sea ice edge. In
(a), the thinner line indicates linear predictions, and the dashed line
the exponential decay at the initial peak (kI,l = 7.8× 10−6 m−1 and
kI,h = 78.5× 10−6 m−1) and the dotted line from Kohout et al. 9

(kK,l = 5.0×10−6 m−1 and kK,h = 32.7×10−6 m−1).

tude oscillates around an almost constant value, hinting at the
existence of nonlinear wave-wave energy transfers. At high
frequency (magenta line), the modes decay fast but the less
than exponential trend suggests the presence of an energy in-
put, likely due to the nonlinear energy cascade towards high
frequencies36,37, that contrasts dissipation. A more technical
tricoherence analysis38 would be needed to better quantify the
energy cascade due to the four wave interactions in the pres-
ence of dissipation. Here we note that, in the low dissipation
case, the mode at ω/ω0 = 0.7 (equivalent to T = 17s) approx-
imately equates the amplitude of the mode ω/ω0 = 1 (equiv-
alent to T = 12s) after 35 km (Fig. 3c), and likely exceeds it
for x > 50 km, due to the combined effect of dissipation and
nonlinearity. In the high dissipation case, the process is much
faster, and the ω/ω0 = 0.7 mode exceeds the ω/ω0 = 1 for
x > 15 km (Fig. 3d).

In the ocean, wave nonlinearity leads to the formation of
large individual waves20. The maximum surface elevation in
the dNLS is tracked in space, see Fig. 4a. In the ice free
portion of the domain the wave amplification approaches 3,
as predicted for the Peregrine breather39,40. In sea ice large
waves decrease in amplitude, similarly to the trend observed

FIG. 3. Wave spectra at progressive distances from the edge (x =
0,5,20,50 km; blue to cyan, and red to yellow) for low (a) and high
dissipation (b). Amplitudes of the modes at ω/ω0 = 0.7 (green), 1.0
(black), 1.3 (magenta) for low (c) and high dissipation (d). Dashed
lines denote linear prediction (Eq. 2).

for the wave amplitude (see Fig. 2). For low dissipation, indi-
vidual waves exceeding 2〈B0〉 are detected up to≈ 40 km into
sea ice. For high dissipation, the largest waves drop below
〈B0〉 after ≈ 10 km of sea ice.

The occurence of exceptionally large waves at distance
from the sea ice edge is analysed via the exceedance proba-
bility (cd f ; Fig. 4b–c). For linear sea states the wave ampli-
tudes are Rayleigh distributed41, and |B|2 is exponentially dis-
tributed (black dashed line in Fig. 4b–c). At x =−5 km (thick
line in Fig. 4b–c) the initial condition is given as a linear su-
perposition of modes, and its distribution closely resembles
the benchmark exponential. The wave propagation with no
dissipation in open ocean (from x = −5 km to x = 0 km) al-
lows for nonlinear energy exchanges between modes that lead
to the formation of rogue waves and, consequently, a depar-
ture of the cd f from the exponential. In sea ice (for x≥ 0 km),
loss of wave energy and concurrent downshift of the spec-
tral peak both contribute to the reduction of wave nonlinearity
(wave steepness; see Fig.2c). Waves become more linear and
the cd f tends to the exponential (lighter shades of blue/red
in Fig. 4b–c). For low dissipation, the exceedance probabil-
ity maintain a deviation from the exponential even after 50 km
(cyan line Fig. 4b) due to the high wave energy deep in sea ice.
For high dissipation, the more substantial energy loss leads to
an almost complete suppression of wave nonlinearity and the
cd f at x = 50 km (yellow line Fig. 4c) returns to the initial
exponential distribution.

In summary, we proposed a model for wave propagation
in the MIZ based on the NLS framework, by introducing a
frequency dependent attenuation derived from viscous sea ice
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FIG. 4. Maximum surface elevation in space (a) for low (blue)
and high dissipation (orange). Exceedance probability at x =
−5,0,5,20,50 km for low (b) and high dissipation (c) truncated at
2× 10−4 for which the probability level are assessed reliably; the
thicker line is for x = −5 km, lighter shades are at progressive dis-
tances from the edge (blue to cyan, and red to yellow), and the black
dashed line the exponential distribution.

models that have been verified against field measurements18,
and used to investigate the dynamics of energetic storm waves
(HS = 7.3 m; T = 12 s). The problem setup reproduces typical
Southern Ocean MIZ conditions9,26, where waves are longer
than the characteristic floe size and wave breaking is absent.
Stronger attenuation of high frequency components compared
to low frequency ones leads to a downshift of the spectral peak
(conspicuous in high dissipation regime) and a less than ex-
ponential wave attenuation, in contrast to predictions based
on the total wave energy that do not account for the spectral
downshift (cf. Kohout et al. 9 ). Dissipation dominates over
nonlinearity, but the latter contributes to shifting energy to
more conservative modes via wave-wave interactions (noting
that a more detailed tricoherence analysis38 is needed) and, as
a result, partially counters attenuation further slowing down
the energy decay, i.e. waves in the dNLS are larger than those
predicted by the linear model with same attenuation param-
eters. In high dissipation regime, the residual wave ampli-
tude 50 km into sea ice (≈ 200 wavelengths of propagation)
for nonlinear waves is double the one of linear ones (Fig. 2a;
HS,nlin = 1.75 m versus HS,lin = 0.88 m from HS = 7.3 m at the
sea ice edge). The probability of large waves tends to Gaus-
sianity farther into sea ice, due to concurrent attenuation of
energy and downshift of the peak that reduce wave nonlinear-
ity. Unfortunately the model cannot be predictive, unless the
viscosity parameter ν is linked to observable sea ice properties
(the model can help revealing the nature of ν when paired with

field observation), but these results prompt to the re-analysis
of existing dataset to evaluate attenuation coefficients in sea
ice and asses the role of wave nonlinearity.

Ultimately, the proposed dNLS indicates that the MIZ is
wider than a linear model would predict, due to the higher
residual wave energy that can break large floes and maintain
the small ones unconsolidated farther from the sea ice edge.
Heat and momentum exchanges in sea ice regions are altered,
with consequences on the MIZ dynamics. These results can
inform the development of the next-generation wave and sea
ice coupled models as well as the planning of new observa-
tional campaign.
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