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Abstract. The Elastic Ensemble (EE) is a time series classification
(TSC) ensemble that includes eleven nearest neighbour (NN) classifiers
that use variations of eight elastic distance measures. While EE offers an
accurate solution for TSC in the time domain, its relatively slow run-time
is a weakness. This has led to new algorithms, such as Proximity Forest
and TS-CHIEF, that have iterated on the design of EE by taking the
same elastic measures and incorporating them into tree-based ensembles.
These enhancements were implemented successfully and led to faster and
more accurate time domain classifiers and, as such, development on the
original EE algorithm subsided.

However, in this work we make the simple hypothesis that the original
design of EE contains distance measures that capture the same discrimi-
natory features, and as such, the ensemble includes redundant classifiers.
If this were true, EE could perform to the same level in terms of accu-
racy with significantly less computation. If proven true this would have
interesting implications to the design of algorithms such as Proximity
Forest and TS-CHIEF that are based on the original EE implementa-
tion. To investigate this, we form a simple categorisation of the distance
measures within EE and form four groups. We take one measure from
each group, building an ensemble of four 1-NN classifiers that we call
TS-QUAD: the Time Series QUARtet of distance-based classifiers. We
demonstrate that this ensemble is able to match EE in terms of accuracy
over 10 resamples of 85 datasets while containing fewer than 50% of the
original EE constituents, implying that other elastic distance-based TSC
ensembles could benefit from the design philosophy of TS-QUAD.

Keywords: time series · classification · elastic distance measures

1 Introduction

The Elastic Ensemble (EE) [12] is a time series classification (TSC) ensemble
that combines eleven nearest neighbour (NN) classifiers built with eight distinct
elastic distance measures. The motivation for creating EE was that, at the time,



the commonly used gold-standard for TSC was a 1-NN classifier coupled with
Dynamic Time Warping (DTW) and a warping window parameter set through
cross-validation. This led to variants of DTW being proposed in the literature,
such as derivative [11] and weighted DTW [10], as well as other competing elastic
distance measures such as Time Warp Edit (TWE) distance [15] and the Move-
Split-Merge (MSM) distance [25]. While various approaches were proposed and
evaluated in the literature, none significantly outperformed DTW 1-NN in terms
of accuracy.

In [12], it was hypothesised that, even though these measures did not per-
form differently in terms of accuracy when combined with 1-NN classifiers, the
measures themselves may detect similarity in different ways. It was proposed
that combining classifiers built with each of these measures would detect a
wider range of discriminatory features than using a single measure alone. EE
was created to test this hypothesis by coupling the elastic measures each with
a 1-NN classifier and combining predictions through a weighted voting scheme
that was informed by training accuracy estimates. The results of experiments
over the UCR datasets supported this hypothesis as EE outperformed all of its
constituent classifiers, including DTW 1-NN, and all other TSC approaches that
were published in the literature at the time.

Since EE was first proposed the field of TSC has grown rapidly and a range of
diverse and effective algorithms have been introduced into the literature. Such al-
gorithms include the Collective of Transformation-based Ensembles (COTE) [2],
HIVE-COTE: the Hierarchical Vote Ensemble Collective of Transformation-
based Ensembles [13], ROCKET [6], Proximity Forest (PF) [14], Inception-
Time [7], and TS-CHIEF [24]. These algorithms are notable because each has
now been shown to significantly outperform EE over the UCR datasets in terms
of accuracy, but an interesting observation is that EE has been critical to the de-
velopment of many successive state-of-the-art approaches. While ROCKET and
InceptionTime are based on convolutional kernels and deep learning approaches
respectively, PF, COTE and TS-CHIEF each incorporate the eight elastic dis-
tance measures that were first combined in EE and also use the same parameter
options as proposed by EE, while the first version of HIVE-COTE contained EE
itself as a constituent module to operate in the time domain.

It is clear that EE has influenced numerous algorithms, but development
and refinement of the ensemble has all but ceased due to the relatively slow
run-time of the nearest neighbour classifiers within EE. Efforts have been made
to demonstrate that training and testing decisions can be significantly faster for
EE through restricted neighbourhoods and randomised parameter searchers [19]
but, in general, there was little need until now to revisit EE since subsequent
algorithms such as PF are faster and more accurate than EE.

We do revisit the design of EE in this work however due to a simple ob-
servation that the original EE algorithm in [12] was designed to significantly
outperform the gold standard at the time of DTW-1NN. While run-time was
noted in this work, it was not a priority in the design of EE and it was not
considered whether all distance measures were required in the final EE since its



introduction was a legitimate step-forward in the state of the art for TSC. Thus,
we hypothesise that there may be underlying redundancy between some of the
distance measures that were selected for EE and it is worth investigating. We
believe that it is likely that we can build a subset of EE that will perform to the
same level of accuracy as the whole ensemble while requiring far less computa-
tion. This finding would be of note because, while EE may not be widely used in
TSC anymore, leading algorithms such as PF and TS-CHIEF are based on the
original design of EE and may also include redundant distance measures. We
choose to investigate this hypothesis with EE as it is a deterministic algorithm,
unlike PF and TS-CHIEF that each include random selection, so it is clearer
to demonstrate that the differences in performance are based on constituent
selection alone rather than random chance.

We start by grouping the distance measures into four high-level and intuitive
groupings and nominate a single measure from each group to include in a new
subset of EE. We call this TS-QUAD: the Time Series QUARtet of distance-
based classifiers for the purposes of this work, and results over 10 resamples of
85 UCR TSC problems demonstrate that TS-QUAD is no less accurate than
EE while containing less than half of the constituent classifiers, and half of the
original distance measures, of EE. This finding indicates that further research
and refinement may be be possible of subsequent elastic TSC ensembles such as
PF and TS-CHIEF.

2 Background and Related Work

We define a time series T =< x1, x2, ..., xm > as an ordered sequence of m
real values. The ordering of attribute values is typically by units of time, but
this is not a requirement. For example, electromagnetic spectroscopy readings
are typically recorded in nanometres, not units of time, but we would consider
this data a time series under our definition. Further, time series data can be
univariate or multivariate depending on the number of dimensions or channels
in the incoming data streams. In this work, we constrain our research efforts to
the univariate case for classification of time series data.

For the supervised task of TSC, each series Ti must have an associated class
label yi. The objective of TSC is to use a set of n time series T = {T1, T2, ..., Tn},
with associated class labels Y = {y1, y2, ..., yn}, as training data to learn a
function that maps from the space of all possible series to the space of all possible
class labels. Then, when previously unseen series with unknown class labels are
presented, predictions can be made to classify the unknown cases as one of the
possible class values.

As alluded to earlier, TSC is a very active area of research and many di-
verse algorithms have been proposed and evaluated on a large number of TSC
datasets (for example, [1] contains a large experimental comparison). We fo-
cus on EE as the starting point for this work, which performs classification in
the time domain on raw series data, but it should be noted that a variety of
other algorithms exist and work with discriminatory features that are discov-



ered in other transformation-based domains and the current state of the art for
TSC in terms of accuracy, HIVE-COTE V2.0 [18] (HC2) is an ensemble that is
formed with classifiers built over a range of different domains. Such individual
domains include shapelet-based approaches that detect discriminatory features
within phase-independent subsequences [26,9,8], interval-based approaches that
focus on specific intervals within series [3,17], and histogram-based algorithms
that extract features through counting the occurrence of repeated patterns to
make classification decisions [22,23,16]. Recently, convolutional and deep learn-
ing approaches have shown promising results for TSC, such as InceptionTime [7]
and ROCKET [6], while other approaches such as HIVE-COTE [13], HC2 and
TS-CHIEF [24] are hybrid approaches that combine classifiers over multiple do-
mains, such as the time, frequency and shapelet domains.

2.1 Classification in the Time Domain

Before HC2 and the other contemporary TSC algorithms were proposed, a large
amount of research effort in the field focused on developing elastic distance
measures to couple with nearest neighbour classifiers. The approach to perform
classification in the time domain by measuring distances between series was pop-
ularised by the early success of using DTW with 1-NN classifiers and a warping
window set through cross-validation (such as in [20,21]). Given the success of
this approach, many subsequent efforts iterated on this design by proposing al-
ternative time-series similarity measures to couple with 1-NN classifiers. These
included variations of DTW, such as derivative [11] and weighted [10] DTW, and
other specialised methods such as those that extended edit-distance approach
to similarity (e.g. [4]) and hybrids based approaches such as TWE [15] and
MSM [25]. While these proposed measure were often compared in experiments
to DTW 1-NN, conclusions were anecdotal and no measure was demonstrated
to significantly outperformed DTW-1NN over a large number of datasets.

2.2 The Elastic Ensemble (EE) and Extensions

EE was created to leverage from the wide range of elastic distance measures
that had been introduced in the TSC literature in order to combine the different
predictions of individual measures to produce a result that was more accurate
than any approach in isolation. We will briefly reintroduce EE in this section,
but to avoid retreading existing ground, we direct the interested reader to [12]
for a more in-depth discussion and full implementation details of EE.

In total, EE contains eleven 1-NN classifiers that are coupled with versions
of eight elastic distance measures. The first three 1-NN classifiers use measures
that do not contain parameters to be set (Euclidean 1-NN, full window DTW
1-NN, full window derivative DTW 1-NN) and the remaining classifiers each use
one of eight distance measures that require parameters to be set in training. The
constituent classifiers in EE are summarised in Figure 1.

The elastic 1-NN classifiers in EE are combined through a weighted vote,
where weights are established in training while parameters are optimised. Each



Elastic Ensemble (EE)

Euclidean 
1NN

WDDTW 
1NN

DTW (full) 
1NN

LCSS 
1NN

DTW (CV) 
1NN

ERP 
1NN

DDTW 
(full) 1NN

TWED 
1NN

DDTW 
(CV) 1NN

MSM
1NN

WDTW 
1NN

Fig. 1. A graphical representation of EE and the constituent classifiers that it contains.
Eight of the eleven classifiers require distance measure parameters to be set in training,
while the remaining three approaches (Euclidean, DTW full, DDTW full) do not require
parameters to be set.

constituent is given 100 possible parameter options (which was originally mo-
tivated by DTW using windows in the range of 1%-100%) and leave-one-out
cross-validation is used to determine which parameter setting performs best in
training for each constituent classifier. The subsequent EE uses the best param-
eter options found in training for each constituent and also its corresponding
training estimate to weight test predictions in a proportional vote. For example,
if WDTW-1NN within the ensemble had a training accuracy of 87% for a given
dataset, in testing, WDTW-1NN would be given a weight of 0.87 for its vote. By
applying this weighting scheme to all constituent classifiers within EE, rather
than using a simple majority vote, test classification over the UCR datasets [5]
was significantly improved.

A clear downside of EE is that 1-NN classifiers are lazy classifiers, requir-
ing an O(N) pass of the data for each classification decision. This is further
slowed by the elastic measures each having O(m2) run-time complexities for
series of length m, and when combined with the training experiments that are
required to find measure parameters and constituent voting weights, EE becomes
a time-consuming algorithm to use. This has motivated work such as [14] where
Proximity Forest (PF) was proposed as an improvement to EE. PF addressed
these run-time issues by taking the eight distance measures from EE and making
two key changes. First, 1-NN classifiers are not used, and they are replaced with
tree-based classifiers that form an ensemble for test classification. Second, the
same parameter ranges were considered for the elastic measures, but random
selection is used when assessing potential splits within internal trees of PF. As a
result, PF is much faster than EE in practice while still utilising the same elastic
measures and parameter options. TS-CHIEF [24] is a further continuation of this
research, using a similar structure and the same measures and parameter options
as EE and PF in combination with trees that are built with features from other



transformation domains. Finally, it is worth noting that the underlying train-
ing scheme within EE has also been investigated, with [19] showing that over
90% of the time taken in training the standard EE algorithm could be skipped
by using a random parameter grid-search and a reduced number of neighbours
when comparing potential parameter options. However, a key observation that
we leverage in this work is that none of these extensions consider whether all of
the elastic distance measures within EE, PF and TS-CHIEF are required.

3 EE with fewer constituents: TS-QUAD

Our hypothesis for this investigation is that a number of internal classifiers within
EE are replicating work, and through removing redundant learners, the resulting
ensemble could make predictions with significantly less computation but no loss
in accuracy. If this holds, it will have important implications for PF and TS-
CHIEF; at its simplest, it would suggest that these classifiers could be built to
the same level more quickly, as fewer parameter and measure combinations would
need to be evaluated to produce an equivalent classifier. Importantly, however,
there is also the possibility that this could lead to more accurate classifiers. The
algorithm to build PF defaults to include 100 constituent tree classifiers; if the
100 internal learners are using complimentary measures and parameter options
that detect the same discriminatory features, diversity within the ensemble will
naturally be lower. However, with redundant measures reduced, the likelihood
of the 100 internal learners being more diverse would be increased and this may
lead to a more accurate ensemble overall, and this would also then translate to
TS-CHIEF if true. However, investigating the effect on PF and TS-CHIEF is
beyond the scope of this work as we wish to make a direct comparison between
the inclusion and exclusion of constituent measures and classifiers. EE is a better
choice for this goal as it is a deterministic algorithm and the differences between
a full and reduced ensemble would not be explained by random chance. For
this reason, we also do not include the clear speedups provided in [19] as this
introduces randomness into the parameter selections for internal classifiers and
the relative speedups for EE and a subset of EE would also be consistent.

To investigate whether we can remove constituent classifiers from EE we start
by creating a simple, intuitive grouping of the elastic measures in Table 1. Our
rationale for these groupings is that we do not believe that EE requires multiple
measures that are designed to operate in similar manners. We wish to create an
ensemble that only contains measures that have different design objectives, so
we have created a high-level grouping that is based on the intuition behind each
of the measures. We have also disregarded the full-window options for DTW and
derivative DTW, as well as Euclidean distance, as these are already redundant if
the parameterised versions of DTW and derivative DTW can recreate Euclidean
distance and the full window equivalents in cases where those parameter options
would be optimal.

The first group in Table 1, time domain warping, includes the classic DTW
algorithm and weighted DTW (WDTW). The original DTW measure is applied



Table 1. The eight elastic distance measures first used together in EE placed into
four high-level groupings. One measure was selected for TS-QUAD from each of the
four groups and this is denoted in the table using * .

Time domain warping Derivative warping Edit-distance Hybrid measures

DTW DDTW* LCSS* MSM*
WDTW* WDDTW ERP TWE

to raw time series, and WDTW is also applied to the raw data but uses weights
to manipulate warping paths rather than a fixed cutoff. As DTW and WDTW
are conceptually very similar and can result in identical distances with certain
data and parameter options, they are clear candidates to group together.

Similarly, the second group in Table 1 contains derivative DTW (DDTW)
and weighted derivative DDTW (WDDTW) into a derivative warping group.
These measures are very similar to their origin measures, DTW and WDTW,
and are both based on DTW with the variation that similarity is measured on
the first-order derivatives of the time series, rather than directly on the raw data.

Thirdly, group three is titled edit-distance and includes the two distance mea-
sures from EE that are based around the idea of edit-distance. A full description
of ERP and LCSS is given in [12], but briefly, these two measures are not based
on DTW and instead measure the effort required to transform one series into
another through operations such as additions, deletions and replacements. Edit-
distance approaches are more common in other data mining applications, such
as text mining, but have been successfully implemented for real-valued data by
using threshold values and penalty functions.

Finally, the fourth group is named hybrid measures and it includes MSM
and TWE. Both of these measures incorporate facets of time warping and edit-
distance, and hence have been grouped together due to this high-level design sim-
ilarity of incorporating characteristics from both the warping and edit-distance
groups..

Our hypothesis is that including multiple measures from each of these groups
in the same ensemble would introduce redundancy, rather than increasing di-
versity, and is therefore unnecessary computation. To test this, we select one
distance measure from each group in Table 1. We do not wish to overfit the
measure selections or introduce bias through looking at test results, so we use
simple assumptions and practical knowledge, rather than classification accura-
cies, to make these decisions. From groups one and two we select WDTW and
DDTW for use in our reduced ensemble. Our justification for using these two
measures is slightly nuanced, but we believe it is more likely to result in diver-
sity if one measure uses weighting and one uses a traditional warping window.
We could select DTW and WDDTW, but we choose instead to select WDTW
and DDTW as these two measures were the specific contributions of two TSC
research papers [10,11], while WDDTW was a secondary contribution after the
main WDTW measure and DTW was first used in other fields with WDTW
posed as an improvement upon it. We do not expect this rationale to make a



large difference overall however, and it is likely that using DTW and WDDTW
would result in similar coverage to using WDTW and DDTW if our hypothesis is
correct. For groups three and four, our decisions are simpler; timing experiments
were carried out in [12] and demonstrated that LCSS was faster than ERP, and
MSM was faster than TWE on the same data. We use this prior knowledge
to select LCSS and MSM respectively for convenience as these timing results
can be recreated simply without introducing bias or observing any results from
real data. Since our hypothesis is that the discriminatory features captured by
measures within the same group will be consistent regardless of run-time it is
therefore sensible to prioritise faster measures.

Our final ensemble contains four elastic distance measures: WDTW, DDTW,
LCSS and MSM. Each is combined with a 1-NN classifier and form part of a
smaller elastic ensemble. For the purposes of this work, we call this new ensemble
TS-QUAD (Time-Series QUArtet of Distance-based classifiers). We do not
expect TS-QUAD to compete with the state of the art, but in this work it will
help to either support or refute our hypothesis that EE, PF and TS-CHIEF
contain redundant distance measures that could be removed without reducing
accuracy.

4 Experimental Procedure

We compare TS-QUAD to EE over 10 resamples of the UCR TSC problems [5]
using the same 85-dataset version of the repository that has been widely used in
recent work [1,13,14,24]. As discussed previously, the primary motivation for this
research is not to outperform state-of-the-art algorithms such as HIVE-COTE
with TS-QUAD, but rather the motivation is to demonstrate that four elastic
measures can perform as well together as the full set of eight that are used by
EE. To this end we compare TS-QUAD directly to EE in our experiments. The
datasets are resampled using the same random seeds as the first 10 resamples
in [1] to ensure that results are reproducible and comparable (with the first
‘resample’ being the default train/test split of the data), and we also use the
same implementations of the distance measures and 1-NN classifiers that were
originally used for EE in [12] to ensure that there are no differences caused by
inconsistent implementations. The source code for the distance measures and
classifiers is freely available in the open source Java toolkit tsml and can be
found here1, while the code to create consistent resamples of the dataset can
also be found within the same toolkit here2.

1 https://github.com/uea-machine-learning/tsml/tree/master/src/main/java/

tsml/classifiers/legacy/elastic_ensemble
2 https://github.com/uea-machine-learning/tsml/blob/master/src/main/java/

utilities/InstanceTools.java

https://github.com/uea-machine-learning/tsml/tree/master/src/main/java/tsml/classifiers/legacy/elastic_ensemble
https://github.com/uea-machine-learning/tsml/tree/master/src/main/java/tsml/classifiers/legacy/elastic_ensemble
https://github.com/uea-machine-learning/tsml/blob/master/src/main/java/utilities/InstanceTools.java
https://github.com/uea-machine-learning/tsml/blob/master/src/main/java/utilities/InstanceTools.java


5 Results

The results of EE and TS-QUAD over 10 resamples of the 85 UCR datasets are
summarised in Table 2 and the full results are given in Table 3. It can be seen
from the summarised results that there is very little to choose from between
TS-QUAD and EE in terms of both average accuracy and average rank. EE has
a slightly superior rank over the 85 problems, with 1.494 versus 1.506, while TS-
QUAD in fact has a higher average accuracy than EE with 81.16% and 80.89%
over these experiments.

Table 2. The average accuracies and ranks of EE and TS-QUAD over the 85 UCR
datasets. The accuracies are averaged over 10 resamples, and the average rank is cal-
culated by first ranking each classifier on their respective average accuracy for a given
dataset, and then averaging the ranks across all 85 datasets. Overall, EE won on 42
datasets, TS-QUAD on 41, and they tied on two.

EE TS-QUAD

Average Accuracy 80.89% 81.16%

Average Rank 1.494 1.506

There is no significant difference in accuracy between EE and TS-QUAD,
confirmed by both a paired t-test and a Wilcoxon signed-rank test. This result
is a very positive indication that our original hypothesis holds true and that
we do not need to use all eight distance measures that were originally com-
bined in [12] to produce a competitive ensemble of elastic-based 1-NN classifiers.
While the results of TS-QUAD do not challenge the state of the art, and were
never expected to, they do suggest that further investigation is required to verify
whether this finding is true when based to other time series ensembles that built
upon the design principles established by the introduction of EE, most notably
PF and TS-CHIEF. We also note that it may be possible to further improve
upon TS-QUAD by optimising the constituent measures that are included and
it would likely be possible to post-process all combinations of the EE constituents
to produce a more accurate subset. However, it would not be constructive to op-
timise the ensemble in this way as it would likely lead to overfitting on the UCR
datasets specifically. We believe TS-QUAD is a fair subset of EE, as it is based
on an intuitive and high-level grouping of measures, but it is not intended to be
solution to TSC problems itself. Its main purpose is to motivate further research
effort in the area of elastic measure selection and we believe these results achieve
this goal.

6 Conclusions, future work and extensions

In this work we have investigated whether the Elastic Ensemble (EE) [12] con-
tains distance measures that capture overlapping discriminatory features. We



Table 3. Average accuracies over the 85 UCR TSC problems for EE and TS-QUAD.
The accuracies reported are averaged over 10 resamples of each dataset (please note
that some of the dataset names have been shortened for presentation, but each dataset
is identical to those used in other work such as [1].

Dataset EE TS-QUAD Dataset EE TS-QUAD
Adiac 67.16 66.45 MedicalImages 76 76.38

ArrowHead 86.06 86.17 MiddlePhalanxAge 59.55 64.55
Beef 56 58.67 MiddlePhalanxCorrect 78.11 78.63

BeetleFly 77.5 78 MiddlePhalanxTW 51.56 54.68
BirdChicken 86.5 83 MoteStrain 87.26 87.83

CBF 98.59 99.39 NonInvasiveFT 84.94 83.4
Car 80.83 82.83 NonInvasiveFT2 91.39 90.35

ChlorineConcentration 66.43 68.93 OSULeaf 81.9 80.95
CinCECGTorso 94.62 95.78 OliveOil 87 87.67

Coffee 98.21 97.86 PhalangesCorrect 77.82 78.64
Computers 72.32 73.64 Phoneme 30.16 28.41
CricketX 81.08 79.54 Plane 100 99.81
CricketY 78.9 77.26 ProximalPhalanxAgeGroup 79.71 82.93
CricketZ 80.31 79.38 ProximalPhalanxCorrect 82.99 83.81

DiatomSizeRed. 94.87 95.75 ProximalPhalanxTW 75.95 77.56
DistalPhalanxAge 74.68 75.25 RefrigerationDevices 65.33 67.95

DistalPhalanxCorrect 76.23 75.87 ScreenType 55.73 56.24
DistalPhalanxTW 65.25 66.83 ShapeletSim 82.72 91.22

ECG200 89.2 88.6 ShapesAll 88.5 87.97
ECG5000 93.68 93.8 SmallKitchenAppliances 69.55 70.24

ECGFiveDays 85.39 88.58 SonyAIBORobotSurface1 78.49 79.63
Earthquakes 73.17 73.53 SonyAIBORobotSurface2 88.61 88.91

ElectricDevices 81.43 81.41 StarlightCurves 93.92 94.62
FaceAll 96.6 97.07 Strawberry 95.57 95.59
FaceFour 86.48 90.91 SwedishLeaf 91.98 91.46
FacesUCR 94.83 96.68 Symbols 95.58 94.32
FiftyWords 82.31 81.85 SyntheticControl 99.4 99.07

Fish 91.49 90.97 ToeSegmentation1 77.68 77.5
FordA 73.74 74.9 ToeSegmentation2 90 89.92
FordB 74.95 74.94 Trace 99.5 99.5

GunPoint 96.87 96.8 TwoLeadECG 95.49 94.14
Ham 73.52 74.1 TwoPatterns 100 99.99

HandOutlines 88.62 88.22 UWaveGestureLibraryAll 96.94 96.71
Haptics 44.19 43.93 UWaveGestureLibraryX 80.63 79.04
Herring 57.03 58.13 UWaveGestureLibraryY 72.95 71.21

InlineSkate 47.44 46.64 UWaveGestureLibraryZ 72.49 70.97
InsectWingbeatSound 57.66 57.48 Wafer 99.71 99.73
ItalyPowerDemand 95.27 95.07 Wine 85.74 85.74

LargeKitchenAppliances 81.68 80.69 WordSynonyms 77.63 77.26
Lightning2 82.95 83.11 Worms 63.38 62.47
Lightning7 75.07 71.78 WormsTwoClass 72.08 70.91

Mallat 95.95 95.45 Yoga 88.47 88.5
Meat 97.83 97.33



hypothesised that a number of measures within EE were redundant, and that
we could therefore form a subset of constituents from EE that would perform no
worse under experimental conditions in terms of accuracy but with significantly
less computation. We formed this subset by first grouping each of the distance
measures from EE together into simple and intuitive categories. We proposed
four categories and used one elastic measure from each group, in combination
with a 1-NN classifier, to form TS-QUAD. TS-QUAD contains four internal
1-NN classifiers, rather than the eleven (built with eight distance measures)
that are contained within EE. We demonstrated that, over 10 resamples of 85
datasets, there is no significant difference in terms of accuracy when comparing
EE to TS-QUAD. This work has demonstrated that it is indeed possible to per-
form as well as the full EE while only using half of the original distance measures
that were contained by the full ensemble. This finding suggests that future work
should be conducted to investigate whether similar improvements could be made
to algorithms that are informed by the original design of EE, such as PF and
TS-CHIEF, and this may lead to faster and more accurate elastic-based TSC
ensembles.
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