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SUMMARY 

 

It is widely accepted that fault segmentation limits earthquake rupture propagations 

and therefore earthquake size. While along-strike segmentation of continental strike-

slip faults is well observed, direct evidence for segmentation of off-shore strike-slip 

faults is rare. A comparison of rupture behaviors in multiple earthquakes might help 

reveal the characteristics of fault segmentation. In this work, we study the 2015 

Lefkada earthquake, which ruptured a major active strike slip fault offshore Lefkada 

Island, Greece. We report ground deformation mainly on the Lefkada Island 

measured by interferometric synthetic radar (InSAR), and infer a coseismic 

distributed slip model. To investigate how the fault location affects the inferred 

displacement based on our InSAR observations, we conduct a suite of inversions by 

taking various fault location from different studies as a prior. The result of these test 

inversions suggests that the Lefkada fault trace is located just offshore Lefkada 

Island. Our preferred model shows that the 2015 earthquake main slip patches are 

confined to shallow depth (< 10 km), with a maximum slip of ~1.6 m. In comparison 

to the 2003 earthquake, which mainly ruptured the northern part of the Lefkada fault, 

we suggest that the 2015 earthquake closed the seismic gap, at least partially, left by 

the 2003 earthquake by rupturing the shallow part of the Lefkada fault. The spatial 
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variation in slip distributions for the two earthquakes reveals segmentation along 

strike, and possibly downdip of the Lefkada fault. A comparison of aftershock 

locations and coseismic slip distribution shows that most aftershocks appear near the 

edge of main coseismic slip patches. 
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1 Introduction 

 

On 17 November 2015, a magnitude 6.5 earthquake struck Lefkada Island, Greece 

(Fig. 1). The NNE-SSW alignment of aftershocks following this earthquake suggests 

rupture of the Cephalonia-Lefkada Transform fault (CTF), a major tectonic structure 

in the Ionian area. The CTF comprises two segments, ~ 40 km long Lefkada fault in 

the north near the coast of Lefkada Island, and ~ 90 km long Cephalonia fault in the 

south with a slightly eastward tilting strike (Louvari et al., 1999; Kokinou et al., 

2006). The northeastern end of CTF is marked by continental collision between NW 

Greece and the Apulian platform, while in the southwest lies the Hellenic subduction 

zone (e.g., Le Pichon et al., 1995; Papazachos & Kiratzi 1996). The CTF 

accommodates thrust motion at its two ends by a right-lateral slip motion at a rate of 

2 – 3 cm/yr (e.g., Lagios et al., 2007; Perouse et al., 2012; Ganas et al., 2013; Vernant 

et al., 2014). Briole et al. (2015) found an interseismic slip rate of 1.85-1.95 cm/yr for 

the southern Cephalonia segment, which is at the lower end of the above range of slip 

rate.  

 

In a recent seismic zonation model for shallow earthquakes in the Aegean area 

(Vamvakaris et al., 2016), the islands of Lefkada, Cephalonia and Zakynthos are 

estimated to suffer shallow earthquakes of magnitude greater than 6.6 approximately 

every 50 years. Short return-period of M > 6 earthquakes and high level of seismicity 
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make this area one of the most seismically active in the eastern Mediterranean region 

(Papazachos 1996). For the Lefkada fault, it has been documented at least nine strong 

earthquakes with magnitude greater than 6 in the last 300 years (Papazachos & 

Papazachou, 2002). The majority of these destructive earthquakes occurred close to 

the northwestern part of the Lefkada Island, while the southwest edge has 

experienced fewer (Papazachos & Papazachou, 2002). Only two earthquakes with 

magnitude 6.7 and 6.5 possibly occurred in the southwestern part in 1723 and 1948, 

respectively (Papadimitriou et al., 2006). The most recent earthquake that ruptured 

the Lefkada fault occurred on 14 August 2003 with magnitude 6.2. Based on seismic 

waveform modelling, Benetatos et al. (2007) found that the 2003 earthquake occurred 

as two subevents, separated by approximately 40 km in space, and slip was mainly 

deeper than 10 km. Ilivea et al. (2016), based on InSAR observations, reported a 

different rupture area for the 2003 event locating the main slip area in the northern 

part of the Lefkada fault. The remaining seismic gap on the Lefkada fault after the 

2003 event was filled later by the recent 2015 earthquake (Sokos et al., 2016; 

Chousianitis et al., 2016; Ganas et al., 2016). 

 

Several estimates locate the 2015 Mw 6.5 earthquake hypocentre along the southern 

part of the Lefkada Island, in respect to the 2003 earthquake. Focal mechanism 

solutions from different institutes are consistent in suggesting major right-lateral slip 

with minor dip-slip component on a steep SE-dipping fault (Fig. 1). Sokos et al. 

(2016) proposed that the 2015 earthquake consists of at least two subevents with 

right-lateral slip, and a third less reliable subevent with normal faulting slip. They 

also proposed that the Lefkada fault has its surface trace on the Lefkada Island. 

Distributed slip presented by Sokos et al. (2016) agrees well with the results from 

joint inversion of seismic and GPS observations (Chousiantitis et al., 2016), showing 

two major slip patches at shallow depth, and unilateral rupture propagation to SSW of 

the Lefkada fault. Additionally, Ganas et al. (2016) presented uniform slip on a 

rectangular right-lateral fault plane from geodetic observations. An additional small 
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fault rupture with reverse slip component was included by the authors to 

accommodate the displacement pattern shown by InSAR data. It would be interesting 

to see whether a single distributed slip model can reconcile the InSAR observations. 

 

In this study, we report ground deformation observed by InSAR, invert for coseismic 

slip distribution from InSAR observations, and compare the amount of slip released 

with that has been accumulated since the last event in 1948. The abundant number of 

recorded aftershocks allows us to further investigate how aftershocks relate spatially 

with the coseismic slip distribution. Most importantly, the two earthquakes in 2003 

and 2015 offer a chance to infer the partitioning of fault rupture and reveal fault 

segmentation characteristics on the Lefkada fault by comparing the two slip 

distributions.  

 

2 InSAR data and processing 

 

Ground deformation associated with the Lefkada earthquake was obtained from 

InSAR observations. The InSAR data consist of ascending and descending Sentinel-

1A data (Table 1) provided by the European Space Agency (ESA) with a wavelength 

of ~5.55 cm. Both interferograms cover a period of 12 days. Sentinel-1 single-look 

complex (SLC) data were downloaded directly from the ESA scientific data hub. 

Interferograms were obtained using GAMMA@ following the procedure outlined in 

González et al. (2015). Shuttle Radar Topography Mission (SRTM) digital elevation 

model (Farr et al., 2007) was employed to remove the topographic contribution in the 

phase. Atmospheric noise was simulated and removed using ERA-Interim data 

(Jolivet et al., 2011; Walters et al., 2013). The interferograms were recursively 

filtered (González 2015), unwrapped using a minimum cost flow algorithm (Chen & 

Zebker 2000) and finally geocoded.  
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The interferograms show coseismic displacements on the southwestern part of 

Lefkada Island (Fig. 2a and e). Both ascending and descending tracks reveal minor 

displacements on the northern tip of Cephalonia Island, indicating that the coseismic 

fault slip might have propagated as south as to Cephalonia Island. Line-of-sight 

(LOS) displacement revealed by the ascending data shows motion towards the 

satellite on both Lefkada and Cephalonia Islands, while displacement shown by the 

descending data is more complicated. In the descending data, a small area with 

negative LOS displacement in south Lefkada Island was surrounded by a large area 

of positive displacement (Fig. 2e). The difference in LOS displacement pattern 

results from different satellite viewing geometries. Given the fact that the descending 

track is mainly sensitive to vertical displacements, the area showing negative LOS 

displacements indicate a component of motion in the dip direction of the fault. 

Indeed, to reproduce this observation, Ganas et al. (2016) included an additional fault 

patch showing oblique slip of 0.6 m in both right lateral and reverse components. In 

the next section, we conduct a series of inversions to identify an optimal set of source 

parameters and distributed slip that can better fit the InSAR observations. 

 

3 Slip model 

 

Determining source parameters for earthquakes from InSAR observations is 

becoming increasingly routine, especially with a growing observing capacity of 

satellites in orbit (Weston et al., 2012). In Section 3.1, we follow the common 

procedure to estimate firstly an optimal set of source parameters including fault 

location, strike, dip, rake, size of the fault, and uniform slip. In Section 3.2, we invert 

for distributed slip by fixing the fault geometry. Given the fact that the epicentral area 

of the Lefkada earthquake is not fully imaged (the whole western side of the fault 

was incoherent due to water coverage), the fault location obtained from the uniform 

slip inversion may be less well constrained and could result in a biased distributed 

slip. This leads us to conduct three tests using different fault locations given by 
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uniform slip inversion (this study), multi-source moment tensor inversion (Sokos et 

al., 2016) and previous studies (e.g., Benetatos et al., 2007). The three fault locations 

(Fig. S1) are numbered in order with our tests described in Section 3.2.  

 

In accordance with the slip inversion of seismic data (Sokos et al., 2016), we also 

adopt the 1D seismic velocity structure of the Ionian region proposed by Haslinger et 

al. (1999) for all our inversions. Both tracks of InSAR data were downsampled from 

millions to thousands of pixels (Fig. 2b and f) to reduce computation cost, using the 

quadtree decomposition algorithm (Jónsson et al., 2002). A full variance-covariance 

matrix was then constructed for the downsampled data sets and used to generate the 

weighting matrix and synthetic spatially-correlated noise (e.g., Cervelli et al., 2001; 

Bie et al., 2014a). 

 

3.1 Uniform slip model 

 

To determine the fault orientation and source parameters for the 2015 Lefkada 

earthquake, we conduct a joint inversion of downsampled descending and ascending 

interferograms. The uniform slip inversion methodology is the same as used in Bie et 

al. (2014a), where the Green’s functions due to unitary slip in a layered Elastic earth 

were computed by the EDGRN/EDCMP package (Wang et al., 2003).  

 

To seek optimal source parameters, we follow the routine procedure to simulate 

ground deformation using nonlinear optimization to search various combinations of 

those parameters within certain range (e.g., Cervelli et al., 2001; Bie et al., 2014a). 

This methodology employed a simulated annealing algorithm and downhill simplex 

method to find the optimal parameters that minimize the weighted root-mean-square 

of residuals. In order to determine the errors of source parameters, we first create 100 

sets of noise-perturbed data sets by adding the synthetic noise to the downsampled 

interferograms. Then, each dataset is inverted independently using the nonlinear 
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optimization to obtain a set of best fitting source parameters. The trade-off plot of 

100 sets of source parameters (Fig. S2) shows an optimal fault striking N21°E and 

dipping 73° towards the east-southeast, with a dextral slip sense combined with a 

minor thrust component. The result obtained here (Table S1) is consistent with the 

focal mechanism reported by Papadimitriou et al. (2015), of which the strike/dip/rake 

values are 22°/72° /161°. Ganas et al. (2016) reported 18°/71°/180° for 

strike/dip/rake from inversion of geodetic observations for a uniform slip model, 

which is also similar to our results. The error associated with the fault location from 

our uniform slip modelling is ~7 km in longitudinal direction, and ~6 km in the 

latitudinal direction. We further explore in Section 3.2 how the fault location affects 

distributed slip modelling.  

 

3.2 Distributed slip model 

 

3.2.1 Test 1 – fault location from our uniform slip modelling 

 

In this test, we perform a weighted least-squares inversion for distributed slip on an 

extended fault plane (60 km in length by 30 km in width). We fix fault location 

(marked No. 1 in Fig. S1), strike and dip as obtained from the uniform slip modelling 

(section 3.1). The distributed slip model comprises three slip patches, with the major 

one in the middle (Fig. S3a). Predicted LOS deformation is larger than observation 

for ascending track, while the prediction of descending track fails to reproduce the 

pattern of displacement observed on Lefkada Island (Fig. S4). This disagreement 

leads us to further investigate whether the location of the fault might play a role in 

fitting the data, given the large error bound of fault location. Next, we test a fault 

location from multi-source moment tensor inversion by Sokos et al. (2016), who 

suggested a fault having its surface extension right on Lefkada Island.  

 

3.2.2 Test 2 – fault location from multi-source moment tensor inversion 
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In the second test, we construct a fault plane passing through the earthquake centroids 

provided by Sokos et al., (2016). The fault (marked No. 2 in Fig. S1) locates 

approximately ~20 km to the south and ~10 km to the east of the fault (marked No. 1 

in Fig. S1) estimated from the inversion of the InSAR measurements. Although the 

derived distributed slip model also has three slip patches (Fig. S3b), the predicted 

displacements and observations show no consistency (Fig. S5). The inconsistency 

suggests that the fault deduced from moment tensor inversion (Sokos et al., 2016) 

does not satisfy InSAR observations. 

 

3.2.3 Test 3 – fault location from previous studies 

 

In a third test, we took the fault trace proposed by Papadimitriou et al. (2006) for the 

2003 Mw 6.2 earthquake as a priori to construct the rupture plane. In fact, Benetatos 

et al. (2007) also used this fault location to recover the slip distribution for the 2003 

earthquake using seismic observations. The slip distribution we obtained was again 

composed by three patches (Fig. 3), spatially consistent with that obtained by joint 

seismic and geodetic study (Chousiantitis et al., 2016). In comparison to previous 

tests (Fig. S4 and 5), the misfit between predicted and observed LOS displacement is 

greatly reduced for the ascending track (Fig. 2). The LOS displacement field shown 

by the descending data on Lefkada Island is also recovered (Fig. 2f and g), although 

the local residual signal near the coast persist (Fig. 2h). The residuals of our 

coseismic slip model might be due to complexities in the coseismic rupture or early-

postseismic phase in this region. We also note that, the positive residual near the 

coast in Fig. 2h corresponds to where Papathanassiou et al., (2017) found extensive 

earthquake-induced failure, such as landslide. In the following analysis, we take the 

distributed slip model in the third test as our preferred model (Fig. 3), since it gives 

the best overall fit to the observed deformation.  
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The observed slip distribution has three peaks (Fig. 3). Slip patch A locates above the 

hypocentre, confined to the upper 10 km, indicating an initial up-dip propagation of 

rupture. Then, the rupture propagates unilaterally towards SSW, leading to the main 

moment release on patch B, off the south-western coast of Lefkada Island. Slip patch 

B is confined to an area with length of ~25 km, extending from surface and smearing 

to 25 km in depth. The maximum slip is ~1.6 m, nearly five times larger than that of 

the 2003 earthquake (Benetatos et al., 2007). Slip on patches A and B comprises 

thrusting and shearing components. Slip patch C shows a pure dextral slip, with 

maximum slip reaching 0.9 m. 

 

Furthermore, we perform resolution tests (Fig. 4) to assess how well the features in 

our distributed slip model is resolved. It is clearly shown in Fig. 4 that the slip is less-

well resolved in amplitude and location at depth greater than 10 km. In the along-

strike direction of the fault, slip on the NE part of the fault plane is better resolved 

than the SW part, partially due to the fault closeness to the island where the 

displacements are densely imaged. In comparison to the distributed slip model from 

Chousiantitis et al. (2016), which was constrained by seismic and GPS data, our 

model shows agreement in the location of two major slip patches A and B. As to the 

slip patch C, given that it locates in a poorly resolved area (SW of the fault and 

deeper than 10 km), we are less confident in its robustness. We run a test to 

investigate how removing slip on patch C affects recovering of InSAR observations 

(Fig. S6). The performed test shows that the ascending data does not necessarily 

require slip on this part of the fault. However, the patch C is needed to satisfy the 

deformation imaged on the northern tip of Cephalonia Island observed by the 

descending data (Fig. S6).  

 

4 Discussion 

 

4.1 InSAR constraints on slip model of offshore earthquakes  
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InSAR has been greatly successful in determining earthquake source parameters. For 

shallow earthquakes, Weston et al. (2012) found that InSAR-derived source locations 

are more accurate than those derived by seismic data. By using InSAR observations, 

Lohman & Simons (2005) precisely located four small earthquakes in the Zagros 

Mountains that would otherwise be too small to be well-located. One reason of its 

success in precise determination of earthquake location is that InSAR can provide 

dense observations over epicentral area. Typically, a strike-slip earthquake causes a 

four-quadrant displacement field. It is therefore fairly straightforward to determine 

accurately fault location as in between the quadrants where the sign of displacement 

changes. With multiple observations from various satellites, 3D displacements can 

still be obtained, providing additional constraints on the fault trace (e.g., Wright et 

al., 2004). Unlike continental strike-slip earthquakes, where InSAR is capable of 

providing full coverage of deformed area, offshore earthquakes induce ground 

deformation that can only be partially observed on nearby land areas. 

 

The ground deformation mapped for the Lefkada earthquake challenges the 

traditional inversion strategy for distributed slip along continental strike-slip faults as 

demonstrated in section 3.2. With the whole western side of the Lefkada fault lacking 

InSAR observations, the fault location obtained from uniform slip modelling is less 

well constrained. The potential uncertainty in fault location could further affect the 

next step of inversion for distributed slip, for which the fault location is often fixed as 

a known parameter similar to distributed slip inversions along the subduction zone 

megathrust. 

 

It is a common practice that certain source parameters are taken as a priori in InSAR 

inversions. For example, when a fault is well-mapped by other methods (e.g., 

geological mapping, seismic imaging, pixel offsets), the fault location can be treated 

as a known parameter in inversion for distributed slip (e.g., Bie et al., 2014b). 
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Geodetic studies of megathrust earthquakes often invert for distributed slip on an a 

priori interplate slab model, such as the 2011 Tohoku Oki earthquake (e.g., Simons et 

al., 2011) and 2010 Maule earthquake (e.g., Lin et al., 2013). In our second test 

(section 3.2.2), although we used the fault location suggested by the seismic study, 

the fit to InSAR data is not satisfying. It is worthy to note that our preferred fault (test 

3 in section 3.2.3) locates in between the faults derived independently from InSAR 

and seismic studies (Fig. S1). This implies that a joint inversion of both data sets may 

be helpful in resolving more accurately fault location of similar tectonic settings and 

will be discussed in a future study. 

 

4.2 Coseismic slip and aftershocks 

 

One interesting topic in earthquake science is the spatial relationship between 

aftershocks and distributed coseismic slip, which may have implications to 

understanding heterogeneities in fault properties (barriers or asperities). Previous 

studies on aftershock distribution following strike-slip earthquakes tend to find that 

aftershocks occur mostly outside of or near the edges of the coseismic slip (e.g. 

Mendoza & Hartzell 1988; Rietbrock et al. 2012). 

 

Fig. 5 shows the surface projection of spatial relationship between coseismic slip and 

aftershocks. Here, 960 aftershocks were relocated by Ganas et al., (2016) from the 

catalogue provided by National Observatory of Athens (NOA) between 17 November 

and 30 December 2015. The relocation used only arrivals from stations within 120 

km of the mainshock and the errors in horizontal and depth directions are smaller 

than 3 km (Ganas et al., 2016). We project aftershocks within 10 km either side of the 

mainshock fault plane onto the fault. It is apparent that aftershocks following the 

2015 earthquakes mostly appear near the edge of coseismic slip patches. A large 

cluster of aftershocks is found SW below the main slip patch B. Slip patch C is in 

between two small clusters of aftershocks. Similar to the 2015 Lefkada event, the 
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2003 Mw 6.6 Bam earthquake, another dextral slip event, also has most of its 

aftershocks near the bottom edge of the main coseismic slip (Tatar et al., 2005). On 

the contrary, aftershocks in first week following the 2003 earthquake appear above 

the coseismic slip patches (see fig. 6 of Benetatos et al., 2007). One interesting 

question is whether the aftershocks following 2003 and 2015 earthquakes are in the 

same region. If so, this region might represent a persistent barrier that stops rupture 

propagation up- or down-dip on this part of the fault and thus separates two asperities 

above and below it, causing a segmental behavior in this direction. However, 

regarding the inference of segmental behavior in down-dip direction, we realize that 

it partly depends on the spatial comparison between distributed slip models for the 

2003 and 2015 earthquakes, which we explore more in section 4.3. 

 

4.3 Fault segmentation and seismic gap 

 

Fault segmentation has critical implications for the dynamics and size of earthquake 

ruptures (De Joussineau & Aydin 2009). It has been long recognized that, for strike-

slip faults, segment boundaries such as fault steps might impede or arrest the 

propagation of seismic rupture (e.g., Wesnousky 2006), thus limiting the earthquake 

size and potential damage. For a seismically active region, such as the Ionian area, it 

is critically important to understand the fault characteristics in terms of segmentation, 

which affects the estimation of potential maximum earthquake magnitude. By 

comparing the slip models of two recent earthquakes on the Lefkada fault, we 

therefore may gain some insights into the possible fault segmentation.  

 

As shown by our modelling results, the 2015 earthquake ruptured generally the 

shallow part of the Lefkada fault (<10 km), although the main slip patch (patch B in 

Fig. 3) smears to ~25 km depth. This feature of shallow slip is consistent with the 

distributed slip model suggested by Chousianities et al. (2016). In the contrary, as 

introduced in the Section 1, there is currently no consensus on the slip model for the 
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2003 earthquake. Two independent slip inversion studies based on various data sets 

exist. From inversion of seismic data, Benetatos et al. (2007) obtained a slip model 

with two major patches on the deeper part of Lefkada fault (between depths of 10 – 

25 km) for the 2003 event. Based on the larger depth they found for the 2003 

earthquake, they propose a thicker brittle crust for this region. Modelling of InSAR 

data for the 2003 earthquake, however, indicated rupture mainly on the northern part 

of the Lefkada fault (see fig. 1 of Ilivea et al., 2016) at shallow depth. The SW end 

from the uniform slip model of the 2003 earthquake is adjacent to slip patch A of our 

distributed slip model for the 2015 earthquake (Fig. 5).  

 

A likely explanation to the difference of slip models for the 2003 earthquake is, they 

used a different fault geometry to retrieve slip. Benetatos et al. (2007) fixed the dip of 

Lefkada fault at 81°, much larger than 59°, which was adopted by Ilieva et al. (2016) 

from Harvard CMT solution. The large difference in fault steepness can introduced 

significant variation of inferred slip depth. The depth of slip obtained using a dip 

angle of 81° could be as 3.8 times larger as that derived from using 59° (Fig. S7), 

assuming the same fault surface trace and other source parameters. This explains an 

upper edge of 3.5 km reported by Ilieva et al. (2016) in the uniform slip model and an 

upper edge of ~10 km from Benetatos et al. (2007) in their distributed slip model for 

the 2003 earthquake. Regardless of the disagreement in slip models of the 2003 

earthquake, it is obvious from Fig. 5 that the 2015 earthquake ruptured a different 

area on the Lefkada fault, indicating fault segmentation at least along strike of the 

fault. Whether down-dip segmentation of the Lefkada fault exits remains an open 

question to answer. A joint inversion of seismic and geodetic data or separate 

inversions with consistent a priori constraints would be needed to refine the 

distributed slip model for the 2003 earthquake, and in turn, may help answer whether 

there exists segmentation downdip the Lefkada fault. 
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Considering an interseismic slip rate of 2 – 3 cm/yr (e.g., Ganas et al., 2013; Vernant 

et al., 2014) and assuming all strain is accumulated along a fully locked Lefkada fault 

system, a segment corresponding to 2015 earthquake slip patch B (Fig. 3) has 

accumulated between 1.34 and 2.01 m of slip deficit since the last major event in 

1948. With a maximum slip of ~1.6 m, the 2015 earthquake closed, at least partially, 

the seismic gap left by the 2003 Mw 6.2 earthquake on the Lefkada fault. 

  

5 Conclusions 

 

This work presents Sentinel-1 InSAR observations of the coseismic displacement 

associated with the 2015 Mw 6.5 Lefkada earthquake, Greece. Given the fact that the 

earthquake ruptured an offshore strike-slip fault, InSAR only recorded partially the 

coseismic displacements, leading to a less well-constrained fault location and slip 

distribution based on uniform slip inversion result from InSAR data alone. 

Additionally, we tested the inversion procedure by taking the fault location inferred 

from seismic study of moment tensor as a priori and found that the predicted ground 

deformation does not match the InSAR observations. This disagreement tends to put 

the favored fault location in between those derived by geodetic or seismic data 

separately. Our preferred slip model, together with resolution tests, show that major 

slip of the 2015 earthquake is confined to shallow depths (< 10 km). Although there 

are competing models for the slip distribution of the 2003 earthquake locating the 

upper edge of main slip patch at shallower (3.5 km) or larger (10 km) depth, it is 

clear that the 2015 earthquake ruptured a different area in comparison to the 2003 

events, indicating segmentation along strike of the Lefkada fault. The 2015 

earthquake closed the seismic gap, at least partially, left by the 2003 earthquake by 

rupturing mainly the shallow part of the Lefkada fault. Finally, a comparison of 

aftershock and coseismic slip distribution shows that most aftershocks appear near 

the edge of main coseismic slip patches.  
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Figures and Tables 

 

Figure 1. Seismotectonic setting of the Ionian Sea region. Fault traces are from 

Papadimitriou et al. (2006). Yellow points represent relocated aftershocks until 30 

December of 2015 with local magnitude greater than 1 from the catalogue of 

National Observatory of Athens (Ganas et al., 2016). Earthquake location of the 2015 

earthquake is marked as blue points, with corresponding publishing institution and 

focal mechanism solution labeled.  
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Figure 2. The observed, downsampled and modelled unwrapped coseismic InSAR 

data for ascending (upper row) and descending (bottom row) tracks. Details of the 

original interferograms are listed in Table 1. The modelled InSAR coseismic 

displacements (third column) were produced using our preferred distributed slip 

model, as shown in Fig. 3 and explained in Section 3.2.3. Here, positive displacement 

corresponds to a movement away from the satellite.   
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Figure 3. Preferred coseismic slip distribution model for the Lefkada earthquake 

(corresponding to Test 3 in Section 3.2) inverted from InSAR observations. 

Histogram plots show moment releases along the striking and in the downdip 

direction of the fault.  
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Figure 4. Checkerboard test showing the spatial resolution of distributed slip 

inversion from InSAR Left-hand (a and c) panels showing the input slip model and 

right-hand panels (b and d) showing the recovered slip distribution. The resolution 

tests show that the slip is less-well resolved at depth greater than 10 km. In the along-

strike direction of the fault, slip on the NE part of the fault plane is better resolved 

than the SW part. 
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Figure 5. Spatial relationship between coseismic slip distribution and aftershocks of 

the 2015 earthquake. Black dashed lines depict the coseismic rupture as proposed by 

Benetatos et al. (2007), and gray rectangular area shows the uniform slip area 

estimated by Ilieva et al. (2016) for the 2003 earthquake. Aftershocks within 10 km 

from either side of the rupture are firstly projected onto the fault plane and then 

projected together with the rupture onto the surface. Green lines mark the coastline. 

Red thick dashed line indicates the surface rupture of the 2015 earthquake, being just 

offshore the Lefkada Island. 
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Table 1. SAR data used in this study.  

 

Flight 

direction 
Track 

Master  

(YYYY/MM/DD) 

Slave  

(YYYY/MM/DD) 

Perpendicular 

Baseline (m) 

Time 

difference 

Ascending 175 20151105 20151117 25.8 12 

Descending 80 20151111 20151123 66.2 12 

 

 

 

  


