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Abstract

We show that Martin’s Maximum++ implies Woodin’s Pmax axiom (⇤).
This answers a question from the 1990’s and amalgamates two prominent ax-
ioms of set theory which were both known to imply that there are @2 many
real numbers.

1 Introduction.

Cantor’s Continuum Problem, which later became Hilbert’s first Problem (see [18]),
asks how many real numbers there are. After having proved his celebrated theorem
according to which R is uncountable, i.e., 2@0 > @0, see [4], Cantor conjectured that
every uncountable set of reals has the same size as R, i.e., 2@0 = @1. This statement
is known as Cantor’s Continuum Hypothesis (CH). Gödel [14] proved in the 1930’s
that CH is consistent with the standard axiom system for set theory, ZFC, by showing
that CH holds in his constructible universe L, the minimal transitive model of ZFC
containing all the ordinals. The axiom V = L, saying that the universe V of all
sets is simply identical with L, has often been rejected, however, as an undesirable
minimalistic assumption about V . For instance, L cannot have measurable cardinals
by a result of Scott [43]. Gödel himself believed that CH would be shown not to
follow from ZFC, and at least for part of his life he held the view that CH is indeed
false and that actually

2@0 = @2 (1)

(see [17] and [16, pp. 173↵.]). In 1947, Gödel [15] wrote:
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[...] one may on good reason suspect that the role of the continuum
problem in set theory will be this, that it will finally lead to the discovery
of new axioms which will make it possible to disprove Cantor’s conjecture.

As we shall now try to explain, in the light of our unifying result, Theorem 1.2,
one could make the case that with the two axioms MM

++ and (⇤), natural and strong
such axioms have already been found.

Luzin [32] proposed a related hypothesis which also refutes CH, namely

2@0 = 2@1 . (2)

That CH does not follow from ZFC was confirmed by Cohen in 1963 through the
discovery of the method of forcing: Every model of ZFC can be generically extended
to a model of ZFC in which CH fails, see [7]. In fact, using forcing one can show that
it is relatively consistent with ZFC that the cardinality of the continuum is @1, @2,
@155, @!2+17, or @↵ for many other values of ↵, see [45].

1.1 New axioms.

Ever since Cohen’s work, set-theorists have been searching for natural new axioms
extending ZFC and which settle the Continuum Problem (see e.g. [56], [57], [25],
and the discussion in [11]). One family of such axioms is the hierarchy of large
cardinal axioms. It was realized early on, though, that these axioms cannot settle
the Continuum Problem: one can always force CH to hold or be false by small forcing
notions, and all large cardinals existing in V will retain their large cardinal properties
in the respective extensions, see [31].

One axiom that does settle the Continuum Problem is CH itself; after all, CH
looks natural in that it gives the least possible value to 2@0 consistent with Cantor’s
theorem, 2@0 > @0. CH allows the “diagonal” construction of objects of size @1

with specific combinatorial properties, e.g. Luzin or Sierpiński sets. In 1985, Woodin
proved his ⌃2

1 absoluteness result conditioned on CH. Namely, if CH holds true, there
is a proper class of measurable Woodin cardinals, and � is a statement of the form
“There is a set of reals X such that '(X, r),” where r is a real and '(X) is a formula
of set theory all of whose quantifiers are restricted to reals, such that � can be forced
over V , then � actually holds true in V , see e.g. [9, Theorem 4.1]. Over the last
decade, Woodin has developed a sophisticated scenario for set theory according to
which CH is true, see e.g. [58] and [59].

Nevertheless, and despite the appeal of ⌃2
1 absoluteness, CH is often regarded as

a minimalistic assumption on a par with its parent, V = L. To give an illustrative
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example, under CH one can easily find sets X and Y of reals without endpoints
that are both @1-dense—in the sense that every interval of points contains exactly
@1 many points—but such that X and Y are not order-isomorphic. On the other
hand, by a theorem of Baumgartner [3], given any such X and Y , there is a nicely
behaved forcing notion that adds an order-isomorphism between X and Y . Thus,
adopting CH precludes the existence of su�ciently generic filters for such forcing
notions—which may consistently exist.

A dual approach to CH is to formulate axioms stipulating the existence of objects
that may possibly exist, i.e., to look for “maximality principles” expressing some
form of saturation of the universe of all sets with respect to its generic extensions.
Such principles are known as forcing axioms. Shortly after the discovery of forcing,
it was realized that it is possible to iterate the process of forming generic extensions
V ⇢ V [g0] ⇢ V [g1] ⇢ . . . ⇢ V [g↵] of V in any length ↵ in such a way that the final
model is itself a generic extension of V . By “closing o↵” one may then get to final
models that are in fact saturated with respect to the existence of certain (partial)
generics in the way prescribed by forcing axioms.

1.2 Forcing axioms.

Forcing axioms are generalizations of the Baire Category Theorem. Formally, they
assert the existence of su�ciently generic filters for all members of some reasonably
large class of forcing notions. In a general form, given an infinite cardinal  and a
class K of forcing notions, the forcing axiom FA(K) is the statement that for every
P 2 K and for every collection D of dense subsets of P such that |D| =  there
is a filter g of P that is D-generic (i.e., is such that g \ D 6= ; for each D 2 D).
FA(K) is to be seen as a maximality principle with respect to forceability via forcing
notions from K: If FA(K) holds, then all ⌃1 statements with parameters in H+

that can be forced to hold by some forcing notion in K already hold in the universe.1

The answers to questions about H+ provided by forcing axioms FA(K) are often
regarded as being natural in that FA+(K) o↵ers a uniformly ‘saturated’ picture of
H+ , ruling out the type of pathological objects that one can construct when H+

has an artificially constrained structure.
In what follows we will consider only forcing axioms FA(K) for  = !1.2 The

1As a matter of fact, forcing axioms of the form FA(K) can be fully characterized in terms of
a suitable form of ⌃1-absoluteness with respect to generic extensions via members from K (see e.g.
[55] or [6, Theorem 1.3]).

2This is the first  for which FA(K) does not follow outright from ZFC. Also,  = !1 is the
only level for which we currently have a reasonably complete picture of the available forcing axioms.
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first such forcing axiom shown to be consistent was Martin’s Axiom at !1, MA!1 ,
see [46] and [34]. MA!1 is FA!1(K), where K is the class of partial orders P with the
countable chain condition (i.e., such that there is no uncountable family of pairwise
incompatible conditions in P). Over the following years, a number of generalizations
of MA!1 were isolated. PFA, the Proper Forcing Axiom, is FA!1(K), where K is the
class of partial orders P that are proper.

The following is a list of examples of natural statement implied by forcing axioms.

• MA!1 implies that there are no Suslin lines ([46]).

• MA!1 implies that every union of @1-many Lebesgue null subsets of reals is
Lebesgue null ([34]).

• MA!1 implies the existence of a non-free Whitehead group ([44]).

• PFA implies Baumgartner’s Axiom that all @1-dense sets of reals are order-
isomorphic (essentially [3]).3

• PFA implies Kaplansky’s conjecture ([51]).

• PFA implies that there is a 5-element basis for the class of uncountable linear
orders ([37]).

• PFA implies that every automorphism of the Calkin algebra of a separable
Hilbert space is inner ([10]).

This line of research culminated in the proof by Foreman-Magidor-Shelah of the
consistency of Martin’s Maximum, MM, see [13].

Martin’s Maximum is FA!1(K), where K is the class of partial orders P such that
forcing with P preserves the stationarity of all stationary subsets of !1 in V . MM is
provably maximal in the sense that the forcing axiom FA!1({P}) fails for any forcing
notion P destroying some stationary subset S of !1. At the same time, MM can be
forced by means of a forcing iteration P ⇢ V, assuming that  is a supercompact
cardinal. The natural such forcing P actually produces a model of a strengthening
of MM, called MM

++. This is the statement that if P is a forcing notion preserving
stationary subsets of !1, D is a collection of size @1 consisting of dense subsets of
P, and {⌧↵ : ↵ < !1} is a collection of P-names for stationary subsets of !1, then
there is a filter g ⇢ P which is D-generic and which, furthermore, interprets every

3But it does not follow from MA!1 (s. [1]).
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⌧↵, ↵ < !1, as a truly stationary set in V (i.e., {⌫ < !1 : 9p 2 g, p �P ⌫̌ 2 ⌧↵} is
stationary for every ↵ < !1).

Already MA!1 contradicts CH, and it even proves Luzin’s hypothesis (2), i.e.,
2@0 = 2@1 . More interestingly, MM (in contrast to MA!1) decides the cardinality
of the continuum, and in fact it confirms Gödel’s conjecture (1), 2@0 = @2. This is
shown by producing an a�rmative answer to Friedman’s Problem under MM, see
[13, Theorems 9 and 10].4 MM

++ is—by its very definition and the fact that no
strictly stronger forcing axiom can be consistent—a prototype maximality principle
for V . Remarkably, the empirical evidence seems to suggest that MM

++ provides a
complete theory of the initial segmentH!2 of the universe of sets, at least with respect
to natural questions. Here, H!2 is the collection of all sets which are hereditarily of
size < @2.

1.3 The Pmax axiom (⇤).
There is another maximality principle, though, which Magidor called a “competitor”
of MM, see [33, p. 18], and which is denoted by (⇤). Its formulation involves the
notion of Pmax, a forcing which was isolated by W.H. Woodin, see [55, Definition
4.33] and Definition 2.2 below. In much the same way as MM, (⇤) is inspired by
and formulated in the language of forcing, and they both have “the same intuitive
motivation: Namely, the universe of sets is rich” ([33, p. 18]). (⇤), introduced by
Woodin in [55, Definition 5.1], is the conjunction of the following two statements.

(i) AD, the Axiom of Determinacy,5 holds in L(R), and

(ii) there is some g which is Pmax-generic over L(R) such that P(!1) ⇢ L(R)[g].

Item (i), that AD holds in L(R), follows from the existence of large cardinals, e.g.
from the existence of infinitely many Woodin cardinals with a measurable cardinal
above them all, see [35, p. 91]. Item (ii) is the part of (⇤) which goes beyond assuming
the existence of large cardinals. Pmax arose out of earlier work by Steel-Van Wesep
[49] and by Woodin [54] on the size of �1

2 and the question if NS!1 , the nonstationary
ideal on !1, can be saturated. Here, NS!1 is called saturated i↵ there is no collection
A of stationary subsets of !1 of size @2 such that S \ T is nonstationary for all S,
T 2 A, S 6= T .

4It was later verified by Moore that already the much weaker forcing axiom BPFA implies (1),
see [36].

5See e.g. [41, Chapter 12].

5



Pmax consists of countable transitive structures, membership in Pmax is uniformly
⇧1

2 in the codes, and the order <Pmax is arithmetical. Pmax is !-closed and homoge-
neous, see [55, Lemma 4.43]. The fact that a forcing P is homogeneous means that
the validity in the forcing extension of a given statement is decided in the ground
model by the trivial condition in P. The homogeneity of Pmax then yields that under
(⇤), the theory of L(P(!1)) becomes part of the theory of L(R) in the sense that if
' is any sentence, then

L(P(!1)) ✏ ' if and only if �Pmax
L(R) '. (3)

If AD holds in L(R), then there is no well-order of the reals in L(R) (see e.g. [41,
Lemma 12.2]), but if g is Pmax-generic over L(R), then ZFC is true in L(R)[g] (see [55,
Theorem 4.54]), and moreover NS!1 is saturated in L(R)[g] (see [55, Theorem 4.50])
and L(R)[g] provides an e↵ective failure of CH in that �1

2 = !2 is true in L(R)[g] (see
[55, Theorem 4.53]).

Like the “classical” forcing axioms culminating with MM
++, (⇤) is also a max-

imality principle. While (⇤) implies none of the stronger forcing axioms, see e.g.
[40, Theorem 1.3], it does imply MA!1 . In particular, (⇤) implies the first three
implications of MA!1 listed on p. 4. As it turns out, (⇤) also implies that every
automorphism of the Calkin algebra of a separable Hilbert space is inner, see [27],
[10]; and, at least in conjunction with the existence of a Woodin cardinal,6 it also
implies Baumgartner’s Axiom on @1-dense sets of reals, as this can be expressed by
a ⇧2 sentence over H!2 , as well as the existence of a 5-element basis for the uncount-
able linear orders (since, in the presence of Baumgartner’s Axiom and MA!1 , the
existence of such a basis follows from every Aronszajn line containing a Countryman
line, see [37], which again can be expressed by a ⇧2 sentence over H!2).

(⇤) implies (and is in fact equivalent to) what is dubbed “⇧2 maximality.” A
sentence � (in the language of set theory, possibly augmented with some additional
predicates) is said to be ⇧2 if it is of the form 8x9y'(x, y), with '(x, y) being
a formula with only restricted quantifiers. There is a whole family of interesting
statements that are ⇧2 in the language for the structure

(H!2 ;2,NS!1),

see e.g. the discussion in [8]. The formulation of “⇧2 maximality” involves the
concept of ⌦-logic, see [55, Section 10.4]; for a sentence �, to be “⌦-consistent” is
stronger than it just being consistent in that � needs to be true in models that are
closed under arbitrarily complicated universally Baire operations, see [55, Definition
10.144]. The ⇧2 maximality theorem, see [55, Theorem 10.150], then runs as follows.

6This is by the proof of Theorem 1.1.
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Theorem 1.1 (Woodin) Suppose there is a proper class of Woodin cardinals. Then
the following statements are equivalent.

(1) (⇤).

(2) Let � be a ⇧2 sentence in the language for the structure

(H!2 ;2,NS!1 , A : A 2 P(R) \ L(R)).

If � is ⌦-consistent, then � is true.

One specific instance of � in (2) of Theorem 1.1 is called  AC, see [55, Definition
5.12]. It is in spirit a local version of an a�rmative solution to Friedman’s Problem.
Woodin showed, see [55, Theorem 5.14, Lemmata 5.15 and 5.18], that  AC follows
from both MM and (⇤) and that  AC implies Gödel’s conjecture (1), i.e. 2@0 = @2.

The homogeneity of Pmax gives that in the presence of large cardinals, (⇤) yields
a complete theory for L(P(!1)) modulo set-forcing: by (3), all set-generic extensions
of V in which (⇤) holds true agree on the theory of L(P(!1)).

Despite its nice properties, in order for (⇤) to be a convincing candidate for a
natural axiom, it would have to be compatible with all consistent large cardinal
axioms. While L(R)[g] is trivially a model of (⇤), provided that g is Pmax-generic
over L(R), Scott’s result [43] carries over from L to L(R)[g] and shows that L(R)[g]
cannot have measurable cardinals either. [55] and subsequent work left open the
problem whether (⇤) would be compatible with large cardinals beyond the level of
Woodin cardinals.

1.4 Unifying forcing axioms and (⇤).
Prior to the current paper, the relation between classical forcing axioms like MM,
which could be forced by iterated forcing over models of ZFC with large cardinals,
and the axiom (⇤), whose models were obtained by forcing over models satisfying the
Axiom of Determinacy, remained a complete mystery. It had been known by a result
of P. Larson [26] that even MM

+!, an axiom strictly between MM and MM
++, does

not imply (⇤).7 One can build models of MM
+! with a well-order of H!2 definable

over (H!2 ;2) by a formula without parameters, and the existence of such a well-
order is incompatible with (⇤) by the homogeneity of Pmax. It remained even unclear
whether classical strong forcing axioms would be compatible at all with (⇤), see [55,

7MM+! is the strengthening of MM obtained by replacing, in the formulation of MM++, collec-
tions of @1 many names for stationary sets with collections of only countably many such names.
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p. 846]. See also [55, Question (18) a) on p. 924], [33, Conjecture 6.8 on p. 19], and
[38, Problem 14.7].

This paper resolves the tension between MM and (⇤). We prove:

Theorem 1.2 Assume Martin’s Maximum++. Then Woodin’s Pmax-axiom (⇤) holds
true.

In particular, MM and (⇤) are compatible with one another, and (⇤) is compatible
with all consistent large cardinal axioms: If  is a supercompact cardinal and P ⇢ V

is the partial order from [13] to force MM
++, then by Theorem 1.2 the axiom (⇤)

holds in V
P, and all the large cardinals of V above  are preserved by P.

Theorem 1.2 renders MM
++ a particularly appealing axiom. Not only is MM

++

a provably maximal forcing axiom providing the ‘right’ answers to questions per-
taining to H!2 ,

8 but it follows from Theorem 1.2 that MM
++ implies the form of ⇧2

maximality for arbitrary set-forcing given by (2) of Theorem 1.1 and, moreover, that
MM

++ completely decides the theory of L(P(!1)) via set-forcing.
It also follows from Theorem 1.2 that (⇤) can be characterized, in the presence of

large cardinals, by a statement which on the face of its formulation is weaker than (2)
of Theorem 1.1. We will prove the following theorem at the end of the next section.

Theorem 1.3 Suppose there is a supercompact cardinal. Then the following state-
ments are equivalent.

(1) (⇤).

(2) Let � be a ⇧2 sentence in the language for the structure

(H!2 ;2,NS!1 , A : A 2 P(R) \ L(R)).

If there is a stationary set preserving forcing P such that � holds in V
P, then

� is true in V .

This equivalence of (⇤) is a variant of one that we are going to state below, see
Theorem 2.17, and which characterizes (⇤) as a strong version of a bounded forcing
axiom.

The authors thank Ilijas Farah, Andreas Lietz, and Matteo Viale for their com-
ments on earlier versions of this paper. They would also like to thank the anonymous

8The ‘right’ answers from a conception of the universe as being uniformly saturated with respect
to forcing.
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referees for their reports, which have been of extraordinary quality and most helpful.
Finally, they would like to thank Andreas Lietz for drawing the beautiful diagrams.

The reader should have some acquaintance with forcing, determinacy, and uni-
versally Baire sets of reals. The relevant material is covered e.g. in [41, Chap. 6
and sections 7.1, 8.1, and 12.1]. Familiarity with stationary set preserving forcings
and Martin’s Maximum, see e.g. [13] or [19, Chap. 37], and with Pmax forcing to
the extent of say [55, Chap. 4] or [30, Sections 1-6], would be desirable. Knowledge
of forcings similar to the one that will be designed here, and which were developed
earlier, e.g. in [20], [5], [8], or [9], is by no means required or presupposed.

2 Preliminaries.

Let us first state again Martin’s Maximum++, abbreviated by MM
++ and isolated by

Foreman-Magidor-Shelah [13] (cf. also [55, Definition 2.45 (2)]).

Definition 2.1 MM
++ is the statement that if P is a forcing that preserves sta-

tionary subsets of !1, if {Di : i < !1} is a collection of dense subsets of P, and if
{⌧i : i < !1} is a collection of P-names for stationary subsets of !1, then there is a
filter g ⇢ P such that for every i < !1,

(i) g \Di 6= ; and

(ii) (⌧i)g = {⇠ < !1 : 9p 2 g p �P ⇠̌ 2 ⌧i} is stationary.

The forcing Pmax was designed by W. Hugh Woodin, see [55, Chapter 4], specifi-
cally [55, Definition 4.33].

Definition 2.2 The conditions in Pmax are countable transitive models of a su�-
ciently large fragment of ZFC plus MA!1 of the form (M ;2, I, a), where

(i) (M ; I) is amenable9 and (M ; I) ✏ “I is a normal uniform ideal on !1,”

(ii) a 2 P(!M

1 ) \M and M ✏ “!1 = !
L[a,x]
1 for some real x,” and

(iii) (M ;2, I) is generically iterable.

9I.e., x \ I 2 M for all x 2 M .
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We construe Pmax as a partial order by declaring that (N ;2, J, b) is stronger than
(M ;2, I, a), denoted by (N ;2, J, b) < (M ;2, I, a), if and only if (M ;2, I, a) 2 N

and inside N there is a generic iteration of (M ;2, I, a) of length !N

1 + 1 with last
model (M⇤;2, I⇤, a⇤) such that I⇤ = J \M

⇤ and a
⇤ = b.10

In (iii), “generic iterability” refers to generic iterations of (M ;2, I). Given an ordinal
�  !1, hh(M↵;2, I↵) : ↵  �i, h⇡↵,� : ↵  �  �i, hg↵ : ↵ < �ii is a generic iteration
of (M ;2, I) if the following hold true.

• (M0;2, I0) = (M ;2, I),

• for ↵ < �, g↵ is a P(!1)M↵ \ I↵-generic filter over M↵, M↵+1 is the ultrapower
of M↵ by g↵, and ⇡↵,↵+1 : (M↵;2, I↵) ! (M↵+1;2, I↵+1) is the corresponding
generic elementary embedding,

• ⇡↵0,↵2 = ⇡↵1,↵2 � ⇡↵0,↵1 for all ↵0  ↵1  ↵2, and

• if � is a nonzero limit ordinal  �, then (M�, (⇡↵,� : ↵ < �)) is the direct limit
of (M↵, ⇡↵,↵0 : ↵  ↵

0
< �).

(M ;2, I) being generically iterable means that all models in any generic iteration of
(M ;2, I) are well-founded, irrespective of the filters g↵ chosen at any stage ↵, see
[55, Definition 4.1].

The current paper will only consider such generic iterations rather than iterations
of mice as being studied in inner model theory.

Most of [55] studies the e↵ect of forcing with Pmax or variants thereof over a model
of the Axiom of Determinacy. Let us state again Woodin’s Pmax axiom (⇤), see [55,
Definition 5.1].

Definition 2.3 (⇤) says that

(i) AD holds in L(R) and

(ii) there is some g that is Pmax-generic over L(R) such that P(!1) ⇢ L(R)[g].
10Pmax, according to our Definition 2.2, is a slightly bigger poset than the one according to [55,

Definition 4.33]. The di↵erence is that we weakened the requirement I 2 M of [55, Definition
4.33] to “(M ; I) is amenable.” This natural move will make (H!2 ;2,NS!1 , A), for any A ⇢ !1, a
Pmax condition in a generic extension where H!2 is countable, cf. (11). It is easy to see that Pmax

according to [55, Definition 4.33] is dense in Pmax according to our Definition 2.2, so that both
forcing notions are forcing-equivalent.
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Already the Proper Forcing Axiom, PFA, which is much weaker than MM
++,

implies ADL(R) and much more, see [47], [21], and [39, Chapter 12].
The current paper produces a proof of Theorem 1.2. Our key new idea is (⌃.8)

on page 28 below. We try to give an overview of the proof of Theorem 1.2 at the
end of this section.

Theorem 1.2 is optimal in that P. Larson [26] and [29] has shown that MM
+! is

consistent with ¬(⇤) relative to a supercompact limit of supercompact cardinals. Our
proof is also optimal in that the forcing that we will use to verify Theorem 1.2 has
size 2@2 , while Woodin has shown that MM

++ for forcings of size 2@0 = @2 does not
imply (⇤), see [55, Theorem 10.90], and it is consistent with MM

++ that 2@2 = @3.
Throughout our entire paper, “!1” will always denote !V

1 , the !1 of V . We shall
also make permanent use of the following.

Convention 2.4 Let us fix throughout this paper some A ⇢ !1 such that !L[A]
1 = !1.

Let us define gA as the set of all Pmax conditions p = (N ;2, I, a) such that there is a
generic iteration

(Ni, �ij : i  j  !1)

of p = N0 of length !1 + 1 such that if we write N!1 = (N!1 ;2, I⇤, a⇤),11 then
I
⇤ = (NS!1)

V \N!1 and a
⇤ = A.

In the following statement, X# denotes the sharp of X. While the formal defini-
tion of a sharp (see e.g. [41, Section 10.2]) won’t play any role in what follows, the
reader may think of “P(!1)# exists” as just some amount of large cardinal structure
assumed to be present in the universe.

We are going to use now the concept of elementary substructures. For any two
models M and N with underlying universes M and N , respectively, and with the
same first order language associated to them, M � N means that M is an elemen-
tary substructure of N , i.e., M ⇢ N and for all formulae ' of that common language
and all x1, . . ., xk 2 M ,

M ✏ '(x1, . . . , xk) () N ✏ '(x1, . . . , xk). (4)

Lemma 2.5 (Woodin) Assume MA!1, that NS!1 is saturated, and that P(!1)#

exists. In the notation of Convention 2.4:

(1) gA is a filter.

(2) If gA is Pmax-generic over L(R), then P(!1) ⇢ L(R)[g].
11Here and elsewhere we often confuse a model with its underlying universe.
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Proof. This routinely follows from the proof of [55, Lemma 3.12 and Corollary
3.13] and from [55, Lemmas 3.10 and 3.14]. Let us sketch the argument. Let us first
state the following.

Claim 2.6 Let ✓ � (2@1)+ be a cardinal, let X � H✓ be countable with A 2 X, and
let � : M ⇠= X be such that M is transitive. Then

(a) ��1((H!2 ;2,NS!1 , A)) is a Pmax-condition.

(b) {X 2 P(!M

1 ) \M : !1 2 �(X)} is (P(!M

1 ) \M) \ ��1(NS)-generic over M .

(c) For i  !1 let
Xi = HullH✓(X [ sup{Xj : j < i}),

let �i : Mi
⇠= Xi be such that Mi is transitive, and let, for i  j  !1, ⇡ij =

�
�1
j

� �i. Then (Mi, ⇡ij : i  j  !1) is a generic iteration of

(M ;2, ��1(NS!1), A \ !M

1 )

(d) ��1((H!2 ;2,NS!1 , A)) 2 gA.

Proof of Claim 2.6. (a): This is by [55, Lemmas 3.10 and 3.14]. (b) and (c):
This is by [55, Lemma 3.12 and Corollary 3.13]. (d): This follows immediately from
(a) and (c). ⇤ (Claim 2.6)

Let us now prove Lemma 2.5.
(1): Let N0 = (N ;2, I, a) 2 gA as being witnessed by the generic iteration

(Ni, �ij : i  j  !1). Let M0 > N0 as being witnessed by the generic iteration
(Mi, ⇡ij : i  j  !

N0
1 ) 2 N . Then �0!1((Mi, ⇡ij : i  j  !

N0
1 )) is easily seen to be

a generic iteration of M0 witnessing that M0 2 gA.
Now let N 0

0 = (N0;2, I0, a0) 2 gA and N 1
0 = (N1;2, I1, a1) 2 gA as witnessed by

the generic iterations I0 = (N 0
i
, �

0
ij
: i  j  !1) and I1 = (N 1

i
, �

1
ij
: i  j  !1). Let

� : M ⇠= X be as in Claim 2.6 with {I0
, I1} ⇢ X. Then N 0 and N 1 are both weaker

than �
�1((H!2 ;2,NS!1 , A)) 2 Pmax, cf. Claim 2.6 (a), as witnessed by the generic

iterations ��1(I0) = (N 0
i
, �

0
ij
: i  j  !

M

1 ) and ��1(I1) = (N 1
i
, �

1
ij
: i  j  !

M

1 ).
(2): Let Z 2 P(!1). Let � : M ⇠= X be as in Claim 2.6 with Z 2 X. Then

�
�1((H!2 ;2,NS!1 , A)) 2 gA by Claim 2.6 (d) and in fact if (Mi, ⇡ij : i  j  !1)

is as in Claim 2.6 (c), then Z 2 M!1 , so that trivially Z is also in the last it-
erate of ��1((H!2 ;2,NS!1 , A)) via the generic iteration which is the restriction of
(Mi, ⇡ij : i  j  !1) to ��1((H!2 ;2,NS!1 , A)) and its images. ⇤ (Lemma 2.5)

12



Let 1  k < !, and let D 2 P(Rk). We say that T is a tree on k
! ⇥ OR i↵

T ⇢
S

n<!
(n!)k ⇥ nOR and if (s0, ..., sk�1, t) 2 T and m < !, then

(s0 � m, ..., sk�1 � m, t � m) 2 T

We write

[T ] = {(x0, ..., xk�1, f) : 8m < ! (x0 � m, ..., xk�1 � m, f � m) 2 T}

and p[T ] for the projection of T , i.e.,

p[T ] = {(x0, ..., xk�1) : 9f (x0, ..., xk�1, f) 2 [T ]}

Definition 2.7 The trees T and U on k
!⇥OR witness that D is universally Baire

i↵ D = p[T ] and for all posets P,

�P p[U ] = Rk \ p[T ]. (5)

D is called universally Baire i↵ there are trees T and U witnessing that D is univer-
sally Baire.

We denote by �1 the collection of all D 2
S

1k<!
P(Rk) that are universally

Baire.

The concept of universally Baire set was isolated by Feng-Magidor-Woodin in
[12, Section 2]; see also [41, Definition 8.6].

If D 2 �1, then there is an unambiguous version of D in any forcing extension
V [g] of V , which as usual we denote by D

⇤, and which is equal to p[T ] \ V [g] for
some/all trees T and U witnessing that D is universally Baire. See [41, p. 149f.].

We will call a pointclass consisting of universally Baire sets productive i↵ it is
closed under complements and projections in a strong sense and for all k < ! and
D 2 � \ Rk+2,

(9R
D)⇤ = {~x 2 Rk+1 : 9y 2 R (~x, y) 2 D

⇤} (6)

will be true in every generic extension. The formal definition runs as follows.

Definition 2.8 Let � ⇢
S

1k<!
P(Rk). We say that � is productive i↵

(a) � ⇢ �1,

(b) for all k < ! and all D 2 � \ P(Rk+1), Rk+1 \ D 2 �, and if k > 0, then
9R

D = {(x0, . . . , xk�1) : 9xk(x0, . . . , xk�1, xk) 2 D} 2 �, and

13



(c) for all k < ! and all D 2 � \ P(Rk+2), if the trees T and U on k+2
! ⇥ OR

witness that D is universally Baire and if

Ũ = {(s � (k + 1), (s(k + 1), t)) : (s, t) 2 U}, (7)

then there is a tree T̃ on k+1
! ⇥OR such that for all posets P,

�P p[Ũ ] = Rk+1 \ p[T̃ ]. (8)

While (c) of Definition 2.8 canonically ensures that every productive pointclass is
closed under projections, at least on the face of its definition, � being productive is
stronger than having that � ⇢ �1 and � is closed under complements and projections
([12, Question 3] exactly asks if the former is really stronger than the latter).

Lemma 2.9 If � is productive and if D 2 �, then any projective statement about D
is absolute between V and any forcing extension of V , i.e., if ' is projective, x1, . . .,
xk 2 R, and P is any poset, then

V ✏ '(x1, . . . , xk, D) () �P '(x̌1, . . . , x̌k, D
⇤).

Lemma 2.9 is shown by a trivial induction on the complexity of '.
Let e : R ! HC be a fixed simple coding of hereditarily countable sets by reals,

see e.g. [42, p. 179]. A set D ⇢ HC is then called universally Baire in the codes i↵
the code set {x 2 R : e(x) 2 D} of D is universally Baire. If this is the case, then
every forcing extension of V will have its unique new version of D, which we denote
by D

⇤. If the code set of D is a member of a productive pointclass, then for every
forcing P,

(HC;2, D) � (HCV
P
;2, D⇤). (9)

A classical variant of Lemma 2.9 is Shoenfield’s absoluteness theorem, see e.g. [41,
Corollary 7.21]. It states that if M ⇢ N are both transitive models of a su�ciently
rich fragment of ZFC such that !V

1 ⇢ M , then

(HCM ;2) �⌃⇠ 1
(HCN ;2), (10)

where (10) means that (4) holds true with ' restricted to ⌃1 formulae (and HCM ,
HCN playing the roles of M, N , respectively).

[12, Question 3] is concerned with the question about the connection of, on the
one hand, projective absoluteness with respect to forcing extensions and, on the other
hand, having that every projective set is universally Baire (see [12, Questions 1 and
7]).

14



Theorem 2.10 (Woodin) Assume that there is a proper class of Woodin cardinals.
Then �1 is productive.

Proof. A theorem of Woodin says that in the presence of a proper class of
Woodin cardinals, every set in �1 is weakly homogeneously Suslin, see e.g. [28,
Theorem 3.3.8] and [48, Theorem 1.2]. Every tree Ũ witnessing that a given set D of
reals is weakly homogeneously Suslin comes with a canonical tree T̃ for R\D in such
a way that Ũ and T̃ are connected as in (c) of Definition 2.8. For the construction
of T̃ see e.g. [22, p. 455]. [22, Proposition 32.6] formulates how the two trees are
connected. The main result of Martin and Steel from [35] is then that Woodin
cardinals may be used to show that T̃ is homogeneous, cf. [22, Theorem 32.11]. That
way, it follows that �1 is productive provided that there is a proper class of Woodin
cardinals. ⇤ (Theorem 2.10)

For any set X, M#
!
(X) denotes the least active X-mouse which has infinitely

many Woodin cardinals. See [50].

Theorem 2.11 (Steel) Assume PFA. Then the universe is closed under the oper-
ation X 7! M

#
!
(X). In particular, every set of reals in L(R) is universally Baire,

and
S

k<!
P(Rk) \ L(R) is productive.

Proof. The proof from [47] produces the result that under PFA, the universe is
closed under the operation X 7! M

#
!
(X). The rest is given by standard inner model

theoretic arguments, see e.g. [42, Section 3, pp. 187f.]. ⇤ (Theorem 2.11)

By Lemma 2.5 and Theorem 2.11, Theorem 1.2 follows from the following more
general statement.

Theorem 2.12 Let � ⇢
S

1k<!
P(Rk). Assume that

(i) � =
S

1k<!
P(Rk) \ L(�,R),

(ii) � is productive, and

(iii) Martin’s Maximum++ holds true.

Then gA is Pmax-generic over L(�,R).

The abbreviation (⇤)� was introduced in [42, Definition 4.1] to denote a straight-
forward generalization of (⇤) to larger pointclasses. For a pointclass � � P(R)\L(R),
(⇤)� is the statement that every set in � is determined, and there is a filter g ⇢ Pmax

which has nonempty intersection with every dense set (coded by a set) in � and is
such that P(!1) ⇢ L(R)[g].
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Corollary 2.13 Assume that there is a proper class of Woodin cardinals. Let � ⇢S
1k<!

P(Rk) \ �1. Suppose that (i)–(iii) from the statement of Theorem 2.12 are
satisfied. Then (⇤)� holds true.

Theorem 2.12 readily follows from the following Lemma via a standard application
of MM

++.

Lemma 2.14 Let � ⇢
S

1k<!
P(Rk). Assume that

(i) � =
S

1k<!
P(Rk) \ L(�,R),

(ii) � is productive, and

(iii) NS!1 is saturated.

Let D ⇢ Pmax be open dense, D 2 L(�,R). With A being as in Convention 2.4,
there is then a stationary set preserving forcing P of size 2@2 such that in V

P there
is some p = N0 = (N ;2, I, a) 2 D

⇤ and some generic iteration

(Ni, �ij : i  j  !1)

of p = N0 of length !1 + 1 such that if we write N!1 = (N!1 ;2, I⇤, a⇤), then I
⇤ =

(NS!1)
V

P \N!1 and a
⇤ = A.

Proof of Theorem 2.12 from Lemma 2.14. MM implies that NS!1 is saturated,
see [13, Theorem 12]. By Lemma 2.5, it remains to show that D \ gA 6= ; for every
open dense D ⇢ Pmax, D 2 �. Here, gA is as in Convention 2.4.

Let us fix such D. The statement that there is a p as in the conclusion of Lemma
2.14, which is tantamount to saying that there is a p 2 D \ gA, is easily seen to be
⌃1 expressible over the structure (H!2 ;2,NS!1 , A,D). By the conclusion of Lemma
2.14, the existence of such a p may be forced by a stationary set preserving forcing.
Hence by MM

++, cf. [55, Theorem 10.124], there is such a p in V . ⇤ (Theorem 2.12)

As the proof of Theorem 2.12 from Lemma 2.14 shows, we don’t need the full
power of MM

++ in order to derive Theorem 2.12 from Lemma 2.14. The hypothesis
that D-BMM

++ holds true for all D 2 �1 would su�ce, see [55, Definition 10.123].
D-BMM

++ may be characterized as follows.

Definition 2.15 For D 2 �1, D-BMM
++ is the statement that for all stationary

set preserving P,

(HV

!2
;2,NSV

!1
, D) �⌃1 (H

V
P

!2
;2,NSV

P
!1
, D

⇤).
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Modulo large cardinals, (⇤) is then actually equivalent to D-BMM
++ for all D 2

P(R) \ L(R). Let us first state a more general fact, Theorem 2.16, which gives the
characterization of (⇤), i.e. Theorem 2.17, as a special case.

Theorem 2.16 Assume that there is a proper class of Woodin cardinals. Let � ⇢S
1k<!

P(Rk). Assume that

(i) � =
S

1k<!
P(Rk) \ L(�,R),

(ii) � is productive.

The following statements are then equivalent, with gA being as in Convention 2.4.

(1) D-BMM
++ holds true for all D 2 �.

(2) gA is Pmax-generic over L(�,R).

Proof. (2) =) (1): This is exactly by the proof of (A) =) (B) of [2, Theorem
2.7].

(1) =) (2): We may first force NS!1 to be saturated by a stationary set preserving
forcing, see e.g. [55, Theorem 2.64]. The rest of the argument is then as in the proof—
already given above—of Theorem 2.12 from Lemma 2.14. ⇤ (Theorem
2.16)

Theorem 2.17 Assume that there is a proper class of Woodin cardinals. The fol-
lowing statements are then equivalent.

(1) D-BMM
++ holds true for all D 2 P(R) \ L(R).

(2) (⇤).

Let us now give a Proof of Theorem 1.3 from Lemma 2.14. (1) =) (2) is
weaker than (1) =) (2) of Theorem 1.1. Let us now assume (2) and show (1). Fix
D ⇢ Pmax, any open dense set in L(R). As the statement of the theorem assumes
a supercompact cardinal to exist, there is a semi-proper (and hence stationary set
preserving) forcing P such that MM

++ holds true in V
P. Inside V

P, we will have

that MM
++ yields via Lemma 2.14 that for all A0 ⇢ !1 with !L[A0]

1 = !1 there will
be some p = (N ;2, I⇤, a⇤) 2 D

⇤ and some generic iteration

(Ni, �ij : i  j  !1)
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of p = N0 of length !1 + 1 such that if we write N!1 = (N!1 ;2, I⇤, a⇤), then I
⇤ =

(NS!1)
V

P \ N!1 and a
⇤ = A

0. This is a statement that is ⇧2 over the structure
mentioned in (2) of Theorem 1.3. This statement will therefore be true in V , which
readily implies that gA is Pmax-generic over L(R) and P(!1) ⇢ L(R)[gA], where gA is
as in Convention 2.4. ⇤ (Theorem 1.3)

The forcing that we designed in order to produce Lemma 2.14 is a souped up
version of the forcings from [5] and [8], which are in turn variants of the L-forcing
of Jensen as being developed e.g. in [20].12 All these forcings may be construed as
building uncountable models as term models of a given language, L, with the forcing
conditions being finite fragments of a consistent and complete L-theory that will
give those term models, augmented by “side conditions” which will guarantee that
the forcing only collapses cardinals in a controlled way. Our forcing will change the
cofinalities of !2 and !3 to ! and !1, respectively, and it won’t collapse any other
cardinal outside of the (possibly empty) half-open interval (!3, 2@2 ].

Let us give an outline of the proof of Lemma 2.14.
To prove Lemma 2.14, we aim to build a stationary set preserving forcing P

adding a generic iteration of some Pmax-condition (N ;2, I, a) coded by a real in
the projection of a tree T̃ projecting to the set of codes for conditions in our given
dense set D. Moreover, we want this iteration to send the distinguished set a of
(N ;2, I, a) to A, and we want every I

⇤-positive set in the final model (N⇤;2, I⇤, A)
to be a stationary subset of !1 in V

P. Our approach is to think of all the relevant
objects—(N ;2, I, a), a branch through T̃ projecting to a real coding (N ;2, I, a),
and the generic iteration of (N ;2, I, a) of length !1 + 1—as being given by “term
models” in a suitable language, L, and add them via finite approximations. Thus,
the working parts of our forcing will be finite sets p of sentences from L providing
partial information about the above objects. We will require these finite bits of
information p to be realized in some outer model.13 The existence of such an outer
model will be absolute to any generic extension of V via Col(!,!2).

In V
Col(!,!2),

(HV

!2
;2,NSV

!1
, A)

becomes a Pmax-condition and p[T̃ ] = D
⇤ is still dense, so that in V

Col(!,!2) there is
a Pmax-condition (N ;2, I, a) 2 D

⇤ that is stronger than (HV

!2
;2,NSV

!1
, A). We may

12One of the referees informs us that J. Keisler in [23] and [24] developed forcings that work in
a similar fashion.

13
W is an outer model i↵ W is a transitive model of ZFC with W � V and which has the same

ordinals as V ; in other words, W is an outer model i↵ V is an inner model of W .
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now iterate (N ;2, I, a) in length !V
Col(!,!2)

1 + 1 = !
V

3 + 1 so as to produce

� : (N ;2, I, a) ! (N⇤;2, I⇤, a⇤).

If (Mi, ⇡ij : i  j  !
N

1 ) 2 N is the generic iteration of (HV

!2
;2,NSV

!1
, A) witnessing

that (N ;2, I, a) is stronger than (HV

!2
;2,NSV

!1
, A), then �((Mi, ⇡ij : i  j  !

N

1 )) =
(Mi, ⇡ij : i  j  !

V

3 ) is an extension of that iteration. We have that

M0 = (HV

!2
;2,NSV

!1
, A),

and
⇡0,!V

3
: M0 ! M!

V
3

may be lifted to a generic iteration

⇡̃ : V ! M

of V , for a transitive M , such that ⇡̃ � ⇡0,!V
3
and ⇡̃(M0) = M!

V
3
. See [55, Lemma

3.8].

p[T̃ ] p[⇡̃(T̃ )]

(N ;2, I, a) (N⇤;2, I⇤, a⇤)

M0 M!
N
1

M!
V
3

(HV

!2
;2,NSV

!1
, A)

V M

✓

2

�

2 2⇡0!N
1

⇡!N
1 !

V
3

= 2

2

⇡̃

One can now easily see that V
Col(!,!2) contains objects like the ones we intend

to add by our forcing—namely (N ;2, I, a), a branch through T̃ projecting to a
real coding (N ;2, I, a), and the generic iteration of (N ;2, I, a) of length !1 + 1—
albeit not defined relative to the parameters T̃ and A, but relative to ⇡̃(T̃ ) and
⇡̃(A). The statement that such objects exist is ⌃1 in the parameters H

M

!2
and a

Skolem hull14 of ⇡̃(T̃ ) of size @M

2 , which will both be elements of HCM
Col(!,⇡̃(!2)) . By

Shoenfield absoluteness (10), see e.g. [41, Corollary 7.21], such objects will also exist
in M

Col(!,⇡̃(!2)).
14See Claim 3.1.
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The point that ⇡0,!V
3
could be lifted to ⇡̃ is then the following. The statement

that objects like the ones we intend to add by our forcing exist in M
Col(!,⇡̃(!2))

may now be pulled back via ⇡̃. This buys us that objects like the ones we intend
to add by our forcing exist in V

Col(!,!2) – and this time with respect to the right
parameters T̃ and A. The argument that combined lifting ⇡0,!V

3
to ⇡̃, applying

Shoenfield absoluteness, and pulling back the statement of interest was crucial to
arrive at the desired conclusion, viz. that objects like the ones we intend to add by
our forcing exist in V

Col(!,!2). This will be our starting point for cooking up the
forcing P.

In order to prove that our forcing P preserves stationary subsets of !1 we will need
an argument exploiting lifting, Shoenfield absoluteness, and pulling back. In order
to be able to run this argument we will need our forcing to approximate, not only the
objects we are ultimately interested in obtaining, but also the iteration (Mi, ⇡ij : i 
j  !

N

1 ) 2 N . (See footnote 29.) We will think of the objects themselves, which
exist in V

Col(!,!2), as “certificates” for some finite piece of information about them.
The idea is then to have our forcing consist of finite sets of L-sentences for which
there is a “certificate” in V

Col(!,!2).
The problem with the above strategy is that, although a forcing P like the one we

have described would in fact add the desired objects, one would still need to show
that it preserves stationary subsets of !1 and that every positive set in the final
model of the iteration being added by P is in fact stationary in that extension. Our
forcing P will be a subset of H!3 , and one tool for taking care of these issues is the
use of a diamond sequence h(Q�, A�) : � < !3i consisting of transitive structures15

in H!3 in order to guess (H!3 , Ċ), where Ċ is a P-name for a club in !1, Ċ ⇢ H!3 .
That (H!3 , Ċ) be guessed means that there are stationarily many � < !3 such that
(Q�, A�) is an elementary substructure of (H!3 , Ċ). See (3) on p. 23.

Imagine that P is a forcing adding the desired objects, and which also preserves
stationary subsets of !1. Let Ċ be a P-name for a club in !1, Ċ ⇢ H!3 , and let
S ⇢ !1 be stationary in V . Let g be P-generic over V . There will be some � < !3

such that (H!3 , Ċ) is guessed by (Q�, A�) and in V [g] there will be some countable
elementary substructure X of (Q�, A�) such that

(a) X \ !1 2 S, and

(b) X[g] \Q� = X \Q�.

Here, X[g] = {⌧ g : ⌧ 2 V
P \ X}. That (Q�, A�) is an elementary substructure of

(H!3 , Ċ) will then mean in practice that X \!1 2 Ċ
g, so that X \!1 witnesses that

15I.e., the underlying universe Q� will be transitive and A� ⇢ Q� will be a distinguished predicate
of the structure.
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S is still stationary in V [g]. Calling some g with the property (b) “(P, X)-generic”
there is, however, no reason to expect an X such that g is (P, X)-generic to exist in
V (in fact, V won’t have such X).

When defining P, we will turn this around and have our conditions also approxi-
mate finite bits of information about such elementary substructures X.

Our key tool for taking care of the above issue is then to define P as the last
forcing from a recursively defined ⇢-increasing sequence ~P = (P� : �  !3). Each
P� will be a subset of Q�. Hence, when defining P⌘, ⌘  !3, if � < ⌘, then we already
know what it means for some g to be (partially) P�-generic over (Q�, A�), and if X
is a countable elementary substructure of (Q�, A�), then X[g] may be assigned a
meaningful interpretation as X[g] = {⌧ g : ⌧ 2 V

P� \ X}. We will maintain that at
each stage ⌘ in the construction of ~P we define P⌘ by saying that a finite set p of
L \ Q⌘-sentences is in P⌘ if and only if there is a certificate for p extending p and
which, when intersected with each of the side conditions X� � (Q�, A�) (also given
by the certificate), for � < ⌘, is generic over X⌘ for the already defined forcing P�.
The role of condition (b) above (with X� replacing X) will be that if A� codes the
name of a club subset Ċ of !1, then some p 2 g must force that X�\!1 2 Ċ, so that
in the light of (a) above, p also forces that S has non-empty intersection with Ċ.

Our next section is entirely devoted to a proof of Lemma 2.14.

3 The forcing.

Recall our Convention 2.4, which we are now going to make use of without further
notice. Let us assume throughout the hypotheses of Lemma 2.14. We aim to verify
its conclusion.

Let us fix D ⇢ Pmax, an open dense set in L(�,R). The fact that D is open dense
may be written as

8p 2 Pmax 9q  p, q 2 D ^ 8p 2 D 8q  p, q 2 D.

By hypothesis (ii) in the statement of Lemma 2.14 (i.e., � ⇢ �1 is productive),
we may apply Lemma 2.9 to conclude that (9) on p. 14 holds true with D and
P = Col(!,!2), i.e.,

(HC;2, D) � (HCV
Col(!,!2) ;2, D⇤).

This will ensure that

(D.1) V
Col(!,!2) ✏ “D⇤ is an open dense subset of Pmax.”
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Let us identify D with a canonical set of reals coding the elements of D,16 and let
T̃ 2 V be a tree on ! ⇥ ✓, for some ordinal ✓, such that

(D.2) V
Col(!,!2) ✏ D

⇤ = p[T̃ ].17

Let h be Col(!,!2)-generic over V . Inside V [h],

((H!2)
V ;2, (NS!1)

V
, A) (11)

is a Pmax condition, call it p. Let q
⇤ 2 (Pmax)V [h], q⇤ < p, q⇤ 2 D

⇤, cf. (D.1). Let
q
⇤ = (N⇤;2, I⇤, a⇤). Identifying q

⇤ with some real coding it, we have that q⇤ 2 p[T̃ ],
cf. (D.2).

Claim 3.1 There is a tree T 2 V on ! ⇥ !2 such that

q
⇤ 2 p[T ] ⇢ p[T̃ ]. (12)

Proof of Claim 3.1. Let q
⇤ = �

h, where � 2 V
Col(!,!2). We may assume that

� 2 H!3 . Recall that T̃ is on !⇥✓. LetX 2 V ,X � H
V

✓+
be such that !2+1[{�, T̃} ⇢

X and Card(X) = @2. Let ⇡ : P ⇠= X � H
V

✓+
be such that P is transitive, and

write T = ⇡
�1(T̃ ). We have that ⇡(�) = �, and ⇡ lifts to ⇡̃ : P [h] ! H

V [h]
✓+

with
⇡̃(q⇤) = ⇡̃(�h) = ⇡(�)h = �

h = q
⇤. As q

⇤ 2 p[T̃ ], the elementarity of ⇡̃ then yields
that q⇤ 2 p[T ]. The tree T is on ! ⇥ P \OR, but using a bijection of P \OR with
!2, we may construe it as a tree on ! ⇥ !2. ⇤ (Claim 3.1)

Let us fix T as in Claim 3.1. Let us write

 = @3, (13)

so that T 2 H. Let d be Col(,)-generic over V . In V [d], let (Ā� : � < ) be
a 3-sequence, i.e., for all Ā ⇢ , {� <  : Ā \ � = Ā�} is stationary. Also, let

c : ! H
V


= H

V [d]
 , c 2 V [d], be bijective. For � < , let

Q� = c”� and A� = c”Ā�. (14)

An easy closure argument will give us some club C ⇢  such that for all � 2 C,

16We will later have to spell out a bit more precisely in which way we aim to have the elements
of p[T ] code the elements of D, see (C.2) and (⌃.5) below.

17An easy Skolem hull argument may be used to show that we might actually pick T̃ 2 V as a
tree on ! ⇥ 2@2 . We won’t need that, though, but we shall prove and make use of a related fact
below, see (12).
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(i) Q� is transitive,

(ii) {T, ((H!2)
V ;2, (NS!1)

V
, A)} [ (!2 + 1) ⇢ Q�,

(iii) Q� \OR = � (so that c � � : �! Q� is bijective), and

(iv) (Q�;2) � (H;2).

(ii) is true for all su�ciently large � < , and (iv) is true for all � such that Q� = c”�
is closed under some fixed set of Skolem functions for H. As the set of � <  with
(i) and (iii) is each easily seen to be club, a club of � with the above properties
certainly exists.

We will fix from now on some club C ⇢  with (i) through (iv) for all � 2 C.
In V [d], for all P , B ⇢ H, the set of all � 2 C such that

(Q�;2, P \Q�, B \Q�) � (H;2, P, B)

is club, and the set of all � 2 C such that B \Q� = A� is stationary, so that

(3) For all P , B ⇢ H, the set

{� 2 C : (Q�;2, P \Q�, A�) � (H;2, P, B)}

is stationary.

We shall sometimes also write Q = H. Readers who are familiar with Jensen’s
diamond will easily see that the principle that we refer to as (3) is actually equivalent
to 3; see e.g. [41, Definition 5.34]. We shall use (3) to guess information about
names for club subsets of !1; this will play a crucial role in the verification that our
forcing preserves stationary subsets of !1.

3.1 The definition of the forcing.

We shall now go ahead and produce a stationary set preserving forcing P 2 V [d] of
size  adding some p 2 D

⇤ and some generic iteration

(Ni, �ij : i  j  !1)

of p = N0 such that if we write N!1 = (N!1 ;2, I⇤, a⇤), then I
⇤ = (NS!1)

V [d]P\N!1 and
a
⇤ = A. As the forcing Col(,) that added d is certainly stationary set preserving,

this will verify Lemma 2.14.
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NS!1 is still saturated in V [d]. This is true simply because forcing with Col(,)
doesn’t add any sequences of elements of V of length @2. Moreover, (D.1) and (D.2)
are true with V being replaced by V [d], as no reals are added and Pmax remains
unchanged. Hence, in order to simplify our notation, we shall in what follows write
V for V [d], i.e., assume that, in addition to “NS!1 is saturated” plus (D.1) and (D.2),
(3) is also true in V .

Working under these hypotheses, we shall now recursively define a ⇢-increasing
and continuous chain of forcings P� for all � 2 C [ {}. The forcing P will be P.
The conditions in each P� will be finite sets of formulae of an associated first order
language, L�, which will be defined below. The order of each P� will be just reverse
inclusion, i.e., q P�

p i↵ q � p for p, q 2 P�.18

Assume that � 2 C [ {} and Pµ has already been defined in such a way that
Pµ ⇢ Qµ for all µ 2 C \ �. We aim to define P�.

Convention 3.2 We say that x ⇢ ! is a real code for N0 = (N0;2, I, a) if there
is some surjection f : ! ! N0 such that x is the monotone enumeration of the
Gödel numbers of all expressions of the form pṄ0 ✏ '(ṅ1, . . . , ṅ`, ȧ, İ)q such that
' is a first order formula of the language associated to (N0;2, I, a)19 and N0 ✏
'(f(n1), . . . , f(n`), a, I) holds true.

We shall be interested in objects C which exist in some outer model and which
have the following properties. Any C will be a triple of sets indexed by !1, !, and
K, respectively, with K being a subset of !1:

C = hhMi, ⇡ij, Ni, �ij : i  j  !1i, h(kn,↵n) : n < !i, h��, X� : � 2 Kii, (15)

where
18Every P� will be designed to add certain objects by means of finite sets of formulae giving

partial information on these objects. As indicated by the description at the end of Section 2, our
intended objects are mentioned by the first forcing Pmin(C); the additional objects mentioned by the
latter forcings are introduced in order to ensure that the final member of the sequence, i.e., P, has
the desired property of preserving stationary sets and adding a correct generic iteration. (So it is
natural to think of Pmin(C) as supporting the “working part” of the conditions in P, and all latter
forcings as supporting also “side conditions.”) It might therefore be useful, on a first reading of the
remainder of this section, to only focus on the definition and analysis of Pmin(C)—in other words, to
ignore everything involving clauses (C.6) to (C.8) in the definition below of potential certificate, to
also ignore clauses (⌃.6) to (⌃.8) in the definition below of potential certificates being pre-certified,
and to skip Subsection 3.3—and to pay attention to the entirety of the present section only on a
second reading.

19I.e., the language of set theory augmented by predicates for I and a
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(C.1) M0, N0 2 Pmax,

(C.2) x = hkn : n < !i is a real code for N0 = (N0;2, I, a) in the sense of Convention
3.2 and x is h(kn,↵n) : n < !i 2 [T ],

(C.3) hMi, ⇡ij : i  j  !
N0
1 i 2 N0 is a generic iteration of M0 witnessing that

N0 < M0 in Pmax,

(C.4) hNi, �ij : i  j  !1i is a generic iteration of N0 such that if

N!1 = (N!1 ;2, I⇤, A⇤),

then A
⇤ = A,20

(C.5) hMi, ⇡ij : i  j  !1i = �0!1(hMi, ⇡ij : i  j  !
N0
1 i) and

M!1 = ((H!2)
V ;2, (NS!1)

V
, A),21 (16)

(C.6) K ⇢ !1,

and for all � 2 K,

(C.7) �� 2 � \ C,22 and if � < � is in K, then �� < �� and X� [ {��} ⇢ X�, and

(C.8) X� � (Q��
;2,P��

, A��
) and X� \ !1 = �.

For future purposes, let us refer to any object C as in (15) satisfying the above
properties (C.1) through (C.8) as a potential certificate.

We need to define a first order language L (independently from �) whose formulae
will be able to describe some C with the above properties by producing the models
Mi and Ni, i < !1, as term models out of equivalence classes of terms of the form
ṅ, n < !. The language L will have the following constants. There will be one
constant for each set in H; these constants will be underlined. In addition, there
will be constants for all those objects outside of V that our forcing will add; those
constants will be dotted.

T intended to denote T

20There is no requirement on I
⇤ matching the non-stationary ideal of some model in which C

exists.
21In particular, the distingushed ideal of M!1 is the true nonstationary ideal of V .
22Recall that � is the index of the forcing P� that we are about to define.
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x for every x 2 H intended to denote x itself

ṅ for every n < ! as terms for elements of Mi and Ni, i < !1

Ṁi for i < !1 intended to denote Mi

⇡̇ij for i  j  !1 intended to denote ⇡ij

~̇M intended to denote (Mj, ⇡jj0 : j  j
0  !

Ni
1 ) for i < !1

Ṅi for i < !1 intended to denote Ni

�̇ij for i  j < !1 intended to denote �ij
ȧ intended to denote the distinguished a-predicate of Mi, Ni, i < !1

İ intended to denote the distinguished ideal of Ni, i < !1

Ẋ� for � < !1 intended to denote X�.

As T 2 H, the first line above is redundant. The constants ṅ, n < !, will produce
the term models Ni for i < !1; it is of course not important to use (dotted) natural
numbers as these constants, the elements of any other fixed countable set (in H)
would be equally good.

The formulae of L will be exactly the expressions of the following form.23

pṄi ✏ '(⇠1, . . . , ⇠k, ṅ1, . . . , ṅ`, ȧ, İ , Ṁj1 , . . . , Ṁjm , ⇡̇q1r1 , . . . , ⇡̇qsrs ,
~̇M)q

for i < !1, ⇠1, . . . , ⇠k < !1, n1, . . . , n` < !, j1, . . . , jm < !1, q1  r1 < !1, . . . , qs  rs < !1

and for ' being a formula of the first order language associated with Pmax-structures,

as well as:

p⇡̇i!1(ṅ) = xq for i < !1 and x 2 H!2

p⇡̇!1!1(x) = xq for x 2 H!2

p�̇ij(ṅ) = ṁq for i  j < !1, n,m < !

p(~u, ~↵) 2 Tq for ~u 2 <!
! and ~↵ 2 <!

!2

p� 7! µq for � < !1, µ < 

px 2 Ẋ�q for � < !1, x 2 H

Let us write L� for the collection of all L-formulae except for the formulae that
mention elements outside of Q�, i.e., except for the formulae of the form p� 7! µq

23Again, the first order language associated with Pmax-structures (M ;2, I, a) is the language of
set theory augmented by predicates for I and a.
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for � < !1 and �  µ <  as well as px 2 Ẋ�q for � < !1 and x 2 H \ Q�. We
may and shall assume that L is built in a canonical way so that L� ⇢ Q� and in fact
L� = L \Q�.

We say that a potential certificate

C = hhMi, ⇡ij, Ni, �ij : i  j  !1i, h(kn,↵n) : n < !i, h��, X� : � 2 Kii

as in (15) is pre-certified by a collection ⌃ of L�-formulae if and only if (C.1) through
(C.8) are satisfied by C and there are surjections ei : ! ! Ni for i < !1 such that
the following hold true.

(⌃.1) pṄi ✏ '(⇠1, . . . , ⇠k, ṅ1, . . . , ṅ`, ȧ, İ , Ṁj1 , . . . , Ṁjm , ⇡̇q1r1 , . . . , ⇡̇qsrs ,
~̇M)q 2 ⌃ i↵

(a) i < !1,

(b) ⇠1, . . ., ⇠k  !
Ni
1 ,

(c) n1, . . . , n` < !,

(d) j1, . . ., jm  !
Ni
1 ,

(e) q1  r1  !
Ni
1 , . . ., qs  rs  !

Ni
1 , and

Ni ✏ '(⇠1, . . . , ⇠k, ei(n1), . . . , ei(n`), A\!Ni
1 , I

Ni ,Mj1 , . . . ,Mjm , ⇡q1r1 , . . . , ⇡qsrs ,
~M),

where I
Ni is the distinguished ideal of Ni and ~M = hMj, ⇡jj0 : j  j

0  !
Ni
1 ),

(⌃.2) p⇡̇i!1(ṅ) = xq 2 ⌃ i↵ i < !1, n < !, and ⇡i!1(ei(n)) = x,

(⌃.3) p⇡̇!1!1(x) = xq 2 ⌃ i↵ x 2 H!2 ,

(⌃.4) p�̇ij(ṅ) = ṁq 2 ⌃ i↵ i  j < !1, n, m < !, and �ij(ei(n)) = ej(m),

(⌃.5) letting F with dom(F ) = ! be the monotone enumeration of the Gödel numbers
of all formulae of the form

pṄ0 ✏ '(ṅ1, . . . , ṅ`, ȧ, İ)q

with pṄ0 ✏ '(ṅ1, . . . , ṅ`, ȧ, İ)q 2 ⌃, we have that p(~u, ~↵) 2 Tq 2 ⌃ i↵ there is
some n < ! such that h~u, ~↵i = h(F (m),↵m) : m < ni and F (m) = km for all
m < n,24

(⌃.6) p� 7! µq 2 ⌃ i↵ � 2 K and µ = ��, and

24Here, h(kn,↵n) : n < !i is a component of C.
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(⌃.7) px 2 Ẋ�q 2 ⌃ i↵ � 2 K and x 2 X�.

We say that a potential certificate C as in (15) is certified by a collection ⌃ of
formulae if and only if C is pre-certified by ⌃ and, in addition,

(⌃.8) if � 2 K, then [⌃]<! \X� \ E 6= ; for every E ⇢ P��
that is dense in P��

and
definable over the structure

(Q��
;2,P��

, A��
)

from parameters in X�.25

Item (⌃.8) is to play a crucial role in the proof that our forcing preserves station-
ary sets, see the proof of Lemma 3.12. If p is a condition with p� 7! �q 2 p, and if
the predicate A� guesses – via (3) – a name Ċ for a club subset of !1, then (⌃.8)
will guarantee that p � �̌ 2 Ċ, see the proof of Claim 3.16.

Definition 3.3 We call a potential certificate C as in (15) a semantic certificate i↵
there is a collection ⌃ of formulae such that C is certified by ⌃. We call ⌃ a syntactic
certificate i↵ there is a semantic certificate C such that C is certified by ⌃.

Given a syntactic certificate ⌃, there is a unique semantic certificate C such that
C is certified by ⌃. Even though it is obvious how to construct C from ⌃, in the proof
of Lemma 3.6 below we will provide details on how to derive a semantic certificate
from a given ⌃.

It is worth stressing that not every collection of L�-formulae that is merely con-
sistent is already a syntactic certificate. The requirement that the constant x 2 H is
to be interpreted by itself (cf. (⌃.2), (⌃.3), and (⌃.7)) may be restated as saying that
for a consistent L�-theory to be a syntactic certificate it is to be true that certain
types are omitted.

Let ⌃ and p be sets of formulae, where p is finite. We say that p is certified by ⌃
if and only if there is some (unique) C as in (15) such that C is certified by ⌃ and

(⌃.9) p 2 [⌃]<!.

25Equivalently, [⌃]<! \ E 6= ; for every E ⇢ P�� \ X� that is dense in P�� \ X� and definable
over the structure

(X�;2,P�� \X�, A�� \X�)

from parameters in X�.
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We may also say that p is certified by C as in (15) i↵ there is some ⌃ such that C and
p are both certified by ⌃—and we will then also refer to ⌃ as a syntactical certificate
for p and to C as the associated semantic certificate.

We are then ready to define the forcing P�. We say that p 2 P� if and only if

V
Col(!,�) ✏ “There is a set ⌃ of L�-formulae such that p is certified by ⌃.” (17)

Let p be a finite set of formulae of L�. By the homogeneity of Col(!,�), if there
is some h which is Col(!,�)-generic over V and there is some ⌃ 2 V [h] such that
p is certified by ⌃, then for all h that are Col(!,�)-generic over V there is some
⌃ 2 V [h] such that p is certified by ⌃. It is then easy to see that hP� : � 2 C [ {}i
is definable over V from hA� : � < i and C, and is hence an element of V .26

Again let p be a finite set of formulae of L�. The statement that there is a
⌃ certifying p is ⌃1 in the parameters H

V

!2
and T , both of which are elements of

HCV
Col(!,�)

. Hence by Shoenfield absoluteness (10), see [41, Corollary 7.21], if there is
any outer model in which there is some ⌃ certifying p, then there is some ⌃ 2 V

Col(!,�)

certifying p.27 This simple observation is important in the verification that P� is
actually non-empty, cf. Lemma 3.5, and in the proof of Lemma 3.12.

3.2 Some properties of the forcing.

It is easy to see that

(i) P = P ⇢ H,

(ii) if �̄ < � are both in C [ {}, then P�̄ ⇢ P�, and

(iii) if � 2 C [ {} is a limit point of C [ {}, then P� =
S

�̄2C\� P�̄,

so that there is some club D ⇢ C such that for all � 2 D,

P� = P \Q�.

Hence (3) gives us the following.

(3(P)) For all B ⇢ H the set

{� 2 C : (Q�;2,P�, A�) � (H;2,P, B)}

is stationary.

26To remind the reader, C is the club from p. 22.
27In fact, if P is a transitive model of KP plus the axiom Beta with (Q�; hA�̄ : �̄ < �i) 2 P and

if p 2 P�, then there is some ⌃ 2 P
Col(!,�) certifying p.
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The first one of the following lemmas is entirely trivial.

Lemma 3.4 Let ⌃ be a syntactic certificate, and let p, q 2 [⌃]<!. Then p and q are
compatible conditions in P.

Lemma 3.5 ; 2 Pmin(C).

Proof. This is a simple variant of the proofs of [2, Theorem 2.8] and of [42,
Theorem 4.2]. What needs to be done is to construct a semantic/syntactic certificate
(for ;) in some outer model.

Let h be Col(!,!2)-generic over V . Let q
⇤ = (N⇤;2, I⇤, a⇤) 2 (Pmax)V [h] be as

in the paragraph preceeding (12) and such that (12), i.e., q⇤ 2 p[T ] ⇢ p[T̃ ], is true.
Let (Mi, ⇡ij : i  j  !

N
⇤

1 ) 2 N
⇤ be the unique generic iteration of the (Pmax)V [h]-

condition (HV

!2
;2,NSV

!1
, A) witnessing that q⇤ is stronger than this condition.

Let (Ni, �ij : i  j  ) 2 V [h] be a generic iteration of N0 = N
⇤ such that

 = !
N
1 .28 Let

(Mi, ⇡ij : i  j  ) = �0((Mi, ⇡ij : i  j  !
N0
1 )) (18)

Since M0 = ((H!2)
V ;2, (NS!1)

V
, A) and (NS!1)

V is assumed to be saturated in V ,
every maximal antichain in V consisting of stationary subsets of !1 is an element of
M0. By [55, Lemma 3.8], we may hence lift the generic ultrapower map ⇡01 : M0 !
M1 to act on all of V , and inductively we may lift the entire generic iteration (18)
to a generic iteration

(M+
i
, ⇡

+
ij
: i  j  ) (19)

of V in such a way that all M+
i
, i  , are transitive. Let us write M = M

+


and
⇡ = ⇡

+
0.

Let hkn,↵n : n < !i be such that x = hkn : n < !i is a real code for N0 in the
sense of Convention 3.2 and h(kn,↵n) : n < !i 2 [T ]. We then clearly have that
h(kn, ⇡(↵n)) : n < !i 2 [⇡(T )].

28If we wished, we could even arrange that writing N = (N;2, I 0, a0), we have that I
0 =

(NS)V [h] \N, but this is not relevant here; cf. footnote 20.
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p[T ] p[⇡(T )]

(N⇤;2, I⇤, a⇤) N

M0 M
!
N⇤
1

M

((H!2)
V ;2, (NS!1)

V
, A)

V M
+
 M

✓

2

�0

2 2⇡0!N⇤
1

⇡
!
N⇤
1 

= 2

2

⇡ =

It is now easy to see that

C = hhMi, ⇡ij, Ni, �ij : i  j  i, h(kn, ⇡(↵n)) : n < !i, hii (20)

certifies ;—relative to ⇡(A), ⇡(T ), and M rather than to A, T , and V—construed
as the empty set of ⇡(L) formulae: as the third component hi of C in (20) is empty,
any set of surjections ei : ! ! Ni, i < !1, will induce a syntactic certificate for ;,
relative to ⇡(A) and ⇡(T ), whose associated semantic certificate is C. The statement
that there is a syntactic certificate for ; is ⌃1 in the parameters H

M

!2
, ⇡(A), and

⇡(T ), which will all be in HCM
Col(!,⇡(!2)) . Hence by Shoenfield absoluteness (10), see

[41, Corollary 7.21], there is then some C 2 M
Col(!,⇡(!2)) as in (20) that certifies ;

relative to ⇡(A) and ⇡(T ), so that ; 2 ⇡(Pmin(C)).29 By the elementarity of ⇡, then,
; 2 Pmin(C). ⇤ (Lemma 3.4)

Lemma 3.6 Let � 2 C [ {}. Let g ⇢ P� be a filter such that g \ E 6= ; for all
dense E ⇢ P� that are definable over (Q�;2,P�) from elements of Q�. Then

S
g is

a syntactic certificate.

Proof. Let us first describe how to read o↵ from
S
g a candidate

C = hhMi, ⇡ij, Ni, �ij : i  j  !1i, h(kn,↵n) : n < !i, h��, X� : � 2 Kii

for a semantic certificate for
S

g. A variant of what is to come shows how to derive
C from a given syntactic certificate ⌃, where C is unique such that ⌃ certifies C, cf.
the remark on p. 28.

29Exactly in order to be able to do this we let the forcing also search for hMi,⇡ij : i  j  !1i
rather than just hNi,�ij : i  j  !1i. The presence of hMi,⇡ij : i  j  !1i allows us to lift ⇡0

to a map acting on all of V , so that we may then apply Shoenfield absoluteness and pull back the
statement of interest—namely ; 2 ⇡(Pmin(C)). Cf. the discussion on p. 20.
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Some of the formulas to follow simply describe the construction of a direct limit
associated with the maps ⇡ij and �ij.

For i, j < !1 and ⌧ , � 2 {ṅ : n < !} [ {⇠ : ⇠ < !1} define

⌧ ⇠i � i↵ pṄi ✏ ⌧ = �q 2
[

g

(i, ⌧) ⇠!1 (j, �) i↵ i  j ^ 9⇢ {p�̇ij(⌧) = ⇢q, pṄj ✏ ⇢ = �q} ⇢
[

g

or j  i ^ 9⇢ {p�̇ji(�) = ⇢q, pṄi ✏ ⇢ = ⌧q} ⇢
[

g

[⌧ ]i = {� : ⌧ ⇠i �}
[(i, ⌧)] = {(j, �) : (i, ⌧) ⇠!1 (j, �)}

Mi = {[⌧ ]i : ⌧ 2 {ṅ : n < !} [ {⇠ : ⇠ < !1} ^ pṄi ✏ ⌧ 2 Ṁiq 2
[

g}

M!1 = (H!2)
V

Ni = {[⌧ ]i : ⌧ 2 {ṅ : n < !} [ {⇠ : ⇠ < !1}}

N!1 = {[i, ⌧ ] : i < !1 ^ pṄi ✏ ⌧ = ⌧q 2
[

g}

[⌧ ]i 2̃i [�]i i↵ pṄi ✏ ⌧ 2 �q 2
[

g

[i, ⌧ ]2̃!1 [j, �] i↵ i  j ^ 9⇢ {p�̇ij(⌧) = ⇢q, pṄj ✏ ⇢ 2 �q} ⇢
[

g

or j  i ^ 9⇢ {p�̇ji(�) = ⇢q, pṄi ✏ ⌧ 2 ⇢q} ⇢
[

g

[⌧ ]i 2 I
Ni i↵ pṄi ✏ ⌧ 2 İq 2

[
g

[i, ⌧ ] 2 I
N!1 i↵ [⌧ ]i 2 I

Ni

[⌧ ]i 2 a
Ni i↵ pṄi ✏ ⌧ 2 ȧq 2

[
g

[i, ⌧ ] 2 a
N!1 i↵ [⌧ ]i 2 I

Ni

⇡ij([⌧ ]i) = [�]j i↵ pṄj ✏ ⇡̇ij(⌧) = �q 2
[

g

⇡i!1([⌧ ]i) = x i↵ p⇡̇i!1(⌧) = xq 2
[

g

⇡!1!1(x) = x i↵ x 2 (H!2)
V

�ij([⌧ ]i) = [�]j i↵ p�̇ij(⌧) = �q 2
[

g

�i!1([⌧ ]i) = [i, ⌧ ]

(k,↵) = (kn,↵n) i↵ 9~u9~↵(p(~u, ~↵) 2 Tq 2
[

g ^ k = ~u(n) ^ ↵ = ~↵(n))

� 2 K i↵ 9µ p� 7! µq 2
[

g
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µ = �� i↵ � 2 K ^ p� 7! µq 2
[

g

x 2 X� i↵ � 2 K ^ px 2 Ẋ�q 2
[

g

In order to see that this all works out we have to run a few density arguments.
To show that a given subset of P is dense we frequently make use of Lemma 3.4.
We will provide more details in some cases and fewer in others, and we are confident
that the reader will be easily able to fill in the straightforward details herself in the
latter cases.

Let us first observe that 2̃0 is wellfounded and that in fact (the transitive collapse
of) the structure N0 = (N0; 2̃0, a

N0 , I
N0) is an iterable Pmax condition. This is true

because of the following.

Claim 3.7 (C.2) is true, i.e., h(kn,↵n) : n < !i 2 [T ] and hkn : n < !i codes the
theory of N0 in the sense of Convention 3.2.

Proof of Claim 3.7. Let m < !. Writing

q0 = {p((kn : n < m), (↵n : n < m)) 2 Ṫq},

we have that q0 2 g. If

C = hhM 0
i
, ⇡

0
ij
, N

0
i
, �

0
ij
: i  j  !1i, h(k0

n
,↵

0
n
) : n < !i, h�0

�
, X

0
�
: � 2 K

0ii

certifies q0, then k
0
n
= kn and ↵0

n
= ↵n for n < m by (⌃.5), and then

((kn : n < m), (↵n : n < m)) 2 T

by (C.2).
This shows h(kn,↵n) : n < !i 2 [T ].
By (⌃.5) and (C.2), for each k < ! the sets

D
0
k

= {p 2 P : 9m 9((kn : n < m), (↵n : n < m))9r
( p((kn : n < m), (↵n : n < m)) 2 Tq 2 p ^ kr = k

^ k is the Gödel number of pṄ0 ✏ '(ṅ1, . . . , ṅ`, ȧ, İ)q ) !
pṄ0 ✏ '(ṅ1, . . . , ṅ`, ȧ, İ)q 2 p}

and

D
1
k

= {p 2 P : k is the Gödel number of pṄ0 ✏ '(ṅ1, . . . , ṅ`, ȧ, İ)q ^
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pṄ0 ✏ '(ṅ1, . . . , ṅ`, ȧ, İ)q 2 p !
9m 9((kn : n < m), (↵n : n < m))9r ( kr = k ^
p((kn : n < m), (↵n : n < m)) 2 Tq 2 p )}

are dense in P. This implies that hkn : n < !i codes the theory of N0 in the sense of
Convention 3.2.

⇤ (Claim 3.7)

Another set of easy density arguments will give that (Ni, �ij : i  j  !1) is a
generic iteration of N0, where we identify Ni with the structure (Ni; 2̃i, a

Ni , I
Ni). To

verify this, let us first show:

Claim 3.8 For each i < !1 and for each ⇠  !
Ni
1 , [⇠]i represents ⇠ in (the transitive

collapse of the well-founded part of) the term model for Ni; moreover, aNi = A\!Ni
1 .

Hence a
N!1 = A.

Proof of Claim 3.8. The set

D
2 = {p 2 P : 9⇠ pṄi ✏ ⇠ is the least uncountable cardinal q 2 p}

is easily seen to be dense in P, so that there is some (unique!) ⇠0 < !1 such that
writing

p0 = {pṄi ✏ ⇠0 is the least uncountable cardinal q},
p0 2 g. Let us now prove by induction on ⇠  ⇠0 that [⇠]i must always represent ⇠ in
(the transitive collapse of the well-founded part of) Ni. Fix such ⇠.

For all n < !,

D
3
n
= {p 2 P : pṄi ✏ ṅ 2 ⇠q 2 p ! 9⇣ < ⇠ pṄi ✏ ṅ = ⇣q 2 p}

is dense below p0. Also, for all ⇣ < ⇠,

D
4
⇣
= {p 2 P : pṄi ✏ ⇣ 2 ⇠q 2 p}

is dense below p0. This shows that if ⌧ 2 {ṅ : n < !} [ {⇠ : ⇠ 2 ⇠0 + 1} is a term,
then [⌧ ]i2̃i[⇠]i i↵ [⌧ ]i = [⇣]i for some ⇣ < ⇠. Using the inductive hypothesis, this then
implies that [⇠]i represents ⇠ in (the transitive collapse of the well-founded part of)

Ni. In particular, ⇠0 = !
Ni
1 .

Now if ⇠ 2 A \ !Ni
1 , then

D
5
⇠
= {p 2 P : pṄi ✏ ⇠ 2 ȧq}
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is dense below p0, and if ⇠ 2 !
Ni
1 \ A, then

D
6
⇠
= {p 2 P : pṄi ✏ ⇠ /2 ȧq}

is dense below p0. Claim 3.8 then follows. ⇤ (Claim 3.8)

Similarly:

Claim 3.9 Let i < !1. Ni+1 is generated from ran(�ii+1)[{!Ni
1 } in the sense that for

every x 2 Ni+1 there is some function f 2 !
Ni
1 (Ni)\Ni such that x = �ii+1(f)(!

Ni
1 ).

Proof of Claim 3.9. Let p0 be as in the proof of Claim 3.8, let p  p0, and let
⌃ � p be a syntactic certificate for p with associated semantic certificate

C = hhM 0
i
, ⇡

0
ij
, N

0
i
, �

0
ij
: i  j  !1i, h(k0

n
,↵

0
n
) : n < !i, h�0

�
, X

0
�
: � 2 K

0ii.

Fix i < !1, and let ei : ! ! N
0
i
and ei+1 : ! ! N

0
i+1 be as on p. 27. Notice that

!
N

0
i

1 = !
Ni
1 .

Let n < !. There must be some f 2 !
Ni
1 N

0
i
\ N

0
i
with ei+1(n) = �

0
ii+1(f)(!

Ni
1 ).

Let m, m0
< ! be such that f = ei(m) and �0

ii+1(f) = ei+1(m0). Then

p [ {pṄi+1 ✏ ṅ = ṁ
0(!Ni

1 )q, p�̇ii+1(ṁ) = ṁ
0q}  p.

This argument shows that the set

D
7
n
= {p 2 P : 9m 9m0 {pṄi+1 ✏ ṅ = ṁ

0(!Ni
1 )q, p�̇ii+1(ṁ) = ṁ

0q} ⇢ p}

is dense below p0. Claim 3.9 then follows. ⇤ (Claim 3.9)

Claim 3.10 Let i < !1. {X 2 P(!Ni
1 ) \Ni : !

Ni
1 2 �ii+1(X)} is generic over Ni for

the forcing given by the I
Ni-positive sets.

Proof of Claim 3.10. Let p0, p, ⌃, C, ei, and ei+1 be as in the previous proof.
Let n < ! be such that ei(n) is a maximal antichain in N

0
i
for the forcing given by

the I
N

0
i -positive sets. Let m, m0

< ! be such that ei(m) 2 ei(n) and !
Ni
1 = !

N
0
i

1 2
�
0
ii+1(ei(m)) = ei+1(m0). Then

p [ {pṄi ✏ ṁ 2 ṅq, p�̇ii+1(ṁ) = ṁ
0q, pṄi+1 ✏ !Ni

1 2 ṁ
0q}  p.

This argument shows that the set

D
8
n
= {p 2 P : 9m 9m0 {pṄi ✏ ṁ 2 ṅq, p�̇ii+1(ṁ) = ṁ

0q, pṄi+1 ✏ !Ni
1 2 ṁ

0q} ⇢ p}

is dense below p0. Claim 3.10 then follows. ⇤ (Claim 3.10)

Claims 3.9 and 3.10 readily imply that if i < !1, then Ni+1 is a generic ultrapower
of Ni. By the next claim, direct limits are taken at limit stages:
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Claim 3.11 Let i  !1 be a limit ordinal. For every x 2 Ni there is some j < i and
some z 2 Nj such that x = �ji(z).

Proof of Claim 3.11. This is trivial for i = !1. Now let i < !1. Let p, ⌃, and
C be as in the previous two proofs. Fix a limit ordinal i. For each n < ! there are
j < i and n

0
< ! with �ji(ej(n0)) = ei(n), where ej : ! ! N

0
j
and ei : ! ! N

0
i
are as

on p. 27. Then

p [ {p�̇ji(ṅ0) = ṅq}  p.

This argument shows that the set

D
9
n
= {p 2 P : 9n0 p�̇ji(ṅ0) = ṅq 2 p}

is dense in P. Claim 3.11 then follows. ⇤ (Claim 3.11)

(Ni, �ij : i  j  !1) is then indeed a generic iteration of N0. As N0 is iterable,
we may and shall identify Ni with its transitive collapse, so that (C.4) holds true.

Another round of density arguments will show that C satisfies (C.1), (C.3), (C.5),
(C.6), and (C.7), where we identifyMi with the structure (Mi;2, (NS

!
Mi
1
)Mi , A\!Mi

1 ).

Let us now verify (C.8) and (⌃.8), without writing down the relevant dense sets any
more.

As for (C.8), its second part, X� \ !1 = � for � 2 K, is easy. We will now use
the Tarski-Vaught test to verify the first part of (C.8). Let ' be any formula, and
let x1, . . ., xk 2 X�, � 2 K. Suppose that

(Q��
;2,P��

, A��
) ✏ 9v '(v, x1, . . . , xk). (21)

Let p 2 g be such that {px1 2 Ẋ�q, . . . , pxk
2 Ẋ�q, p� 7! ��q} ⇢ p. Let q  p, and

let ⌃ be a syntactical certificate for q whose associated semantic certificate is

C0 = hhM 0
i
, ⇡

0
ij
, N

0
i
, �

0
ij
: i  j  !1i, h(k0

n
,↵

0
n
) : n < !i, h�0

�
, X

0
�
: � 2 K

0ii.

Then � 2 K
0 and

{x1, . . . , xk} ⇢ X
0
�
� (Q��

;2,P��
, A��

),

so that by (21) we may choose some x 2 X
0
�
with

(Q��
;2,P��

, A��
) ✏ '(x, x1, . . . , xk).

Let r = q [ {px 2 Ẋ�q}.
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By density, there is then some y 2 X� such that

(Q��
;2,P��

, A��
) ✏ '(y, x1, . . . , xk).

The proof of (⌃.8) is similar. Let again � 2 K. Let E ⇢ P��
\ X

g

�
be dense in

P��
\X�, and r 2 E i↵ r 2 P��

\X� and

(Q��
;2,P��

, A��
) ✏ '(r, x1, . . . , xk). (22)

Let p 2 g be such that {px1 2 Ẋ�q, . . . , pxk
2 Ẋ�q, p� 7! ��q} ⇢ p. Let q  p, and

again let ⌃ be a syntactical certificate for q whose associated semantic certificate is

C0 = hhM 0
i
, ⇡

0
ij
, N

0
i
, �

0
ij
: i  j  !1i, h(k0

n
,↵

0
n
) : n < !i, h�0

�
, X

0
�
: � 2 K

0ii.

Then [⌃]<! \X
0
�
has an element, say r, such that (22) holds true. Let

s = q [ r [ {pr 2 Ẋ�q}

By density, then, g \X� \ E 6= ;. ⇤ (Lemma 3.6)

Forcing with any P� makes !V

2 !-cofinal, as the iteration map ⇡0!1 added by the
generic filter maps the ordinals of the countable model M0 cofinally into !V

2 . If � < 

(and � 2 C), then P� has size @2, so that by a result of S. Shelah, see [19, Corollary
23.20], P� will collapse !1 to become countable. We are now going to prove that
P = P, on the other hand, does not collapse !1 and in fact preserves stationary
subsets of !1.

3.3 The forcing preserves stationary sets.

Lemma 3.12 Let g be P-generic over V . Let

C = hhMi, ⇡ij, Ni, �ij : i  j  !1i, h(kn,↵n) : n < !i, h��, X� : � 2 Kii

be the semantic certificate associated with the syntactic certificate
S

g. Let

N!1 = (N!1 ;2, A, I⇤).

Then every element of (P(!1) \N!1) \ I⇤ is stationary in V [g].

Corollary 3.13 P preserves stationary subsets of !1.

37



Proof of Corollary 3.13 from Lemma 3.12. Let C be as in the statement of
Lemma 3.12, and let us write Mi = (Mi;2, Ii, ai) and Ni = (Ni;2, I⇤i , a⇤i ) for i  !1.
In the light of Lemma 3.6, by (C.3) we will have that I

!
N0
1

= I
⇤
0 \M

!
N0
1
, so that also

I!1 = I
⇤
!1
\M!1 . By (C.5), the universe ofM!1 is (H!2)

V and I!1 = (NS!1)
V , while I⇤

!1

is denoted by I
⇤ in the statement of Lemma 3.12. We thus get that (NS!1)

V = I
⇤\V ,

so that the conclusion of Lemma 3.12 also gives that P preserves stationary subsets
of !1. ⇤(Corollary 3.13)

Proof of Lemma 3.12. Let Ṅ!1 2 V
P be a canonical name for N!1 , and let

İ
⇤ 2 V

P be a canonical name for I⇤. Let p̄ 2 g, Ċ, Ṡ 2 V
P, and i0 < !1 and n0 < !

be such that

(i) p̄ � “Ċ ⇢ !1 is club,”

(ii) p̄ � “Ṡ 2 (P(!1) \ Ṅ!1) \ İ⇤,” and

(iii) p̄ � “Ṡ is represented by [i0, ṅ0] in the term model producing Ṅ!1 .”

We may and shall also assume that

pṄi0 ✏ ṅ0 is a subset of the first uncountable cardinal, yet ṅ0 /2 İq 2 p̄, (23)

because the L-formula in (23) must belong to every syntactic certificate for p̄, as p̄
satisfies (ii) and (iii).

Let p  p̄ be arbitrary, p 2 P. We aim to produce some q  p and some � < !1

such that q � �̌ 2 Ċ \ Ṡ, see Claim 3.16 below.
For ⇠ < !1, let

D⇠ = {q  p : 9⌘ � ⇠ (⌘ < !1 ^ q � ⌘̌ 2 Ċ)},

so that D⇠ is open dense below p. Let

E = {(q, ⌘) 2 P⇥ !1 : q � ⌘̌ 2 Ċ}.

Let us write
⌧ = ((D⇠ : ⇠ < !1), E).

We may and shall identify ⌧ with some subset of H coding ⌧ . Here and in what
follows,  is still equal to !3.

By (3(P)), we may pick some � 2 C such that p 2 P� and

(Q�;2,P�, A�) � (H;2,P, ⌧). (24)
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Let h be Col(!,!2)-generic over V , and let g0 2 V [h] be a filter on P� such that
p 2 g

0 and g
0 meets every dense set which is definable over (Q�;2,P�, A�) from

parameters in Q�. By Lemma 3.6,
S

g
0 is a syntactic certificate for p, and we may

let
hhM 0

i
, ⇡

0
ij
, N

0
i
, �

0
ij
: i  j  !1i, h(k0

n
,↵

0
n
) : n < !i, h�0

�
, X

0
�
: � 2 K

0ii

be the associated semantic certificate. In particular, K 0 ⇢ �.
Let S denote the subset of !1 which is represented by [i0, ṅ0] in the term model

giving N
0
!1
, so that if N 0

!1
= (N 0

!1
,2, A, I 0), then by (23),

S 2 (P(!1) \N
0
!1
) \ I 0. (25)

Notice that !V [h]
1 = !

V

3 = . Inside V [h], we may extend hN 0
i
, �

0
ij
: i  j  !1i to a

generic iteration
hN 0

i
, �

0
ij
: i  j  i

such that

!1 2 �
0
!1,!1+1(S). (26)

This is possible as !
N

0
!1

1 = sup{!Nj

1 : j < !1} = !1 and by (25). Let

hM 0
i
, ⇡

0
ij
: i  j  i = �0,(hM 0

i
, ⇡

0
ij
: i  j  !

N
0
0

1 i),

so that hM 0
i
, ⇡

0
ij
: i  j  i is an extension of hM 0

i
, ⇡

0
ij
: i  j  !1i.

Since M
0
!1

= ((H!2)
V ;2, (NS!1)

V
, A), cf. (16), and (NS!1)

V is assumed to be
saturated in V , every maximal antichain in V consisting of stationary subsets of !1

is an element of M 0
!1
. By [55, Lemma 3.8], we may hence lift the generic ultrapower

map ⇡0
!1!1+1 : M

0
!1

! M
0
!1+1 to act on all of V , and inductively we may lift the entire

generic iteration hM 0
i
, ⇡

0
ij
: !1  i  j  i to a generic iteration

hM+
i
, ⇡

+
ij
: !1  i  j  i

of V with all M+
i
, !1  i  , being transitive. Let us write M = M

+

and ⇡ = ⇡

+
!1,

.
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p[T ] p[⇡(T )]

N
0
0 N

0
!1

N
0


M
0
0

M
0
!
N0
1

M
0
!1

M
0


((H!2)
V ;2, (NS!1)

V
, A)

V M
+
 M

✓

2

�
0
0!1

�
0
!1

2 2 2⇡
0
0!

N0
0

1

⇡
0
!
N0
0

1 !1 ⇡
0
!1

=

2

2

⇡ =

The key point is now that hM 0
i
, ⇡

0
ij
, N

0
i
, �

0
ij
: i  j  i may be used to extend

⇡”
S
g
0 to a syntactic certificate

⌃ � ⇡”
[

g
0 (27)

for ⇡(p) in the following manner. Let K⇤ = K
0 [ {!1}. For � 2 K

0, let �⇤
�
= ⇡(�0

�
)

and X
⇤
�
= ⇡”X 0

�
. Also, write �⇤

!1
= ⇡(�) and X

⇤
!1

= ⇡”Q�. Notice that !1 2 ⇡(C),
so that K⇤ ⇢ ⇡(C). Let

C⇤ = hhM 0
i
, ⇡

0
ij
, N

0
i
, �

0
ij
: i  j  i, h(k0

n
, ⇡(↵0

n
)) : n < !i, h�⇤

�
, X

⇤
�
: � 2 K

⇤ii.

Definition 3.3 of semantic certificate has the objects A, T , hAµ : µ 2 Ci, and
hPµ : µ 2 C \ (� + 1)i as hidden parameters. When we run Definition 3.3 inside
M , those parameters are to be replaced by their respective images under the map ⇡.
This is how the next claim is to be understood.

Claim 3.14 C⇤ is a semantic certificate for ⇡(p) relative to the parameters ⇡(A),
⇡(T ), ⇡(hAµ : µ 2 Ci), and ⇡(hPµ : µ 2 C \ (�+ 1)i).

Proof of Claim 3.14: First notice that

h(k0
n
, ⇡(↵0

n
)) : n < !i 2 [⇡(T )]

Next, if � 2 K
0, then

X
⇤
�
= ⇡”X 0

�
� (⇡(Q�

0
�
);2, ⇡(P�

0
�
), ⇡(A�

0
�
)),

and ⇡”g0\X
⇤
�
= ⇡”(g0\X

0
�
); as

S
g
0 is a syntactic certificate for p, we thus have that

⇡”g0\X⇤
�
\E 6= ; for every E ⇢ ⇡(P�

0
�
) which is dense in ⇡(P�

0
�
) and definable over the
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structure (⇡(Q�
0
�
);2, ⇡(P�

0
�
), ⇡(A�

0
�
)) from parameters in X

⇤
�
. Finally, X⇤

!1
= ⇡”Q�

and the choice of g0 imply that ⇡”g0 \ X
⇤
!1

\ E 6= ; for every E ⇢ ⇡(P�) which is
dense in ⇡(P�) and definable over the structure

(⇡(Q�);2, ⇡(P�), ⇡(A�))

from parameters in X
⇤
!1
. This buys us that C⇤ is indeed a semantic certificate for

⇡(p) as an element of ⇡(P), and that therefore there is some syntactic certificate ⌃
as in (27), relative to ⇡(A), ⇡(T ), ⇡(hAµ : µ 2 Ci), and ⇡(hPµ : µ 2 C \ (�+ 1)i),
such that C⇤ is certified by ⌃. ⇤ (Claim 3.14)

Now let [ṁ0]!1+1 represent �0
!1!1+1(S) in the term model for N 0

!1+1 provided by
⌃, so that30

{p�̇i0!1+1(ṅ0) = ṁ0q, pṄ!1+1 ✏ !1 2 ṁ0q} ⇢ ⌃;

in other words,

⇡(p) [ {p�̇i0!1+1(ṅ0) = ṁ0q, pṄ!1+1 ✏ !1 2 ṁ0q} is certified by ⌃. (28)

Let us now define

q
⇤ = ⇡(p) [ {p�̇i0!1+1(ṅ0) = ṁ0q, pṄ!1+1 ✏ !1 2 ṁ0q, p!1 7! ⇡(�)q}. (29)

In the light of the last paragraph of subsection 3.1 on p. 29, we thus established
the following.

Claim 3.15 q
⇤ 2 ⇡(P), as being certified by ⌃.

The elementarity of ⇡ : V ! M then gives some � < !1 such that

q = p [ {p�̇i0�+1(ṅ0) = ṁ0q, pṄ�+1 ✏ � 2 ṁ0q, p� 7! �q} 2 P. (30)

Claim 3.16 q � �̌ 2 Ċ \ Ṡ.

Proof of Claim 3.16. q � �̌ 2 Ṡ readily follows from

{p�̇i0�+1(ṅ0) = ṁ0q, pṄ�+1 ✏ � 2 ṁ0q} ⇢ q,

the fact that p̄ � p forces that Ṡ is represented by [i0, ṅ0] in the term model giving
Ṅ!1 , and the fact that by Claim 3.8, [�]�+1 represents � in the model N�+1 of any
semantic certificate for q as being given by a generic that contains q.

30Here, �̇i0!1+1 and Ṅ!1+1 are terms of the language associated with ⇡(P�), and p�̇i0!1+1(ṅ0) =
ṁ0q and pṄ!1+1 ✏ !1 2 ṁ0q are formulae of that language.
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Let us now show that q � �̌ 2 Ċ. We will in fact show that q forces that �̌ is a
limit point of Ċ. Otherwise there is some r  q and some ⌘ < � such that

r � Ċ \ �̌ ⇢ ⌘̌. (31)

Suppose that r is certified by ⌃, so that there is some

hhM 0
i
, ⇡

0
ij
, N

0
i
, �

0
ij
: i  j  !1i, h(k0

n
,↵

0
n
) : n < !i, h�0

�̄
, X

0
�̄
: �̄ 2 K

0ii (32)

that is certified by ⌃ and r 2 [⌃]<!. We must have that

(a) � 2 K
0,

(b) X
0
�
� (Q�;2,P�, A�),

(c) X
0
�
\ !1 = �, and

(d) [⌃]<! \X
0
�
\ E 6= ; for every E ⇢ P� which is dense in P� \X

0
�
and definable

over the structure
(Q�;2,P�, A�)

from parameters in X
0
�
.

Here, (a) is given by p� 7! �q 2 r, (b) and (c) are given by (C.8), while (d) is exactly
what (⌃.8) on p. 28 buys us.

We have that A� = ⌧ \Q�, and hence A� may be identified with the ordered pair
((D⇠ \Q� : ⇠ < !1), E \Q�). As ⌘ < � ⇢ X

0
�
, D⌘ is definable over the structure

(Q�;2,P�, A�)

from a parameter in X
0
�
. By (24), D⌘ \ Q� is dense in P�. By (d) above, there is

then some s 2 [⌃]<! \X
0
�
\D⌘.

By (24) again, the unique smallest ⌘0 � ⌘ with s � ⌘̌
0 2 Ċ must be in X

0
�
,

hence ⌘0 < � by (c) above. But now s is compatible with r, as they are both finite
subsets of the very same ⌃ that certifies them (cf. Lemma 3.4). We have reached a
contradiction with (31). ⇤ (Claim 3.16)

Now Ċ, Ṡ, and p̄ 2 g were such that (i) through (iii) on p. 38 hold true. We
showed that the set of all q  p̄ with q � Ċ \ Ṡ 6= ; is dense. As Ċ was arbitrary,
this buys us that Ṡ

g will be stationary in V [g]. But then, as Ṡ was arbitrary, this
means that every element of (P(!1) \N!1) \ I⇤ will be stationary in V [g]. ⇤
(Lemma 3.12)
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4 Open questions.

Woodin [55] also introduced the axiom (⇤)+ as a strengthening of (⇤). (⇤)+ says that
there is some pointclass � ⇢ P(R) and some filter g ⇢ Pmax such that

(1) L(�,R) ✏ AD
+,31

(2) g is Pmax-generic over L(�,R), and

(3) P(R) ⇢ L(�,R)[g].

See [55, p. 908]. While the main result of the current paper gives a new twist to the
question if MM is compatible with (⇤)+, see [55, p. 923, Question (15) a)], it also
leaves this question wide open. See [60].

There is a strengthening of MM
++, isolated by Viale [53], which has strong com-

pleteness properties modulo forcing similar to those of (⇤). This is the axiomMM
+++.

This axiom says that a class T of towers of ideals with certain nice structural prop-
erties is dense in the category of stationary set preserving forcings; in other words,
for every stationary set preserving forcing P there is a tower T in T such that P
completely embeds into T in such a way that the quotient forcing preserves station-
ary sets in V

P. MM
+++ implies MM

++, if  is an almost super-huge cardinal, then
there is a partial order P ⇢ V that forces MM

+++, and if there is a proper class of
almost super-huge cardinals, then MM

+++ is complete for the theory of the !1-Chang
model32 with respect to stationary set preserving partial orders forcing MM

+++.
Schindler [42, Definition 2.10] introduces MM

⇤,++ as a strengthening of MM
++ by

relaxing “forceable by a stationary set preserving forcing” to “honestly consistent”
in an appropriate formulation of MM

++, see [42].
It remains open if either of MM

+++ or MM
⇤,++ is really stronger than MM

++.
While Viale’s MM

+++ is known to be consistent modulo a super-huge cardinal, it is
open at this point if MM

⇤,++ is consistent at all relative to large cardinals.
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[4] G. Cantor, Über eine Eigenschaft des Inbegri↵es aller reellen algebraischen
Zahlen, Crelles Journal f. Mathematik 77 (1874), pp. 258-262.

[5] B. Claverie and R. Schindler, Increasing u2 by a stationary set preserving forcing,
Journal of Symb. Logic 74 (2009), pp. 187-200.

[6] B. Claverie and R. Schindler, Woodin’s axiom (⇤), bounded forcing axioms, and
precipitous ideals on !1, J. of Symbolic Logic 77 (2012), 475–498.

[7] P. Cohen, Set theory and the continuum hypothesis, Benjamin, New York, 1966.

[8] P. Doebler and R. Schindler, ⇧2 consequences of BMM plus NS is precipitous and
the semiproperness of all stationary set preserving forcings, Math. Res. Letters
16 (2009), pp. 797-815.

[9] P. Doebler and R. Schindler The extender algebra and vagaries of ⌃2
1 absolute-

ness, Münster Journal of Mathematics 6 (2013), pp. 117-166.

[10] I. Farah, All automorphisms of the Calkin algebra are inner, Ann. of Mathemat-
ics 173 (2011), pp. 619–661.

[11] S. Feferman, H. Friedman, P. Maddy, and J. Steel, Does mathematics need new
axioms?, Bulletin of Symbolic Logic 6 (2000), pp. 401-446.

[12] Q. Feng, M. Magidor, and W.H. Woodin H., Universally Baire Sets of Reals,
in: Judah H., Just W., Woodin H. (eds) Set Theory of the Continuum. Math-
ematical Sciences Research Institute Publications, vol 26, Springer, New York,
NY 1992.

[13] M. Foreman, M. Magidor, and S. Shelah, Martin’s Maximum, saturated ideals
and non-regular ultrafilters I, Ann. of Mathematics 127 (1988), pp. 1 - 47.
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