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ABSTRACT  

Genetic variation that is generated by mutation, recombination, and gene flow can 

reduce the mean fitness of a population, both now and in the future. This ‘genetic load’ 

has been estimated in a wide range of animal taxa using various approaches. 

Advances in genome sequencing and computational techniques now enable us to 

estimate the genetic load in populations and individuals without direct fitness 

estimates. Here, we review the classic and contemporary literature of genetic load. 

We describe contemporary approaches to quantify the genetic load in whole genome 

sequence data based on evolutionary conservation and annotations. We show that 

splitting the load into its two components — the realized load (or expressed load) and 
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masked load (or inbreeding load) — can improve our understanding of the population 

genetics of deleterious mutations. 

 

 

 

 

[H1] Introduction 

The evolutionary forces of mutation, recombination and gene flow introduce novel 

genetic variants into populations that form the substrate for natural selection and 

genetic drift, thereby driving evolutionary change. However, assuming that a 

population is adapted to its current environment, random changes to its genetic 

variation are more likely to be deleterious than beneficial1. Even for a novel beneficial 

variant, substitution of its ancestral variant creates a burden on the population, which 

is the cost of natural selection2. The resulting reduction in individual and mean 

population fitness is the genetic load, which could be considered as the price paid by 

a species for its capacity for further evolution3. 

  Various ‘load’ definitions have been proposed to describe different processes 

that can lead to a reduction in fitness (Box 1). The term genetic load was introduced 

in 19504. With a focus on the phenotype, it is defined as: “the proportion by which the 

population fitness (or whatever other trait is being considered) is decreased in 

comparison with an optimum genotype”5. This definition emphasizes the loss of fitness 

in the present population. However, it ignores any potential future loss in fitness 

caused by partially recessive deleterious mutations whose effects are not fully 

expressed. The “total load”6 includes those masked mutations; for the purpose of this 

Review, the term ‘genetic load’ refers to ‘total load’. 

In the field of conservation genomics, understanding this total genetic load is 

important to assess its impact on the health and viability of endangered populations, 

both now and in the future. According to the International Union for Conservation of 

Nature (IUCN) Red List of Threatened Species, 30,449 out of 65,364 (46.6%) species 

of animals, fungi and plants are in decline7.  During population decline, the 

composition of the genetic load changes, with many previously masked mutations 

becoming expressed. Hence, understanding the genetic load, as well as its 

composition, helps to guide future conservation efforts. 



 Empirical studies on the relationship between inbreeding and fitness estimates 

have improved our understanding of genetic loads in populations that have undergone 

demographic changes8–12. Such studies are relevant for evolutionary biology and 

conservation but assessing individuals’ fitness is challenging in wild populations, 

especially in threatened species. Genomes contain valuable information about an 

individual’s ancestry and health, including its genetic load. Recent studies have been 

able to analyse genetic load dynamics using whole-genome data even in the absence 

of fitness data (Supplementary Table 1). 

 Here, we review the classic population genetic definition of the genetic load13. 

We discuss the unit the load is measured in, that is, the lethal equivalents, and show 

how components of the load can be defined at the population and individual levels. 

We then describe current approaches that estimate the load using whole-genome 

sequence data without direct fitness estimates. Furthermore, we summarize what we 

have learnt from empirical studies that have estimated the load using whole genomes 

in wild animal populations, which have mainly focused on vertebrates 

(Supplementary Table 1). Finally, we discuss promising research areas and potential 

future developments in the theoretical and applied study of genetic load. We focus on 

sexually reproducing outcrossing diploid animals, although some of the concepts we 

cover are also relevant to plants and microorganisms, depending on their evolutionary 

dynamics. Also, we consider only (unconditionally) deleterious mutations, and not the 

genetic load that can be introduced by novel, better-adapted mutations that replace 

original variants.  

 

[H1] The genetic load components 

From a population genetics perspective, the genetic load can be defined as a statistic 

that summarizes the selection and dominance coefficients of deleterious mutations as 

a function of their frequencies in a population (Box 2, equations [1], [2] and [3]13,14). 

The genetic load can also be expressed as a function of the genotype of these 

mutations in an individual genome (Box 2, equations [5], [6] and [7]). Furthermore, 

assuming that the fitness effects of mutations act independently and multiplicatively 

across loci, the impact of the genetic load on fitness is approximated by equations [8] 

and [9] (Box 3). Some confusion has arisen in the literature because the fitness effects 

of mutations are generally calculated multiplicatively, particularly for traits that affect 



survival probability. However, the value of the load (that is, the lethal equivalents) is 

calculated by summing the selection coefficients (Box 2). 

 In diploid organisms, the genetic load can be partitioned into the realized load 

(also known as expressed load6) and the masked load (also known as the inbreeding 

load15,16 or potential load17,18). The realized load reduces the fitness in the current 

generation, whereas the masked load quantifies the potential fitness loss due to 

(partially) recessive deleterious mutations that may become expressed in future 

generations depending on the population’s demography (for example, inbreeding, 

population decline or subdivision). The genetic load is the sum of the realized load and 

the masked load. This terminology emphasizes the effect of the load rather than 

processes that give rise to the load (Box 1). Put simply, the genetic load is binary: the 

deleterious fitness effects of a mutation can either be expressed (in the realized load) 

or not expressed (in the masked load). Furthermore, the mean fitness of a population 

subject to the negative effects of deleterious mutations is approximately equal to the 

negative exponent of the realized load (Box 3).  

 The unit of the load components is the lethal equivalent, and it was originally 

defined in terms of additive fitness effects as “a group of mutant genes of such number 

that, if dispersed in different individuals, they would cause on the average one death, 

e.g., one lethal mutant, or two mutants each with 50 per cent probability of causing 

death, etc.”13. However, under a model of multiplicative fitness effects, a more 

accurate definition of a lethal equivalent is a group of mutant alleles with a summed 

selection coefficient equal to one. Assuming that the fitness effects of mutations are 

multiplicative across loci, the survival probability of an individual with a realized load 

of one lethal equivalent is approximately equal to e-1 (~36.8%), and with two lethal 

equivalents equal to e-2 (~13.5%). It can also be understood as the zero term in a 

Poisson distribution whose mean is in lethal equivalents, that is the proportion of 

individuals that carry zero lethal equivalents19.  

Our definition assumes that each mutation reduces fitness by a given 

probability, which might be more appropriate for studies on the survival rate, such as 

in the analysis of inbreeding depression or extinction risk in conservation genomics. 

According to this definition, individuals with a realized load of more than one lethal 

equivalent can still survive. It makes the explicit assumption that (semi)lethal mutations 

have low frequencies in the population and, hence, that homozygous lethals are rare. 

If (semi)lethal mutations are common, fitness is not equal to the negative exponent of 



the realized load. For example, death is certain for an individual that expresses a lethal 

mutation (and not e-1~36.8%) (see Supplementary Information SI1–SI2 and 

Supplementary Figures S1-S2 for further details). 

 Depending on the age of a population, the genetic load has a non-linear 

relationship with the effective population size (Ne) (Fig. 1). Small populations that have 

persisted for long periods of time are expected to possess the highest genetic load 

because many slightly deleterious mutations have become fixed, which elevates the 

realized load. By contrast, small populations tend to possess a low masked load. 

Hence, they are not expected to show much inbreeding depression17, as mating 

between close relatives does not substantially increase the number of homozygous 

deleterious loci. The masked load increases with population size, making large 

populations more prone to inbreeding depression during population decline (Fig. 1). 

Although bottlenecks purge some highly deleterious mutations, thereby reducing the 

genetic load20–22, they also convert the masked load into the realized load. 

Furthermore, prolonged bottlenecks eventually result in a persistent realized load due 

to the fixation of deleterious mutations23 (Fig. 2). Consequently, even after 

demographic recovery, migration or genetic rescue might be required to replace fixed 

deleterious variants and restore fitness18. 

 

[H1] From genomes to load estimates  

In absence of direct fitness information, genetic load estimates can be obtained from 

whole-genome sequencing data in two steps. First, the deleterious effects of mutations 

are predicted. Second, the deleterious scores of these mutations are summarized to 

produce a load index, or a set of indices, which can be considered as proxies and 

used to study the load components.  

 

[H2] Predicting deleterious mutations  

Various methods have been developed to predict the fitness consequences of 

mutations that can be broadly grouped in two categories (Table 1): (1) methods 

analysing the evolutionary conservation across a multi-species alignment; and (2) 

approaches estimating the expected effects based on the type of substitution and its 

known effects in model species. A third, less widely used source of information is the 

level of gene expression of the mutated gene. 



 Evolutionary conservation approaches can be applied to whole-genome 

sequences without annotations. A multiple sequence alignment is built to assess the 

level of conservation at individual nucleotide or genomic regions across lineages. Point 

mutations, insertion and deletions (indels) and structural variants can all contribute to 

the genetic load24, but most predictors focus on point mutations (Table 1, 

Supplementary Table 1). A score quantifying the harmful effects of each variant is 

then assigned under the assumption that the level of conservation in the alignment 

reflects its functional importance25–28. The accuracy of the prediction increases with 

the number and the phylogenetic distance of the species in the alignment, as long as 

anchor species at intermediate evolutionary distances are also included26,29. Large 

alignments can be challenging given that there is considerable turnover of constrained 

sites across phylogenies30, and because they are computationally intensive. Lineage-

specific substitutions should be considered with great care, as they may represent 

adaptations, or they may reflect changes in selection pressures, rather than 

unconditionally deleterious mutations30.  

 One of the most widely used methods based on evolutionary conservation, 

especially in wild animals, is genomic evolutionary rate profiling (GERP)26,31. A GERP 

score is a continuous variable estimating the average number of substitutions that 

would have accumulated under neutrality but have been removed (‘rejected’) by 

purifying selection. High scores reflect many rejected mutations and indicate that 

substitutions are only rarely tolerated during evolution26,31. Sites with high GERP 

scores are assumed to experience strong negative selection, although turnover of 

sites and changes in selection pressures across the phylogeny set limitations on the 

use of comparative genomic approaches30. 

 An alternative approach to evolutionary conservation methods consists of the 

direct inference of possible mutation effects using information from biochemical 

studies or functional annotations of the site or region where the mutation occurs32,33. 

For example, the chemical properties of amino acids can be used to assign numerical 

scores to any of the possible changes34. Also, substitutions in a coding region can be 

categorized as either synonymous (more likely to be selectively neutral) or non-

synonymous (possibly deleterious). This type of information can be translated into a 

categorical variable such as low, moderate or high according to their predicted nearly 

neutral, mildly deleterious or highly harmful type of change. Additional information 

based on protein structure, experimentally known effects of the mutation or more 



detailed genome annotations can provide further data on the effects of variants such 

as missense, frameshift, stop-gain, loss of function, as done, for example, by 

SNPEff32,35 A derived mutation can erroneously be predicted as deleterious when it 

has been identified using one or a few outgroups or when multiple mutations occur at 

the same site. Such errors can be avoided by integrating the probability of multiple 

mutations at the same site based on the overall mutational spectrum36 in the target 

species or population and applying corrections based on the DNA sequence context37. 

 Predictions of the negative impact of a mutation become more precise and 

reliable as the quality of the genome annotation increases, and if evolutionary 

conservation is included as one of the annotation variables (for example, combining 

conservation scores and mutation type with local DNA structure, GC content, distance 

to splice sites and gene expression)33,38–40 (Table 1). Some of these ensemble 

approaches, such as SIFT38,41, PolyPhen39, ANNOVAR33 and VEP40, directly target 

functional effects of regions that are already known from existing databases33,38–41, 

whereas others, such as CADD42 or GWAVA43, move beyond the available information 

and assign a deleteriousness score to all potential mutations genome-wide, instead of 

relying on only the established ones42–44. These methods provide reliable evidence of 

the fitness effect of variants, but are mostly available for model organisms and require 

specific genomic alignments and annotations. When focusing on ultra-conserved 

elements45, scores obtained from the genome of a model animal can potentially be 

lifted over to a closely related non-model species. 

 Gene expression data can also be used to predict the potential fitness impact 

of specific variants. This approach takes advantage of the negative correlation 

observed between gene expression and protein polymorphism: highly expressed 

genes are usually associated with highly conserved coding sequences46–49. Mutations 

in highly expressed genes should therefore be prioritized in genetic load estimates. 

However, this approach relies on an additional correlation step between the data and 

the prediction and requires known gene expression levels22. Furthermore, gene 

expression data cannot be applied to single nucleotides, limiting their current 

application to filtering out highly down-regulated genes from genetic load analyses22. 

 

[H2] Translating deleteriousness scores into genetic load proxies  

The predicted effects of variants have been used to produce genetic load proxies for 

single individuals or populations, and several approaches have been proposed (Fig. 



3, Supplementary Table 1). If numerical scores are available (for example, GERP or 

CADD scores), these can be summed or averaged across the genome of each 

individual50–53. These values can be further averaged across individuals to obtain 

quantities related to the population’s genetic load, which can be standardized using 

neutral variation22,54,55. When variants can only be classified into categories according 

to the type of substitution or the intensity of their harmful effect, load indices based on 

the number or ratios of the observed variants in each category can be computed56–62. 

These indices can also be computed separately for homozygous and heterozygous 

loci56–58,63–66, or they can be calculated for deleterious variants that occur at high 

frequency or are fixed in different populations56,67. Furthermore, indices suitable for 

comparing different populations or samples with different ages (for example, ancient 

versus modern) have been developed (for example, RXY
22,66,68). 

Unfortunately, given the various approaches used to translate deleteriousness 

scores into genetic load proxies, there is no agreed gold standard that enables 

comparison of the load components across studies (Supplementary Table 1). Even 

in humans, the load estimates differ markedly depending on how they are calculated69–

72.  

 

[H1] Empirical genetic load estimates  

Until recently, the approaches described above were applied mainly to model and 

domesticated species, where genomic data are abundant and the crucial validation of 

the predicted damage of each variant is frequently possible through functional studies. 

However, their use in wild non-model species is rapidly increasing (Supplementary 

Table 1). 

 

[H2] Genetic load estimates in model and domesticated species 

Model organisms, such as Drosophila melanogaster, have substantially contributed to 

our understanding of how genetic load manifests in genomes73–76. Experimental 

validations were used to assess the fitness effects of specific mutations76, and often 

populations containing known harmful mutations were used to shed light on the 

synergistic epistatic effects and the role of mutations in inbreeding depression77,78.  

 These genomic studies have started to reveal important insights into the impact 

of deleterious mutations both in coding and non-coding regions, which have been 

validated experimentally in some cases. Causative non-coding variants in human 



diseases are often predicted through scores based on diverse genomic features 

derived from gene model annotations, evolutionary constraints and functional 

predictions, such as GERP, GWAWA and CADD31,42,43,79 (Table 1, Supplementary 

Table 1). These multi-source informed predictions have recently been extended to 

non-human organisms, such as mouse44, chicken80 and pig81. The challenge now lies 

in connecting genome-wide bioinformatics predictions and experimental validation of 

fitness effects. Meta-analyses in livestock show consistent fitness reduction when 

genomics-derived inbreeding measurements increase82. For example, a 1% increment 

in inbreeding results in an average decrease of 1.3% for a given trait value83,84. 

Furthermore, genetic load seems to decrease with haplotype age, suggesting purging 

of deleterious variants within the breeding population82,84,85. Potentially recessive 

lethal variants can be identified by screening pedigrees for missing homozygous 

haplotypes86,87, and causal mutations can be validated by combining functional 

annotations with carrier x carrier mating. Such variants can greatly compromise 

population fertility, and lethal recessive haplotypes likely constitute >10% of the 

genetic causes of stillbirths in purebred pigs88,89. 

 Besides phenotypic validations of predicted harmful mutations in living 

organisms, novel developments in organoids, single-cell analyses and CRISPR–Cas 

genome editing greatly enhance our understanding of the functional impact of 

mutations (see 90,91 for reviews). Such studies help bridge the gap between sequence-

derived predictions and fitness-related estimates of genetic load, and their insights 

may eventually be used to alleviate load in target populations92. 

 

[H2] Genetic load estimates in wild animals  

Recent empirical insights into the genetic load have been obtained using whole-

genome data without fitness data in wild animals (see, for example,22,51,63,64,93; 

Supplementary Table 1). Empirical studies in natural populations show that large 

ancestral populations accumulate substantial masked load10,51. During population 

decline, part of this load is lost by random genetic drift, and part is purged by selection 

as recessive deleterious mutations with large fitness effects become exposed by 

inbreeding53,56,94. However, a proportion of the masked load is converted into realized 

load, resulting in inbreeding depression18. Both the type of demographic contraction 

and the distribution of the fitness effects of mutations play important roles in 

determining these processes10,21. Harmful variants can become fixed during extreme 



bottlenecks, but those with larger fitness effects are likely to be purged during long-

term declines56,67,95–99. Persistently small, isolated populations are expected to exhibit 

increased load accumulation due to strong genetic drift18,59,62,64. In this case, highly 

harmful mutations might be effectively purged when exposed to selection under most 

conditions, but mildly deleterious variants can accumulate during demographic 

collapse22,100 (Fig. 2).  

 The patterns observed in wild animals highlight that the genetic architecture 

and degree of dominance also determine the fate of deleterious mutations21,101. 

Accumulation of genetic load has been linked to an increased homozygosity of 

strongly deleterious recessive alleles51,63,93,102 or a rise in frequency of harmful 

mutations53,59 or both58,100. Within genomes, non-coding regions, chromosomal 

rearrangements, regions with runs of homozygosity and introgressed loci carrying 

disadvantageous alleles showed an enrichment of genetic load53,59,103,104. 

 Remarkably, there is little correlation between the IUCN Red List status of 

species and their estimated genetic load105,106. While some endangered species have 

a higher genetic load than their more abundant counterparts55,57,58,63,64,67,93,96,98,102, 

others seem to have a low load51,107. This poor concordance could be partly explained 

by the inconsistency amongst studies in estimating and reporting the genetic load, 

hindering effective conservation management. In addition, on its own, the genetic load 

is not a particularly informative statistic to assess the genetic health of a population. 

For example, the number of lethal equivalents calculated using equation [1] is not 

(immediately) affected by inbreeding or genetic drift, as it takes time to purge 

deleterious mutations108. Moreover, mildly deleterious mutations are expected to 

accumulate slowly in populations with a long-term small effective population size, 

counteracting the purifying effects of selection (Fig. 1). Once fixed in a population, 

these mutations no longer contribute to inbreeding depression10. Therefore, more 

informative than merely reporting the total genetic load is to delineate this statistic into 

its components, i.e., the masked load and the realized load. These components 

capture the current loss in fitness of the population, as well as the predicted future 

fitness loss caused by deleterious mutations that may lower the population’s long-term 

viability17. Such information is crucial for correct management decisions, including 

genetic rescue, assisted gene flow, population supplementation and reintroduction 

programs (see 10,63,64,109,110). Conservation geneticists tend to prioritize maximizing 

genetic diversity rather than minimizing the genetic load111, but with better data and 



understanding of the genetic load, a more balanced approach is likely to improve 

conservation outcomes112. 

 

[H1] Future directions 

 

[H2] Towards a standardized use of genomic data to predict load components  

Previous studies quantified the genetic load by counting the scores of derived 

homozygotes twice, and the scores of heterozygotes once65,69,97,113 (Box 2). With 

estimates of the dominance coefficients, the relative realized load and relative fitness 

of individuals could be calculated (Box 2, Box 3). However, these would be rough 

approximations, and more accurate estimates of masked load and realized load 

require: 1) the identification (and possibly the validation with empirical fitness data) of 

the relationship between deleteriousness scores and selection coefficients; and 2) 

improved estimates of the dominance coefficients. Such data may become available 

— for example, as specific distributions for different bins of selection coefficients114–

118 — with the whole-genome sequencing of thousands of species119–121. The 

improved alignments and annotations of large datasets of whole 

genomes42,79,120,122,123 and the integration of phylogenomic and population genomics 

approaches124 will help to rapidly advance the field. Genomic sequences generated 

for individuals with fitness data across their entire life history, from deceased embryos 

to healthy adults, could be very useful for validating the genomic measures of realized 

load. Fitness data of threatened vertebrates and samples collected post-mortem in 

zoos could provide a largely overlooked, valuable resource for such studies125. 

 

[H2] The genotype–fitness relationship 

The relationship between genome sequence-derived estimates of the load and their 

fitness consequences is mostly untested and usually relies on previously identified 

disease-causing mutations in model organisms and humans126. Whereas functional 

studies on specific mutations predicted to be deleterious are important, most 

potentially harmful mutations will not be experimentally validated (or even explored) in 

most species. In genetic load investigations, a gap has emerged between fitness-

oriented studies and sequence-oriented studies, which infer potential fitness 

consequences based on large species alignments or studies on model species. We 

therefore need improved tools to bioinformatically identify deleterious mutations, such 



as EVE (evolutionary model of variant effect)127, which predicts the pathogenicity of 

protein variants by modelling the distribution of sequence variation across species, 

and VIVID, which integrates evolutionary conservation and functional analyses of 

variants with 3D protein models128. In addition, more field-based studies are needed 

that correlate phenotypic fitness values to the genomic predictions of the load 

components of individuals in their natural environment. Our understanding of the 

relationship between load scores, selection and dominance coefficients and fitness 

effects can be further improved by simulations23,85,109,129. 

 

[H2] How ancient DNA data can contribute to genetic load investigations 

Empirically, the effects of demographic events, such as bottlenecks, population 

fragmentation and population size decline, can best be studied using temporal 

genomic samples (that is, ancient and historical museum-preserved DNA). Time 

series genomic data have been successfully used to show how the accumulation of 

genetic load increases in response to early domestication bottlenecks (the “cost of 

domestication”130,131) and to more recent artificial breeding practices50,132. 

Comparisons between contemporary and historical samples from museum collections 

have also shown increases in the number of deleterious mutations associated with 

higher inbreeding after demographic bottlenecks96,98. Theoretically, only the realized 

load is expected to increase after a rapid population decline, and hence, it would be 

interesting to re-examine these data and calculate the separate load components. 

 Ancient DNA data from extinct populations and species can yield information 

on the genetic load dynamics before extinction133. They can also help to test the 

predicted correlation between increased genetic load and extinction probability134, and 

further our understanding of the genomic signature of population decline and 

extinction135. The assembly of reference genomes from museum samples or from 

ancient samples represents an important development to avoid the bias introduced 

when mapping ancient data to evolutionarily distant modern genomes136,137. However, 

the calling of genotypes from ancient DNA data remains challenging138–140, and it may 

require additional laboratory and computational efforts to confirm the presence of 

deleterious mutations. 

 

[H2] Practical applications in conservation biology 



Both ex situ and in situ conservation of endangered species are increasingly 

implementing genome-level information to more accurately maintain high genetic 

diversity, maximize the representation of different subpopulations, minimize kinship 

and inbreeding, assess genetic introgression and preserve local adaptation22,63,141. 

Future conservation actions could benefit from including proxies of genetic load 

components, for example, to guide captive breeding11, genetic rescue111,129 and 

reintroduction programmes109. We foresee that individual-based modelling 

approaches will become increasingly important, for example, to assess the genetic 

load that has accumulated in the ancestral population. This could be inferred by 

simulating the historic population size and demographic trajectories. Such data can be 

derived from analyses that use whole-genome sequence data to estimate the time to 

the most recent common ancestor142,143, and methods to infer Ne from the spectrum 

of linkage disequilibrium between pairs of loci144. Furthermore, individual-based 

models can be used to assess the future conservation needs of species145. 

 The classical genetic conservation paradigm that globally high diversity equals 

a healthy population is currently being debated, and it is increasingly clear that we 

need to better understand the consequences of the different components (neutral, 

beneficial or deleterious) of diversity10,23,146–148. Genome-wide diversity correlates 

positively with higher (current) fitness149–151, and higher diversity is thought to increase 

the (future) adaptive potential of wild populations152. Similarly, highly diverse 

populations typically carry an elevated masked load. For example, computer 

simulations suggest that high diversity in source populations used for genetic rescue 

could introduce deleterious variation into the recipient population, ultimately resulting 

in more inbreeding depression and a greater extinction risk129. Such advice goes 

against decades of conservation wisdom147,148,153 and has made the application of 

genomic simulations in conservation a much-discussed issue111. Ultimately, the 

specific effects of different types of genetic variation on fitness are complex and will 

depend on the ancestral population size (large versus small17,66), recent demographic 

dynamics (for example, severity and duration of bottlenecks99), the expected amount 

of environmental change154,155 and management interventions such as assisted gene 

flow and genetic rescue109,156. We hope that an improved framework to estimate the 

genetic load and its components will help to deepen these conversations within the 

conservation genetic community. 
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Table 1. Main approaches to predict deleteriousness from genomic data 

 Principle Pros Cons Examples 

Evolutionary 

conservation 

 

Mutations at sites with 

reduced number of 

substitutions compared 

to neutral expectations in 

multiple alignments are 

likely harmful 

Annotation-free; allows 

direct comparisons 

between many species 

Alignments among 

distant species could 

imply errors and 

missing regions; 

computationally 

intensive 

GERP31, 

PhyloP28 

 

Basic 

annotation, 

physicochem

ical 

properties 

 

Well-known functional 

effects of mutations in 

coding regions across 

species are used to 

classify a mutation 

 

 

Alignment -free; simple 

to use and robust in 

classifying major 

classes of 

deleteriousness (e.g., 

non-synonymous, stop 

codons, loss of 

function) 

Require basic 

annotation; focused 

on coding regions; 

numerical scores are 

not always predicted 

SnpEff32, 

Grantham 

scores34 

 



Extended 

annotation  

Diverse information (e.g., 

experimental evidence, 

physicochemical 

properties and 

evolutionary 

conservation) on the 

predicted harmful effects 

of variants is weighted 

and integrated into one 

metric 

Exploit multiple 

information types 

Still largely limited to 

humans, model and 

domesticated 

organisms where 

multiple data sources 

are available 

PolyPhen39,  

SIFT38, 

ANNOVAR33, 

VEP40, 

CADD42, 

GWAVA43 

These approaches are designed principally to quantify the load due to SNPs. Other 

types of polymorphisms (for example, copy number variation, short tandem repeats, 

transposable elements) are not necessarily captured with these methods. 

 

Figure 1. The effects of effective population size on the genetic load partition. 

Individual-based forward simulations in SLiM157 of genetic load expressed in lethal 

equivalents (LEs), simulating a gamma distribution of selection (s) and dominance (h) 

coefficients that reflect empirical observations (see Supplementary Information SI3 for 

further details).  Simulations with constant effective population size (Ne), with yellow 

dots and bars representing the mean and standard deviation across replicates, and 

blue dots indicating individual replicates. The three columns refer to populations at 

quasi-equilibrium (after a burn-in of 2Ne generations), and 4,000 and 8,000 

generations later, respectively. Note that the x-axis shows the Ne rather than 

generation time, and that the LEs plotted on the y-axis are the quasi-equilibrium values 

of the load reached after t=2Ne generations. The masked load increases with Ne and 

it reaches an equilibrium after circa 2Ne generations (top row). By contrast, the realized 

load continues to increase, particularly in small populations (middle row). Strong 

genetic drift across many loci overwhelms the purifying effects of selection in 

populations with small Ne, resulting in the gradual fixation of slightly deleterious 

mutations158. Such mutational meltdown generates a steady decline in fitness20 and 

could even lead to extinction159. 

 

Figure 2. The effects of demographic bottlenecks on the genetic load partition. 

Individual-based forward simulations in SLiM157 of genetic load expressed in lethal 

equivalents (LEs), simulating a gamma distribution of selection (s) and dominance (h) 



coefficients that reflect empirical observations (see Supplementary Information SI3 for 

further details). The effects of demographic bottlenecks of different duration (t= 10, 

100 or 500 years) on the genetic load dynamics (average generation is 2.6 years). Six 

stages are considered: first for 2Ne to reach quasi-equilibrium, followed by another 100 

years at full Ne, 100 years of exponential collapse, a bottleneck stage (Ne=50) of 

different duration, 100 years of recovery and another 100 years after recovery. During 

a bottleneck, inbreeding and drift increase homozygosity, converting the masked load 

into the realized load. This load conversion has two main consequences. Firstly, 

purifying selection purge some (mostly highly) deleterious mutation, thereby reducing 

the genetic load20–22. Secondly, many (mostly mildly) deleterious mutations escape 

purifying selection, resulting in an overall increase of the realized load20–22. After 

demographic recovery, purifying selection reduces the realized load. However, a 

prolonged bottleneck results in a persistent realized load due to the fixation of 

deleterious mutations. These simulations illustrate the dynamics of load conversion 

and do not assess fitness or extinction risk129. Fitness and population viability of post-

bottleneck populations are affected also by factors not simulated in this model, such 

as overall loss of adaptive variation, compensatory adaptive mutations, correlation 

between population density and fitness (Allee effect), environmental change, and loci 

under balancing selection111. 

 

Figure 3. Genetic load proxies used with whole genomes in wild animals 

‘Categorical, basic’ refers to very simple annotations of a variant. ‘Categorical, 

deleteriousness’ refers to partitions where some direct and supported class of damage 

produced by a variant can be identified. ‘Numerical’ refers to scores with a continuous 

value for the impact of the substitution. For each category, we map in the lower section 

of the figure different statistics that are frequently used to summarize the scores in 

populations or individuals and obtain metrics related to the genetic load. When 

homozygous or heterozygous genotypes for a derived allele are identified, the ratio 

between the realized load and masked load can be calculated, thereby providing 

information about the population’s vulnerability to (future) inbreeding. Additional 

details and references are available in the main text and Supplementary Table 1. 

Abbreviations: ROH, runs of homozygosity; SFS, site frequency spectrum. 

  

  



Box 1. Definitions of different types of load 

Different types of load have been introduced in the literature (reviewed in6,160). Some 

definitions emphasize the processes giving rise to the load, whereas others were 

introduced to describe effects on genetic variation, fitness, or population persistence. 

Although these definitions are historically interesting and conceptually insightful, the 

differences can be confusing. In addition, these loads are often of limited practical 

relevance when analysing whole-genome sequence data of wild organisms because 

they lack the analytical framework to study them quantitatively. 

 

[b1] Mutation (or mutational) load4,115,161,162 

The reduction of fitness due to (recurrent) deleterious mutations, or the reduction of 

fitness at the mutation–selection equilibrium. 

 

[b2] Drift load159,163,164 

The reduction of fitness due to the increase of frequency (up to fixation: fixation load; 

during range expansion: expansion load) of deleterious mutations due to random 

genetic drift. 

 

[b3] Evolution load (also referred to as evolutionary, transitory, lag or 

substitution load)165,166 

The reduction of fitness due deleterious (sub-optimal, maladapted) mutations during 

the spread of superior adaptive variants. 

 

[b4] Inbreeding load15,17 

The reduction of fitness due to deleterious recessive mutations unmasked by 

inbreeding. The inbreeding load is the same as the masked load or potential load17. 

 

[b5] Segregation (or segregating) load, sometimes used as a synonym of 

balanced load6,167 

The reduction of fitness due to segregating deleterious mutations; balanced load is the 

reduction of fitness due to mutations that are deleterious in both homozygous 

genotypes, but not in the heterozygote. 

 

[b6] Migration load and hybrid load168–170 



The reduction of fitness due to deleterious (maladapted) mutations introgressed from 

a different population or species after migration or hybridization. 

 

[b7] Recombination load171,172 

The reduction of fitness due to the breakup of favourable combinations of alleles at 

different loci due to recombination. 

 

[b8] Other types of load  

Ecological load173, heterogeneous environment load6, environmental load174, 
incompatibility load5,175, meiotic drive load176,177, pleiotropic load178, gametic load179, 
non-local load180, sheltered load181–183 and gender load184.  



Box 2. Genetic load components 

 

[b1] A population perspective 

A population’s genetic load at the gametic level is the sum of the selection coefficient 

si (the fitness reduction due to deleterious mutation i) of mutations at L loci, multiplied 

by their frequencies qi
13;: 

𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝑙𝑜𝑎𝑑(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = ∑ 𝑞𝑖

𝐿

𝑖=1

𝑠𝑖 

[1] 

The genetic load is independent of genotype frequencies and, hence, theoretically is 

not affected by inbreeding, random genetic drift or recombination. Only mutation and 

natural selection cause a directional change by increasing and decreasing the genetic 

load, respectively. By contrast, the portion of the genetic load that is realized (that is, 

whose fitness effects are expressed) does depend on genotype frequencies, as shown 

in equation 2. The first term expresses the homozygous effects, and the second term 

captures the effects of loci with heterozygous mutations, where hi is the dominance 

coefficient of mutation i: 

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑙𝑜𝑎𝑑(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = ∑ 𝑞𝑖
2𝑠𝑖

𝐿

𝑖=1

+ 2 ∑ 𝑞𝑖[1 − 𝑞𝑖]ℎ𝑖𝑠𝑖

𝐿

𝑖=1

 

[2] 

 

The remaining part of the genetic load is not expressed and thus stays hidden from 

selection. Crow6 referred to this as the inbreeding load, but we prefer to call this as the 

masked load considering that inbreeding tends to reduce this load by unmasking it. 

This terminology also avoids the confusion between a condition (i.e., the fitness effects 

of mutations that have remained masked) and a process (inbreeding): 

𝑀𝑎𝑠𝑘𝑒𝑑 𝑙𝑜𝑎𝑑(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = ∑ 𝑞𝑖

𝐿

𝑖=1

𝑠𝑖 − ∑ 𝑞𝑖
2𝑠𝑖

𝐿

𝑖=1

− 2 ∑ 𝑞𝑖[1 − 𝑞𝑖]ℎ𝑖𝑠𝑖

𝐿

𝑖=1

 

[3] 

Inbreeding converts the masked load into the realized load, by increasing the 

frequency of homozygotes by (1 – F)qi
2 + Fqi, and by reducing the frequency of 

heterozygotes by 2(1 – F) qi(1 – qi), where F is the inbreeding coefficient185. 



Substituting these genotype frequency increases the realized load whilst reducing the 

masked load by the same amount: 

 

𝑀𝑎𝑠𝑘𝑒𝑑 𝑙𝑜𝑎𝑑 (𝑖𝑛𝑏𝑟𝑒𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

= ∑ 𝑞𝑖

𝐿

𝑖=1

𝑠𝑖 − {∑(1 − 𝐹)𝑞𝑖
2𝑠𝑖

𝐿

𝑖=1

+ 𝐹𝑞𝑖𝑠𝑖} − { 2 (1 − 𝐹) ∑ 𝑞𝑖[1 − 𝑞𝑖]ℎ𝑖𝑠𝑖

𝐿

𝑖=1

} 

[4] 

Equations [1-4] are visualized in Supplementary Figure S6. 

 

[b2] An individual perspective 

The different types of loads can also be calculated for individuals, which may be of 

practical use when individual genomes have been sequenced. The individual genetic 

load represents the potential fitness burden of mutations in the individual’s genome, 

affecting its fitness and the fitness of its descendants. It is equal to the sum of the 

selection coefficients (si) across all loci i that are homozygous for the mutant allele, 

plus half the selection coefficients (sj) of all heterozygous mutant loci j (see, for 

example,69): 

𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝑙𝑜𝑎𝑑 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) = ∑ 𝑠𝑖

𝐿(ℎ𝑜𝑚)

𝑖=1

+ ∑ 0.5

𝐿(ℎ𝑒𝑡)

𝑗=1

𝑠𝑗 

[5] 

The factor 0.5 associated with the heterozygous loci in equation [5] expresses the 

probability that a given deleterious mutation at a heterozygous locus is passed on to 

an offspring (not the dominance coefficient). 

 The loss in fitness due to an individual’s genetic load is captured by its realized 

load, and it is equal to the sum of all selection coefficient of all homozygous mutant 

loci, plus the sum of the product of the dominance coefficient (hj) and selection 

coefficient of all heterozygous loci: 

𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑙𝑜𝑎𝑑 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) = ∑ 𝑠𝑖

𝐿(ℎ𝑜𝑚)

𝑖=1

+ ∑ ℎ𝑗𝑠𝑗

𝐿(ℎ𝑒𝑡)

𝑗=1

 

[6] 

Similarly, to equation [3], also at the individual level, part of the genetic load at the 

heterozygous sites is not expressed, and this constitutes an individual’s masked load: 



𝑀𝑎𝑠𝑘𝑒𝑑 𝑙𝑜𝑎𝑑 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) = ∑ (0.5 −

𝐿(ℎ𝑒𝑡)

𝑗=1

ℎ𝑗)𝑠𝑗 

[7] 

This equation shows that additive mutations (h=0.5) do not contribute to the masked 

load, and indeed, these mutations do not contribute to inbreeding depression. This 

expression is also known as the purging coefficient, d = s(1/2 – h), defined by186.  

 Under Hardy-Weinberg genotype frequencies, the values of the loads 

calculated using equations [5 – 7] and averaged over multiple individuals approximate 

to the population’s values computed using equations [1], [2], and [3], respectively. 

Furthermore, equations [5 – 7] can be approximated by using average s and h 

coefficients instead of their sums (see Supplementary Information SI4). 



Box 3. The load components under different conditions and the effect on fitness 

Theoretically, a population could possess a large genetic load and still have a high 

fitness. For example, the genetic load of F1 hybrids of parents from two genetically 

diverged populations is mainly present as a masked load, and hence, the deleterious 

fitness effects of these mutations are not completely expressed (cf. heterosis187). The 

fitness of individuals is only affected by the realized load, and for fitness-related traits 

such as viability and survival, it can be calculated by multiplying the fitness effect 

across all homozygous and heterozygous loci: 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∏ (1 − 𝑠𝑖)

𝐿(ℎ𝑜𝑚)

𝑖=1

∏ (1 − ℎ𝑗𝑠𝑗

𝐿(ℎ𝑒𝑡)

𝑗=1

) 

[8] 

Here, si and sj are the selection coefficients of mutations in homo- and heterozygous 

loci, respectively, and hj is the dominance coefficient. The mean population fitness can 

be approximated by taking the negative exponent of the realized load: 

 

𝑀𝑒𝑎𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ≈ (1 − {�̅��̅�2 + 2�̅�(1 − �̅�)ℎ̅�̅�})
𝐿

≈ 𝑒−{𝑠̅�̅�2+2�̅�(1−�̅�)ℎ̅𝑠̅}.𝐿

≈ 𝑒−𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑜𝑎𝑑 

[9] 

Here, �̅� and ℎ̅ are the mean selection and dominance coefficient averaged across loci, 

�̅� the mean frequency of deleterious mutations, and L the number of loci carrying 

deleterious mutations. Both equation [8] and [9] ignore other (non-genetic) causes for 

fitness loss (cf. the intercept of the regression line in5), and they assume that the 

fitness effects are independent and act multiplicatively across loci. Furthermore, this 

equation assumes Hardy-Weinberg genotype frequencies and that (semi)lethal 

mutations are rare (see also Supplementary information SI1 and SI2). 

 

 

 
 
   
  



GLOSSARY 
 
Anchor species 
A species that is added to the genome alignment between two evolutionarily distantly 
related taxa to help connecting them and facilitate the identification of conserved 
elements 
 
Bottleneck (population bottleneck) 
A sharp reduction in the effective population size over one or multiple generations. 
 
Deleterious mutation 
A poorly adapted genetic variant that reduces fitness relative to the wild type variant, 
thereby contributing to the genetic load. The mutations that remain deleterious 
across alternative environments are called “unconditionally deleterious”.    
 
DNA sequence context 
Extended patterns of DNA sequence composition, as di-nucleotide, triplet or longer 
patterns. 
 
Effective population size 
The number of individuals in an idealized population that shows the same amount of 
genetic drift (that is, random fluctuation of allele frequencies and loss of gene diversity) 
as the actual population. 
 
Fitness 
A measure of the capability of an individual or genotype to survive and reproduce. 
 
Genetic rescue 
Artificial (re)introducing of new (or rare) genetic variants into a population with the 
aim of reducing inbreeding depression, increasing genetic variation and population 
viability. 
 
Inbreeding depression  
The reduction of fitness due to breeding between relatives 
 
Mutational spectrum 
Rate of different types of DNA mutations in different sequence context 
 
Ultra-conserved elements 
Highly conserved genomic regions with (near) identical nucleotide sequences in 
evolutionarily distant taxa  
 
 
 


