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Abstract—Phase-to-Phase Fault (PPF) and Phase-to-Ground
Fault (PGF) are very likely to occur in the generators of wind
turbines. Detecting and classifying these faults are vital to improve
reliability and reduce the maintenance cost in wind turbine
applications. In this paper, a hybrid approach based on Decision
Tree (DT) and Convolution Neural Network (CNN) is proposed to
make a high-performance fault diagnosis system to detect and
classify PPF and PGF in the squirrel cage induction generators.
DT algorithm is used to detect the faulty conditions of the
generator using several features that are derived from the
electrical signals. CNN model is obtained to predict the kind of
faults including PPF and PGF using only faulty data. The
accuracy of the proposed fault diagnosis approach is evaluated
based on the simulation results for a 1.659 MW wind turbine.

Keywords—Wind turbine, squirrel cage induction generator,
Sfault diagnosis, decision tree, deep neural network.

L INTRODUCTION

Wind energy is a clean and sustainable fuel source that is
known as one of the fastest-growing energy sources in the world.
There is about 743 GW wind power capacity worldwide, where
only 92 GW of new capacity is installed in 2020 [1]. It is
expected to reach more than 10 GW additions using only
offshore wind net capacity up to 2022 [2]. Nowadays, wind
turbines are becoming larger, more expensive, and more
complicated to generate large amounts of energy. Installing
offshore wind turbines costs almost 3.3 million pounds per
megawatts [3]. For a relatively large wind turbine, the cost of
having reliable performance and maintenance is greatly high.

Meanwhile, the occurrence of different faults for these
systems is unavoidable as they work in a relatively harsh
environment and are composed of several inter-connecting
electro-mechanical components. Accordingly, developing a
condition monitoring system to detect and classify faults is
indispensable to ensure the reliability, safety, and effectiveness
of wind turbines.

The generator with a 12.1% failure rate has the highest
contributions to the overall offshore wind turbine failures [4].
The main faults in a generator occurred in the stator, rotor,
bearing, and insulation [5]. The failure rate for the only stator is
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about 30% where the most common winding faults in the stator
are PPF and PGF [6].

Current signature analysis is a common fault detection
approach, where the fault frequency components are analysed
based on the spectra of the electrical signals [7]. This technique
usually consists of signal conditioning, spectral analysis, and
fault detection. The inter-turn short circuit in the stator winding
may change the air-gab flux which excites the harmonic
frequencies in the stator winding [8]. Wavelet transforms on the
stator current signals can be used to determine the fault-related
frequency components for a more accurate diagnosis of failure
modes [9]. To effectively detect the faults in the rotor, discrete
wavelet transform can be used to analyse the fault frequencies
of electrical signals [10]. One drawback of the current signature
analysis is that the statistical properties of the signature of the
faults in electrical signals are changing through time. It is a
challenging issue due to the need to design a more complex
condition monitoring system [11]. In addition, this method may
suffer from weak performance to detect faults with relatively
small severity.

As a distinct technique, the instantaneous line currents can
be converted into the Parks vectors where they contain a positive
sequence component in the three-phase current. These vectors
show an elliptic representation in two-dimensional space when
a fault occurs in the generator [12]. In this approach, the twice
fundamental component of parks vector square can be used as a
fault indicator [13]. Park's vectors are not suitable when
different faults have close effects on the wind turbine
performance. Moreover, its accuracy may decrease if the three-
phase currents are far from ideal conditions.

Model-based approaches are another method to detect faults
in the generator using electrical signals. Sliding mode observer
is a technique to estimate the internal states of the generator [14].
By comparing the measured and estimated values of stator
currents, the fluctuations duo to the inter-turn faults can be
observed. An alternative observer is a neural network that has
the capability of estimating nonlinearities in wind turbines
regarding uncertainties and faults [15]. Kalman filter is also used
to estimate the three-phase currents and the residual signals are
used to detect the inter-turn faults as well as fault severity [16].



Dependence on mathematical models is accompanied by
difficulty as wind turbines consist of various highly coupled
components and they are becoming larger to gain more energy.

Feature extraction-based methods are widely used for fault
detection in wind turbine applications. They can be used for both
stationary and non-stationary signals, have less sensitivity to
severity of faults as well ideality of the electrical signals, and
have no dependency on the model of the wind turbine. A
combination of the wavelet transform and Naive Bayes classifier
is proposed in [17] where the earliest is used for feature
extraction and the latter is designed to classify the inter-turn
faults. An approach based on wavelet transform and empirical
mode decomposition is introduced in [18]. This method
determines different modes of the main signal and uses feature
extraction to detect the faults. It is suitable for non-stationary
signals and has robustness against noise. A challenging issue in
these methods is detecting the faults with close impacts on the
wind turbine performance. A solution is using deep neural
networks as they are capable of reducing and optimally tuning
features by themselves. These networks have the robustness to
the data variations and do not need data labeling [19]. Deep
neural networks are used for fault detection in various wind
turbine components like gearbox [20-21], pitch actuator [22],
and converter [23].

The main drawbacks of deep neural networks are their
complex structure, high computational time, and the
requirement for a large amount of data. To overcome these
issues, a hybrid and parallel approach based on Decision Tree
(DT) and Convolutional Neural Network (CNN) as a common
deep learning-based network is proposed in this paper. DT is a
powerful approach to easily read and interpret data. It doesn’t
require normalization and scaling data and has low sensitivity to
missing data [24]. The aim of using DT is to detect the faulty
condition of the generator using electrical signals. Then, two
CNNs are designed to predict the PPF and PGF using only faulty
data. Using DT allows using fewer amounts of data for CNN.
Indeed, using only faulty data for CNN simplifies the structure
of the neural network and reduces the overall computational
time. In order to establish DT, several features are extracted
using the main electrical signals for both healthy and faulty
conditions.

The rest of this paper is organized as follows: the
mathematical model of the wind turbine is described in Section
2. The general structure of the proposed approach is introduced
in Section 3. Feature extraction is given in Section 4. The fault
detection using D, and fault diagnosis using CNN along with the
simulation results are presented in Sections 5, and 6,
respectively. The conclusion is given in Section 7.

II.  MATHEMATICAL MODEL OF WIND TURBINE

As shown in Fig. 1, the drivetrain mainly includes a gearbox,
and a generator, which are connected using a high-speed shaft.
The generator terminals are connected to a grid through a 1 Km
transmission line.

According to Fig. 2, the gearbox consists of a planetary gear.
And two helical gears. The planetary gear includes a carrier,
ring, planet, and sun gears. Its turn ratio N, is given below:

N, ==t (1)

where N, and N, are the number of teeth in the ring and sun
gears, respectively.

Gearbox Generator Trip Breaker
Input Va
Torque |m Vb m
—_
v,
MM e
NN
Grid 1 Km Line Transformer
Ground
Connection

Fig. 1. The main blocks of wind turbine drivetrain

The helical gears include base gear and follower gear.
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Fig. 2. The main blocks of the gearbox
Their turn ratios are defined below:
N, =2 )
" N b

where N, and N, are the number of teeth in the follower and

base gears, respectively. By applying the mechanical torque 7,

from the gearbox to the generator, the angular velocity of the
rotor w, can be obtained as follows [25]:
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where T, is the electromechanical torque. A and F are the

combined rotor and load inertia constant, and viscous friction
coefficient, respectively. The electrical part of the asynchronous
machine can be represented by a fourth-order state-space model
as follows:
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where (Vqs,iqx,(/)qs), (V. iy.9, ), are the g-axis and d-axis
stator voltages, currents, and fluxes, respectively. R and R',
are the stator and rotor resistances, respectively. w, denotes the

electrical angular velocity and can be obtained as below:

W, = pxXw, Q)

where p is the number of poles. The reference velocity in the
reference frame fixed to the rotor is w . (V’q,,i'q,,(o'q,) and

(V',.i',,9',) are the g-axis and d-axis rotor voltages,

currents, and fluxes, respectively. The equations for the rotor
and stator fluxes are given below [25]:
qu = Liiq\‘ + Lmi 'ql’
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where L, is the magnetizing inductance. L and L' are the
total stator and rotor inductances, respectively. 7, can be
obtained as follows:

T, =1.5p (@i, — Pyl ) (7)

In this paper, the turn ratio of the gearbox is 1:84:3. The
mechanical power, rated power, and rated current of the turbine
are 1800 KW, 1659 KW, and 1740 A, respectively. The
generator is 4 poles asynchronous induction machine which
operates at 50 Hz, 1200 rpm rotational speed.

The PPF and PGF are emulated at the terminals of the
generators as shown in Fig. 3. The phase resistor R, is equal to
10°Q, while the ground resistor R, is chosen 10°Q and
10° Q when it aims to make PPF and PGF, respectively. The

circuit breaker has the role of activating PPF and PGF among
the operating wind drivetrain.
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Fig. 3. Emulating PPF and PGF at the terminals of the generator

III. THE PROPOSED FAULT DIAGNOSIS ALGORITHM

The general block diagram of the proposed fault diagnosis
algorithm is shown in Fig. 4. As it can be seen, the proposed
algorithm is composed of three main subsystems: The feature
extraction stage, the Fault detection stage, and a Fault
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classification stage. To detect and classify PPF and PGF in the
generator, the three-phase stator currents are gathered for both
healthy and faulty conditions at various wind speeds and
directions. These signals in addition to their power spectral
density are used to extract several features including mean,
standard deviation, kurtosis, crest factor, skewness, and shape
factor. DT Model is trained using these features for both healthy
and faulty conditions. The model is used to carry out the fault
detection stage. By using the features for faulty features, a CNN
is trained to classify the faults including PPF and PGF.
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Fig. 4. Block diagram of the proposed fault diagnosis system

IV. FEATURE EXTRACTION

Feature extraction is an effective approach to reduce the
dimension of the original dataset by creating new specifications
from the existing ones. Features can be obtained using the time-
domain signals, fast Fourier transform, wavelet functions, and
Power Spectral Density (PSD). In this paper, three-phase stator
currents and their PSD are used to extract the features at various
wind profiles. Figure 5 shows the different wind speeds and
directions.
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Fig. 5. Various wind speeds and directions



It is supposed that the PPF and PGF occurred at different
phases and different periods of time. As an example, the first
phase current signal for both healthy and faulty conditions is
shown in Fig. 6. The PPF and PGF occurred between 40 sec to
42 sec, and between 42 sec and 44 sec, respectively.
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Fig. 6. The healthy and faulty first phase current signals

The PSD of the current signals is also used to extract the
features. Figure 7 shows the results of PSD for the healthy and
faulty first phase current signals.

o

Healthy

100 200 300 400 500 600 700 800 900 1000
sample

PSD (1st phase)
o

o
o

—r]]

N

=]

=]
T

PSD (1st phase)
g

o

0 100 200 300 400 500 600 700 800 900 1000

sample

o

PGF

PSD (1st phase)
(&

. . . PN
100 200 300 400 500 600 700 800 900 1000
sample

o
o

Fig. 7. The PSD of first phase current signal for healthy and faulty conditions

In this paper, mean, standard deviation, skewness, kurtosis,
and crest factor are chosen as the features to gather the required
data for training DT. Skewness S, is a measure to determine the
deviation of a distribution from a normal one and can be
described as follows [26]:
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where x € RY is the dataset, N is the number of data, X , and
x,,, are the mean, and standard deviation, respectively. Kurtosis

K, which is given below is a measure to find how distribution
is too peaked or too flat.

N 4
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The crest factor C, is the ratio of peak value to the effective

value of a signal. Figure 8 shows the results of skewness for both
healthy and faulty conditions. These data along with the results
of other features are used as training data for the DT algorithm
as well as the CNN.

V. FAULT DETECTION USING THE DT ALGORITHM

DT is a hierarchal algorithm that aims to extract the patterns
in the dataset for data classification. It is composed of decision
rules that are applier the patterns to discriminate the feature
space into single class subspaces [27]. The block diagram of the
DT algorithm is shown in Fig. 9, where the root node denotes
the dataset, the decision node refers to sub-nodes splits to further
sub-nodes, and the leaf node is a node that doesn’t split. In this
paper, the Classification and Regression Tree (CART) algorithm
is used to carry out DT. This algorithm uses the following
objective function called Gini to measure the reduction in class

impurity:
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Fig. 8. Skewness values for both healthy and faulty conditions
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Fig. 9. The block diagram of the DT algorithm [27]
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Gini = impurity (Parents)— Y ( p; )impurity (Child, ) (10)
k
where the impurity is the probability of incorrectly classifying
data and is given below:

impurity=l—Z:"p(j)Nj(t)/Nj"2 (11)

where p( ) is the prior probablhty that the jth sample belongs
to a class. N; is the number of samples in class j. Parents and
Childs refer to decision and leaf nodes.

The dataset for DT is a matrix that includes five features as
the rows and 720 data for each column with healthy and faulty
labels. The key parameter to achieve the best performance is the
number of leaf nodes that corresponds to the minimum objective
function. According to Fig. 10, a minimum of five-leaf nodes is
required for
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Fig. 10. Obtaining a minimum number of leaf nodes

Figure 11 shows the structure of the DT algorithm which
describes the classifying rules for discriminating healthy and
faulty conditions. The accuracy of the DT algorithm for
classifying healthy and faulty features is 97 %.
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Fig. 11. The classifying rules of the DT algorithm
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VI. FAULT DIAGNOSIS USING CNN

The third stage of the proposed algorithm is classifying PPF
and PGF using only faulty features. A CNN model based on the
configuration in Fig. 10 is trained where the network consists of
a convolution layer, a pooling layer, and a fully connected layer.
The local features of the input data are identified and saved as
feature maps. The process is carried out using the following
convolution [28]:

F F
y[j = h[zzWrcx(rJrixx)(CJrjxx) +bj (12)

r=1 c=1
where y, is the result of the feature map for each node. h() is
the nonlinear activation function, and b is the bias. In addition,

w,, is the weight at point (r,c),and x is an element

r+i><.s‘)(c+j><x)
of input space. W and H are the width and height of input
space, respectively. F and S are the width and height of the
mapped space.
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Fig. 12. The block diagram of CNN

The pooling layer has the role of dimension reduction by
optimally reducing the number of parameters. The classification
process is carried out in the fully connected layer. In order to
classify the faults, the features for PPF and PGF are labeled as
2, and 3, respectively. By considering 80 percent of data for
training, and 20 percent of data for testing, the CNN model is
obtained. As shown in Fig. 13, the CNN can predict the type of
faults in most cases. One of the key parameters to obtain the best
performance of CNN in case of accuracy and root mean square
error is the number of hidden units. According to Table 1, the
best performance is achieved when 50 hidden units are chosen
for CNN.
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Fig. 13. The results of CNN for fault diagnosis



TABLE L THE ACCURACY OF FAULT DIAGNOSIS STAGE

Number qf hidden Accuracy (%) Root mean square
units error
10 87.3 0.77
50 90.5 0.32
100 88.7 0.43

VII. CONCLUSION

In this paper, a hybrid approach based on the DT algorithm
and CNN is proposed to detect and classify PPF and PGH in
wind drivetrain. A dataset that includes the three-phase current
signals and their PSD is provided to extract features. Based on
five features including mean, standard deviation, skewness,
kurtosis, and crest factor, the input data is applied to the DT.
Using the classifying rules of DT, 97.2% accuracy is obtained in
the fault detection stage. By properly training the CNNs using
only faulty features, 95.4% accuracy is achieved in the fault
diagnosis stage. In our future works, it aims to consider other
kinds of faults in wind drivetrain including air gap eccentricity,
rotor imbalance, and broken rotor bar.
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