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The validity of spatial data-based EIA screening decisions  

Abstract: Screening is an important step in the EIA process as it is here where the 

significance of possible impacts associated with a proposed development is first 

considered and the need for an assessment is determined. There is no one-size-

fits-all approach to screening, but approaches can broadly be categorised into 

discretionary approaches and prescriptive approaches. In both types of 

approaches spatial information can be used to inform screening decisions and, in 

some cases, determine the screening outcome altogether. This paper explores the 

validity of spatially based screening decisions by evaluating the possible influence 

of spatial data on decisions – especially as it relates to data accuracy and scale. A 

sample of ten screening decisions for South African case studies are reviewed and 

spatial information analysed to illustrate the possible effects of data accuracy and 

scale on screening decision making. It was found that screening based on spatial 

data can lead to both unnecessary EIAs being conducted as well as potentially 

important EIAs being screened out. It is recommended that screening approaches 

should allow for more flexibility and allow for discretion where spatial data is 

concerned. 
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Highlights 

• An evaluation of the validity of spatial data-based EIA screening decisions. 

• Screening based on spatial information can result in invalid screening decisions. 

• The accuracy and scale of spatial information might affect screening decisions. 

• A more flexible and discretionary screening process is advocated. 
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1. Introduction 

Screening is the first and arguably the most important step in the EIA process and has 

been evaluated in numerous publications (e.g. Pinho et al., 2010; Retief et al., 2011; 

Clarke & Menadue, 2016; Geneletti et al., 2017; Rocha & Fonseca, 2017). It is often 

contentious, as evidenced by the fact that screening decisions are typically the most 

frequent basis for court action: for example, Canter (1996) reports the most common 

basis for litigation under the National Environmental Policy Act in the US being the lack 

of EIS where one should have been prepared; and Wood and Becker (2005, p.353) cite 

screening as the most frequent source of “actual infringements” of the European EIA 

Directive. This is because it is the first point in the EIA process where the significance of 

impacts is considered and the subsequent need for an EIA is determined (IAIA, 1999; Ross 

et al., 2006; Weston, 2011).  

 

Different EIA systems conduct screening in different ways that can be broadly described 

as either discretionary or prescriptive (Clarke & Menadue, 2016). In discretionary-based 

systems decision makers have to consider, usually on a case-by-case basis, the 

significance of possible impacts and make a decision on the need for an EIA (Macaulay & 

Richie, 2013). These decisions and the discretion involved are often influenced by 

subjective factors such as ideology, professional background and personal affinities as 

well as feasibility factors such as time-constraints and availability of resources 

(Christensen & Kørnøv, 2011). Prescriptive systems leave very limited room for discretion 

and are based on pre-determined activity lists, thresholds and other criteria such as 

capacity and size of developments to determine if a proposal should be subject to an EIA 

(Macaulay & Richie, 2013). 

 

Many countries, however, employ a hybrid screening system combining discretionary 

and prescriptive approaches (Macaulay & Richie, 2013). There is therefore no one-size-

fits-all approach to screening internationally, with many countries, and even jurisdictions 

within countries, implementing their own uniquely tailored systems, often with 

considerable variation in criteria and thresholds (Clarke & Menadue, 2016). This means 

that screening outcomes for the same proposed development will differ between 

countries, between different areas of jurisdiction within a country (Rocha and Fonseca, 

2017), and between decision-makers within the same jurisdiction (Wood and Becker, 

2005). That is, prescriptive requirements vary across jurisdictions, and the application of 

discretion varies both across, and within, jurisdictions.  

 

In addition to activity lists and thresholds, some prescriptive screening systems also 

include the use of spatial data to determine screening decisions (Vanderhaegen & Muro, 

2005; Geneletti, 2008; Retief et al., 2011). This is not to say that discretionary systems do 

not also consider spatial information, however, this will differ from prescriptive systems 

where there is limited interpretation or questioning of spatial information during the 

screening decision making process. An example of this is the South African EIA system 
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that relies on a list-based screening mechanism (prescriptive) that is additionally 

informed by spatial data. According to the South African EIA Regulations (South Africa, 

2017a), some activities will be subject to EIA if the proposed development footprint 

overlaps spatially with specified environmental attributes mapped in accordance with 

spatial datasets. In cases such as this, the screening decision on the need for and extent 

of an EIA will be significantly influenced by the availability and accuracy of spatial 

information (Haklay et al., 1998; Del Campo, 2012; Bahindwa, 2018; Underwood et al., 

2018; Vanderhaegen & Muro, 2005; Geneletti, 2008; Retief et al., 2011).  

 

The important role and contribution of spatial information in EIA has been widely 

discussed and demonstrated in the literature (e.g., João, 1998; Antunes et al., 2001; João, 

2002; Patil et al., 2002; Satapathy et al., 2008; Campo, 2012; Gharehbaghi & Scott-Young, 

2018). Moreover, these studies highlight the importance of spatial information accuracy 

in EIA processes, especially as it pertains to the issue of scale. João (2002) specifically 

evaluated the influence of scale on the outcomes of EIAs in the UK, concluding that it may 

influence results by affecting aspects such as the determination of impact significance 

and the measurement of environmental parameters. Expanding on this theme, this paper 

explores the validity of spatial data-based EIA screening decisions by addressing the 

following objectives: 

 

• Objective 1: Evaluate the accuracy of spatial data in screening determinations 

through auditing. 

• Objective 2: Analyse how data scale might influence screening decisions. 

 

The paper uses South Africa as a case study area as it has an EIA system that employs a 

prescriptive list-based screening mechanism that is partially informed by spatial data 

(Alberts et al., 2020) and further has a well-established EIA system and a rich history and 

availability of spatial information. Nevertheless, the findings in relation to spatial accuracy 

and scale have relevance globally. Some important properties and characteristics of 

spatial information are discussed first followed by a description of the methodology. The 

results are next presented and discussed, followed by the conclusion and 

recommendations. 

 

2. Spatial screening in South Africa  

The South African EIA Regulations of 2017 (South Africa, 2017a) specifies a number  of 

activities for which an environmental assessment will be required if the proposed 

development footprint overlaps with specified mapped environmental attributes. Listing 

Notice 3 of the EIA Regulations (South Africa, 2017b) makes specific reference to mapped 

environmental attributes such as areas of sensitive biodiversity, watercourses and 

wetlands. These environmental attributes are mapped at varying scales by a variety of 
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government entities such as the Department of Forestry, Fisheries and the Environment 

(DFFE), the South African National Biodiversity Institute and the Chief Directorate: 

National Geo-spatial Information, who all act as data custodians for specific datasets. 

Datasets are made available to the DFFE for inclusion in the National Screening Tool, 

which is a web-based system through which development footprints are evaluated 

against all available spatial data. The system overlays the proposed development 

footprint with said spatial data and generates a report indicating which mapped 

environmental attributes are intersected by the proposed development footprint and 

might subsequently be affected. The report is submitted by a potential applicant to the 

relevant authorities for use in the screening decision. For example, if a developer 

proposes the construction of a water reservoir with a capacity exceeding 250 cubic 

meters and the report indicates that the development footprint intersects a mapped area 

of sensitive biodiversity (regardless of the spatial scale), the developer will be required to 

do an environmental assessment in terms of GNR 546 2(a)(i)(dd)1. The screening criteria 

and decision is reflected in the final EIA report. 

 

3. Representing reality as spatial information 

Mapping is the process of simplifying and displaying elements of the real world spatially 

(Bernhardsen, 2002). This process entails identifying real-world objects and processes 

and representing them as features, entities or continuous surfaces in spatial information 

which can be depicted on a map. When attempting this representation both the accuracy 

and the level of detail (scale of representation) at which it is done should be considered 

as this will ultimately determine the reliability and usability of the spatial data (Chang, 

2009). The importance of data accuracy and data scale is subsequently discussed. 

3.1. The importance of data accuracy 

Maps have always been subject to inherent accuracy limitations (Thapa & Bossler, 1992) 

affecting the manner and extent to which they reflect reality (Foody, 2001). These 

limitations remain relevant in the digital era and often result in imperfections in spatial 

data that must be carefully considered (Devillers et al., 2010; Delavar & Devillers, 2010). 

The assertion by Thapa and Bossler (1992, p839) that the digital era has introduced a 

“false sense of accuracy” in spatial data, further highlights the importance of continued 

research into themes such as (Devillers & Jeansoulin,  2006; Bernhardsen, 2002; Thapa 

and Bossler, 1992): 

• Positional accuracy: The accuracy of the position of features represented in 

spatial data in relation to reality, usually expressed in a measurement unit such 

 
1 GNR 546 refers to Government Notice Regulation 546, 2 refers to the specific activity and 

(a)(i)(dd) to the relevant spatial feature, which in this case is mapped areas of sensitive 

biodiversity. 
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as metres. 

• Attribute accuracy: the accuracy of the quantitative and qualitative attributes 

describing spatial features. 

• Logical consistency: the degree to which the logical rules of data structure, 

attribution and relationships are adhered to. 

• Dataset completeness: the extent to which features, their attributes and 

relationships are present or absent in the dataset. 

• Temporal accuracy: the temporal validity of a dataset (how current it is); the 

temporal consistency of a dataset (order in which events were captured); and rate 

of change the feature being mapped. 

All of the above contributes to the overall accuracy of a spatial dataset, and many of these 

can be threatened by the introduction of errors during data capturing. Mainly three types 

of errors affect spatial data quality: human errors; instrumental errors; and 

environmental errors (Thapa and Bossler, 1992; Stine & Hunsaker, 2001; Züfle et al., 

2020). Human error is introduced when those responsible for capturing the spatial data 

make mistakes – either accidentally or intentionally – such as inaccurately capturing 

variables, making typing errors or overlooking certain features. Instrumental errors 

concern faulty or incorrectly calibrated instrumentation; while environmental errors 

could result from environmental conditions at the time of measurement or 

measurements taken at the wrong time, e.g. not considering seasonality.  

A final factor that can affect the accuracy of spatial data is the concept of error 

propagation. When a dataset is derived by combining several spatial datasets (e.g. 

identifying areas of high biodiversity based on data for individual species) the accuracy 

issues associated with each dataset are propagated due to the combination of variables 

(Delavar & Devilliers, 2010). Considering and acknowledging the limitations of spatial data 

in light of possible accuracy issues is of utmost importance to ensure responsible use and 

application. 

 

3.2. The importance of data scale 

Depending on the level of detail at which real-world objects are translated to features on 

a map, the scale of the representation, i.e. scale of the spatial information, will differ 

(O’Sullivan & Unwin, 2003). Scale in this context can be understood as the degree of detail 

that is being reflected in the translation of real-world objects to features represented in 

spatial data (Zhang et al., 2004; Wong & Lee, 2005) and can be referred to as the data 

scale, i.e. the level of detail at which reality was translated into spatial information. Some 

detail will always be excluded when translating the complexities of the real world into 

maps and generalisation can subsequently be expected, i.e. cartographic generalisation. 
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Cartographic generalisation is the process of transforming real world features into forms 

suitable for representation on maps or in spatial data, and will increase with scale.  

 

This concept can be illustrated when considering the representation of a city on a map. 

Our city can be represented as a dot on a map at a scale of 1:10 000 000, as an area at a 

scale of 1:250 000, or as a number of parcels, parks and streets clustered together to 

form a city, at a scale of 1:20 000 (Figure 1). The larger the scale of a dataset, the more 

detailed the representation will be. The use of ‘large’ and ‘small’ with the term ‘scale’ 

often leads to confusion and, for this reason, the terms ‘coarse scale’ and ‘fine scale’ will 

be used in this paper. A coarse scale dataset refers to a dataset that is at a small scale 

containing less detail, while a fine scale dataset refers to a dataset at a large scale 

containing more detail. 

 

Figure 1. Implications of data scale 

 
        Coarser scale                        Finer scale 

         (less detail)                                  (more detail) 

 

 

The translation of most real-world features into spatial information is scale dependant. 

One example is land cover which at a coarse scale only distinguishes between broad land 

cover types such as urban and natural areas, while at a finer scale, urban areas will consist 

of buildings and streets, while natural areas might be grasslands, shrubland and forests 

(Goodchild, 2011). According to Tobler (1987), when translating real-world features into 

spatial information, the size of the smallest detectable feature in a dataset will be twice 

that of the resolution of the dataset, i.e. if a building is 10m long it will be visible in a 

raster2 dataset with a resolution of 5m or a vector dataset with a scale of approximately 

1:10 000 if it is accepted that the smallest mark that can be displayed on a map is 0.5mm. 

The building will be visible at finer scales (larger than 1:10 000) or resolutions smaller 

than 5m, but not the other way around.  

 

 
2 Raster and vector data are two different formats used to store data in GIS. In raster data reality 

is represented as cells or pixels stored in rows and columns. A cell, therefore, represents the 

minimum mapping unit and can represent only one real-world observation, e.g. a lake or a 

tree. In vector data, reality is represented as either points, lines or polygons, e.g. a river as a 

line or a borehole as a point. Vector data generally allows for a more accurate representation 

of reality than raster data. 
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The data scale, therefore, has a direct influence on the scale at which data can be used 

for mapping and analysis purposes, often referred to as the working scale (Zhang et al., 

2004). Working scale refers to the level at which the data can be assessed and is directly 

guided or determined by the scale of the available input data. Zhang et al. (2004) use the 

example of hydrological modelling to explain the concept. Hydrological modelling can be 

conducted for a sub-catchment or for a large region, either of which will affect the level 

of detail required, the questions that can be asked, and the answers that can be 

generated. Therefore, the two concepts are interdependent as the working scale will 

determine the data scale requirements while in the same way, the data scale will 

determine the working scale at which an analysis can be conducted. It is therefore 

important to understand what the spatial data represents at the given scale as most 

environmental processes are scale-dependent (Lam & Quattrochi, 1992; Zhang et al., 

2004) and will be observed at certain scale intervals often referred to as process scale or 

characteristic scale (Wu & Li, 2006). If a certain process is required for analysis, the 

information must be collected and collated at that scale to ensure that the process is 

captured accurately (Zhang et al., 2004). For example, if individual plant species are to be 

mapped, a fine scale will be needed as opposed to mapping broad vegetation types which 

can be observed and mapped at a much coarser scale.  

 

One challenge in practice is that the scale at which a phenomenon was measured and 

translated into spatial data, i.e. the data scale, and information on the accuracy of a 

dataset is not always declared or included in the metadata3 (Johnston & Timlin, 2000; 

Foody, 2001; Cilliers, 2016). Without a clear understanding of data accuracy and scale, 

any decisions made based upon them, such as screening decisions informed by spatial 

data, might be questionable. 

 

4. Methodology 

A mixed-method approach was followed to address research Objectives 1 and 2 applying 

qualitative and quantitative methods, respectively. For Objective 1, the spatial 

information used during the screening phases of a selection of EIAs, i.e. the applicable 

spatial data in the National Screening Tool, were compared to the findings from specialist 

reports to determine the accuracy of the initial spatial information informing the 

screening decision. Only professionals registered with the South African Council for 

Natural Scientific Professions may compile specialist reports. They further have to follow 

the applicable  protocols and guidelines for specialist studies (South Africa, 2020) to 

ensure that all studies adhere to set standards and produce high quality data. For 

Objective 2, spatial information on key environmental variables at different scales were 

compared and analysed to determine the extent to which scale might influence screening 

decisions.  

 
3 Metadata can be understood as the information describing the spatial dataset. It will include 

information such as the age of dataset, the data format and the scale of the dataset. 
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4.1. Objective 1 –Evaluate the accuracy of spatial data in screening determinations 

through auditing 

Selection of EIA studies and reports 

EIA reports were obtained from an EIA database made accessible by the National 

Department of Environmental Forestry and Fisheries (DEFF). Reports were selected for 

review based on the following criteria:  

• The EIA had to be triggered by an environmental feature indicated by a spatial 

dataset as being present in the EIA study area. 

• The EIA report had to contain a specialist report dealing with the applicable 

environmental feature. 

• The specialist report had to contain information or maps of the feature resulting 

from an on-site assessment for comparison with the spatial information used 

during screening. 

 

A total of ten reports adhered to the criteria and were subsequently selected. The case 

study selection approach excludes screening decisions that EIA was not needed. Scale 

issues could have led to such decisions being made inappropriately, but the cases are 

difficult to identify as they are not available on a central database. The subsequent 

analysis is, therefore, limited by this exclusion. 

Analysis 

The spatial features used during the screening processes for the ten EIAs were first 

mapped from the EIA report. The findings from the applicable specialist reports, including 

maps generated by the specialists, were then compared to these maps to determine the 

extent to which the findings from the specialist study (on-site assessment more closely 

reflecting the real-world situation) aligned with the features used during screening. For 

each reviewed EIA screening decision, the screening dataset was rated as being either 

‘accurate’, ‘partially accurate’ or ‘inaccurate’ through the site survey as documented in 

the specialist report. An ‘accurate’ rating was awarded if the site assessment confirmed 

all or most of the spatial data (features and their extent) used in the screening decision 

while a ‘partially accurate’ rating was awarded if at least some of the features in the 

screening dataset was confirmed to be present on site. Finally, an ‘inaccurate’ rating was 

awarded if little to none of the features in the screening dataset were confirmed. 

 

4.2. Objective 2 – Analyse how data scale might influence screening decisions 
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Study area 

To analyse how data scale might influence EIA screening decisions based on spatial 

information, a study area had to be selected. The Bergrivier Local Municipality (Figure 2) 

located in the Western Cape Province was selected for the following reasons: 

• The study area is characterised by a mixture of topographical features including 

relatively flat plains, valleys, as well as some mountainous areas which all result 

in a diverse and varying landscape. 

• The area forms part of a Global Biodiversity Hotspot, and large sections are 

considered to be sensitive habitat. 

• There are numerous water features, such as streams and rivers that flow through 

the study area. 

• Data on environmental variables were readily available at different scales. 

 

 

 

Figure 2. Bergrivier Local Municipality 

 

 

Spatial datasets 

Datasets on environmental variables were sourced from a variety of data custodians 

including the Department of Environmental Affairs, the South African National 

Biodiversity Institute (SANBI) and the Chief Directorate: National Geo-spatial Information 
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(CD:NGI). All datasets were reviewed for data scale, content and completeness. Although 

data on most environmental variables are generally available in South Africa, these 

datasets are often only available at one or two scale intervals and most often not at very 

fine scales, e.g. 1:5 000. This reality further supports the selection of South Africa as a 

case study as screening decisions are often made using spatial information at a relatively 

coarse scale. Only three environmental variables were found to have suitable and 

complete datasets available at two different scales of 1:50 000 (representing a relatively 

fine scale) and 1:250 000 (representing a relatively coarse scale) respectively, which 

were: 

• Topography: Data on topography indicated hills and ridges in the study area and 

was derived from contour and spot height data obtained from a CD:NGI database 

used to compile national 1:50 000 and 1:250 000 map series. In South Africa, hills 

and ridges are regarded as important biodiversity corridors linking different 

habitats patches. This is especially relevant in heavily transformed areas such as 

the Gauteng Province which also has a ‘Ridges guideline’ dedicated to their 

protection (GDARD, 2019). Hills and ridges are, therefore, often reflected as 

sensitive areas in mechanisms such as environmental management frameworks 

(EMFs) which are used to inform screening decisions in terms of Listing Notice 3 

of the EIA Regulations which calls for an EIA if a sensitive area as identified in an 

EMF is affected (South Africa, 2017b).  

• Hydrology: The hydrology datasets, were also obtained from the CD:NGI database 

and indicated perennial and non-perennial rivers and streams, as well as wetlands 

for the area. Hydrological features such as rivers and wetlands are regarded as 

highly sensitive in South Africa. Listing Notice 3 (South Africa, 2017b) stipulates 

that certain activities will be subject to an EIA if they are within 100m of a 

watercourse or wetland. 

• Sensitive biodiversity: Data on sensitive biodiversity was obtained from the SANBI 

and showed areas regarded as being either endangered or critically endangered. 

Most activities mentioned in Listing Notice 3 of the EIA Regulations (South Africa, 

2017b) are subject to an EIA if the proposed footprint intersects with any mapped 

areas of sensitive biodiversity – often referred to as critical biodiversity in practice. 

 

Although not crucial to the analysis, all three environmental variables are applicable to 

EIA screening in South Africa, either through direct reference in the EIA regulations or 

through use in related screening tools such as environmental management frameworks 

(EMFs). 

Analysis 

To analyse how data scale might influence screening decisions the selected datasets 

representing the three variables were first projected into the UTM 34S projection (WGS 
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1984 Datum) to allow for area calculation and distance measurement. Datasets were 

then analysed through two steps: 

• Step 1: The three environmental variables were compared for the whole 

Bergrivier Local Municipality. Variables were mapped at the two different scales 

and clipped to the extent of the study area resulting in six datasets for use in 

further analysis. Features were either represented as polygons (topographical 

features and vegetation) or lines (rivers) for which geometrical properties were 

calculated using hectares (ha) and kilometres (km) respectively. The results were 

tabulated for further analysis and interpretation.  

• Step 2: The three environmental variables were compared for a selection of 

simulated EIA footprints. A total of 100 sample points was randomly generated 

across the study area using the ‘Create random point’ tool in ArcMap 10.6.1. The 

‘Buffer’ tool was then used to generate buffers of 200m around each of the 100 

random sample points. The resulting polygons each covered an area of 

approximately 12.5ha (UTM 35S) and was used to simulate EIA project footprints. 

Data on the three environmental variables (topography, hydrology and sensitive 

biodiversity) were extracted for each site at the two different scales to determine 

whether environmental attributes were present on the simulation sites or not. 

The number of sites in which each dataset at each scale was present was 

tabulated and summarised for interpretation purposes. 

 

The findings were analysed to determine the manner and extent to which data scale 

could further influence screening decisions in EIA.  

 

5. Results and discussion 

The following sections present the findings for the two objectives. The accuracy of spatial 

data that informs screening decisions is discussed first followed by a discussion on the 

influence of scale on screening decisions. 

5.1. The role of spatial information accuracy in informing screening decisions 

(Objective 1) 

Table 1 summarises the results from the review of ten EIA cases and shows the extent to 

which findings from the specialist reports confirmed the accuracy of the information 

contained in the applicable datasets used during screening.  

 
Table 1. Results from evaluation process 
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Screening 

Notes on the accuracy of information EIA Screening feature Description of feature used during 

screening 

1 

Terrestrial critical 

biodiversity areas 

(CBA) 

GNR 329 12(h)(iv)4 

 

The spatial 

dataset indicated 

that there were 

CBAs5 (red on 

map) present on 

the site.  

In
ac

cu
ra

te
 

Site assessment did not 

confirm any areas of critical 

biodiversity value to support 

justification as a CBA and 

rated the site as medium-low 

(yellow) to low sensitivity 

(Grey on map).  

2 

Terrestrial critical 

biodiversity areas 

(CBA’s) 

GNR 329 12(h)(iv) 

 

The spatial 

dataset indicated 

the total area as a 

CBA (red on 

map). 

In
ac

cu
ra

te
 

Site assessment did not 

confirm any areas of critical 

biodiversity value to support 

justification as a CBA and 

rather reported erosion, alien 

invasive species and 

transformation. No features 

were mapped. 
 

3 

Water course and 

terrestrial critical 

biodiversity areas 

(CBA’s) 

GNR 983 12(xii)(a), 

GNR 985 

2(e)(ii)(dd), GNR 

985 12(a)(ii). GNR 

985 

14(xii)(a)(e)(i)(ff), 

GNR 985 

16(d)(i)(ee) 

 

The spatial 

dataset indicated 

the total area as a 

CBA (red on 

map). It also 

indicated the 

presence of 

water courses 

(blue lines). 

A
cc

u
ra

te
 

Site assessment confirmed 

water course (blue) and areas 

of critical biodiversity (red 

and orange) which justified 

its status as a CBA.  

4 

Terrestrial critical 

biodiversity areas 

(CBA’s) 

GNR 324 6(h)(iv), 

GNR 324 6(h)(v), 

GNR 624 12(h)(iv) 

 

The dataset 

indicated that 

there was a large 

CBA (red) present 

on the site. 

In
ac

cu
ra

te
 

Site assessment did not 

confirm any areas of critical 

biodiversity value to support 

justification as a CBA and 

rated the site as low (grey) 

and medium-low (yellow) 

sensitivity.  

5 

Terrestrial critical 

biodiversity areas 

(CBA) 

GNR 327 12(h)(iv) 

 

The spatial 

dataset indicated 

the total area as a 

CBA (red on 

map).  

In
ac

cu
ra

te
 

Site assessment did not 

confirm any areas of critical 

biodiversity value to support 

justification as a CBA. The 

report states that the 

presence of threatened 

animal and plant species is 

unlikely. No features of 

significance were mapped. 

 

 
4 The GNR codes refer to the specific listed activity and environmental attribute applicable to 

the screening decision.  
5 Critical Biodiversity Areas (CBA’s) are areas required to meet biodiversity targets for 

ecosystems, species and ecological processes, as identified in a systematic biodiversity plan. 
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Screening 

Notes on the accuracy of information EIA Screening feature Description of feature used during 

screening 

6 

Terrestrial critical 

biodiversity areas 

(CBA’s) 

GNR 324 12(e)(ii) 

 

The spatial 

dataset indicated 

a large portion of 

the site to be 

CBAs of different 

importance (red 

and orange on 

map). 

Pa
rt

ia
lly

 a
cc

u
ra

te
 

Although not regarded as a 

site of critical biodiversity 

value to support CBA status, 

some protected tree species 

did occur, resulting in a high 

(orange) and medium 

(yellow) sensitivity rating 

allocated to the site. 
 

7 

Aquatic ecological 

support areas 

(ESA’s) 

GNR 324 12(v) 

 

The spatial 

dataset indicated 

most of the area 

to be an ESA6 

(yellow on map). Pa
rt

ia
lly

 a
cc

u
ra

te
 

A wetland not indicated in 

the screening dataset was, 

however, present on the site 

(blue). Although the 

screening data indicated a 

‘support area’ this was much 

more sensitive, i.e. wetland 

(CBA). 
 

8 

Terrestrial critical 

biodiversity areas 

GNR 985 10(c)(iv), 

GNR 985 12 (c)(i)(ii) 

 

The spatial 

dataset indicated 

a number of CBAs 

(red and orange 

on map). Pa
rt

ia
lly

 a
cc

u
ra

te
 Site assessment confirmed 

some of the sensitive 

features (red and orange) 

indicated in the screening 

dataset, but not all features. 

 

9 

Terrestrial critical 

biodiversity areas 

GNR 324 12(a)(ii), 

GNR 324 14(h)(iv) 

 

The spatial 

dataset indicated 

a number of CBAs 

on the site (red 

on map). 

A
cc

u
ra

te
 

Site assessment confirmed 

many features indicated in 

the screening dataset. This 

included areas of very high 

(red), high (orange) and 

medium (yellow) sensitivity. 
 

10 

Terrestrial 

ecological support 

area 

GNR 324 12(h)(iv) 

 

 

The spatial 

dataset indicated 

an ESA (yellow on 

map) covering 

part of the site. 

 

In
ac

cu
ra

te
 

Site assessment reported 

high alien invasive richness as 

well as bush encroachment 

and did not confirm the area 

as an ESA serving a CBA. No 

features of significance were 

mapped.  

 

In five of the ten cases (cases 1, 2, 4, 5 & 10) reviewed the features represented in the 

spatial information used during screening was not confirmed through the site 

assessments and therefore regarded as inaccurate. The screening datasets indicated 

either critical biodiversity areas or ecological support areas to be present on the sites, 

but these were not confirmed through the site assessments which did not find any 

evidence that the species and species diversity that would constitute a critical biodiversity 

area were present on the site. Such inaccuracies are often a challenge with biodiversity 

 
6 Ecological Support Areas are not essential for meeting biodiversity targets but play an 

important role in supporting the ecological functioning of Critical Biodiversity Areas and/or 

in delivering ecosystem services. 
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mapping specifically which often combines data from various disciplines and databases 

(Bowker, 2000) that is not always objectively interpreted (Malavasi, 2020), affecting the 

manner in which biodiversity is mapped. Accuracy issues in individual datasets further 

often leads to error propagation (Delavar & Devilliers, 2010) affecting the accuracy of 

resultant biodiversity datasets. In addition to these, the mismatch between the screening 

dataset and the site assessment could also be ascribed to the temporal accuracy of the 

screening dataset. This is, however, unlikely as the biodiversity screening datasets, 

specifically, are regarded as living datasets that are regularly updated. The issue is much 

more likely the result of the spatial scale at which biodiversity features were mapped. 

 

In three of the ten cases (cases 6, 7 & 8), the site assessments partially confirmed the 

features indicated in the screening datasets, while the screening datasets were regarded 

as fully accurate in only two of the ten cases (cases 3 & 9). These findings suggest that 

spatial data on its own – especially if used without the possibility of discretion – are in 

many cases inaccurate to inform screening decisions. This is both because features are 

sometimes overrepresented on some sites leading to unnecessary assessments and 

underrepresented on other sites resulting in assessments not being conducted 

erroneously. 

 

This implies that screening processes should ideally not rely on lists and spatial data alone 

and should allow for discretion to be applied by the decision-makers. A case can also be 

made that information obtained through preliminary site surveys or site visits must be 

used to inform a screening decision where spatial information is concerned. In at least 

four of the ten cases (cases 2, 4, 5 & 10) the screening decisions would have been affected 

by an overrepresentation in spatial data as the screening dataset indicated large areas of 

sensitive biodiversity covering the entire EIA footprint (Table 1) while the site assessment 

could not confirm this. This issue of overrepresentation can most likely be attributed to 

the issue of data scale as is further explored in the next section. 

 

 

5.2. Influence of data scale on screening decisions (Objective 2) 

Tables 2 and 3 show the results for comparison of the datasets and the features 

contained in each dataset at different scales, ranging from coarser to finer scales. Table 

2 shows the comparison across the entire study area, while Table 3 shows the comparison 

for the 100 simulated EIA footprints. The findings are presented per environmental 

variable. For each variable, the comparison across the entire study area is discussed first 

followed by a discussion of the findings for the 100 simulated EIA footprints. 

Table 2: Comparison of datasets at different scales across the entire study area 

Attribute Coarse scale Fine scale 

Topography   

Hills and ridges 105 473ha 62 036ha 
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Hydrology 

Perennial rivers 480km 567km 

Non-perennial rivers 126km 4 797km 

Wetlands 17 wetlands 426 wetlands 

Biodiversity 

Critically endangered 145 947ha 146 594ha 

Endangered 187 936ha 147 027ha 

Table 3: Comparison of datasets at different scales for 100 simulated EIA footprints 

 

Topography Hydrology 

Sensitive biodiversity threat 

status 

Critically 

endangered 
Endangered 

Feature present in fine scale 56* 58 34 40 

Feature present in coarse scale 45 10 31 46 

Feature present in coarse scale only 10 0 3 15 

Feature present in fine scale only 21 48 6 9 

Feature present in fine scale and also 

reflected in coarse scale data 

35 10 28 31 

Accuracy of coarse scale# 63% 17% 82% 78% 
* The figures represent the number of sample sites in which the relevant environmental feature was present. 
# Accuracy expressed as the percentage of the sample sites where fine scale features were present that was also reflected in the 

coarse scale dataset (e.g.  35/56) 

Topography 

In terms of area size (Table 2), topographical features in the study area were 

overrepresented at a coarse scale when compared to the fine scale dataset (45 437ha 

larger than fine scale dataset). However, when comparing the spatial footprints of the 

two datasets (Figure 3), it was found that 43% of the fine scale dataset (26 410ha) was 

actually not represented in the coarse scale dataset at all. If it is accepted that the fine 

scale dataset is a more accurate and realistic representation of reality, this means that 

regardless of the difference in footprint size, many of the areas indicated as hills and 

ridges in the coarse scale dataset are in fact misrepresented in the data and many 

features not reflected at all.  

 

In terms of the 100 simulation sites, topographical features were present in 56 sites at a 

fine scale and only 45 at the coarse scale (Table 3), suggesting that topographical features 

are underrepresented in the coarse scale dataset. This finding aligns with the finding 

above that, although the coarse scale dataset covers a larger footprint in hectares, the 

footprint does not include all the features indicated by the fine scale dataset. This is 

further illustrated by the fact that coarse scale topographical features were missing on 

21 of the 56 sites where features were present in the fine scale dataset (37% of sites). 

The coarse scale dataset further indicated topographical features on ten sites for which 

features were not present in the fine scale dataset. However, 63% of the sites where 

coarse scale topographical features were present also contained fine scale topographical 

features. 
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This implies that although features might sometimes seem to be well represented in 

terms of area coverage at a coarse scale, the reality is that these features might often be 

misrepresentative of reality in terms of their positional accuracy and spatial form. In cases 

where coarse scale topography datasets are used to screen EIA applications, this might 

result in both unnecessary assessments being conducted and necessary EIAs being 

missed. This does not imply that these datasets cannot be used for screening purposes, 

but it should be noted that the idea that a coarse scale dataset, although producing false 

positives (possibly unnecessary EIAs), will cover all the issues reflected in a finer scale 

dataset does not necessarily hold true.  
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Figure 3. Topography across the study area 

 

 

Hydrology 

The total length for all perennial river features in the fine scale dataset was 567km 

compared to 480km for coarse scale rivers (Table 1). These differences were much more 

significant for non-perennial rivers which had a total length of 4 797km – in excess of 35 

times more stream and river sections than the 126km indicated in the coarse scale 

dataset. The same trend was also present in the representation of wetlands where only 

17 wetlands were indicated in the coarse scale dataset, while the fine scale dataset 

contained 426 (Table 2). In addition to the underrepresentation of rivers and wetlands in 

the coarse scale dataset, there was also a clear difference in the spatial accuracy of the 

representation (Figure 4). Shapes and locations of river features were not well retained 

in the coarse scale dataset, and positional accuracy issues ranging between 60m and 

120m were measured across the study area. 

The above was confirmed as hydrological features at the coarse scale was present in only 

ten simulation sites as opposed to fine scale features that were present on 58 sites (Table 

3). Hydrological features were therefore severely underrepresented in the coarse scale 

dataset. From the 58 sites, a total of 48 (83%) sites reflected no coarse scale hydrological 

features. This is most likely as a result of the underrepresentation of non-perennial rivers 

in the coarse scale dataset. 
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The potential effect of these differences on the validity of EIA screening based on 

hydrological features can be illustrated through the consideration of a spatial screening 

criterion in South African legislation. According to Listing Notice 3 (South Africa, 2017), 

certain activities that are “within 100m of a watercourse or wetland” will be subject to 

an EIA. If this criterion is screened against a coarse scale dataset, this will mean that 

certain watercourses will be missed altogether or the distance between a development 

and a watercourse miscalculated. In both cases, this results in ineffective screening. 

 

Figure 4. Hydrology across study area 

 

 

Biodiversity 

The sensitive biodiversity datasets showed terrestrial areas in the study area that are 

regarded as being either endangered or critically endangered. The areas were derived 

from vegetation datasets at scales of 1:50 000 and 1:250 000 respectively. Although area 

sizes did not differ dramatically between the two datasets (Table 2), there were some 

clear differences in spatial extent and level of detail. The biggest differences were 

observable between the footprints of the fine and coarse scale datasets for endangered 

biodiversity (Figure 5) where the fine scale dataset was significantly more detailed.  

 

In terms of the 100 simulation sites, the datasets at the two scales compared fairly well 

although the coarse scale dataset indicated critically endangered features on three sites 
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where they were not indicated by the fine scale dataset, suggesting some 

overrepresentation. Endangered biodiversity again showed a larger variation between 

the coarse and fine scales with fine scale features registered for 40 sites while coarse 

scale features were present on 46. The number of sites on which only coarse scale 

features were present were much larger at 15, illustrating the effect of the lack of detail 

(lower spatial accuracy) of the coarse scale dataset.  

 

The implication of data scale for biodiversity data is similar to that discussed for 

topographical features. This implies that assessments on areas regarded as being critically 

endangered might be missed as a result of misrepresentation in coarse scale datasets 

and also that unnecessary EIAs might be conducted due to overrepresentation which 

most likely explains the findings presented in Table 1. 

 

Figure 5. Biodiversity across the study area 
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The findings suggest that data at a coarser scale can result in both unnecessary EIAs as 

well as important EIAs not being conducted. Although both of these scenarios could in 

some cases be at least partially avoided through site visits the non-discretionary list-
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based approach – as applied in South Africa – means that a decision will be made based 

on the information contained in the applicable spatial datasets. The absence of public 

participation in the screening phase of many systems, such as in the cases of South Africa, 

India (Dilay et al., 2020), Pakistan (Nadeem & Fischer, 2011), China (Brombal et al., 2007) 

and some European countries (Hasan et al., 2018), further means that inputs related to 

the presence of features not represented may be missed. In light of these issues, calls 

have been made for public participation to be included during the screening stage of EIA 

(Choudhury, 2014). 

6. Conclusion and recommendations 

This paper aimed to explore the validity of screening based on spatial information by 

evaluating the accuracy of spatial information in screening determinations through 

auditing and analysing how data scale might influence screening decisions. The research 

results suggest that – in the case of the South African prescriptive EIA screening system 

– decisions informed by spatial information might, in many cases, be informed by 

inaccurate data, exacerbated where the information used is at a relatively coarse scale. 

The paper illustrated how scale can influence EIA screening decision based on spatial 

data. An evaluation of EIA screening decisions further showed the effect that data 

accuracy, of which scale is a key component, can have on decisions, especially if data 

quality is not desirable. 

 

Although it should be acknowledged that spatial data will never be completely accurate 

and that it will always be prone to a level of inaccuracy, the following recommendations 

are made to improve the validity of EIA screening: 

• Consider and acknowledge the limitations of spatial information: It should be 

acknowledged that spatial data is at most only a simplified representation of 

reality (Bernhardsen, 2002) and therefore, only reflects a partial truth. This 

implies that some features might be missing or misrepresented; however, the 

scale of a dataset is a key aspect that determines the extent to which this 

happens. 

• Consider the data scale: The scale of a dataset will have a direct impact on EIA 

screening. As the scale of datasets used in EIA screening decreases (becomes 

coarser) the likelihood increases for both unnecessary EIAs to be conducted and 

necessary EIAs to be overlooked. The former is as a result of false positives 

contained in the coarse scale data while the latter pertains to the incompleteness 

and positional accuracy associated with coarse scale data. The data scale 

associated with a particular dataset, therefore, gives an indication of the level of 

detail contained in the dataset (as a reflection of reality). The use of spatial 

information should, therefore, be confined to the limitations posed by the data 

scale.  
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• Finer is better: Although an ideal data scale for EIA cannot be proposed due to 

the various contextual complexities associated with capturing and maintaining 

spatial datasets, a general rule is that finer scale data is always better. 

Government agencies and data custodians should continually work towards 

developing improved and more detailed spatial datasets. 

 

 

It is important that all EIA role-players apply critical spatial thinking when dealing with 

spatial information to ensure that the limitations of spatial information and its possible 

effects on screening decisions are well understood. Although there is generally a need 

for more flexibility in screening approaches (e.g. Geneletti et al., 2017) the following 

recommendations can be made pertaining to, specifically, prescriptive based screening 

processes relying on spatial information: 

 

• Allow for discretion: Screening mechanisms relying on spatial information must 

allow for discretion to be applied when decisions are taken. This research has 

demonstrated that data are frequently inaccurately portrayed, and therefore 

there must be flexibility and discretion allowed to evaluate the relevance and 

applicability of spatial information. 

• Allow for the consideration of additional information: The use of supporting 

evidence from site visits or site assessments could further be considered as a way 

to verify the accuracy of spatial information. Site visits by specialists as part of the 

screening phase might, despite being an additional cost, be a way to avoid 

unnecessary EIAs and thereby saving valuable time and resources.   Advances in 

technology are already leading to low-cost approaches for additional site surveys 

using drones (e.g. Paneque-Gálvez et al., 2014) – and this may be a suitable means 

of ensuring more accurate data for screening purposes. 

• Allow for input into the screening process: The inclusion of public participation 

during the screening stage already should also be considered. This will be 

especially valuable in cases where data is underrepresenting reality and the public 

might be aware of important environmental attributes that exist but are not 

indicated in the spatial information. 

• Determine metadata standards for spatial data used in screening: Determining 

and publishing metadata standards for spatial datasets used in EIA screening 

processes should be considered. This will contribute to ensuring that data 

accuracy is acknowledged in the process and that spatial data is used within its 

limits. 

 

Effective screening is a key requirement for any well-functioning EIA system. Spatial 

information is in many counties a critical input to decision making during the screening 

phase and therefore understanding and awareness of inaccuracies of spatial information 

as well as the effect of scale is important for regulators and consultants alike. Efforts 
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should further be made by governments and their applicable data custodians to 

implement measures aimed at continually improving the accuracy of spatial datasets. An 

example of such an initiative is the establishment of the Infrastructure for Spatial 

Information in the European Community (INSPIRE) which contributes to improved quality 

and accessibility of spatial data across participating European countries (INSPIRE, 2021). 

Our hope is that this paper progressed our understanding of how spatial information and 

scale might influence the validity of screening decisions, and thereby the performance of 

EIA systems. 
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