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Abstract (Max 300 words) 1 

 Land-use change is a prominent feature of the Anthropocene.  Transitions between 2 

natural and human-managed ecosystems affect biogeochemical cycles in many ways, but soil 3 

processes are amongst the least understood.  We used a global meta-analysis (62 studies, 4 

1670 paired comparisons) to examine effects of land conversion on soil-atmosphere fluxes of 5 

methane (CH4) and nitrous oxide (N2O) from upland soils, and determine soil and 6 

environmental factors driving these effects. Conversion from a natural ecosystem to any 7 

anthropogenic land use increased soil CH4 and N2O fluxes by 234 kg CO2-equivalents ha-1 y-8 

1, on average.  Reversion of managed ecosystems to that resembling natural ecosystems did 9 

not fully reverse those effects, even after 80 years. In general, neither the type of ecosystem 10 

converted, nor the type of subsequent anthropogenic land use, affected the magnitude of 11 

increase in soil emissions.  Land-use changes in wetter ecosystems resulted in greater 12 

increases in CH4 fluxes, but reduced N2O fluxes.  An interacting suite of soil variables 13 

influenced CH4 and N2O fluxes, with availability of inorganic nitrogen (i.e. extractable 14 

ammonium and nitrate), pH, total carbon, and microclimate being strong mediators of effects 15 

of land-use change.  In addition, time after a change in land use emerged as a critical factor 16 

explaining the effects of land-use change – with increased emissions of both greenhouse 17 

gases diminishing rapidly after conversion.    Further research is needed to elucidate complex 18 

biotic and abiotic mechanisms that land-use change, and in particularly during this initial 19 

disturbance when greenhouse gas emissions are increased the most relative to native 20 

vegetation.  Efforts to mitigate emissions will be severely hampered by this gap in 21 

knowledge. 22 

Keywords:  afforestation; climate change; cultivation; deforestation; global change; 23 

greenhouse gas emissions; methane; nitrous oxide;  24 
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Abbreviations: carbon, C; carbon dioxide, CO2; greenhouse gases, GHG; methane, CH4; 25 

land use change, LUC; mean annual temperature, MAT; mean annual precipitation, MAP; 26 
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Introduction 28 

 29 

 Producing food and fibre for 9 billion people by 2050 will be one of this century’s 30 

most critical and formidable challenges (Godfray and others 2010).  Past solutions to the on-31 

going challenge to produce more food has been to convert more natural ecosystems to agro-32 

ecosystems, a type of land-use change (LUC).  Many now question the sustainability of 33 

continuing LUC to increase food and fibre supply (e.g. Brussaard and others, 2010; Power, 34 

2010; Mueller and others, 2012), in large part due to both known and unknown consequences 35 

for ecosystem attributes (e.g. soil structure, carbon storage in soil and vegetation, 36 

biodiversity) and processes (e.g. nutrient cycling, water yield and quality, primary 37 

productivity).  Soil greenhouse gas (GHG) emissions are an obvious and important example 38 

of the latter.  The importance of soils in global cycles of C and N, highlight the need to more 39 

fully understand the consequences of LUC. 40 

 Soils in natural and intensively managed ecosystems differ in many ways.  Some of 41 

the more significant differences are: i) lasting physical effects of the initial disturbance when 42 

a natural ecosystem is converted to a managed agroecosystem, ii) flora or fauna in managed 43 

systems are often markedly different to natural systems (and often have reduced diversity), 44 

and iii) external inputs of nutrients (e.g. fertilizer) are usually much larger in managed 45 

systems.  There are also secondary effects, such as prolonged disturbance (i.e. tillage, use of 46 

heavy machinery) or introductions of flora with different biophysical characteristics (e.g. 47 

introduced annuals or legumes).  All have the potential to significantly alter GHG fluxes 48 

between soils and the atmosphere. 49 

  Amongst the better-known effects of LUC on soils is change in soil carbon (C) stocks 50 

(Guo and Gifford 2002; Nyawira and others 2016).  Nonetheless, actual changes in soil C 51 

depend on the type of LUC.  Native forest converted to tree plantations decreased soil C by 52 
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13%, while conversion to crops decreased soil C by 42%.  On the other hand, a native forest 53 

converted to pasture resulted in an increase in soil C (+8%, Guo & Gifford, 2002).  These 54 

changes in soil C can be reflected in changes in CO2 fluxes after conversion to human uses 55 

(Dale and others 1991; Raich and Schlesinger 1992; Tate and others 2006).  Non-CO2 56 

greenhouse gases of biogenic origins – methane (CH4) and nitrous oxide (N2O) – are 57 

sensitive to LUC, because both soil CH4 and N2O fluxes are regulated by highly-specialized 58 

groups of microorganisms (Firestone and Davidson 1989; Conrad 2009; Tate 2015).  59 

 Globally, soils are a net source of atmospheric CH4 as a result of emissions from 60 

flooded soils where anoxic conditions lead to methanogenesis; a microbial process that 61 

reduces CO2 to CH4 under anaerobic condition.  On the other hand, methanotrophic (CH4-62 

oxidizing) bacteria mitigate CH4 emissions by consuming endogenous CH4 before it is 63 

released to the atmosphere. Up to 80% of the upward diffusive flux of CH4 can be consumed 64 

by methanotrophs before reaching the atmosphere (Conrad and Rothfuss 1991). Furthermore, 65 

well-drained aerobic (upland) soils are a known sink for atmospheric CH4 (Harriss and others 66 

1982) and make up an estimated 6% of the total global CH4 sink (Smith and others 2000; 67 

Solomon 2007).  This is largely due to the abundance and activity of CH4-oxidizing bacteria 68 

in these soils (Bender and Conrad 1992; Kolb 2009; Knief 2015).  This small, yet important 69 

sink is also highly sensitive to anthropogenic activities (Tate 2015), and likely a result of the 70 

sensitivity of the high-affinity CH4 oxidizers to a range of environmental factors (Dunfield 71 

2007).  72 

 LUC can increase CH4 fluxes, or decrease the strength of the CH4 sink in upland soils 73 

(Keller and others 1990; Priemé and Christensen 1999; Nazaries and others 2011).  Other 74 

studies have reported that LUC reduces fluxes (Verchot and others 2000; Galbally and others 75 

2010; Mapanda and others 2010; Benanti and others 2014).  Within land-use categories, such 76 

as croplands or pastures, practices like tillage and fertilization have significant effects on CH4 77 
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sinks (Ball and others 1999; Venterea and others 2005; Sainju and others 2012), but the 78 

direction (increase or decrease) and magnitude of change varies strongly from study to study.   79 

Nitrous oxide - a GHG 300 times more potent than CO2 (Solomon 2007) - is produced 80 

during both nitrification and denitrification processes (Firestone and Davidson 1989).  As 81 

with CH4, some soils also act as sinks for N2O (Chapuis-Lardy and others 2007).  Even 82 

pristine ecosystems can be significant contributors of N2O to the atmosphere depending on 83 

climate, soil type, and vegetation.  Forested ecosystems in the tropics, for example, are often 84 

strong contributors of N2O to the atmosphere (Keller and Reiners 1994; Verchot and others 85 

2000).  Fertilizer nitrogen (N) addition to agroecosystems are amongst the strongest drivers 86 

of increased global emissions of N2O (van Lent and others 2015; Stehfest and Bouwman 87 

2006; Liu and Greaver 2009; Aronson and Allison 2012; Shcherbak and others 2014).  A 88 

previous meta-analysis showed that CO2 sequestration via increased biomass, may be offset 89 

by as much as 53-76%, if emissions of  CH4 and N2O are increased by additions of fertilizer 90 

N (Liu and Greaver 2009).  But what other features of LUC could alter CH4 and N2O 91 

emissions? 92 

Much like the LUC effect on methanotrophs, we poorly understand the LUC effect on 93 

soil microorganisms that regulate N2O.  Many LUC studies have shown opposing trends for 94 

fluxes of CH4 and N2O.  In other words, LUC can result in greater contributions to the 95 

atmosphere of one gas, while reducing contributions of the other (Keller and Reiners 1994; 96 

Galbally and others 2010; Livesley and others 2011; Carmo and others 2012; Benanti and 97 

others 2014).  Recently, machine learning algorithms and regression tree analyses have been 98 

applied to predicting GHG outcomes of complex, interacting soil processes (e.g. Saha and 99 

others 2017).  The striking inconsistencies in effects of LUC, and lack of understanding of 100 

driving mechanisms, further emphasise the need for a comprehensive, quantitative review. 101 
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We used a global meta-analytical approach to help resolve key critical questions surrounding 102 

land-use change effects on upland soil CH4 and N2O fluxes.  In particular: 103 

1. What are the overall LUC effects on soil CH4 and N2O fluxes and can they be 104 

reversed?   105 

2. Which land-use change causes the greatest change to soil CH4 and N2O fluxes, and 106 

which ecosystems are most vulnerable to LUC? 107 

3. What variables regulate LUC effects on soil CH4 and N2O fluxes? 108 

This meta-analysis differs from others in seeking to elucidate mechanisms underpinning 109 

observed CH4 and N2O fluxes, and how LUC alters soil processes, (Question #3).  We thus 110 

collated a large suite of environmental and soil data, along with CH4 and N2O flux data, in 111 

order to explore the LUC effect on these two greenhouse gases (Table 1). 112 

Materials and Methods 113 

 114 

Literature Search and Data Collection 115 

 116 

 We searched ISI Web of Science in 2014 for the operators (soil AND (methane OR 117 

CH4)) AND (soil AND (“nitrous oxide” OR N2O)) for all of the manuscripts containing soil 118 

CH4 and N2O fluxes (8,593 results).  Then we narrowed this selection with the refining 119 

operators - “land use change” OR “land use” (353 results).  These results were then 120 

screened to 62 studies that met our criteria.  These criteria included: 1) measured soil CH4 121 

and/or N2O from at least two land uses, and 2) studies that had at least one treatment 122 

representing native vegetation or a natural ecosystem that had not been recently converted, or 123 

a human land use (e.g. agriculture).  These studies were often ‘side-by-side’ or paired land 124 

use comparisons, typically comparing a human land use to that of a natural ecosystem.  There 125 

are also a number of studies of reversing from human land use back to ‘natural ecosystems’.  126 
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We included a handful of studies that have experimentally manipulated conversions of land 127 

use, and then measured the effects on GHGs immediately afterward.  3) Finally, we focused 128 

on upland soils due to their importance as a global CH4 sink (Tate 2015).  We thus excluded 129 

wetland studies.  We only included peer-reviewed literature, and ‘grey literature’ was not 130 

included due to it being difficult to find (not appearing in ISI Web of Science), and also often 131 

not having the scientific rigor of peer-reviewed publications.  In addition to a broad search 132 

and selective screening, we used publications’ reference sections as a guide to further 133 

potential publications.   134 

Our primary data set consisted of soil CH4 and N2O fluxes.  We included additional 135 

soil properties, moderating variables, and study characteristics that might influence land use 136 

effects on soil GHG emissions (Table 1).  We thus collected data on eight soil variables that 137 

are commonly measured in coordination with GHGs.  We divided these variables into two 138 

types: slow-changing and fast-changing.  Slow-changing variables are those that are unlikely 139 

to change within one year (or perhaps a decade or more), such as total organic carbon (TOC), 140 

total nitrogen (TN), soil pH, and bulk density (BD). The fast-changing variables are those 141 

that change from day to day, or perhaps even within one day.  These include soil temperature, 142 

soil moisture, and extractable inorganic N (or ammonium and nitrate).  Soil moisture (Moist) 143 

was reported in papers as % gravimetric water content, water-filled pore space, and 144 

volumetric water content.  Since we are concerned with changes due to LUC, we represent all 145 

measures of soil moisture as relative ratio or change (unitless) as a result of LUC.  146 

Moderating environmental variables were defined as those that influence effect sizes in other 147 

soil meta-analyses (Tonitto and others 2006; Aronson and Allison 2012; Dooley and Treseder 148 

2012; McDaniel and others 2014b); mostly climate variables and soil type (commonly 149 

approximated by texture).  All data were collected either from text or tables or were extracted 150 

from graphs using GetData Graph Digitizer 2.26 (Sergei Fedorov, Russia). 151 
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Data handling and Meta-analysis 152 

 153 

 CH4 and N2O data were first converted to common units (µg GHG m-2 h-1).  Once 154 

converted, a land-use response metric was calculated for each individual observation for each 155 

gas.  In order to cope with both negative and positive fluxes of CH4 and N2O, that invalidate 156 

the use of a ‘response ratio’ as a metric of effect size (Koricheva and Gurevitch 2014), we 157 

used the metric UGHG (UCH4 and UN2O, van Groenigen and others, 2011). 158 

 159 

UGHG is the difference between the flux for a new land use (GHGnew) and the previous 160 

(GHGprev).  This metric remains in the common units of gas flux.  For non-negative soil 161 

variables, we calculated a land-use effect via the response ratio (RR).   162 

 163 

Where RRsoil is the response ratio between means either at the observation level or between 164 

the new and previous land use. 165 

 A weighted approach was used to calculate effect sizes at the comparison level.  This 166 

weighting approach incorporated replication and the number of observations for each 167 

comparison.  Weightings were used owing to the variation in numbers of replications and 168 

observations.  We gave more weight to studies with greater spatial or temporal replication.  169 

We gave less weight to individual studies with large numbers of comparisons so as to not 170 

have a disproportionate effect on global means.  Similar to van Groenigen and others (2011), 171 

we weighted by replication with WR = (nnew x nprev) / (nnew + nprev), where nnew and nprev are 172 

the replication in the new and previous land uses.  Then we weighted by number of 173 

observations per comparison WF,i= WR /nc, where the final weights (WF) are calculated by 174 
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dividing the number of ith observations.  Then the mean effect sizes for each comparison ( ) 175 

were calculated as: 176 

 177 

Where  is the mean effect size for each gas.  Mean effect sizes were then used in the overall 178 

meta-analysis, whereas observation effect sizes were used only for correlations with fast-179 

changing soil variables, where these variables were measured in coordination with each 180 

greenhouse gas measure.  Global warming potential (GWP) was calculated for each gas using 181 

the ratios of 34 and 298 for CH4 and N2O, respectively (Myhre and others 2013). 182 

 Final mean effect sizes and 95% bootstrapped confidence intervals were calculated 183 

using MetaWin v2.1 (Rosenberg and others 2000).  All categorical comparisons conducted in 184 

MetaWin were set on random effects and the 95% bootstrapped confidence intervals (CI) 185 

were calculated with 9999 iterations.  The overall effect was deemed significant if the CI did 186 

not overlap with zero.  Total group heterogeneity (QT) was partitioned into within-group (Qw) 187 

and between-group (Qb) heterogeneity, similar to partitioning of variance in ANOVAs.  A 188 

minimum of five comparisons were used to calculate Qb, and differences between groups (or 189 

comparisons) were deemed significant if the CI did not overlap.   190 

Factors controlling LUC effects on CH4 and N2O fluxes 191 

 192 

Univariate correlations among effect sizes of soil variables with GHGs were 193 

conducted in SAS 9.3 (SAS Institute, Cary, NC) with proc corr and Pearson correlation 194 

coefficients are reported.  We also used non-parametric Random Forest analysis to 195 

understand the variables, and their interactions, that best explain the variations in CH4 and 196 

N2O fluxes as influenced by LUC (Breiman 2001).  The relative change (RC), or per cent 197 

change, in a soil variable was calculated with respect to the control treatment as (GHGnew – 198 
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GHGold) / GHGold × 100. The RC > 0 indicates greater value of the variable under 199 

consideration in the converted LU, or new, than that in the control, or old LU.  Missing data 200 

were imputed by missForest package in R (Stekhoven and Bühlmann 2011).  Out-of-bag 201 

error estimates of the imputation method was 0 (proportion of falsely classified entries) and 202 

0.28 (normalized root mean square error) for the categorical and continuous variables, 203 

respectively.  The randomForest function from R randomForest package (Liaw and Wiener 204 

2002) was used on the imputed data with the control parameters ntree = 500 (number of 205 

trees) and mtry = 3 (number of variables considered for splitting at each node).  Explanatory 206 

variables considered in the analysis were: direction of LUC (neutral, converted, and reverse), 207 

time since LUC (years), fertilization (yes/no), mean annual temperature (MAT, °C), mean 208 

annual precipitation (MAP, mm), soil clay (%), and relative changes in soil pH (RC_pH), soil 209 

ammonium (RC_NH4), soil nitrate (RC_NO3), total N (RC_TN), total soil organic carbon 210 

(RC_TOC), soil moisture content (RC_Moist), soil bulk density (RC_BD), soil temperature 211 

(RC_Temp).  The importance function in R randomForest was used for variable importance 212 

scores. Importance for a variable is interpreted as increase in mean square error (%IncMSE) 213 

due to random permutation on that variable.  The R tree package was used to construct 214 

conditional inference tree for UN2O and UCH4.
  Upon satisfaction of each node, the tree moves 215 

to the left branch to the next node. Each terminal node represents average UN2O or UCH4 and 216 

number of observation corresponding to that node (n). 217 

Results 218 

 219 

Effects of LUC on CH4 and N2O 220 

 221 

 The 62 studies included in this meta-analysis spanned all six inhabited, continental 222 

regions – 5% Africa, 11% Asia, 15% Australia & New Zealand, 21% Europe, 33% North 223 

America, and 15% South America (Table S1).  The studies included broad ranges in climate: 224 
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mean annual temperatures (MAT) from 2.2 - 27.8 °C, and mean annual precipitation (MAP) 225 

from 97 – 3962 mm. More than 70% of the studies that reported soil classification data, were 226 

from within eight of the 12 USDA soil orders (absent were Gelisols, Spodosols, Vertisols, 227 

and Mollisols).  Soils ranged in clay content from 2 to 58%.  We classified studies according 228 

to land uses: cropland, tree plantations, pastures, and urban (Fig. 1).  There were very few 229 

studies that had urban land uses (n = 4), but urban ecosystems would be characterized as 230 

being in highly-populated residential areas, urban or suburban, with lawn or turf and 231 

ornamental trees.  The time after land-use change ranged from 0.33 to ~200 years. We could 232 

not determine the exact time elapsed since LUC for several longer-term studies. 233 

 There was large variability in CH4 and N2O fluxes (Fig. 1, Fig. S1).  Methane fluxes 234 

ranged from -322 to 588 µg CH4 m
-2 h-1 across all land uses.  The greatest CH4 uptake (most 235 

negative flux) was recorded for a loamy grassland (Boeckx and others 1997), while the 236 

strongest contribution to the atmosphere was recorded for a 20 year-old pasture (Steudler and 237 

others 1996). N2O fluxes ranged from -194 to 1063 µg N2O m-2 h-1, albeit that both extreme 238 

values were measured in the same bamboo plantation in China (Liu and others 2011).  Forest 239 

soils generally consumed atmospheric CH4 - median (-28) and mean (-35 µg CH4 m
-2 h-1) 240 

fluxes reflecting the dominance of negative fluxes in forests (~95% of studies, Fig. 1).  241 

Overall, pastures were also sinks for CH4 (median flux = -0.01 µg CH4 m
-2 h-1, mean flux = -242 

2 µg CH4 m
-2 h-1).  We grouped all herbaceous-dominant ecosystems (shrubland, savannah, 243 

and grasslands) into one category: herbaceous ecosystems.  Herbaceous ecosystems produced 244 

the smallest median and mean N2O fluxes (1 and 4 µg N2O m-2 h-1).  Urban soils produced 245 

the greatest median N2O flux (35 µg N2O m-2 h-1), and tree plantations had the greatest mean 246 

flux (62 µg N2O m-2 h-1).  All 40 measurements of urban soils were derived from just two 247 

studies (Kaye and others 2004; Chen and others 2014).  248 
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 Changing land uses from a ‘natural’ system to any human use, increased CH4 fluxes 249 

by 14 µg CH4 m
-2 h-1, and N2O fluxes by 7 µg N2O m-2 h-1 (Fig. 2).  Comparisons among 250 

studies suggest that reversing land use (to a more ‘natural ecosystem’) could reduce CH4 251 

fluxes by 11 µg CH4 m
-2 h-1.  However, reversion had little effect on N2O fluxes.  N2O fluxes 252 

actually increased when land use was reversed to that resembling a natural system, by an 253 

average of 6 µg N2O m-2 h-1, but not significantly (CI overlaps with zero).  Changing from 254 

one intensive land use to another tended to reduce CH4 fluxes (but not significantly, based on 255 

four studies or 32 observations), and there were too few data to assess this influence on N2O 256 

fluxes (Fig. 2).   257 

We adopted the widely used weighted approach for meta-analysis. This approach 258 

allows for the wide range of experimental designs and replication across the 62 included 259 

studies.  Nonetheless, there are arguments for and against this such approaches (Gurevitch 260 

and Hedges 1999; Philibert and others 2012; Koricheva and Gurevitch 2014).  For example, a 261 

common issue in meta-analyses is whether or not to give extra emphasis on studies with more 262 

precision, if variances are known. We present the calculated, global warming potential due to 263 

LUC (GWP, from CH4 and N2O) in both weighted and unweighted format (Table 2) so that 264 

readers may thus choose their preferred approach.  Weighting mostly reduced mean GWPs, 265 

consistent with a conservative approach to estimating overall effects of LUC. Conversion of 266 

land from a state of ‘natural ecosystem’ to intensive human use, resulted in a net increase of 267 

234 kg CO2-equivalents ha-1 y-1 (or 376 if unweighted, Table 2).  Reversing this conversion 268 

also increased GWP by 132 kg CO2-equivalents ha-1 y-1 (or 104 if unweighted), albeit this 269 

result was not significantly different to zero. 270 

 The type of the original ‘natural’ vegetation, had very little effect on both greenhouse 271 

gases (Fig. 2).  Only when the final land use was tree plantations, was converting forests to 272 

human uses more significant for CH4 fluxes than converting herbaceous ecosystems (+13 and 273 
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-8 µg CH4 m
-2 h-1, respectively, Fig. 2). Conversions among previous and current land uses 274 

(forest or herbaceous) had no effect on N2O fluxes (Fig. 2), albeit largely due to variability 275 

and the small number of studies of N2O fluxes relative to CH4 fluxes.    276 

 Pooling prior land uses revealed few differences in CH4 fluxes among new land uses – 277 

irrespective if the new use was either intensive management or a restored natural use (Fig. 278 

S2).  Of four contrasts combining ‘natural systems’, only changes in herbaceous ecosystems 279 

to a pasture (+25 µg CH4 m
-2 h-1), had a significantly greater effect than a change to tree 280 

plantations (-8 µg CH4 m
-2 h-1, P = 0.008, Fig. 2).  Cropping system type had little effect on 281 

CH4 fluxes (Fig. S2), although converting to barley (24 µg CH4 m
-2 h-1) had a greater effect 282 

than converting to wheat (-1 µg CH4 m
-2 h-1).  Many studies did not report if fertilizer N was 283 

included in the human land use (nearly 50% of studies).  When that data were available, there 284 

was a marginally significant effect (+13 µg N2O m-2 h-1) of added N on N2O emissions (P= 285 

0.053, Fig. S2).   286 

Drivers of LUC effects on CH4 and N2O  287 

 288 

Effects of “elapsed time since land-use change” on GHG emissions were significant 289 

(Ps < 0.014) for conversions from natural forests to human land use (Fig. 3).  The best fit 290 

model for both GHGs was exponential decay.  Mean UCH4 was ~ 50 µg CH4 m
-2 h-1 291 

immediately after conversion, but this then declined by about 0.1 µg CH4 m
-2 h-1 per year.  292 

After roughly 30 years, modelled fluxes stabilized and remained about 28 µg CH4 m
-2 h-1 293 

above that of the previous land use.  Mean UN2O was 27 µg N2O m-2 h-1 immediately after 294 

conversion, and then declined more quickly, by about 0.2 µg N2O m-2 h-1 per year before 295 

stabilizing after ~ 40 years.  At that point, N2O fluxes were roughly equivalent to those of the 296 

previous land use.   297 
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Univariate analysis shows that amongst climate and edaphic factors, MAP had the 298 

clearest influence on CH4 fluxes (Fig. 4). The LUC effect on CH4 was positively related to 299 

precipitation (P < 0.001), while reversion to ‘natural’ land uses was negatively related (P < 300 

0.001).  N2O fluxes were negatively related to MAP (P = 0.011) when land use changed to 301 

cropland or plantations.  Soil texture (% clay) had no influence on the role of LUC in fluxes 302 

of either gas, however, there was a marginally significant (negative) correlation between 303 

UCH4 and % clay (P = 0.052, Fig. 4).  We also examined interactions of MAT and MAP on U 304 

using contour graphs (Fig. S3).  When natural vegetation was converted, CH4 fluxes 305 

increased most in cold-wet and warm-wet conditions, whereas N2O fluxes increased most at 306 

moderate MAT and MAP (15-20 °C, 1500-2500 mm) and cold-dry conditions.  Reversion of 307 

land use to ‘natural ecosystems’ had greatest effects on CH4 fluxes under moderate MAT and 308 

dry conditions; while N2O fluxes respond most strongly on warm and wet sites. 309 

 There were unexpected and inconsistent univariate relationships among slow-310 

changing variables and effects of land use change on soil CH4 and N2O fluxes.  For example, 311 

LUC had effects on soil pH (Fig. 5), but gas fluxes showed divergent responses – UCH4 312 

increased while UN2O decreased with pH.  Effects on CH4 fluxes resulting from reversing 313 

LUC were negatively related to effects on total organic C (TOC, P = 0.036) – land uses that 314 

increase TOC reduce CH4 fluxes.  However, there was no relationship between LUC effects 315 

on total soil nitrogen and fluxes of either gas.  Although there was no clear linear relationship 316 

with soil bulk density (Fig. 5), where LUC results in increased bulk density CH4 fluxes are 317 

mostly increased (except for three observations – Simona and others, 2004; Mapanda and 318 

others, 2010; Galbally and others, 2010). 319 

 Land-use effects were best correlated with fast-changing soil variables (Fig. 6).  320 

Changes in use that increased soil temperature, on average increased CH4 fluxes by 0.34 µg 321 

CH4 m
-2 h-1 per °C increase in soil temperature (P = 0.034).  Even so the strongest effect of 322 



16 
 

LUC was through its influence on soil moisture (P < 0.0001, Fig. 6).  For every 1 % increase 323 

in soil moisture, CH4 fluxes increased by 0.65 µg CH4 m
-2 h-1.  LUC effects on N2O were also 324 

closely related to soil moisture (P < 0.001), albeit negatively.  Concentrations of extractable 325 

inorganic N (nitrate, ammonium) in soils were clear drivers of the LUC effects on both CH4 326 

and N2O fluxes (Fig. 6).   LUCs that increased soil NH4
+ increased fluxes of the two 327 

greenhouse gases –  UCH4 marginally (P = 0.092) and UN2O significantly (P = 0.024).  328 

Reversion of land use produced a negative correlation between NH4
+ and UCH4 (Fig. 8, P = 329 

0.077) and UN2O (Fig. 8, P = 0.004).  If LUC reduced concentrations of soil NO3
-, then CH4 330 

fluxes increased (P = 0.004). Extractable NO3
- had a different relationship with LUC and 331 

N2O fluxes. UN2O was positively related to the LUC effect on NO3
- for conversions from 332 

natural to intensive uses (P < 0.001, Fig. 6). 333 

   Using multiple interacting variables within a regression tree model, again shows that 334 

fast-changing variables such as soil NH4
+ and NO3

- are key drivers of LUC effects on CH4 335 

and N2O emissions (Table 3).  Predicted UCH4 and UN2O were significantly correlated with 336 

observed values (R2 > 0.90, P < 0.05).  The regression tree model underestimated at higher 337 

ranges of UCH4 and UN2O (Fig. S4) yet still explained 58% of the variation in observed UCH4 338 

and UN2O..  Regression tree analyses provided a classification of the LUC effect on GHG 339 

emissions.  Changes in soil mineral NH4
+ and NO3

- due to LUC produced clear bifurcation in 340 

both UCH4 and UN2O regression trees (Fig. 7 and 8).  If there are reductions in soil NO3
- 341 

associated with converting one intensive land use to another, or with reversion of a land use 342 

to natural conditions, then CH4 uptake is increased (Nodes 1 and 2, Fig. 7).  In general, and as 343 

expected, LUCs that increase soil NH4
+ and NO3

- also increase N2O fluxes (Nodes 3 and 5-8, 344 

Fig. 8). 345 

   346 
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Discussion 347 

 348 

Land-use change is just one direct way in which humans are altering soil processes.  349 

In the Anthropocene, however, many human activities now have a global reach so that even 350 

what appear to be ‘natural’ ecosystems (which humans have not begun to physically manage) 351 

are now in some way affected by human activities (Wohl 2013).  Nonetheless, drawing 352 

conclusions about impacts of LUC on GHG fluxes from soils, based on comparisons with so-353 

called ‘natural’ or ‘undisturbed’ ecosystems, must be conditioned by recognition that human 354 

influence is not restricted to land use. Pollution and invasive species, for example, are just 355 

two ways humans indirectly influence all ecosystems (Akimoto 2003; Vilà and others 2011; 356 

Cronk and Fuller 2014).  Our analysis is focused on synthesizing and quantifying broad 357 

effects of LUC on soil-atmosphere CH4 and N2O fluxes, beyond those caused by indirect 358 

human activity.      359 

 360 

What are the overall LUC effects on soil CH4 and N2O fluxes and can they be reversed?   361 

Converting land to more intensive uses increased CH4 fluxes by 14 µg m-2 h-1, and 362 

N2O fluxes by 7 µg m-2 h-1 (Fig. 2).  When converted to CO2-equivalents, the LUC effect on 363 

N2O was nearly three times that of CH4 (Table 2).  Conversely, when land use reverts to more 364 

natural conditions, gas fluxes often remained greater than under the original use (Table 2).  365 

However, active reversion of land use (e.g. from agriculture to native forest) remains a likely 366 

means of regenerating net CH4 uptake primarily via increased oxidation (Figs. 2 & 3, Table 367 

2; see Priemé and others 1997; Hiltbrunner and others 2012).  On the other hand, N2O fluxes 368 

increased after LUC and after reversing or restoring native vegetation (Fig. 2 and S2).  369 

Although, there are studies which show that converting cropland back to native vegetation 370 

could reduce N2O emissions (by up to 29%, Robertson and others 2000).  Our meta-analysis 371 
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demonstrates that simply reverting back to ‘natural’ ecosystems may not always mitigate soil 372 

GHG emissions.     373 

The differences between LUC effects on CH4 and N2O fluxes are not fully 374 

understood.  Persistent changes in N2O fluxes have been discussed mostly in terms of overall 375 

changes in the N cycle (Erickson and others 2001; Scheffer and others 2001; Hiltbrunner and 376 

others 2012), and as legacy effects of N addition on nitrification and denitrification.  A recent 377 

analysis of LUC effects on N2O emissions in Brazil speculated that changes in soil micro-378 

aggregate structure, might explain a new “steady state” (Meurer and others 2016).  This long-379 

term change in soil structure could have cascading effects on soil water content and 380 

movement, and thus also impact GHG emissions.   381 

Changes in the fluxes of both gases were greatest in first ten years after a change in 382 

land use (Fig. 3), and an exponential decay model best explains the global patterns in this 383 

period.  We compared our global N2O model to Meurer and others (2016) and Neill and 384 

others (2005) studies which focus on Brazilian ecosystems (Fig. 3).  Both show rapid declines 385 

in the LUC effect on N2O fluxes (also confirmed by conceptual curve in van Lent and others 386 

(2015)).  Our global synthesis suggests that LUC will result in N2O fluxes that approach that 387 

of native vegetation (or UN2O = ~0 µg m-2 h-1) at around 12 years after conversion.  Meurer 388 

and others (2016) and van Lent and others (2015) model suggest that if subtropical forest 389 

land is converted to pasture, N2O fluxes will eventually be lower than had the land remained 390 

forest (UN2O = ~ -15 µg m-2 h-1).  A general problem with LUC studies is that selection of the 391 

‘reference’ (or native) land use, can dramatically change the outcome.  For example, some 392 

tropical forests are known for their fast rates of N turnover and relatively high N2O emissions 393 

(discussed further below).  By contrast, the pastures created by converting such forests can 394 

quickly become degraded, seldom receive N fertilizer,  and can have low N2O emission 395 

relative to native tropical forests (Meurer and others 2016).  .    396 
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Forest harvesting studies have some relevance to the issues of LUC discussed here. 397 

Harvesting-induced changes in fluxes of N2O are greatest within the first few months 398 

(Steudler and others 1991; Keller and others 1993; Tate and others 2006; McDaniel and 399 

others 2014a).  During this period, when a flush of carbon and nutrients is added to the soil in 400 

vegetation debris,  soil microbial activity is stimulated by warmer and wetter conditions in 401 

the absence of plant ‘sinks’ for N and water – such that nitrification and denitrification are 402 

enhanced  (Hendrickson and others 1989; Johnson 1992; Mariani and others 2006).  In a 403 

meta-analysis restricted to tropical forests, van Lent and others (2015) showed a similar trend 404 

with N2O fluxes peaking at ~ 4 kg N2O-N ha-1 y-1 shortly after harvest, then declining over 50 405 

years to < 1 kg N2O-N ha-1 y-1.  Saha and others (2017) also observed increased N2O 406 

emissions in the second year after LUC.  Effects of LUC on total soil N2O (and CH4) fluxes 407 

are likely underestimated if this initial period is not properly considered.  Consistently 408 

declining effects of LUC on CH4 and N2O fluxes also suggests that subsequent management 409 

actions (e.g. tillage or fertilization) may not be as important as the original disturbance.   410 

 411 

Which land-use change causes the greatest change to soil CH4 and N2O fluxes, and which 412 

ecosystems are most vulnerable to LUC? 413 

 414 

Somewhat surprisingly, our synthesis suggests that LUC effects on fluxes of CH4 and 415 

N2O (especially) are largely independent of both final land use (Fig. 2), and previous land use 416 

(Fig. 2 and S2).  The exception to this is conversion effects on CH4 fluxes in herbaceous 417 

ecosystems.  For instance, herbaceous-to-cropland and herbaceous-to-pasture conversions 418 

increased CH4 emissions by +16 and +26 µg CH4 m
-2 h-1, on average, versus herbaceous-to-419 

plantation which decreased emissions by -8 µg CH4 m
-2 h-1 (Fig. 2).  The most likely 420 

explanation for this finding are changes in soil moisture or quantity/quality of C inputs to 421 
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soils.  Methane fluxes are tightly linked to soil moisture  and even changes to land uses that 422 

are managed more intensively that might decrease soil moisture (e.g. via changes to leaf area) 423 

might be expected to decrease CH4 fluxes, mostly through increased CH4 oxidation (Keller 424 

and Reiners 1994; Steudler and others 1996; Hiltbrunner and others 2012).  Changing from 425 

natural herbaceous vegetation, to woody trees will undoubtedly change distribution, quantity 426 

and quality of C inputs to soils.  There is now good evidence showing CH4 oxidation is linked 427 

to labile soil C (Sullivan and others 2013).  Both of these factors, soil moisture and changes 428 

in soil carbon, will be discussed further below.     429 

We are limited in predicting sensitivity of GHG emissions from natural to managed 430 

ecosystem for many reasons (some discussed further below); but this is especially the case for 431 

N2O which had fewer studies and amongst the studies we included there was much more 432 

variation than CH4.  This is unfortunate due to N2O’s outsized contribution to overall GHG 433 

emissions (Table 2).  Furthermore, some important land uses are notably underrepresented 434 

here – like urban and suburban land uses (just four studies), which rapidly replacing native 435 

vegetation and agricultural land uses worldwide (Foley and others 2005).  Urban land use has 436 

the potential to be a major contributor to overall GHG fluxes (Fig. 1), especially since even 437 

conversion from agricultural use to urban increases CH4 emission by 9.5 μg m-2 h-1 and N2O 438 

emissions by 6.2 μg m-2 h-1 (Fig. 2).   439 

 440 

What variables moderate LUC effects on soil CH4 and N2O fluxes? 441 

 442 

Our approach to address this question includes both univariate and multivariate non-443 

parametric analyses. Across the 62 studies included in this meta-analysis, a range of edaphic 444 

and climate variables modified effects of LUC on CH4 and N2O.  No single variable, nor even 445 

pair of variables (Fig. S3), had identical influence on both GHGs, and their interactions were 446 
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complex (Figs. 7 and 8, Table 3).  However, soil extractable inorganic N and soil moisture 447 

emerged as two of the most salient drivers of LUC effects on both gases through both 448 

univariate and multivariate regression approaches. 449 

Mean annual precipitation (MAP) exerted a strong and distinct relationship with LUC 450 

effects on CH4 fluxes (Fig. 4).  Apart from its direct influence on soil microbial activity, soil 451 

moisture often dictates rates of O2 diffusion is critical to both rates of CH4 production and 452 

oxidation.  Relationships between CH4 and soil moisture can fluctuate with time (Verchot and 453 

others 2000) and are often strongly dependent on soil texture, as reflected in our regression 454 

tree analysis (Table 3).  For CH4 fluxes, LUC effects were strongest in wetter ecosystems – or 455 

more positive when converting to intensive land uses (+50 µg CH4 m
-2 h-1) and more negative 456 

when reversing to ‘natural’ vegetation (-50 µg CH4 m
-2 h-1).  These trends emphasize the 457 

critical role of soil moisture in CH4 dynamics (Keller and Reiners 1994; Steudler and others 458 

1996; Carmo and others 2012; Hiltbrunner and others 2012; Tate 2015).   459 

N2O fluxes, as affected by LUC, were much more variable with MAP, and arguably 460 

better related to the direct controlling influence of NO3
- production/consumption (i.e. 461 

nitrification and denitrification) rather than land use itself (Figs. 6 & 8).  Indeed, while 462 

negative relationships between LUC effects on N2O fluxes and MAP might seem counter-463 

intuitive (Fig. 4), primary tropical forests (Reiners and others 1994; Arai and others 2014), as 464 

well as late-successional tropical forests (Erickson and others 2001), can be significant global 465 

sources of N2O, as are many tropical soils (Reay and others, 2007).  Our data synthesis 466 

suggests a mean rate of emission of 25 μg N2O m-2 h-1 from all forests (Fig. 1).  Such high 467 

N2O fluxes in ‘natural’ forests, but especially in wetter ecosystems (> 2000 mm), ensures that 468 

any LUC to human land use will be lower (on average).  This statement must be cautioned, 469 

however, since many studies do not account for N2O pulse seen after initial conversion, nor 470 

do they accurately account for periodic ‘hot moments’ like fertilization or tillage events.  471 
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Other gaseous N losses, like NO emissions (Neill and others 2005), remain too poorly studied 472 

to be included here.  The effects of LUC on N2O fluxes in drier ecosystems appears greater 473 

than that in wet systems (Kaye and others 2004; Scheer and others 2008; Mapanda and others 474 

2010).  This may be largely due to actually accounting for these “pulses” of N2O emission 475 

after rain events in drier ecosystems.  Such pulses comprise a large proportion of annual N2O 476 

emissions in drier ecosystems (Davidson 1992; Kessavalou and others 1998).  477 

Generally speaking, our results suggest that when conversion of land increases soil 478 

mineral N availability, increases of both CH4 and N2O fluxes also follow (Figs. 6, 7, 8).  We 479 

must concur with Liu and Greaver (2009).  In a global meta-analysis, they found N additions 480 

increased CH4 emission by 97% (reducing CH4 uptake by 38%), and increased N2O 481 

emissions by 216%.  Increased mineral N supply can negatively affect N2O reduction to N2 482 

and increases N2O emissions (Weier and others 1993; Gillam and others 2008).  Greater 483 

mineral N availability (from N fertilization) has also been reported to slow CH4 uptake by 484 

inhibiting methanotroph activity (Steudler and others 1989; Wang and Ineson 2003).  485 

Methane oxidation is N-limited in some cases, but inhibited by N in others (Bodelier and 486 

Laanbroek 2004; Aronson and Helliker 2010), with the response determined by many site-487 

specific factors as well as the type and amount of fertilizer N applied.   488 

Using soil NH4 and NO3 as proxies for any fertilization, along with any other LUC 489 

features affecting N dynamics, allowed us to evaluate the two N species importance in 490 

regulating GHG emissions (even though many studies did not include fertilization 491 

information).  Converted-to and reverted-from managed ecosystems showed opposite, 492 

divergent relationships with mineral N and N2O emissions (Fig. 6).  Land use changes that 493 

increased N availability, either NH4 or NO3, increased N2O emissions when transitioning 494 

from natural-to-human land uses but decreased emissions when reversing (human-to-natoral 495 

or reversed).  Even in unfertilized soils, concentrations of NH4
+ and NO3

- in soil reflect a 496 
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range of competing processes by plants and soil microbes (Kaye and Hart 1997; Schimel and 497 

Bennett 2004), and our data show clear opposing trends when land is either converted to and 498 

reversed from a managed ecosystem (Fig. 6).  This finding highlights the complexity of N 499 

cycling, and arguably reflects long-term consequences of N fertilizers for microbial 500 

processes.  501 

Soil C and pH have well-established links to CH4 and N2O emissions, and here we 502 

provide some supporting evidence that concomitant changes in these soil properties and GHG 503 

emissions from LUC are related (Fig. 5).  The effect LUC has on both of these soil properties, 504 

and subsequent effect on GHG emissions, could be through an altered soil microbial 505 

community.  At the global scale both soil C and pH have shown strong relationships diversity 506 

and abundance of soil microbes (Fierer and others 2009; Lauber and others 2009) – this can, 507 

for example, be extended to methanotrophs and N-cycling bacteria and archaea.  Another 508 

possibility, is that changes in soil pH or C quantity or quality, via LUC, increase the activity 509 

of methane oxidation or N cycling with little to no effect on abundance or diversity of 510 

organisms.   Some high-affinity CH4
 oxidizers may use acetate as a substrate (Pratscher and 511 

others 2011), and that there is a positive relationship between dissolved organic C and CH4 512 

oxidation (Sullivan and others 2013).  Nitrous oxide emissions can be dually regulated by: 1) 513 

enhanced decomposition of soil organic matter and thus increased gross N mineralization 514 

either from increased C inputs from greater gross primary production (Benanti and others 515 

2014) – leading to larger pools of NH4
+ and NO3

- to be converted to N2O , or 2) possible 516 

reductions in soil pH, especially from coniferous trees, where acidification can inhibit the last 517 

step in denitrification leading to more N2O relative to N2 (Firestone and others 1980; ŠImek 518 

and Cooper 2002; Wang and others 2018).  Resolving which of these factors is driving the 519 

increase in N2O is difficult since nitrification frequently covaries with pH.  Further research 520 

into the driving mechanisms for both gases are needed. 521 
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Finally, a subset of our studies (n = 8) measured soil microbial functional genes 522 

(pmoA, nirK¸and nirS) involved in soil GHG emissions (Table S2).  Seven studies assessed 523 

abundance of the pmoA gene, which encodes the ß-subunit of the particulate methane 524 

monooxygenase enzyme, and is the most common, and perhaps only genetic marker available 525 

for detection of all atmospheric CH4 oxidizers.  pmoA genes associated with atmospheric CH4 526 

oxidizers are typically referred to as upland soil clusters, of which there are several.  A strong 527 

negative relationship between LUC effect on the pmoA gene and CH4 fluxes highlights the 528 

importance of these organisms in regulating LUC effects (Fig. S5).  Many authors of studies 529 

of soil CH4 fluxes have speculated that these organisms are particularly sensitive to 530 

disturbance. This meta-analysis provides some cross-study evidence for such sensitivity, but, 531 

again, we lack knowledge at the finer scale.  532 

Limitations of meta-analysis – Spatiotemporal variability of soil greenhouse gas emissions 533 

 534 

There is large variation in the experimental designs and methods encompassed here 535 

(Table 1 and S1).  Temporal and spatial variability remains a major limitation in all studies of 536 

soil-atmosphere fluxes of GHG (Velthof and others 1996; Barton and others 2015; 537 

Kravchenko and Robertson 2015; McDaniel and others 2017).  Nearly all of our 62 studies 538 

used paired-site approaches, or reported GHG emissions from two or more sites in close 539 

proximity.  Paired sites were generally replicated four times (range 1 to 15), while sampling 540 

frequency was typically once per month (range: 1 to 8 measurements/week). Spatial and 541 

temporal variability of CH4 and N2O fluxes can be extreme (Barton and others 2015; 542 

McDaniel and others 2017) and all included fluxes could be significant over- or under-543 

estimates.  For instance, McDaniel and others (2017) showed that spatial variability in a 16 544 

ha agriculture field can rival that of five months of temporal variability within the same field.  545 

To reduce the standard error in reported GHG fluxes to within 10% of their mean values 546 



25 
 

would have required nearly 2000 measurements for CH4 and over 8000 measurements for 547 

N2O.  Barton et al. (2015) reported that daily measurements of N2O were essential given the 548 

known temporal variability, and the uncertainty of flux estimation extends to the methods 549 

used in individual flux measurements too (Levy and others 2011; Jungkunst and others 2018).  550 

Spatial and temporal variability limits our ability to detect treatment effects.  This is 551 

especially the case for critical periods, such as immediately after fertilizer application. N2O 552 

fluxes in this period are frequently many fold, or even order of magnitude, larger than at other 553 

times, so not capturing these data could severely underestimate fluxes (Barton and others 554 

2015; Guardia and others 2016). We must thus place greater emphasis on the relatively few, 555 

well-replicated studies that capture such events.  For example, studies by Dobbie and others 556 

(1995, n = 15) and Merino and others (2004, n = 56) are highly valuable.  Many studies 557 

included here (15 of the 62) had spatial replication of n=3 or less, and half of all included 558 

studies (31) had temporal replication of 2 or less.  Future studies should explicitly 559 

acknowledge the problems of spatiotemporal variability, and utilize known solutions via 560 

appropriate sampling and statistical techniques (Barton and others 2015; Kravchenko and 561 

Robertson 2015; McDaniel and others 2017; Saha and others 2017a). 562 

Conclusion 563 

 564 

 It seems inevitable that land uses will continue to change around the globe, and that 565 

some soils currently under natural vegetation will be converted to the production of food, 566 

fibre, and fuel.  Converting more land to production could increase fluxes of methane (CH4) 567 

and nitrous oxide (N2O) by 234 kg CO2-eq ha-1 y-1 (95% confidence range: 84-447).  While 568 

this is small relative to total CO2 losses that emanate from LUC (~ 2%, Hansen 2013), our 569 

meta-analysis suggests that restoring these lands to ‘natural’ vegetation would have little 570 

effect, at least on decadal time scales. Land management practices that serve to increase CH4 571 
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oxidation or reduce N2O emissions are good options for land under human use (including 572 

further converted land). Future research that focuses on a better understanding of the 573 

proximal biotic drivers of the responsible processes seems to be of greater value than more 574 

studies quantifying fluxes alone. 575 
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Tables 583 

 584 

Table 1.  Soil properties, environmental moderating variables, and site and treatment 585 

characteristics for studies included in this meta-analysis. 586 

Table 2.  Overall effects of land-use change on CH4 and N2O greenhouse gas global warming 587 

potential (GWP). 588 

Table 3.  Importance of interacting variables to effects of LUC on fluxes of CH4 and N2O. 589 
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Figures 590 

Figure 1.  Box plots of soil methane (CH4) and nitrous oxide (N2O) fluxes.  Herbaceous 591 

vegetation includes: shrubland, savanna, and grasslands.  Box plots show mean (dashed line), 592 

median (solid line), 5th percentile (circle), 10th percentile (whisker), 25th percentile, 75th 593 

percentile, 90th percentile (whisker), and 95th percentile (circle). Natural vegetation shown in 594 

blue, and converted land uses are in red.  The number in parentheses are number of 595 

observations from the ecosystem or land-use types. 596 

Figure 2.  Effect of land-use change on soil methane (CH4) and nitrous oxide (N2O) fluxes.  597 

The overall data (filled symbols) and data separated by type of land use (open symbols).  598 

These data are further separated by two ecosystem types: Forests and herbaceous ecosystems 599 

(shrubland, savanna, and grasslands).  U is the difference in greenhouse gas flux between the 600 

new and previous land use.  The numbers in parentheses are number of overall comparisons.  601 

Figure 3. The effect of land-use change on soil methane (CH4) and nitrous oxide (N2O) 602 

expressed over the number of years since conversion to the new land use.  U is the difference 603 

in greenhouse gas flux between the new and previous land use.  Herbaceous ecosystems are 604 

shrublands, savannahs and grasslands. Natural-to-human (Converted, red circles) and human-605 

to-natural (Reversed, blue triangles) land use changes are shown.  Significant (P < 0.05) 606 

correlations are shown with exponential decay trend lines.  Data from Meurer and others 607 

(2016) and Neill and others (2005), focused on pasture conversions from Brazilian forests, 608 

were adapted to fit our UN2O format for comparison.  609 

Figure 4.  Correlations among land-use change effects on soil methane (UCH4) and nitrous 610 

oxide (UN2O) with environmental variables: mean annual temperature (MAT), mean annual 611 

precipitation (MAP), and percentage of clay in the soil.  U is the difference in greenhouse gas 612 

flux between the new and previous land use.  Natural-to-human (Converted, red circles) and 613 
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human-to-natural (Reversed, blue triangles) land use changes are shown.  Significant (P < 614 

0.05) correlations are shown with linear trend lines.    615 

Figure 5.  Correlations among land-use change effects on soil methane (CH4) and nitrous 616 

oxide (N2O) with slow-changing variables: total organic carbon (TOC), total nitrogen (TN), 617 

pH, and bulk density (BD).  RR is the response ratio of that soil variable to land use change – 618 

a positive value is increase from new land use, negative is a decrease from the new land use.  619 

U is the difference in greenhouse gas flux between the new and previous land use.  Natural-620 

to-human (Converted, red circles) and human-to-natural (Reversed, blue triangles) land use 621 

changes are shown.  Significant (P < 0.05) correlations are shown with linear trend lines.  622 

Significant (P < 0.05) correlations are shown with linear trend lines.    623 

Figure 6.  Correlations among land-use change effects on soil methane (CH4) and nitrous 624 

oxide (N2O) with fast-changing or dynamic variables: temperature (Temp), soil moisture 625 

(Moist), ammonium (NH4), and nitrate (NO3).  RR is the response ratio of that soil variable 626 

to land use change – a positive value is increase from new land use, negative is a decrease 627 

from the new land use.  U is the difference in greenhouse gas flux between the new and 628 

previous land use.  Natural-to-human (Converted, red circles) and human-to-natural 629 

(Reversed, blue triangles) land use changes are shown.  Significant (P < 0.05) correlations are 630 

shown with linear trend lines.    631 

Figure 7.  Random Forest regression tree analysis for the land-use change (LUC) effects on 632 

methane (UCH4).  U is the difference in greenhouse gas flux between the new and previous 633 

land use.  Nodes in the tree are moderating variables expressed as relative change (RC) in 634 

percent, which was calculated as: new LU – old LU/ old LU × 100.  Variables in this tree 635 

include: soil nitrate (NO3), land use change direction (LUC), and soil total organic carbon 636 

(TOC).  To read the tree, at each node if the LUC effect is true (e.g. < XX relative change) 637 
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then move to the left branch, if not then move to the right.  At the ends of the branches are the 638 

mean UCH4 values associated with that path, and number of comparisons (n) for each terminal 639 

node, and box and whisker plots.  Box and whisker plots show median (solid line), 5th 640 

percentile (bottom circle), 10th percentile (whisker), 25th percentile (bottom of box), 75th 641 

percentile (top of box), 90th percentile (whisker), and 95th percentile (top circle).  642 

Figure 8.  Random Forest regression tree analysis for the land-use change (LUC) effects on 643 

nitrous oxide (UN2O).  U is the difference in greenhouse gas flux between the new and 644 

previous land use.  Nodes in the tree are moderating variables expressed as relative change 645 

(RC) in percent, which was calculated as: new LU – old LU/ old LU × 100.  Variables in this 646 

tree include: soil ammonium (NH4), soil nitrate (NO3), and gravimetric water content (GWC).  647 

To read the tree, at each node if the LUC effect is true (e.g. < XX relative change) then move 648 

to the left branch, if not then move to the right.  At the ends of the branches are the mean 649 

UN2O values associated with that path, number of comparisons (n) for each terminal node, and 650 

box and whisker plots. Box and whisker plots show median (solid line), 5th percentile (bottom 651 

circle), 10th percentile (whisker), 25th percentile (bottom of box), 75th percentile (top of box), 652 

90th percentile (whisker), and 95th percentile (top circle). 653 

 654 
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