The effect of land-use change on soil CH4 and N2O fluxes: a global meta-analysis

M.D. McDaniel^{1,*}, D. Saha², M.G. Dumont³, M. Hernández⁴, and M.A. Adams^{1,5}.

- Centre for Carbon Water and Food, Faculty of Agriculture, University of Sydney, Camden, New South Wales 2570 Australia
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802, U.S.A.
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ United Kingdom
- 4. Max Planck Institute for Terrestrial Microbiology, Marburg, D-35037, Germany.
- 5. Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia.

*Corresponding Author:

Department of Agronomy Iowa State University 2517 Agronomy Hall Ames, IA 50011 Phone: (515) 294-7947 Email: <u>marsh@iastate.edu</u>

Running head (45 characters including spaces): Effect of land-use change on soil CH₄ and N₂O fluxes

1 Abstract (Max 300 words)

Land-use change is a prominent feature of the Anthropocene. Transitions between 2 natural and human-managed ecosystems affect biogeochemical cycles in many ways, but soil 3 processes are amongst the least understood. We used a global meta-analysis (62 studies, 4 5 1670 paired comparisons) to examine effects of land conversion on soil-atmosphere fluxes of 6 methane (CH₄) and nitrous oxide (N₂O) from upland soils, and determine soil and 7 environmental factors driving these effects. Conversion from a natural ecosystem to any 8 anthropogenic land use increased soil CH₄ and N₂O fluxes by 234 kg CO₂-equivalents ha⁻¹ y⁻ 9 ¹, on average. Reversion of managed ecosystems to that resembling natural ecosystems did not fully reverse those effects, even after 80 years. In general, neither the type of ecosystem 10 11 converted, nor the type of subsequent anthropogenic land use, affected the magnitude of increase in soil emissions. Land-use changes in wetter ecosystems resulted in greater 12 increases in CH₄ fluxes, but reduced N₂O fluxes. An interacting suite of soil variables 13 influenced CH₄ and N₂O fluxes, with availability of inorganic nitrogen (i.e. extractable 14 ammonium and nitrate), pH, total carbon, and microclimate being strong mediators of effects 15 16 of land-use change. In addition, time after a change in land use emerged as a critical factor 17 explaining the effects of land-use change – with increased emissions of both greenhouse gases diminishing rapidly after conversion. Further research is needed to elucidate complex 18 19 biotic and abiotic mechanisms that land-use change, and in particularly during this initial disturbance when greenhouse gas emissions are increased the most relative to native 20 vegetation. Efforts to mitigate emissions will be severely hampered by this gap in 21 knowledge. 22

Keywords: afforestation; climate change; cultivation; deforestation; global change;
greenhouse gas emissions; methane; nitrous oxide;

- Abbreviations: carbon, C; carbon dioxide, CO₂; greenhouse gases, GHG; methane, CH₄;
- 26 land use change, LUC; mean annual temperature, MAT; mean annual precipitation, MAP;
- 27 nitrogen, N; nitrous oxide, N₂O; response ratio, RR;

28 Introduction

29

Producing food and fibre for 9 billion people by 2050 will be one of this century's 30 most critical and formidable challenges (Godfray and others 2010). Past solutions to the on-31 going challenge to produce more food has been to convert more natural ecosystems to agro-32 33 ecosystems, a type of land-use change (LUC). Many now question the sustainability of continuing LUC to increase food and fibre supply (e.g. Brussaard and others, 2010; Power, 34 2010; Mueller and others, 2012), in large part due to both known and unknown consequences 35 36 for ecosystem attributes (e.g. soil structure, carbon storage in soil and vegetation, biodiversity) and processes (e.g. nutrient cycling, water yield and quality, primary 37 productivity). Soil greenhouse gas (GHG) emissions are an obvious and important example 38 39 of the latter. The importance of soils in global cycles of C and N, highlight the need to more 40 fully understand the consequences of LUC.

Soils in natural and intensively managed ecosystems differ in many ways. Some of 41 42 the more significant differences are: i) lasting physical effects of the initial disturbance when 43 a natural ecosystem is converted to a managed agroecosystem, ii) flora or fauna in managed systems are often markedly different to natural systems (and often have reduced diversity), 44 and iii) external inputs of nutrients (e.g. fertilizer) are usually much larger in managed 45 systems. There are also secondary effects, such as prolonged disturbance (i.e. tillage, use of 46 heavy machinery) or introductions of flora with different biophysical characteristics (e.g. 47 introduced annuals or legumes). All have the potential to significantly alter GHG fluxes 48 between soils and the atmosphere. 49

Amongst the better-known effects of LUC on soils is change in soil carbon (C) stocks
(Guo and Gifford 2002; Nyawira and others 2016). Nonetheless, actual changes in soil C
depend on the type of LUC. Native forest converted to tree plantations decreased soil C by

53 13%, while conversion to crops decreased soil C by 42%. On the other hand, a native forest 54 converted to pasture resulted in an increase in soil C (+8%, Guo & Gifford, 2002). These 55 changes in soil C can be reflected in changes in CO_2 fluxes after conversion to human uses 56 (Dale and others 1991; Raich and Schlesinger 1992; Tate and others 2006). Non-CO₂ 57 greenhouse gases of biogenic origins – methane (CH₄) and nitrous oxide (N₂O) – are 58 sensitive to LUC, because both soil CH₄ and N₂O fluxes are regulated by highly-specialized 59 groups of microorganisms (Firestone and Davidson 1989; Conrad 2009; Tate 2015).

Globally, soils are a net source of atmospheric CH₄ as a result of emissions from 60 flooded soils where anoxic conditions lead to methanogenesis; a microbial process that 61 62 reduces CO₂ to CH₄ under anaerobic condition. On the other hand, methanotrophic (CH₄-63 oxidizing) bacteria mitigate CH₄ emissions by consuming endogenous CH₄ before it is released to the atmosphere. Up to 80% of the upward diffusive flux of CH₄ can be consumed 64 65 by methanotrophs before reaching the atmosphere (Conrad and Rothfuss 1991). Furthermore, well-drained aerobic (upland) soils are a known sink for atmospheric CH₄ (Harriss and others 66 67 1982) and make up an estimated 6% of the total global CH₄ sink (Smith and others 2000; Solomon 2007). This is largely due to the abundance and activity of CH₄-oxidizing bacteria 68 69 in these soils (Bender and Conrad 1992; Kolb 2009; Knief 2015). This small, yet important 70 sink is also highly sensitive to anthropogenic activities (Tate 2015), and likely a result of the sensitivity of the high-affinity CH₄ oxidizers to a range of environmental factors (Dunfield 71 2007). 72

LUC can increase CH4 fluxes, or decrease the strength of the CH4 sink in upland soils
(Keller and others 1990; Priemé and Christensen 1999; Nazaries and others 2011). Other
studies have reported that LUC reduces fluxes (Verchot and others 2000; Galbally and others
2010; Mapanda and others 2010; Benanti and others 2014). Within land-use categories, such
as croplands or pastures, practices like tillage and fertilization have significant effects on CH4

78

sinks (Ball and others 1999; Venterea and others 2005; Sainju and others 2012), but the direction (increase or decrease) and magnitude of change varies strongly from study to study. 79

80 Nitrous oxide - a GHG 300 times more potent than CO₂ (Solomon 2007) - is produced 81 during both nitrification and denitrification processes (Firestone and Davidson 1989). As with CH₄, some soils also act as sinks for N₂O (Chapuis-Lardy and others 2007). Even 82 pristine ecosystems can be significant contributors of N₂O to the atmosphere depending on 83 84 climate, soil type, and vegetation. Forested ecosystems in the tropics, for example, are often strong contributors of N₂O to the atmosphere (Keller and Reiners 1994; Verchot and others 85 2000). Fertilizer nitrogen (N) addition to agroecosystems are amongst the strongest drivers 86 87 of increased global emissions of N₂O (van Lent and others 2015; Stehfest and Bouwman 88 2006; Liu and Greaver 2009; Aronson and Allison 2012; Shcherbak and others 2014). A previous meta-analysis showed that CO₂ sequestration via increased biomass, may be offset 89 90 by as much as 53-76%, if emissions of CH₄ and N₂O are increased by additions of fertilizer N (Liu and Greaver 2009). But what other features of LUC could alter CH₄ and N₂O 91 92 emissions?

93 Much like the LUC effect on methanotrophs, we poorly understand the LUC effect on soil microorganisms that regulate N₂O. Many LUC studies have shown opposing trends for 94 fluxes of CH₄ and N₂O. In other words, LUC can result in greater contributions to the 95 atmosphere of one gas, while reducing contributions of the other (Keller and Reiners 1994; 96 97 Galbally and others 2010; Livesley and others 2011; Carmo and others 2012; Benanti and others 2014). Recently, machine learning algorithms and regression tree analyses have been 98 99 applied to predicting GHG outcomes of complex, interacting soil processes (e.g. Saha and others 2017). The striking inconsistencies in effects of LUC, and lack of understanding of 100 driving mechanisms, further emphasise the need for a comprehensive, quantitative review. 101

102	We used a global meta-analytical approach to help resolve key critical questions surrounding						
103	land-use change effects on upland soil CH_4 and N_2O fluxes. In particular:						
104	1. What are the overall LUC effects on soil CH4 and N2O fluxes and can they be						
105	reversed?						
106	2. Which land-use change causes the greatest change to soil CH_4 and N_2O fluxes, and						
107	which ecosystems are most vulnerable to LUC?						
108	3. What variables regulate LUC effects on soil CH_4 and N_2O fluxes?						
109	This meta-analysis differs from others in seeking to elucidate mechanisms underpinning						
110	observed CH_4 and N_2O fluxes, and how LUC alters soil processes, (Question #3). We thus						
111	collated a large suite of environmental and soil data, along with CH4 and N2O flux data, in						
112	order to explore the LUC effect on these two greenhouse gases (Table 1).						
113 114	Materials and Methods						
115 116	Literature Search and Data Collection						
117	We searched ISI Web of Science in 2014 for the operators (soil AND (methane OR						
118	CH4)) AND (soil AND ("nitrous oxide" OR N2O)) for all of the manuscripts containing soil						
119	CH_4 and N_2O fluxes (8,593 results). Then we narrowed this selection with the refining						
120	operators - "land use change" OR "land use" (353 results). These results were then						
121	screened to 62 studies that met our criteria. These criteria included: 1) measured soil CH ₄						
122	and/or N_2O from at least two land uses, and 2) studies that had at least one treatment						
123	representing native vegetation or a natural ecosystem that had not been recently converted, or						
124	a human land use (e.g. agriculture). These studies were often 'side-by-side' or paired land						
125	use comparisons, typically comparing a human land use to that of a natural ecosystem. There						

are also a number of studies of reversing from human land use back to 'natural ecosystems'.

We included a handful of studies that have experimentally manipulated conversions of land 127 use, and then measured the effects on GHGs immediately afterward. 3) Finally, we focused 128 129 on upland soils due to their importance as a global CH_4 sink (Tate 2015). We thus excluded wetland studies. We only included peer-reviewed literature, and 'grey literature' was not 130 included due to it being difficult to find (not appearing in ISI Web of Science), and also often 131 not having the scientific rigor of peer-reviewed publications. In addition to a broad search 132 133 and selective screening, we used publications' reference sections as a guide to further potential publications. 134

Our primary data set consisted of soil CH₄ and N₂O fluxes. We included additional 135 136 soil properties, moderating variables, and study characteristics that might influence land use 137 effects on soil GHG emissions (Table 1). We thus collected data on eight soil variables that are commonly measured in coordination with GHGs. We divided these variables into two 138 types: slow-changing and fast-changing. Slow-changing variables are those that are unlikely 139 to change within one year (or perhaps a decade or more), such as total organic carbon (TOC), 140 141 total nitrogen (TN), soil pH, and bulk density (BD). The fast-changing variables are those that change from day to day, or perhaps even within one day. These include soil temperature, 142 soil moisture, and extractable inorganic N (or ammonium and nitrate). Soil moisture (Moist) 143 144 was reported in papers as % gravimetric water content, water-filled pore space, and volumetric water content. Since we are concerned with changes due to LUC, we represent all 145 measures of soil moisture as relative ratio or change (unitless) as a result of LUC. 146 147 Moderating environmental variables were defined as those that influence effect sizes in other soil meta-analyses (Tonitto and others 2006; Aronson and Allison 2012; Dooley and Treseder 148 2012; McDaniel and others 2014b); mostly climate variables and soil type (commonly 149 approximated by texture). All data were collected either from text or tables or were extracted 150 from graphs using GetData Graph Digitizer 2.26 (Sergei Fedorov, Russia). 151

152 *Data handling and Meta-analysis*

153

154 CH₄ and N₂O data were first converted to common units (μ g GHG m⁻² h⁻¹). Once 155 converted, a land-use response metric was calculated for each individual observation for each 156 gas. In order to cope with both negative and positive fluxes of CH₄ and N₂O, that invalidate 157 the use of a 'response ratio' as a metric of effect size (Koricheva and Gurevitch 2014), we 158 used the metric U_{GHG} (U_{CH4} and U_{N2O}, van Groenigen and others, 2011).

$$U_{GHG} = GHG_{new} - GHG_{press}$$

160 U_{GHG} is the difference between the flux for a new land use (GHG_{new}) and the previous 161 (GHG_{prev}) . This metric remains in the common units of gas flux. For non-negative soil 162 variables, we calculated a land-use effect via the response ratio (RR).

$$\ln RR_{soil} = \ln X_{new} - \ln X_{prev} = ln \frac{X_{new}}{X_{prev}}$$
163

164 Where RR_{soil} is the response ratio between means either at the observation level or between 165 the new and previous land use.

A weighted approach was used to calculate effect sizes at the comparison level. This 166 weighting approach incorporated replication and the number of observations for each 167 comparison. Weightings were used owing to the variation in numbers of replications and 168 observations. We gave more weight to studies with greater spatial or temporal replication. 169 We gave less weight to individual studies with large numbers of comparisons so as to not 170 have a disproportionate effect on global means. Similar to van Groenigen and others (2011), 171 we weighted by replication with $W_{\rm R} = (n_{\rm new} \times n_{\rm prev}) / (n_{\rm new} + n_{\rm prev})$, where $n_{\rm new}$ and $n_{\rm prev}$ are 172 the replication in the new and previous land uses. Then we weighted by number of 173 observations per comparison $W_{F,i} = W_R / n_c$, where the final weights (W_F) are calculated by 174

175 dividing the number of i^{th} observations. Then the mean effect sizes for each comparison (\overline{U}) 176 were calculated as:

$$\overline{U} = \frac{\sum_{i} (U_i \times W_{F,i})}{\sum_{i} W_{F,i}}$$

Where $\overline{\upsilon}$ is the mean effect size for each gas. Mean effect sizes were then used in the overall meta-analysis, whereas observation effect sizes were used only for correlations with fastchanging soil variables, where these variables were measured in coordination with each greenhouse gas measure. Global warming potential (GWP) was calculated for each gas using the ratios of 34 and 298 for CH₄ and N₂O, respectively (Myhre and others 2013).

Final mean effect sizes and 95% bootstrapped confidence intervals were calculated 183 184 using MetaWin v2.1 (Rosenberg and others 2000). All categorical comparisons conducted in MetaWin were set on random effects and the 95% bootstrapped confidence intervals (CI) 185 were calculated with 9999 iterations. The overall effect was deemed significant if the CI did 186 not overlap with zero. Total group heterogeneity (Q_T) was partitioned into within-group (Q_w) 187 and between-group (Q_b) heterogeneity, similar to partitioning of variance in ANOVAs. A 188 189 minimum of five comparisons were used to calculate Q_b, and differences between groups (or comparisons) were deemed significant if the CI did not overlap. 190

191 Factors controlling LUC effects on CH₄ and N₂O fluxes

192

177

Univariate correlations among effect sizes of soil variables with GHGs were
conducted in SAS 9.3 (SAS Institute, Cary, NC) with *proc corr* and Pearson correlation
coefficients are reported. We also used non-parametric Random Forest analysis to
understand the variables, and their interactions, that best explain the variations in CH₄ and
N₂O fluxes as influenced by LUC (Breiman 2001). The relative change (RC), or per cent
change, in a soil variable was calculated with respect to the control treatment as (GHG_{new} –

 GHG_{old} / $GHG_{old} \times 100$. The RC > 0 indicates greater value of the variable under 199 consideration in the converted LU, or new, than that in the control, or old LU. Missing data 200 201 were imputed by *missForest* package in R (Stekhoven and Bühlmann 2011). Out-of-bag error estimates of the imputation method was 0 (proportion of falsely classified entries) and 202 0.28 (normalized root mean square error) for the categorical and continuous variables, 203 respectively. The randomForest function from R randomForest package (Liaw and Wiener 204 205 2002) was used on the imputed data with the control parameters ntree = 500 (number of trees) and mtry = 3 (number of variables considered for splitting at each node). Explanatory 206 207 variables considered in the analysis were: direction of LUC (neutral, converted, and reverse), time since LUC (years), fertilization (yes/no), mean annual temperature (MAT, °C), mean 208 annual precipitation (MAP, mm), soil clay (%), and relative changes in soil pH (RC_pH), soil 209 210 ammonium (RC_NH₄), soil nitrate (RC_NO₃), total N (RC_TN), total soil organic carbon (RC TOC), soil moisture content (RC Moist), soil bulk density (RC BD), soil temperature 211 (RC_Temp). The importance function in R randomForest was used for variable importance 212 scores. Importance for a variable is interpreted as increase in mean square error (%IncMSE) 213 due to random permutation on that variable. The R tree package was used to construct 214 conditional inference tree for U_{N2O} and U_{CH4}. Upon satisfaction of each node, the tree moves 215 to the left branch to the next node. Each terminal node represents average U_{N2O} or U_{CH4} and 216 number of observation corresponding to that node (n). 217

218 **Results**

219

220 *Effects of LUC on CH_4 and N_2O*

221

The 62 studies included in this meta-analysis spanned all six inhabited, continental
regions – 5% Africa, 11% Asia, 15% Australia & New Zealand, 21% Europe, 33% North
America, and 15% South America (Table S1). The studies included broad ranges in climate:

225	mean annual temperatures (MAT) from 2.2 - 27.8 °C, and mean annual precipitation (MAP)
226	from $97 - 3962$ mm. More than 70% of the studies that reported soil classification data, were
227	from within eight of the 12 USDA soil orders (absent were Gelisols, Spodosols, Vertisols,
228	and Mollisols). Soils ranged in clay content from 2 to 58%. We classified studies according
229	to land uses: cropland, tree plantations, pastures, and urban (Fig. 1). There were very few
230	studies that had urban land uses $(n = 4)$, but urban ecosystems would be characterized as
231	being in highly-populated residential areas, urban or suburban, with lawn or turf and
232	ornamental trees. The time after land-use change ranged from 0.33 to ~200 years. We could
233	not determine the exact time elapsed since LUC for several longer-term studies.
234	There was large variability in CH ₄ and N ₂ O fluxes (Fig. 1) Fig. S1). Methane fluxes
207	$16 - 202 + 500 = CH + c^2 h^2$
235	ranged from -322 to 588 μ g CH ₄ m ⁻² h ⁻¹ across all land uses. The greatest CH ₄ uptake (most
236	negative flux) was recorded for a loamy grassland (Boeckx and others 1997), while the
237	strongest contribution to the atmosphere was recorded for a 20 year-old pasture (Steudler and
238	others 1996). N ₂ O fluxes ranged from -194 to 1063 μ g N ₂ O m ⁻² h ⁻¹ , albeit that both extreme
239	values were measured in the same bamboo plantation in China (Liu and others 2011). Forest
240	soils generally consumed atmospheric CH4 - median (-28) and mean (-35 μg CH4 $m^{\text{-2}}$ $h^{\text{-1}})$
241	fluxes reflecting the dominance of negative fluxes in forests (~95% of studies, Fig. 1).
242	Overall, pastures were also sinks for CH ₄ (median flux = -0.01 μ g CH ₄ m ⁻² h ⁻¹ , mean flux = -
243	$2 \ \mu g \ CH_4 \ m^{-2} \ h^{-1}$). We grouped all herbaceous-dominant ecosystems (shrubland, savannah,
244	and grasslands) into one category: herbaceous ecosystems. Herbaceous ecosystems produced
245	the smallest median and mean N_2O fluxes (1 and 4 μ g N_2O m ⁻² h ⁻¹). Urban soils produced
246	the greatest median N_2O flux (35 $\mu g~N_2O~m^{-2}~h^{-1}),$ and tree plantations had the greatest mean
247	flux (62 μ g N ₂ O m ⁻² h ⁻¹). All 40 measurements of urban soils were derived from just two

studies (Kaye and others 2004; Chen and others 2014).

Changing land uses from a 'natural' system to any human use, increased CH₄ fluxes 249 by 14 μ g CH₄ m⁻² h⁻¹, and N₂O fluxes by 7 μ g N₂O m⁻² h⁻¹ (Fig. 2). Comparisons among 250 studies suggest that reversing land use (to a more 'natural ecosystem') could reduce CH₄ 251 fluxes by 11 μ g CH₄ m⁻² h⁻¹. However, reversion had little effect on N₂O fluxes. N₂O fluxes 252 actually increased when land use was reversed to that resembling a natural system, by an 253 average of $6 \mu g N_2 O m^{-2} h^{-1}$, but not significantly (CI overlaps with zero). Changing from 254 one intensive land use to another tended to reduce CH4 fluxes (but not significantly, based on 255 four studies or 32 observations), and there were too few data to assess this influence on N₂O 256 257 fluxes (Fig. 2).

258 We adopted the widely used weighted approach for meta-analysis. This approach allows for the wide range of experimental designs and replication across the 62 included 259 studies. Nonetheless, there are arguments for and against this such approaches (Gurevitch 260 261 and Hedges 1999; Philibert and others 2012; Koricheva and Gurevitch 2014). For example, a common issue in meta-analyses is whether or not to give extra emphasis on studies with more 262 precision, if variances are known. We present the calculated, global warming potential due to 263 LUC (GWP, from CH₄ and N₂O) in both weighted and unweighted format (Table 2) so that 264 readers may thus choose their preferred approach. Weighting mostly reduced mean GWPs, 265 266 consistent with a conservative approach to estimating overall effects of LUC. Conversion of land from a state of 'natural ecosystem' to intensive human use, resulted in a net increase of 267 234 kg CO₂-equivalents $ha^{-1} y^{-1}$ (or 376 if unweighted, Table 2). Reversing this conversion 268 also increased GWP by 132 kg CO₂-equivalents ha⁻¹ y⁻¹ (or 104 if unweighted), albeit this 269 result was not significantly different to zero. 270

The type of the original 'natural' vegetation, had very little effect on both greenhouse gases (Fig. 2). Only when the final land use was tree plantations, was converting forests to human uses more significant for CH₄ fluxes than converting herbaceous ecosystems (+13 and $-8 \ \mu g \ CH_4 \ m^{-2} \ h^{-1}$, respectively, Fig. 2). Conversions among previous and current land uses (forest or herbaceous) had no effect on N₂O fluxes (Fig. 2), albeit largely due to variability and the small number of studies of N₂O fluxes relative to CH₄ fluxes.

277 Pooling prior land uses revealed few differences in CH₄ fluxes among new land uses irrespective if the new use was either intensive management or a restored natural use (Fig. 278 S2). Of four contrasts combining 'natural systems', only changes in herbaceous ecosystems 279 to a pasture $(+25 \ \mu g \ CH_4 \ m^{-2} \ h^{-1})$, had a significantly greater effect than a change to tree 280 plantations (-8 μ g CH₄ m⁻² h⁻¹, P = 0.008, Fig. 2). Cropping system type had little effect on 281 CH₄ fluxes (Fig. S2), although converting to barley (24 μ g CH₄ m⁻² h⁻¹) had a greater effect 282 than converting to wheat (-1 µg CH₄ m⁻² h⁻¹). Many studies did not report if fertilizer N was 283 included in the human land use (nearly 50% of studies). When that data were available, there 284 was a marginally significant effect (+13 μ g N₂O m⁻² h⁻¹) of added N on N₂O emissions (P= 285 286 0.053, Fig. S2).

287 Drivers of LUC effects on CH₄ and N₂O288

Effects of "elapsed time since land-use change" on GHG emissions were significant 289 (Ps < 0.014) for conversions from natural forests to human land use (Fig. 3). The best fit 290 model for both GHGs was exponential decay. Mean U_{CH4} was ~ 50 µg CH₄ m⁻² h⁻¹ 291 immediately after conversion, but this then declined by about 0.1 μ g CH₄ m⁻² h⁻¹ per year. 292 After roughly 30 years, modelled fluxes stabilized and remained about 28 μ g CH₄ m⁻² h⁻¹ 293 above that of the previous land use. Mean U_{N2O} was 27 µg N_2O m⁻² h⁻¹ immediately after 294 conversion, and then declined more quickly, by about 0.2 μ g N₂O m⁻² h⁻¹ per year before 295 stabilizing after ~ 40 years. At that point, N₂O fluxes were roughly equivalent to those of the 296 297 previous land use.

Univariate analysis shows that amongst climate and edaphic factors, MAP had the 298 clearest influence on CH₄ fluxes (Fig. 4). The LUC effect on CH₄ was positively related to 299 300 precipitation (P < 0.001), while reversion to 'natural' land uses was negatively related (P < 0.001) 0.001). N₂O fluxes were negatively related to MAP (P = 0.011) when land use changed to 301 cropland or plantations. Soil texture (% clay) had no influence on the role of LUC in fluxes 302 of either gas, however, there was a marginally significant (negative) correlation between 303 304 U_{CH4} and % clay (P = 0.052, Fig. 4). We also examined interactions of MAT and MAP on U using contour graphs (Fig. S3). When natural vegetation was converted, CH₄ fluxes 305 306 increased most in cold-wet and warm-wet conditions, whereas N2O fluxes increased most at moderate MAT and MAP (15-20 °C, 1500-2500 mm) and cold-dry conditions. Reversion of 307 land use to 'natural ecosystems' had greatest effects on CH4 fluxes under moderate MAT and 308 dry conditions; while N₂O fluxes respond most strongly on warm and wet sites. 309

There were unexpected and inconsistent univariate relationships among slow-310 changing variables and effects of land use change on soil CH₄ and N₂O fluxes. For example, 311 LUC had effects on soil pH (Fig. 5), but gas fluxes showed divergent responses $-U_{CH4}$ 312 increased while U_{N2O} decreased with pH. Effects on CH₄ fluxes resulting from reversing 313 314 LUC were negatively related to effects on total organic C (TOC, P = 0.036) – land uses that 315 increase TOC reduce CH₄ fluxes. However, there was no relationship between LUC effects on total soil nitrogen and fluxes of either gas. Although there was no clear linear relationship 316 with soil bulk density (Fig. 5), where LUC results in increased bulk density CH₄ fluxes are 317 mostly increased (except for three observations - Simona and others, 2004; Mapanda and 318 others, 2010; Galbally and others, 2010). 319

Land-use effects were best correlated with fast-changing soil variables (Fig. 6). Changes in use that increased soil temperature, on average increased CH₄ fluxes by 0.34 μ g CH₄ m⁻² h⁻¹ per °C increase in soil temperature (*P* = 0.034). Even so the strongest effect of

LUC was through its influence on soil moisture (P < 0.0001, Fig. 6). For every 1 % increase 323 in soil moisture, CH₄ fluxes increased by 0.65 µg CH₄ m⁻² h⁻¹. LUC effects on N₂O were also 324 closely related to soil moisture (P < 0.001), albeit negatively. Concentrations of extractable 325 inorganic N (nitrate, ammonium) in soils were clear drivers of the LUC effects on both CH4 326 and N₂O fluxes (Fig. 6). LUCs that increased soil NH₄⁺ increased fluxes of the two 327 greenhouse gases – U_{CH4} marginally (P = 0.092) and U_{N2O} significantly (P = 0.024). 328 329 Reversion of land use produced a negative correlation between NH₄⁺ and U_{CH4} (Fig. 8, P =0.077) and U_{N2O} (Fig. 8, P = 0.004). If LUC reduced concentrations of soil NO₃⁻, then CH₄ 330 331 fluxes increased (P = 0.004). Extractable NO₃⁻ had a different relationship with LUC and N₂O fluxes. U_{N2O} was positively related to the LUC effect on NO₃⁻ for conversions from 332 natural to intensive uses (P < 0.001, Fig. 6). 333

Using multiple interacting variables within a regression tree model, again shows that 334 fast-changing variables such as soil NH4⁺ and NO3⁻ are key drivers of LUC effects on CH4 335 and N₂O emissions (Table 3). Predicted U_{CH4} and U_{N2O} were significantly correlated with 336 observed values ($R^2 > 0.90$, P < 0.05). The regression tree model underestimated at higher 337 ranges of U_{CH4} and U_{N20} (Fig. S4) yet still explained 58% of the variation in observed U_{CH4} 338 and U_{N2O}. Regression tree analyses provided a classification of the LUC effect on GHG 339 emissions. Changes in soil mineral NH₄⁺ and NO₃⁻ due to LUC produced clear bifurcation in 340 both U_{CH4} and U_{N20} regression trees (Fig. 7 and 8). If there are reductions in soil NO_3^- 341 associated with converting one intensive land use to another, or with reversion of a land use 342 343 to natural conditions, then CH₄ uptake is increased (Nodes 1 and 2, Fig. 7). In general, and as expected, LUCs that increase soil NH4⁺ and NO3⁻ also increase N2O fluxes (Nodes 3 and 5-8, 344 Fig. 8). 345

347 **Discussion**

348

Land-use change is just one direct way in which humans are altering soil processes. 349 In the Anthropocene, however, many human activities now have a global reach so that even 350 what appear to be 'natural' ecosystems (which humans have not begun to physically manage) 351 are now in some way affected by human activities (Wohl 2013). Nonetheless, drawing 352 conclusions about impacts of LUC on GHG fluxes from soils, based on comparisons with so-353 called 'natural' or 'undisturbed' ecosystems, must be conditioned by recognition that human 354 influence is not restricted to land use. Pollution and invasive species, for example, are just 355 two ways humans indirectly influence all ecosystems (Akimoto 2003; Vilà and others 2011; 356 Cronk and Fuller 2014). Our analysis is focused on synthesizing and quantifying broad 357 effects of LUC on soil-atmosphere CH4 and N2O fluxes, beyond those caused by indirect 358 human activity. 359

360

361 What are the overall LUC effects on soil CH_4 and N_2O fluxes and can they be reversed?

Converting land to more intensive uses increased CH₄ fluxes by 14 μ g m⁻² h⁻¹, and 362 N₂O fluxes by 7 μ g m⁻² h⁻¹ (Fig. 2). When converted to CO₂-equivalents, the LUC effect on 363 N₂O was nearly three times that of CH₄ (Table 2). Conversely, when land use reverts to more 364 365 natural conditions, gas fluxes often remained greater than under the original use (Table 2). However, active reversion of land use (e.g. from agriculture to native forest) remains a likely 366 means of regenerating net CH₄ uptake primarily via increased oxidation (Figs. 2 & 3, Table 367 368 2; see Priemé and others 1997; Hiltbrunner and others 2012). On the other hand, N₂O fluxes increased after LUC and after reversing or restoring native vegetation (Fig. 2 and S2). 369 370 Although, there are studies which show that converting cropland back to native vegetation could reduce N₂O emissions (by up to 29%, Robertson and others 2000). Our meta-analysis 371

demonstrates that simply reverting back to 'natural' ecosystems may not always mitigate soilGHG emissions.

The differences between LUC effects on CH₄ and N₂O fluxes are not fully 374 understood. Persistent changes in N₂O fluxes have been discussed mostly in terms of overall 375 changes in the N cycle (Erickson and others 2001; Scheffer and others 2001; Hiltbrunner and 376 others 2012), and as legacy effects of N addition on nitrification and denitrification. A recent 377 378 analysis of LUC effects on N2O emissions in Brazil speculated that changes in soil microaggregate structure, might explain a new "steady state" (Meurer and others 2016). This long-379 term change in soil structure could have cascading effects on soil water content and 380 381 movement, and thus also impact GHG emissions.

382 Changes in the fluxes of both gases were greatest in first ten years after a change in land use (Fig. 3), and an exponential decay model best explains the global patterns in this 383 period. We compared our global N₂O model to Meurer and others (2016) and Neill and 384 others (2005) studies which focus on Brazilian ecosystems (Fig. 3). Both show rapid declines 385 386 in the LUC effect on N₂O fluxes (also confirmed by conceptual curve in van Lent and others (2015)). Our global synthesis suggests that LUC will result in N₂O fluxes that approach that 387 of native vegetation (or $U_{N20} = \sim 0 \ \mu g \ m^{-2} \ h^{-1}$) at around 12 years after conversion. Meurer 388 and others (2016) and van Lent and others (2015) model suggest that if subtropical forest 389 land is converted to pasture, N₂O fluxes will eventually be lower than had the land remained 390 forest ($U_{N2O} = \sim -15 \ \mu g \ m^{-2} \ h^{-1}$). A general problem with LUC studies is that selection of the 391 'reference' (or native) land use, can dramatically change the outcome. For example, some 392 393 tropical forests are known for their fast rates of N turnover and relatively high N₂O emissions (discussed further below). By contrast, the pastures created by converting such forests can 394 quickly become degraded, seldom receive N fertilizer, and can have low N₂O emission 395 396 relative to native tropical forests (Meurer and others 2016).

397	Forest harvesting studies have some relevance to the issues of LUC discussed here.
398	Harvesting-induced changes in fluxes of N_2O are greatest within the first few months
399	(Steudler and others 1991; Keller and others 1993; Tate and others 2006; McDaniel and
400	others 2014a). During this period, when a flush of carbon and nutrients is added to the soil in
401	vegetation debris, soil microbial activity is stimulated by warmer and wetter conditions in
402	the absence of plant 'sinks' for N and water – such that nitrification and denitrification are
403	enhanced (Hendrickson and others 1989; Johnson 1992; Mariani and others 2006). In a
404	meta-analysis restricted to tropical forests, van Lent and others (2015) showed a similar trend
405	with N ₂ O fluxes peaking at ~ 4 kg N ₂ O-N ha ⁻¹ y ⁻¹ shortly after harvest, then declining over 50
406	years to < 1 kg N ₂ O-N ha ⁻¹ y ⁻¹ . Saha and others (2017) also observed increased N ₂ O
407	emissions in the second year after LUC. Effects of LUC on total soil N_2O (and CH_4) fluxes
408	are likely underestimated if this initial period is not properly considered. Consistently
409	declining effects of LUC on CH ₄ and N ₂ O fluxes also suggests that subsequent management
410	actions (e.g. tillage or fertilization) may not be as important as the original disturbance.

411

Which land-use change causes the greatest change to soil CH₄ and N₂O fluxes, and which
ecosystems are most vulnerable to LUC?

414

Somewhat surprisingly, our synthesis suggests that LUC effects on fluxes of CH₄ and N₂O (especially) are largely independent of both final land use (Fig. 2), and previous land use (Fig. 2 and S2). The exception to this is conversion effects on CH₄ fluxes in herbaceous ecosystems. For instance, herbaceous-to-cropland and herbaceous-to-pasture conversions increased CH₄ emissions by +16 and +26 μ g CH₄ m⁻² h⁻¹, on average, versus herbaceous-toplantation which decreased emissions by -8 μ g CH₄ m⁻² h⁻¹ (Fig. 2). The most likely explanation for this finding are changes in soil moisture or quantity/quality of C inputs to

soils. Methane fluxes are tightly linked to soil moisture and even changes to land uses that 422 are managed more intensively that might decrease soil moisture (e.g. via changes to leaf area) 423 might be expected to decrease CH₄ fluxes, mostly through increased CH₄ oxidation (Keller 424 and Reiners 1994; Steudler and others 1996; Hiltbrunner and others 2012). Changing from 425 natural herbaceous vegetation, to woody trees will undoubtedly change distribution, quantity 426 and quality of C inputs to soils. There is now good evidence showing CH₄ oxidation is linked 427 428 to labile soil C (Sullivan and others 2013). Both of these factors, soil moisture and changes in soil carbon, will be discussed further below. 429

We are limited in predicting sensitivity of GHG emissions from natural to managed 430 431 ecosystem for many reasons (some discussed further below); but this is especially the case for 432 N₂O which had fewer studies and amongst the studies we included there was much more variation than CH₄. This is unfortunate due to N₂O's outsized contribution to overall GHG 433 434 emissions (Table 2). Furthermore, some important land uses are notably underrepresented here – like urban and suburban land uses (just four studies), which rapidly replacing native 435 vegetation and agricultural land uses worldwide (Foley and others 2005). Urban land use has 436 the potential to be a major contributor to overall GHG fluxes (Fig. 1), especially since even 437 conversion from agricultural use to urban increases CH₄ emission by 9.5 μ g m⁻² h⁻¹ and N₂O 438 emissions by 6.2 μ g m⁻² h⁻¹ (Fig. 2). 439

440

441 What variables moderate LUC effects on soil CH_4 and N_2O fluxes?

442

Our approach to address this question includes both univariate and multivariate nonparametric analyses. Across the 62 studies included in this meta-analysis, a range of edaphic and climate variables modified effects of LUC on CH_4 and N_2O . No single variable, nor even pair of variables (Fig. S3), had identical influence on both GHGs, and their interactions were 447 complex (Figs. 7 and 8, Table 3). However, soil extractable inorganic N and soil moisture
448 emerged as two of the most salient drivers of LUC effects on both gases through both
449 univariate and multivariate regression approaches.

Mean annual precipitation (MAP) exerted a strong and distinct relationship with LUC 450 effects on CH₄ fluxes (Fig. 4). Apart from its direct influence on soil microbial activity, soil 451 moisture often dictates rates of O₂ diffusion is critical to both rates of CH₄ production and 452 453 oxidation. Relationships between CH₄ and soil moisture can fluctuate with time (Verchot and others 2000) and are often strongly dependent on soil texture, as reflected in our regression 454 tree analysis (Table 3). For CH₄ fluxes, LUC effects were strongest in wetter ecosystems – or 455 more positive when converting to intensive land uses $(+50 \ \mu g \ CH_4 \ m^{-2} \ h^{-1})$ and more negative 456 when reversing to 'natural' vegetation (-50 μ g CH₄ m⁻² h⁻¹). These trends emphasize the 457 critical role of soil moisture in CH₄ dynamics (Keller and Reiners 1994; Steudler and others 458 459 1996; Carmo and others 2012; Hiltbrunner and others 2012; Tate 2015).

N₂O fluxes, as affected by LUC, were much more variable with MAP, and arguably 460 461 better related to the direct controlling influence of NO₃⁻ production/consumption (i.e. 462 nitrification and denitrification) rather than land use itself (Figs. 6 & 8). Indeed, while negative relationships between LUC effects on N2O fluxes and MAP might seem counter-463 intuitive (Fig. 4), primary tropical forests (Reiners and others 1994; Arai and others 2014), as 464 well as late-successional tropical forests (Erickson and others 2001), can be significant global 465 sources of N₂O, as are many tropical soils (Reay and others, 2007). Our data synthesis 466 suggests a mean rate of emission of 25 µg N₂O m⁻² h⁻¹ from all forests (Fig. 1). Such high 467 N₂O fluxes in 'natural' forests, but especially in wetter ecosystems (> 2000 mm), ensures that 468 any LUC to human land use will be lower (on average). This statement must be cautioned, 469 however, since many studies do not account for N₂O pulse seen after initial conversion, nor 470 471 do they accurately account for periodic 'hot moments' like fertilization or tillage events.

Other gaseous N losses, like NO emissions (Neill and others 2005), remain too poorly studied
to be included here. The effects of LUC on N₂O fluxes in drier ecosystems appears greater
than that in wet systems (Kaye and others 2004; Scheer and others 2008; Mapanda and others
2010). This may be largely due to actually accounting for these "pulses" of N₂O emission
after rain events in drier ecosystems. Such pulses comprise a large proportion of annual N₂O
emissions in drier ecosystems (Davidson 1992; Kessavalou and others 1998).

Generally speaking, our results suggest that when conversion of land increases soil 478 mineral N availability, increases of both CH₄ and N₂O fluxes also follow (Figs. 6, 7, 8). We 479 must concur with Liu and Greaver (2009). In a global meta-analysis, they found N additions 480 481 increased CH₄ emission by 97% (reducing CH₄ uptake by 38%), and increased N₂O 482 emissions by 216%. Increased mineral N supply can negatively affect N₂O reduction to N₂ and increases N₂O emissions (Weier and others 1993; Gillam and others 2008). Greater 483 484 mineral N availability (from N fertilization) has also been reported to slow CH₄ uptake by inhibiting methanotroph activity (Steudler and others 1989; Wang and Ineson 2003). 485 Methane oxidation is N-limited in some cases, but inhibited by N in others (Bodelier and 486 Laanbroek 2004; Aronson and Helliker 2010), with the response determined by many site-487 specific factors as well as the type and amount of fertilizer N applied. 488

Using soil NH₄ and NO₃ as proxies for any fertilization, along with any other LUC 489 features affecting N dynamics, allowed us to evaluate the two N species importance in 490 491 regulating GHG emissions (even though many studies did not include fertilization information). Converted-to and reverted-from managed ecosystems showed opposite, 492 493 divergent relationships with mineral N and N_2O emissions (Fig. 6). Land use changes that increased N availability, either NH₄ or NO₃, increased N₂O emissions when transitioning 494 from natural-to-human land uses but decreased emissions when reversing (human-to-natoral 495 496 or reversed). Even in unfertilized soils, concentrations of NH_4^+ and NO_3^- in soil reflect a

range of competing processes by plants and soil microbes (Kaye and Hart 1997; Schimel and
Bennett 2004), and our data show clear opposing trends when land is either converted to and
reversed from a managed ecosystem (Fig. 6). This finding highlights the complexity of N
cycling, and arguably reflects long-term consequences of N fertilizers for microbial
processes.

Soil C and pH have well-established links to CH₄ and N₂O emissions, and here we 502 503 provide some supporting evidence that concomitant changes in these soil properties and GHG emissions from LUC are related (Fig. 5). The effect LUC has on both of these soil properties, 504 and subsequent effect on GHG emissions, could be through an altered soil microbial 505 506 community. At the global scale both soil C and pH have shown strong relationships diversity 507 and abundance of soil microbes (Fierer and others 2009; Lauber and others 2009) - this can, for example, be extended to methanotrophs and N-cycling bacteria and archaea. Another 508 509 possibility, is that changes in soil pH or C quantity or quality, via LUC, increase the activity of methane oxidation or N cycling with little to no effect on abundance or diversity of 510 511 organisms. Some high-affinity CH₄ oxidizers may use acetate as a substrate (Pratscher and others 2011), and that there is a positive relationship between dissolved organic C and CH₄ 512 oxidation (Sullivan and others 2013). Nitrous oxide emissions can be dually regulated by: 1) 513 514 enhanced decomposition of soil organic matter and thus increased gross N mineralization 515 either from increased C inputs from greater gross primary production (Benanti and others 2014) – leading to larger pools of NH₄⁺ and NO₃⁻ to be converted to N₂O , or 2) possible 516 517 reductions in soil pH, especially from coniferous trees, where acidification can inhibit the last step in denitrification leading to more N₂O relative to N₂ (Firestone and others 1980; ŠImek 518 519 and Cooper 2002; Wang and others 2018). Resolving which of these factors is driving the increase in N₂O is difficult since nitrification frequently covaries with pH. Further research 520 into the driving mechanisms for both gases are needed. 521

Finally, a subset of our studies (n = 8) measured soil microbial functional genes 522 (pmoA, nirK, and nirS) involved in soil GHG emissions (Table S2). Seven studies assessed 523 524 abundance of the *pmoA* gene, which encodes the β -subunit of the particulate methane monooxygenase enzyme, and is the most common, and perhaps only genetic marker available 525 for detection of all atmospheric CH₄ oxidizers. *pmoA* genes associated with atmospheric CH₄ 526 oxidizers are typically referred to as upland soil clusters, of which there are several. A strong 527 528 negative relationship between LUC effect on the *pmoA* gene and CH₄ fluxes highlights the importance of these organisms in regulating LUC effects (Fig. S5). Many authors of studies 529 530 of soil CH₄ fluxes have speculated that these organisms are particularly sensitive to disturbance. This meta-analysis provides some cross-study evidence for such sensitivity, but, 531 again, we lack knowledge at the finer scale. 532

533 Limitations of meta-analysis – Spatiotemporal variability of soil greenhouse gas emissions

534

535 There is large variation in the experimental designs and methods encompassed here (Table 1 and S1). Temporal and spatial variability remains a major limitation in all studies of 536 soil-atmosphere fluxes of GHG (Velthof and others 1996; Barton and others 2015; 537 Kravchenko and Robertson 2015; McDaniel and others 2017). Nearly all of our 62 studies 538 used paired-site approaches, or reported GHG emissions from two or more sites in close 539 540 proximity. Paired sites were generally replicated four times (range 1 to 15), while sampling frequency was typically once per month (range: 1 to 8 measurements/week). Spatial and 541 temporal variability of CH₄ and N₂O fluxes can be extreme (Barton and others 2015; 542 McDaniel and others 2017) and all included fluxes could be significant over- or under-543 estimates. For instance, McDaniel and others (2017) showed that spatial variability in a 16 544 ha agriculture field can rival that of five months of temporal variability within the same field. 545 To reduce the standard error in reported GHG fluxes to within 10% of their mean values 546

would have required nearly 2000 measurements for CH₄ and over 8000 measurements for
N₂O. Barton et al. (2015) reported that daily measurements of N₂O were essential given the
known temporal variability, and the uncertainty of flux estimation extends to the methods
used in individual flux measurements too (Levy and others 2011; Jungkunst and others 2018).

551 Spatial and temporal variability limits our ability to detect treatment effects. This is especially the case for critical periods, such as immediately after fertilizer application. N₂O 552 553 fluxes in this period are frequently many fold, or even order of magnitude, larger than at other times, so not capturing these data could severely underestimate fluxes (Barton and others 554 2015; Guardia and others 2016). We must thus place greater emphasis on the relatively few, 555 556 well-replicated studies that capture such events. For example, studies by Dobbie and others 557 (1995, n = 15) and Merino and others (2004, n = 56) are highly valuable. Many studies included here (15 of the 62) had spatial replication of n=3 or less, and half of all included 558 studies (31) had temporal replication of 2 or less. Future studies should explicitly 559 acknowledge the problems of spatiotemporal variability, and utilize known solutions via 560 appropriate sampling and statistical techniques (Barton and others 2015; Kravchenko and 561 Robertson 2015; McDaniel and others 2017; Saha and others 2017a). 562

563 Conclusion

564

It seems inevitable that land uses will continue to change around the globe, and that some soils currently under natural vegetation will be converted to the production of food, fibre, and fuel. Converting more land to production could increase fluxes of methane (CH₄) and nitrous oxide (N₂O) by 234 kg CO₂-eq ha⁻¹ y⁻¹ (95% confidence range: 84-447). While this is small relative to total CO₂ losses that emanate from LUC (~ 2%, Hansen 2013), our meta-analysis suggests that restoring these lands to 'natural' vegetation would have little effect, at least on decadal time scales. Land management practices that serve to increase CH₄

572	oxidation or reduce N ₂ O emissions are good options for land under human use (including							
573	further converted land). Future research that focuses on a better understanding of the							
574	proximal biotic drivers of the responsible processes seems to be of greater value than more							
575	studies quantifying fluxes alone.							
576 577	Acknowledgements							
578	MAA acknowledges the support of the Australian Research Council. We would like							
579	to thank Drs. Lachlan Ingram, Feike Dijkstra, and Alberto Canarini for helpful discussion							
580	over the data and meta-analyses. We thank Drs. Klaus Butterbach-Bahl and Monica Turner,							
581	and three anonymous reviewers, for helpful comments and suggestions that have improved							
582	this manuscript.							

583 Tables584

- Table 1. Soil properties, environmental moderating variables, and site and treatment
- 586 characteristics for studies included in this meta-analysis.
- Table 2. Overall effects of land-use change on CH₄ and N₂O greenhouse gas global warming
- 588 potential (GWP).
- Table 3. Importance of interacting variables to effects of LUC on fluxes of CH_4 and N_2O .

590 **Figures**

Figure 1. Box plots of soil methane (CH4) and nitrous oxide (N2O) fluxes. Herbaceous
vegetation includes: shrubland, savanna, and grasslands. Box plots show mean (dashed line),
median (solid line), 5th percentile (circle), 10th percentile (whisker), 25th percentile, 75th
percentile, 90th percentile (whisker), and 95th percentile (circle). Natural vegetation shown in
blue, and converted land uses are in red. The number in parentheses are number of
observations from the ecosystem or land-use types.

597 Figure 2. Effect of land-use change on soil methane (CH4) and nitrous oxide (N2O) fluxes.

598 The overall data (filled symbols) and data separated by type of land use (open symbols).

These data are further separated by two ecosystem types: Forests and herbaceous ecosystems(shrubland, savanna, and grasslands). U is the difference in greenhouse gas flux between the

new and previous land use. The numbers in parentheses are number of overall comparisons.

Figure 3. The effect of land-use change on soil methane (CH4) and nitrous oxide (N2O)

603 expressed over the number of years since conversion to the new land use. U is the difference

in greenhouse gas flux between the new and previous land use. Herbaceous ecosystems are

shrublands, savannahs and grasslands. Natural-to-human (Converted, red circles) and human-

to-natural (Reversed, blue triangles) land use changes are shown. Significant (P < 0.05)

607 correlations are shown with exponential decay trend lines. Data from Meurer and others

608 (2016) and Neill and others (2005), focused on pasture conversions from Brazilian forests,

609 were adapted to fit our UN2O format for comparison.

Figure 4. Correlations among land-use change effects on soil methane (UCH4) and nitrous
oxide (UN2O) with environmental variables: mean annual temperature (MAT), mean annual
precipitation (MAP), and percentage of clay in the soil. U is the difference in greenhouse gas
flux between the new and previous land use. Natural-to-human (Converted, red circles) and

human-to-natural (Reversed, blue triangles) land use changes are shown. Significant (P <
0.05) correlations are shown with linear trend lines.

Figure 5. Correlations among land-use change effects on soil methane (CH4) and nitrous oxide (N2O) with slow-changing variables: total organic carbon (TOC), total nitrogen (TN), pH, and bulk density (BD). RR is the response ratio of that soil variable to land use change – a positive value is increase from new land use, negative is a decrease from the new land use. U is the difference in greenhouse gas flux between the new and previous land use. Naturalto-human (Converted, red circles) and human-to-natural (Reversed, blue triangles) land use changes are shown. Significant (P < 0.05) correlations are shown with linear trend lines.

623 Significant (P < 0.05) correlations are shown with linear trend lines.

Figure 6. Correlations among land-use change effects on soil methane (CH4) and nitrous 624 oxide (N2O) with fast-changing or dynamic variables: temperature (Temp), soil moisture 625 (Moist), ammonium (NH4), and nitrate (NO3). RR is the response ratio of that soil variable 626 to land use change – a positive value is increase from new land use, negative is a decrease 627 628 from the new land use. U is the difference in greenhouse gas flux between the new and 629 previous land use. Natural-to-human (Converted, red circles) and human-to-natural (Reversed, blue triangles) land use changes are shown. Significant (P < 0.05) correlations are 630 shown with linear trend lines. 631

Figure 7. Random Forest regression tree analysis for the land-use change (LUC) effects on methane (U_{CH4}). U is the difference in greenhouse gas flux between the new and previous land use. Nodes in the tree are moderating variables expressed as relative change (RC) in percent, which was calculated as: new LU – old LU/ old LU × 100. Variables in this tree include: soil nitrate (NO₃), land use change direction (LUC), and soil total organic carbon (TOC). To read the tree, at each node if the LUC effect is true (e.g. < XX relative change) 638 then move to the left branch, if not then move to the right. At the ends of the branches are the 639 mean U_{CH4} values associated with that path, and number of comparisons (n) for each terminal 640 node, and box and whisker plots. Box and whisker plots show median (solid line), 5th

641 percentile (bottom circle), 10th percentile (whisker), 25th percentile (bottom of box), 75th

642 percentile (top of box), 90th percentile (whisker), and 95th percentile (top circle).

643 Figure 8. Random Forest regression tree analysis for the land-use change (LUC) effects on

644 nitrous oxide (U_{N2O}). U is the difference in greenhouse gas flux between the new and

645 previous land use. Nodes in the tree are moderating variables expressed as relative change

646 (RC) in percent, which was calculated as: new LU – old LU/ old LU \times 100. Variables in this

tree include: soil ammonium (NH₄), soil nitrate (NO₃), and gravimetric water content (GWC).

To read the tree, at each node if the LUC effect is true (e.g. < XX relative change) then move

to the left branch, if not then move to the right. At the ends of the branches are the mean

 U_{N2O} values associated with that path, number of comparisons (n) for each terminal node, and

box and whisker plots. Box and whisker plots show median (solid line), 5th percentile (bottom

circle), 10th percentile (whisker), 25th percentile (bottom of box), 75th percentile (top of box),

653 90th percentile (whisker), and 95th percentile (top circle).

655 **References Cited**

- Akimoto H. 2003. Global air quality and pollution. Science (80) 302:1716–1719.
- 657 Arai H, Hadi A, Darung U, Limin SH, Takahashi H, Hatano R, Inubushi K. 2014. Land use
- change affects microbial biomass and fluxes of carbon dioxide and nitrous oxide in
- tropical peatlands. Soil Sci Plant Nutr 60:423–434.
- Aronson EL, Allison SD. 2012. Meta-analysis of environmental impacts on nitrous oxide
 release in response to N amendment. Front Microbiol 3:272.
- Aronson EL, Helliker BR. 2010. Methane flux in non-wetland soils in response to nitrogen
- addition: a meta-analysis. Ecology 91:3242–3251.
- Ball BC, Scott A, Parker JP. 1999. Field N₂O, CO₂ and CH₄ fluxes in relation to tillage,

665 compaction and soil quality in Scotland. Soil Tillage Res 53:29–39.

- Barton L, Wolf B, Rowlings D, Scheer C, Kiese R, Grace P, Stefanova K, Butterbach-Bahl
- K. 2015. Sampling frequency affects estimates of annual nitrous oxide fluxes. Sci Rep5:15912.
- Benanti G, Saunders M, Tobin B, Osborne B. 2014. Contrasting impacts of afforestation on
 nitrous oxide and methane emissions. Agric For Meteorol 198–199:82–93.
- Bender M, Conrad R. 1992. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or
 high CH4 mixing ratios. FEMS Microbiol Lett 101:261–269.
- Bodelier PLE, Laanbroek HJ. 2004. Nitrogen as a regulatory factor of methane oxidation in
 soils and sediments. FEMS Microbiol Ecol 47:265–277.
- Boeckx P, Van Cleemput O, Villaralvo I. 1997. Methane oxidation in soils with different
 textures and land use. Nutr Cycl Agroecosystems 49:91–95.

- 677 Breiman L. 2001. Random Forests. Mach Learn 45:5–23.
- Brussaard L, Caron P, Campbell B, Lipper L, Mainka S, Rabbinge R, Babin D, Pulleman M.
- 679 2010. Reconciling biodiversity conservation and food security: scientific challenges for
- a new agriculture. Curr Opin Environ Sustain 2:34–42.
- 681 Carmo JB do, de Sousa Neto ER, Duarte-Neto PJ, Ometto JPHB, Martinelli LA. 2012.
- 682 Conversion of the coastal Atlantic forest to pasture: Consequences for the nitrogen cycle
 683 and soil greenhouse gas emissions. Agric Ecosyst Environ 148:37–43.
- 684 Chapuis-Lardy L, Wrage N, Metay A, Chotte J-L, Bernoux M. 2007. Soils, a sink for N2O?
- 685 A review. Glob Chang Biol 13:1–17.
- 686 Chen Y, Day SD, Shrestha RK, Strahm BD, Wiseman PE. 2014. Influence of urban land
- development and soil rehabilitation on soil–atmosphere greenhouse gas fluxes.
 Geoderma 226–227:348–53.
- Conrad R. 2009. The global methane cycle: recent advances in understanding the microbial
 processes involved. Environ Microbiol Rep 1:285–292.
- 691 Conrad R, Rothfuss F. 1991. Methane oxidation in the soil surface layer of a flooded rice
 692 field and the effect of ammonium. Biol Fertil Soils 12:28–32.
- 693 Cronk QCB, Fuller JL. 2014. Plant invaders: the threat to natural ecosystems. Routledge
- Dale VH, Houghton RA, Hall CAS. 1991. Estimating the effects of land-use change on
- global atmospheric CO2 concentrations. Can J For Res 21:84–90.
- Davidson EA. 1992. Sources of nitric oxide and nitrous oxide following wetting of dry soil.
 56:95–102.
- 698 Davidson EA. 1993. Soil water content and the ratio of nitrous oxide to nitric oxide emitted

699	from soil. In: Biogeochemistry of Global Change. Springer. pp 369–86.
700	Dooley S, Treseder K. 2012. The effect of fire on microbial biomass: a meta-analysis of field
701	studies. Biogeochemistry 109:49-61.
702	Dunfield P. 2007. The Soil Methane Sink. In: Reay DS, Hewitt CN, Smith KA, Grace J,
703	editors. Greenhouse Gas Sinks. CABI. pp 152–170.
704	Erickson H, Keller M, Davidson AE. 2001. Nitrogen oxide fluxes and nitrogen cycling
705	during postagricultural succession and forest fertilization in the Humid Tropics.
706	Ecosystems 4:67–84.
707	Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. 2009. Global patterns in
708	belowground communities. Ecol Lett 12:1238–1249.
709	Firestone MK, Davidson EA. 1989. Microbiological basis of NO and N2O production and
710	consumption in soil. Exch trace gases between Terr Ecosyst Atmos 47:7–21.
711	Firestone MK, Firestone RB, Tiedje JM. 1980. Nitrous oxide from soil denitrification: factors
712	controlling its biological production. Science 208:749-751.
713	Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT,
714	Daily GC, Gibbs HK. 2005. Global consequences of land use. Science (80-) 309:570-4.
715	Galbally I, Meyer CP, Wang Y-Pi, Kirstine W. 2010. Soil-atmosphere exchange of CH ₄ , CO,
716	N_2O and NO_x and the effects of land-use change in the semiarid Mallee system in
717	Southeastern Australia. Glob Chang Biol 16:2407–2419.
718	Gillam KM, Zebarth BJ, Burton DL. 2008. Nitrous oxide emissions from denitrification and
719	the partitioning of gaseous losses as affected by nitrate and carbon addition and soil
720	aeration. Can J Soil Sci 88:133–143.
	33

721	Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson
722	S, Thomas SM, Toulmin C. 2010. Food Security: The Challenge of Feeding 9 Billion
723	People. Science 327:812–818.
724	van Groenigen KJ, Osenberg CW, Hungate BA. 2011. Increased soil emissions of potent
725	greenhouse gases under increased atmospheric CO ₂ . Nature 475:214–216.
726	Guardia G, Abalos D, García-Marco S, Quemada M, Alonso-Ayuso M, Cárdenas LM, Dixon
727	ER, Vallejo A. 2016. Effect of cover crops on greenhouse gas emissions in an irrigated
728	field under integrated soil fertility management. Biogeosciences 13:5245-5257.
729	Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Glob
730	Chang Biol 8:345–360.
731	Gurevitch J, Hedges L V. 1999. Statistical issues in ecological meta-analyses. Ecology
732	80:1142–1149.
733	Hansen MC, Potapov P V, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D,
734	Stehman S V, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO,
735	Townshend JRG. 2013. High-resolution global maps of 21st-Century forest cover
736	change. Science 342:850–853.
737	Harriss RC, Sebacher DI, Day FP. 1982. Methane flux in the Great Dismal Swamp. Nature
738	297:673–674.
739	Hendrickson OQ, Chatarpaul L, Burgess D. 1989. Nutrient cycling following whole-tree and
740	conventional harvest in northern mixed forest. Can J For Res 19:725–35.
741	Hiltbrunner D, Zimmermann S, Karbin S, Hagedorn F, Niklaus PA. 2012. Increasing soil
742	methane sink along a 120-year afforestation chronosequence is driven by soil moisture.

743	Glob Chang	Biol 1	8:3664-	3671.

- Johnson DW. 1992. Effects of forest management on soil carbon storage. In: Natural Sinks of
 CO2. Springer, Dordecht. pp 83–120
- Jungkunst HF, Meurer KHE, Jurasinski G, Niehaus E, Günther A. 2018. How to best address
- spatial and temporal variability of soil-derived nitrous oxide and methane emissions. J
 Plant Nutr Soil Sci 181:7–11.
- Kaye JP, Burke IC, Mosier AR, Pablo Guerschman J. 2004. Methane and nitrous oxide fluxes
 from urban soils to the atmosphere. Ecol Appl 14:975–981.
- Kaye JP, Hart SC. 1997. Competition for nitrogen between plants and soil microorganisms.
 Trends Ecol Evol 12:139–143.
- Keller M, Mitre ME, Stallard RF. 1990. Consumption of atmospheric methane in soils of
 central Panama: Effects of agricultural development. Global Biogeochem Cycles 4:21–
 27.
- 756 Keller M, Reiners WA. 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and
- 757 methane under secondary succession of pasture to forest in the Atlantic lowlands of

758 Costa Rica. Global Biogeochem Cycles 8:399–409.

- Keller M, Veldkamp E, Weitz AM, Reiners WA. 1993. Effect of pasture age on soil trace-gas
- remissions from a deforested area of Costa Rica. Nature 365:244–246.
- Kessavalou A, Doran JW, Mosier AR, Drijber RA. 1998. Greenhouse gas fluxes following
 tillage and wetting in a wheat-fallow cropping system. J Environ Qual 27:1105–1116.
- 763 Knief C. 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic
- 764 methanotrophic nacteria evaluated based on pmoA as molecular marker. Front

765 Microbiol 6(1346):1-38.

- Kolb S. 2009. The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol
 Rep 1:336–346.
- Koricheva J, Gurevitch J. 2014. Uses and misuses of meta-analysis in plant ecology. J Ecol
 102:828–844.
- Kravchenko AN, Robertson GP. 2015. Statistical Challenges in Analyses of Chamber-Based
 Soil CO and N₂O Emissions Data. Soil Sci Soc Am J 79:200–2911.
- 772 Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil
- pH as a predictor of soil bacterial community structure at the continental scale. Appl
 Environ Microbiol 75:5111–20.
- van Lent J, Hergoualc'h K, Verchot LV. Reviews and syntheses: Soil N₂O and NO emissions
 from land use and land use change in the tropics and subtropics: a meta-analysis.
 12:7299–7313.
- Levy PE, Gray A, Leeson SR, Gaiawyn J, Kelly MPC, Cooper MDA, Dinsmore KJ, Jones
- 578 SK, Sheppard LJ. 2011. Quantification of uncertainty in trace gas fluxes measured by
 the static chamber method. Eur J Soil Sci 62:811–21.
- Liaw A, Wiener M. 2002. Classification and regression by randomForest. R news 2:18–22.
- Linn DM, Doran JW. 1984. Effect of water-filled pore space on carbon dioxide and nitrous
- oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272.
- Liu J, Jiang P, Li Y, Zhou G, Wu J, Yang F. 2011. Responses of N₂O flux from forest soils to
 land use change in subtropical China. Bot Rev 77:320–325.
- 786 Liu L, Greaver TL. 2009. A review of nitrogen enrichment effects on three biogenic GHGs:

the CO₂ sink may be largely offset by stimulated N₂O and CH₄ emission. Ecol Lett
12:1103–1117.

789	Livesley SJ, Grover S, Hutley LB, Jamali H, Butterbach-Bahl K, Fest B, Beringer J, Arndt
790	SK. 2011. Seasonal variation and fire effects on CH ₄ , N ₂ O and CO ₂ exchange in savanna
791	soils of northern Australia. Agric For Meteorol 151:1440–1452.
792	Mapanda F, Mupini J, Wuta M, Nyamangara J, Rees RM. 2010. A cross-ecosystem
793	assessment of the effects of land cover and land use on soil emission of selected
794	greenhouse gases and related soil properties in Zimbabwe. Eur J Soil Sci 61:721–733.
795	Mariani L, Chang SX, Kabzems R. 2006. Effects of tree harvesting, forest floor removal, and
796	compaction on soil microbial biomass, microbial respiration, and N availability in a
797	boreal aspen forest in British Columbia. Soil Biol Biochem 38:1734–44.
798	McDaniel MD, Kaye JP, Kaye MW. 2014a. Do "hot moments" become hotter under climate
799	change? Soil nitrogen dynamics from a climate manipulation experiment in a post-
800	harvest forest. Biogeochemistry 121:339–354.
801	McDaniel MD, Tiemann LK, Grandy AS. 2014b. Does agricultural crop diversity enhance
802	soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl
803	24:560–570.
804	McDaniel MD, Simpson RR, Malone BP, McBratney AB, Minasny B, Adams MA. 2017.
805	Quantifying and predicting spatio-temporal variability of soil CH_4 and N_2O fluxes from
806	a seemingly homogeneous Australian agricultural field. Agric Ecosyst Environ 240:182-
807	193.
808	Meurer KHE, Franko U, Stange CF, Rosa JD, Madari BE, Jungkunst HF. 2016. Direct

nitrous oxide (N 2 O) fluxes from soils under different land use in Brazil-a critical

809

810

review. Environ Res Lett 11:23001.

- Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. 2012. Closing yield
 gaps through nutrient and water management. Nature 490:254–257.
- 813 Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF,
- Lee D, Mendoza B. 2013. Anthropogenic and natural radiative forcing. Clim Chang 423.
- 815 Nazaries L, Tate KR, Ross DJ, Singh J, Dando J, Saggar S, Baggs EM, Millard P, Murrell
- 316 JC, Singh BK. 2011. Response of methanotrophic communities to afforestation and
- reforestation in New Zealand. ISME J 5:1832–1836.
- 818 Neill C, Steudler PA, Garcia-Montiel DC, Melillo JM, Feigl BJ, Piccolo MC, Cerri CC.
- 819 2005. Rates and controls of nitrous oxide and nitric oxide emissions following

conversion of forest to pasture in Rondônia. Nutr Cycl Agroecosyst 71:1–15.

- 821 Nyawira S-S, Nabel JEMS, Don A, Brovkin V, Pongratz J. 2016. Soil carbon response to
- 822 land-use change: Evaluation of a global vegetation model using meta-data.
- Biogeosciences 13:5661–75.
- Philibert A, Loyce C, Makowski D. 2012. Assessment of the quality of meta-analysis in
 agronomy. Agric Ecosyst Environ 148:72–82.
- Power AG. 2010. Linking ecological sustainability and world food needs. Environ Dev
 Sustain 1:185–196.
- Pratscher J, Dumont MG, Conrad R. 2011. Assimilation of acetate by the putative
 atmospheric methane oxidizers belonging to the USCα clade. Environ Microbiol
 13:2692–2701.
- 831 Priemé A, Christensen S. 1999. Methane uptake by a selection of soils in Ghana with

- different land use. J Geophys Res Atmos 104:23617–23622.
- 833 Priemé A, Christensen S, Dobbie KE, Smith KA. 1997. Slow increase in rate of methane
- 834 oxidation in soils with time following land use change from arable agriculture to
- woodland. Soil Biol Biochem 29:1269–1273.
- Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its
 relationship to vegetation and climate. Tellus B 44:81–99.
- 838 Reay DS, Hewitt CN, Smith KA. 2007. Nitrous Oxide: Importance, Sources and Sinks. In:
- 839 Reay DS, Hewitt CN, Smith KA, Grace J, editors. Greenhouse Gas Sinks. Cambridge,

840 MA: CABI. pp 201–206.

- Reiners WA, Bouwman AF, Parsons WFJ, Keller M. 1994. Tropical rain forest conversion to
- pasture: Changes in vegetation and soil properties. Ecol Appl 4:363–377.
- 843 Robertson GP, Paul EA, Harwood RR. 2000. Greenhouse gases in intensive agriculture:
- 844 contributions of individual gases to the radiative forcing of the atmosphere. Science845 289:1922–1925.
- Rosenberg MS, Adams DC, Gurevitch J. 2000. MetaWin : statistical software for metaanalysis. Sunderland, MA: Sinauer Associates
- Saha D, Kemanian AR, Rau BM, Adler PR, Montes F. 2017a. Designing efficient nitrous
- 849 oxide sampling strategies in agroecosystems using simulation models. Atmos Environ
 850 155:189–198.
- Saha D, Rau BM, Kaye JP, Montes F, Adler PR, Kemanian AR. 2017b. Landscape control of
 nitrous oxide emissions during the transition from conservation reserve program to
 perennial grasses for bioenergy. Glob Change Biol Bioenergy 9:783–795.

854	Sainju UM, Caesar-TonThat T, Lenssen AW, Barsotti JL. 2012. Dryland soil greenhouse gas
855	emissions affected by cropping sequence and nitrogen fertilization. Soil Sci Soc Am J
856	76:1741–1757.

857 Scheer C, Wassmann R, Kienzler K, Ibragimov N, Lamers JPA, Martius C. 2008. Methane

and nitrous oxide fluxes in annual and perennial land-use systems of the irrigated areas

in the Aral Sea Basin. Glob Chang Biol 14:2454–2468.

Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in
ecosystems. Nature 413:591–596.

Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm.
Ecology 85:591–602.

Shcherbak I, Millar N, Robertson GP. 2014. Global metaanalysis of the nonlinear response of
soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci 111:9199–
9204.

ŠImek M, Cooper JE. 2002. The influence of soil pH on denitrification: progress towards the
understanding of this interaction over the last 50 years. Eur J Soil Sci 53:345–354.

869 Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W,

870 Christensen S, Priemé A, Fowler D, Macdonald JA, Skiba U, Klemedtsson L, Kasimir-

871 Klemedtsson A, Degórska A, Orlanski P. 2000. Oxidation of atmospheric methane in

872 Northern European soils, comparison with other ecosystems, and uncertainties in the

global terrestrial sink. Glob Chang Biol 6:791–803.

874 Solomon S. 2007. Climate change 2007-the physical science basis: Working group I

875 contribution to the fourth assessment report of the IPCC. Cambridge University Press

876	Stehfest E, Bouwman L. 2006. N ₂ O and NO emission from agricultural fields and soils under
877	natural vegetation: summarizing available measurement data and modeling of global
878	annual emissions. Nutr Cycl Agroecosystems 74:207–228.

- Stekhoven DJ, Bühlmann P. 2011. MissForest—non-parametric missing value imputation for
 mixed-type data. Bioinformatics 28:112–118.
- Steudler PA, Bowden RD, Melillo JM, Aber JD. 1989. Influence of nitrogen fertilization on
 methane uptake in temperate forest soils. Nature 341:314-316.
- 883 Steudler PA, Melillo JM, Bowden RD, Castro MS, Lugo AE. 1991. The effects of natural and
- human disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet
 forest. Biotropica:356–363.
- Steudler PA, Melillo JM, Feigl BJ, Neill C, Piccolo MC, Cerri CC. 1996. Consequence of
 forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon Basin. J Geophys
 Res Atmos 101:18547–18554.
- Sullivan BW, Selmants PC, Hart SC. 2013. Does dissolved organic carbon regulate biological
 methane oxidation in semiarid soils? Glob Chang Biol 19:2149–2157.
- Tate KR. 2015. Soil methane oxidation and land-use change from process to mitigation.
 Soil Biol Biochem 80:260–272.
- Tate KR, Ross DJ, Scott NA, Rodda NJ, Townsend JA, Arnold GC. 2006. Post-harvest
- patterns of carbon dioxide production, methane uptake and nitrous oxide production in a
- Pinus radiata D. Don plantation. For Ecol Manage 228:40–50.
- 896 Tonitto C, David MB, Drinkwater LE. 2006. Replacing bare fallows with cover crops in
- 897 fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics.

898

Agric Ecosyst Environ 112:58–72.

899	Velthof GL, Jarvis SC, Stein A, Allen AG, Oenema O. 1996. Spatial variability of nitrous
900	oxide fluxes in mown and grazed grasslands on a poorly drained clay soil. Soil Biol
901	Biochem 28:1215–1225.
902	Venterea RT, Burger M, Spokas KA, 2005, Nitrogen oxide and methane emissions under
502	venteren itt, Burger itt, Sponus itt in 2000 i Triti ogen omder und mediane emissions under
903	varying tillage and fertilizer management . J Environ Qual 34:1467–1477.
904	Verchot L V, Davidson EA, Cattânio JH, Ackerman IL. 2000. Land-use change and
905	biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems
906	3:41–56.
907	Vilà M. Espinar JL. Heida M. Hulme PE. Jarošík V. Maron JL. Pergl J. Schaffner U. Sun Y.
908	Pyšek P. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their
909	effects on species, communities and ecosystems. Ecol Lett 14:702–708.
910	Wang Y, Guo J, Vogt RD, Mulder J, Wang J, Zhang X. 2018. Soil pH as the chief modifier
911	for regional nitrous oxide emissions: New evidence and implications for global
012	estimates and mitigation Clob Chang Riel 24:617, 626
912	estimates and integation. Glob Chang Biol 24.017–020.
913	Wang Z-P, Ineson P. 2003. Methane oxidation in a temperate coniferous forest soil: effects of
914	inorganic N. Soil Biol Biochem 35:427–433.
915	Weier KL, Doran JW, Power JF, Walters DT. 1993. Denitrification and the dinitrogen/nitrous
	, ,
916	oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci Soc Am J
917	57:66–72.
918	Wohl E. 2013. Wilderness is dead: Whither critical zone studies and geomorphology in the

919 Anthropocene? Anthropocene 2:4–15.

920 **References Used in the Meta-analysis (also see Table S1)**

921	Allen DE,	Mendham DS,	Bhupinderpal	-Singh,	Cowie A,	Wang W	V, Dalal RC,	Raison RJ.
-----	-----------	-------------	--------------	---------	----------	--------	--------------	------------

- 922 2009. Nitrous oxide and methane emissions from soil are reduced following
- afforestation of pasture lands in three contrasting climatic zones. Soil Res 47 :443–58.
- 924 Arai H, Hadi A, Darung U, Limin SH, Takahashi H, Hatano R, Inubushi K. 2014. Land use
- 925 change affects microbial biomass and fluxes of carbon dioxide and nitrous oxide in
- tropical peatlands. Soil Sci Plant Nutr 60:423–34.
- 927 Attard E, Recous S, Chabbi A, De Berranger C, Guillaumaud N, Labreuche J, Philippot L,
- 928 Schmid B, Le Roux X. 2011. Soil environmental conditions rather than denitrifier

abundance and diversity drive potential denitrification after changes in land uses. Glob

- 930 Change Biol 17:1975–89.
- 931 Bárcena TG, D'Imperio L, Gundersen P, Vesterdal L, Priemé A, Christiansen JR. 2014.

932 Conversion of cropland to forest increases soil CH4 oxidation and abundance of CH4

933 oxidizing bacteria with stand age. Appl Soil Ecol 79:49–58.

- Benanti G, Saunders M, Tobin B, Osborne B. 2014. Contrasting impacts of afforestation on
- nitrous oxide and methane emissions. Agr Forest Meteorol 198–199:82–93.
- Boeckx P, Van Cleemput O, Villaralvo I. 1997. Methane oxidation in soils with different
 textures and land use. Nutr Cycl Agroecosys 49:91–5.
- Borken W, Xu Y-J, Beese F. 2003. Conversion of hardwood forests to spruce and pine
- plantations strongly reduced soil methane sink in Germany. Glob Change Biol 9:956–
 66.
- 941 Carmo JB do, de Sousa Neto ER, Duarte-Neto PJ, Ometto JPHB, Martinelli LA. 2012.
- 942 Conversion of the coastal Atlantic forest to pasture: Consequences for the nitrogen cycle

943

and soil greenhouse gas emissions. Agr Ecosyst Environ 148:37–43.

944	Chan ASK, Parkin TB. 2001a	. Effect of land	use on methane flu	ix from soil. J Env	V Qual 30:
945	786-797.				

946	Chan ASK, Parkin TB. 2001b. Methane oxidation and production activity in soils from
947	natural and agricultural ecosystems. J Env Qual 30: 1896-1903.

948 Chen Y, Day SD, Shrestha RK, Strahm BD, Wiseman PE. 2014. Influence of urban land

949 development and soil rehabilitation on soil–atmosphere greenhouse gas fluxes.

950 Geoderma 226–227:348–53.

951 Costa KH, Groffman PM. 2013. Factors regulating net methane flux by soils in urban forests
952 and grasslands. Soil Sci Soc Am J 77:850–855.

- Coutinho RP, Urquiaga S, Boddey RM, Alves BJR, Torres AQA, Jantalia CP. 2010. Estoque
 de carbono e nitrogênio e emissão de N₂O em diferentes usos do solo na Mata Atlântica
 Pesquisa Agropecuária Brasileira 45:195–203.
- Dobbie KE, Smith KA, Prieme´ A, Christensen S, Degorska A, Orlanski P. 1996. Effect of
- 957 land use on the rate of methane uptake by surface soils in Northern Europe. Atmos958 Environ 30:1005–1011.
- Dörr N, Glaser B, Kolb S. 2010. Methanotrophic communities in Brazilian Ferralsols from
 naturally forested, afforested, and agricultural sites. Appl Env Microbiol 76 :1307–
 1310.
- 962 Erickson H, Keller M, Davidson AE. 2001. Nitrogen Oxide Fluxes and Nitrogen Cycling
 963 during Postagricultural Succession and Forest Fertilization in the Humid Tropics.
- 964 Ecosystems 4:67–84.

965	Fernandes SAP, Bernoux M, Cerri CC, Feigl BJ, Piccolo MC. 2002. Seasonal variation of
966	soil chemical properties and CO ₂ and CH ₄ fluxes in unfertilized and P-fertilized pastures
967	in an Ultisol of the Brazilian Amazon. Geoderma 107:227–241.
968	Galbally I, Meyer CP, Wang Y-Pi, Kirstine W. 2010. Soil-atmosphere exchange of CH4,
969	CO, N2O and NOx and the effects of land-use change in the semiarid Mallee system in
970	Southeastern Australia. Glob Change Biol 16:2407–2419.
971	Goldman MB, Groffman PM, Pouyat R V, McDonnell MJ, Pickett STA. 1995. CH4 uptake
972	and N availability in forest soils along an urban to rural gradient. Soil Biol Biochem
973	27:281–286.
974	Grover SPP, Livesley SJ, Hutley LB, Jamali H, Fest B, Beringer J, Butterbach-Bahl K, Arndt
975	SK. 2012. Land use change and the impact on greenhouse gas exchange in north
976	Australian savanna soils. Biogeosciences 9:423–437.
977	Hiltbrunner D, Zimmermann S, Karbin S, Hagedorn F, Niklaus PA. 2012. Increasing soil
978	methane sink along a 120-year afforestation chronosequence is driven by soil moisture.
979	Glob Change Biol 18:3664–3671.
980	Hu R, Kusa K, Hatano R. 2001. Soil respiration and methane flux in adjacent forest,
981	grassland, and cornfield soils in Hokkaido, Japan. Soil Sci Plant Nutr 47:621–627.
982	Hudgens DE, Yavitt JB. 1997. Land-use effects on soil methane and carbon dioxide fluxes in
983	forests near Ithaca, New York. Ecoscience 4:214–222.
984	Hütsch BW, Webster CP, Powlson DS. 1994. Methane oxidation in soil as affected by land
985	use, soil pH and N fertilization. Soil Biol Biochem 26:1613–22.
986	Inubushi K, Hadi A, Okazaki M, Yonebayashi K. 1998. Effect of converting wetland forest to

- 987 sago palm plantations on methane gas flux and organic carbon dynamics in tropical peat
 988 soil. Hydrol Proc 12:2073–2080.
- 989 Ishizuka S, Iswandi A, Nakajima Y, Yonemura S, Sudo S, Tsuruta H, Murdiyarso D. 2005.
- 990 The variation of greenhouse gas emissions from soils of various land-use/cover types in
- Jambi province, Indonesia. Nutr Cycl Agroecosys 71:17–32.
- Kaye JP, Burke IC, Mosier AR, Pablo Guerschman J. 2004. Methane and nitrous oxide fluxes
 from urban soils to the atmosphere. Ecol Appl 14:975–981.
- Keller M, Mitre ME, Stallard RF. 1990. Consumption of atmospheric methane in soils of
- 995 central Panama: Effects of agricultural development. Glob Biogeochem Cycl 4:21–27.
- 996 Keller M, Reiners WA. 1994. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and
- 997 methane under secondary succession of pasture to forest in the Atlantic lowlands of
- 998 Costa Rica. Glob Biogeochem Cycl 8:399–409.
- Keller M, Veldkamp E, Weitz AM, Reiners WA. 1993. Effect of pasture age on soil trace-gas
 emissions from a deforested area of Costa Rica. Nature 365:244–6.
- Lessard R, Rochette P, Topp E, Pattey E, Desjardins RL, Beaumont G. 1994. Methane and
- carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites. Can J Soil
 Sci 74:139–146.
- Levine UY, Teal TK, Robertson GP, Schmidt TM. 2011. Agriculture's impact on microbial
 diversity and associated fluxes of carbon dioxide and methane. ISME J 5:1683–1691.
- Liu J, Jiang P, Li Y, Zhou G, Wu J, Yang F. 2011. Responses of N2O flux from forest soils
 to land use change in subtropical China. The Bot Rev 77:320–5.
- 1008 Livesley SJ, Idczak D, Fest BJ. 2013. Differences in carbon density and soil CH₄/N₂O flux

1009	among remnant and agro-ecosystems established since European settlement in the
1010	Mornington Peninsula, Australia. Sci Tot Environ 465:17–25.
1011	Livesly SJ, Kiese R, Miehle P, Weston CJ, Butterbach-Bahl K, Arndt SK. 2009. Soil-
1012	atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a
1013	clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Glob
1014	Change Biol 15:425–440.
1015	Macdonald JA, Eggleton P, Bignell DE, Forzi F, Fowler D. 1998. Methane emission by
1016	termites and oxidation by soils, across a forest disturbance gradient in the Mbalmayo
1017	Forest Reserve, Cameroon. Glob Change Biol 4:409–418.
1018	Maljanen M, Liikanen A, Silvola J, Martikainen PJ. 2003. Methane fluxes on agricultural and
1019	forested boreal organic soils. Soil Use Manage 19:73–79.
1020	Mapanda F, Mupini J, Wuta M, Nyamangara J, Rees RM. 2010. A cross-ecosystem
1021	assessment of the effects of land cover and land use on soil emission of selected
1022	greenhouse gases and related soil properties in Zimbabwe. Euro J Soil Sci 61:721–733.
1023	Melillo JM, Steudler PA, Feigl BJ, Neill C, Garcia D, Piccolo MC, Cerri CC, Tian H. 2001.
1024	Nitrous oxide emissions from forests and pastures of various ages in the Brazilian
1025	Amazon. J Geophys Res: Atmosph 106:34179–34188.
1026	Menyailo OV, Hungate BA, Abraham W-R, Conrad R. 2008. Changing land use reduces soil
1027	CH4 uptake by altering biomass and activity but not composition of high-affinity
1028	methanotrophs. Glob Change Biol 14:2405–2419.
1029	Merino A, Pérez-Batallón P, Macías F. 2004. Responses of soil organic matter and
1030	greenhouse gas fluxes to soil management and land use changes in a humid temperate
1031	region of southern Europe. Soil Biol Biochem 36:917–925.

1032	de Moraes JFL, Volkoff B, Cerri CC, Bernoux M. 1996. Soil properties under Amazon forest
1033	and changes due to pasture installation in Rondônia, Brazil. Geoderma 70:63–81.
1034	Mosier A, Schimel D, Valentine D, Bronson K, Parton W. 1991. Methane and nitrous oxide
1035	fluxes in native, fertilized and cultivated grasslands. Nature 350:330-332.
1036	Mosier AR, Parton WJ, Valentine DW, Ojima DS, Schimel DS, Heinemeyer O. 1997. CH4
1037	and N2O fluxes in the Colorado shortgrass steppe: 2. Long-term impact of land use
1038	change. Glob Biogeochem Cycl 11:29–42.
1039	Nazaries L, Tate KR, Ross DJ, Singh J, Dando J, Saggar S, Baggs EM, Millard P, Murrell
1040	JC, Singh BK. 2011. Response of methanotrophic communities to afforestation and
1041	reforestation in New Zealand. ISME J 5:1832–1836.
1042	Neill C, Piccolo MC, Steudler PA, Melillo JM, Feigl BJ, Cerri CC. 1995. Nitrogen dynamics
1043	in soils of forests and active pastures in the western Brazilian Amazon Basin. Soil Biol
1044	Biochem 27:1167–1175.
1045	Nykanen H, Alm J, Lang K, Silvola J, Martikainen PJ. 1995. Emissions of CH4, N2O and
1046	CO ₂ from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–7.
1047	Ojima DS, Valentine DW, Mosier AR, Parton WJ, Schimel DS. 1993. Effect of land use
1048	change on methane oxidation in temperate forest and grassland soils. Chemosphere
1049	26:675–685.
1050	Pendall E, Schwendenmann L, Rahn T, Miller JB, Tans PP, White JWC. 2010. Land use and

- season affect fluxes of CO₂, CH₄, CO, N₂O, H₂ and isotopic source signatures in
- 1052Panama: evidence from nocturnal boundary layer profiles. Glob Change Biol 16:2721–
- 1053 2736.

1054	Powlson DS, Goulding KWT, Willison TW, Webster CP, Hütsch BW. 1997. The effect of
1055	agriculture on methane oxidation in soil. Nutr Cycl Agroecosys 49:59–70.

- 1056 Price S, Whitehead D, Sherlock R, McSeveny T, Rogers G. 2010. Net exchange of
- 1057 greenhouse gases from soils in an unimproved pasture and regenerating indigenous
- 1058 Kunzea ericoides shrubland in New Zealand. Soil Res 48:385–394.
- Priemé A, Christensen S, Dobbie KE, Smith KA. 1997. Slow increase in rate of methane
 oxidation in soils with time following land use change from arable agriculture to
 woodland. Soil Biol Biochem 29:1269–1273.
- Priemé A, Christensen S. 1999. Methane uptake by a selection of soils in Ghana with
 different land use. J Geophys Res: Atmosph 104:23617–23622.
- 1064 Reay DS, Radajewski S, Murrell JC, McNamara N, Nedwell DB. 2001. Effects of land-use
 1065 on the activity and diversity of methane oxidizing bacteria in forest soils. Soil Biol
 1066 Biochem 33:1613–1623.
- 1067 Reiners WA, Bouwman AF, Parsons WFJ, Keller M. 1994. Tropical Rain Forest Conversion

to Pasture: Changes in Vegetation and Soil Properties. Ecol Appl 4:363–377.

1069 Robertson GP, Paul EA, Harwood RR. 2000. Greenhouse gases in intensive agriculture:

1070 contributions of individual gases to the radiative forcing of the atmosphere. Science1071 289:1922–1925.

- 1072 Ruan L, Philip Robertson G. 2013. Initial nitrous oxide, carbon dioxide, and methane costs of
- 1073 converting conservation reserve program grassland to row crops under no-till vs.
- 1074 conventional tillage. Glob Change Biol 19:2478–2489.
- 1075 Scheer C, Wassmann R, Kienzler K, Ibragimov N, Lamers JPA, Martius C. 2008. Methane

1076 and nitrous oxide fluxes in annual and perennial land-use systems of the irrigated areas 1077 in the Aral Sea Basin. Glob Change Biol 14:2454–2468. 1078 Simona C, Ariangelo DPR, John G, Nina N, Ruben M, José SJ. 2004. Nitrous oxide and 1079 methane fluxes from soils of the Orinoco savanna under different land uses. Glob 1080 Change Biol 10:1947–1960. Singh BK, Tate KR, Kolipaka G, Hedley CB, Macdonald CA, Millard P, Murrell JC. 2007. 1081 Effect of Afforestation and Reforestation of Pastures on the Activity and Population 1082 1083 Dynamics of Methanotrophic Bacteria. Appl Environ Microbiol 73:5153–5161. 1084 Singh BK, Tate KR, Ross DJ, Singh J, Dando J, Thomas N, Millard P, Murrell JC. 2009. Soil 1085 methane oxidation and methanotroph responses to afforestation of pastures with Pinus radiata stands. Soil Biol Biochem 41:2196-2205. 1086 Steudler PA, Melillo JM, Feigl BJ, Neill C, Piccolo MC, Cerri CC. 1996. Consequence of 1087 1088 forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon Basin. J Geophys Res: Atmosph 101:18547-54. 1089 Suwanwaree P, Robertson GP. 2005. Methane oxidation in forest, successional, and no-till 1090 agricultural eosystems. Soil Sci Soc Am J 69:1722–1729. 1091 1092 Tang X, Liu S, Zhou G, Zhang D, Zhou C. 2006. Soil-atmospheric exchange of CO₂, CH₄,

and N₂O in three subtropical forest ecosystems in southern China. Glob Change Biol
1094 12:546–560.

1095 Tate KR, Ross DJ, Saggar S, Hedley CB, Dando J, Singh BK, Lambie SM. 2007. Methane

1096 uptake in soils from Pinus radiata plantations, a reverting shrubland and adjacent

1097 pastures: Effects of land-use change, and soil texture, water and mineral nitrogen. Soil

1098 Biol Biochem 39:1437–1449.

1099	Veldkamp E, Purbopuspito J, Corre MD, Brumme R, Murdiyarso D. 2008. Land use change
1100	effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia. J
1101	Geophys Res: Biogeosci 113:1–11.

- 1102 Verchot L V, Davidson EA, Cattânio H, Ackerman IL, Erickson HE, Keller M. 1999. Land
- use change and biogeochemical controls of nitrogen oxide emissions from soils in
- eastern Amazonia. Glob Biogeochem Cycl 13:31–46.
- 1105 Vitousek P, Matson P, Volkmann C, Maass JM, Garcia G. 1989. Nitrous oxide flux from dry
 1106 tropical forests. Glob Biogeochem Cycl 3:375–382.
- 1107 Werling BP, Dickson TL, Isaacs R, Gaines H, Gratton C, Gross KL, Liere H, Malmstrom
- 1108 CM, Meehan TD, Ruan L, Robertson BA, Robertson GP, Schmidt TM, Schrotenboer
- 1109 AC, Teal TK, Wilson JK, Landis DA. 2014. Perennial grasslands enhance biodiversity
- and multiple ecosystem services in bioenergy landscapes. Proc Nat Acad Sci 111:1652–
- 1111 1657.