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We examine and discuss the spatial evolution of the statistical properties of mechanically gen-
erated surface gravity wave fields, initialised with unidirectional spectral energy distributions, uni-
formly distributed phases and Rayleigh distributed amplitudes. We demonstrate that nonlinear
interactions produce an energy cascade towards high frequency modes with a directional spread and
triggers localised intermittent bursts. By analysing the probability density function of Fourier mode
amplitudes in the high frequency range of the wave energy spectrum, we show that a heavy-tailed
distribution emerges with distance from the wave generator as a result of these intermittent bursts,
departing from the originally imposed Rayleigh distribution, even under relatively weak nonlinear
conditions.

I. INTRODUCTION

Ocean waves are a random process. In the ideal con-
dition of infinite water depth, infinitesimally small wave
amplitudes and narrow-banded wave energy spectrum,
linear mechanisms dominate wave physics at small time
scales. Consequently, the surface elevation can be de-
scribed as a sum of a large number of harmonics, each
with amplitude randomly chosen from a Rayleigh dis-
tribution and phases uniformly distributed. Under these
conditions, instantaneous displacements of the surface el-
evation follow a Gaussian distribution [1, 2].

In nature, however, the small amplitude assumption
does not hold. As a result, mutual interactions between
wave components occur, giving rise to second order non-
linear effects that force the emergence of a weakly non-
Gaussian regime [3–6]. If waves are sufficiently energetic
and their energy spectrum is narrow banded (i.e. energy
is concentrated around a dominant mode), higher order
nonlinearity can further develop, triggering the forma-
tion of large amplitude waves, also known as rogue waves,
and concurrently imposing strong deviations from Gaus-
sian statistics to the surface elevation [7–12]. Although
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laboratory experiments and numerical simulations have
demonstrated that there are sea states particularly prone
to extreme events [6, 11, 13, 14], field observations of
rogue waves are serendipitous and a weakly non-Gaussian
statistics is normally considered sufficient to describe
oceanic wave fields [4, 15].

High order nonlinearity is also responsible for a re-
distribution of energy and wave action across modes,
which modifies the shape of the wave energy spectrum
[9, 11, 13]. In this respect, a fraction of wave energy
moves to low frequency components, producing a down-
shift of the spectral peak (the dominant wave component
becomes longer). Another fraction cascades towards high
frequencies, forming an equilibrium tail in the wave spec-
trum that decays as ω−4 [16–18], with ω being the an-
gular wave frequency. Note, however, that wave break-
ing can force the equilibrium tail to shift toward ω−5

[19, 20]. In the laboratory, furthermore, mechanically
generated waves can exhibit a spectral tail ω−5 or even
steeper [11, 21–24] due to energy damping, also confirmed
by numerical simulations [9]. This energy cascade, never-
theless, resembles the one described by the Kolmogorov-
type velocity spectrum in high Reynolds number flows
and it is normally referred to as weak wave turbulence
[16]. Interestingly, according to the weak wave turbu-
lence theory, a direct cascade characterized by constant
flux of energy is not possible in 1D and infinite water
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FIG. 1. Schematic (not in scale) of the Ocean Engineering
Tank at The University of Tokyo (panel a); sample time series
along the tank (panel b).

depth because the coupling coefficient in the wave kinetic
equation is identically zero on the resonant manifold [25],
i.e. nonlinear interactions that form the energy cascade
at the spectral tail are intrinsically 2D. Therefore, the
energy cascade also redistributes on multiple directions,
forcing the directional spreading of an initially unidirec-
tional spectral energy distribution or the broadening of
an already directional wave spectrum [11, 26].

Similarly to classical hydrodynamic turbulence, weak
wave turbulence can exhibit non-Gaussian bursts in the
surface elevation—a phenomenon known as intermit-
tency [24, 27–31]—that causes a deviation from classical
predictions. These bursts are associated with, but not
necessarily limited to, the presence of coherent structures
on the water surface and propagating breaking waves
[29, 32–34] and they are caused by intense nonlinear in-
teractions [22]. Note that bursts are still conspicuous,
yet less pronounced, in directional sea states, where the
level nonlinearity is weaker [24].

As foreshadowed in [27, 30], intermittent bursts cause
mode amplitudes to naturally depart from the hypoth-
esised Rayleigh distribution, especially for the high fre-
quency modes. A systematic analysis of the effect of
intermittency on the statistical properties of mode am-
plitudes, however, has not yet been carried out. Under-
standing wave properties at small scales, nonetheless, is
crucial for characterising ocean surface roughness, which
is of interest in a wide range of research areas including
wind wave generation, air-sea interaction, gas exchange,
and ocean remote sensing (e.g. [35]).

In the present paper, we examine and discuss past ex-
perimental data. With respect to previous work, we track
the spatial evolution of the statistical properties of ini-
tially unidirectional mechanically generated wave fields,
to asses the role of different degrees of nonlinearity on

intermittency. After a brief description of the laboratory
tests, we discuss general statistical and spectral prop-
erties of the surface elevation, demonstrating that weak
wave turbulence is responsible for a directionally spread
energy cascade and a transition from Rayleigh to non-
Rayleigh statistics in the high frequency modes, even un-
der relatively weak nonlinear conditions. The signature
of intermittency in the upper tail of the wave spectrum
is discussed.

II. THE EXPERIMENTAL MODEL

An experimental model to track the nonlinear evolu-
tion of irregular wave fields was set up in the Ocean En-
gineering Tank of the Institute of Industrial Science, The
University of Tokyo (description of the experiments and
additional details can be found in [24, 36, 37]). The fa-
cility is 10 m wide and 50 m long with a water depth of
5 m. At one end, the tank is equipped with a wave-maker
with 32 digitally controlled triangular plungers, while a
sloping beach absorbs the incoming wave energy at the
opposite end (see schematic in Fig. 1a).

The water surface elevation was measured using nine
capacitance wave gauges deployed along the tank at 5 m
intervals (probes were 2.5 m from the side wall, Fig. 1a).
An additional array of six probes was placed 27 m from
the wave-maker. The probes were operated at a sampling
frequency of 100 Hz.

Water waves were generated by the oscillatory motion
of the wave-maker. The plungers were forced by a prede-
fined voltage computed using input Fourier amplitudes
with modulus randomly chosen from a Rayleigh distri-
bution around a target spectrum and phases randomly
chosen from a uniform distribution in (0, 2π]. The in-
put (target) frequency spectrum at the wave maker was
defined using a JONSWAP formulation [38]:

S(ω) =
αg2

ω5
exp

[
−5

4

(
ω

ωp

)−4]
γexp[(ω−ωp)

2/2σ2
jω

2
p] (1)

where g is the acceleration due to gravity, ωP the angular
frequency of the spectral peak, σ a constant equal to 0.07
for ω 6 ωp and 0.09 for ω > ωp, γ the peak enhancement
factor and α the Phillip’s constant. No directional distri-
bution was applied to the input wave spectrum, i.e. the
initial wave field produced by the wave-maker is unidi-
rectional.

The input spectrum was discretised into 1024 equal en-
ergy bins, with angular frequency in the range 0–16 rad/s;
the upper limit is imposed by the mechanical constraints
of the wave-maker. A peak (dominant) wave period
Tp = 0.8 s (ωp = 7.85 rad/s) was set as initial condition.
This corresponds to a peak wavelength Lp = 1 m, which
allows a spatial evolution of 50 wavelengths along the
tank. The peak enhancement factor γ dictates the band-
width of the spectrum and it was selected to be equal to
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FIG. 2. Wave energy spectra at three positions along the
tank (wave-maker, centre and beach) for steepness ε = 0.06
(BFI = 0.4; upper panel) and ε = 0.11 (BFI = 0.8; bottom
panel) and reference slopes ω−7 and ω−5.

3, a typical value for ocean waves [38]. The Phillip’s con-
stant α controls the amount of energy in the wave field
and it was chosen to define two different values of wave
steepness ε = kpHS/2 = 0.06 and 0.11, where kp is the
wavenumber at the spectral peak (computed via the lin-
ear dispersion relation, i.e. ω2 = gk) and HS = 4

√
m0 is

the significant wave height, withm0 the zero-th order mo-
ment of the wave spectrum S(ω). The ratio of steepness
to bandwidth is proportional to the Benjamin-Feir Index
(BFI, [7, 8]), i.e. a measure of the relative significance of
wave nonlinearity to dispersion and an indicator for the
appearance of extreme/rogue waves (waves with height
larger than 2HS) when BFI = O(1). For sea states dis-
cussed herein, BFI = 0.4 and 0.8 for low (ε = 0.06)
and high (ε = 0.11) steepness, respectively. The former
refers to a nearly Gaussian random process, the latter to
a strongly non-Gaussian system which is more prone to
extreme waves [10, 11, 13]. It is worth mentioning that
these initial conditions were selected to maximise the oc-
currence of extreme waves without reaching the breaking
onset [26].

For each initial conditions, four 1-hour realisations
with different random amplitudes and phases were car-
ried out to ensure enough data points for stable statistical
analysis. An example of recorded time series along the
tank is reported in Fig. 1b.

FIG. 3. Directional wave energy spectra at the centre of the
tank for steepness ε = 0.06 (BFI = 0.4, upper left) and
ε = 0.11 (BFI = 0.8, upper right) shown in logarithmic
scale and directional spreading as a function of dimensionless
wave frequency (bottom). Reference directional distribution
cos2s(ϑ) is also shown.

III. PROPERTIES OF THE SURFACE
ELEVATION

A. Energy spectrum

The input wave spectrum exhibits a drop off for fre-
quencies greater than 2ωp, as these modes are not re-
solved by the wave-maker. Nevertheless, the spectral tail
forms naturally within 5 wavelengths (see details in [24]).
As waves propagate farther, the spectrum rapidly evolves
due to a nonlinear energy transfer among modes. The fre-
quency wave spectra recorded along the tank (at 5 wave-
lengths from the wave-maker, labeled “wave-maker”; at
25 wavelengths, labeled “centre”; and at 45 wavelengths,
labeled “beach”), are shown in Fig. 2 for both initial con-
ditions; spectral evolution is discussed in more details in
[36, 37].

A fraction of energy is transferred towards low frequen-
cies, resulting in a notable downshift of the spectral peak
[11, 13]. By the centre of the tank, the peak angular fre-
quency ωp reduced by approximately 5%. Note that this
apparent spectral downshift is primarily due to detuned
resonance as four-wave resonance is effective only when
directional spreading of wave energy is broad [23]. Fur-
thermore, energy cascades towards high-frequency modes
soon after the wave generation, forming a complete upper
tail within the first five wavelengths of propagation. For
the less nonlinear wave field (ε = 0.06; BFI = 0.4), the
spectral slope assumes a shape proportional to a power
law of ω−6.1, as evaluated with a least square method over
the interval 1.5 < ω/ωp < 8.5. As waves evolve further,
the spectral slope does not change significantly (the tail
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is proportional to ω−6.8 at the centre and ω−6.7 nearby
the beach). For the more nonlinear condition (ε = 0.11;
BFI = 0.8), the spectral tail shapes as ω−5.4 nearby the
wave-maker and further evolve into ω−6.0 at the centre
of the tank and ω−6.6 close to the beach. Dependence of
spectral slope on the nonlinear properties are consistent
with other experimental studies in [11, 13, 23].

Although the input wave spectrum imposed at the
wave-maker is unidirectional, the width of the tank al-
lows nonlinearity to redistribute energy along two pri-
mary directions of ±35.5◦ with respect to the mean direc-
tion of propagation [39], while cascading to high frequen-
cies. This induces the development of a directional dis-
tribution (c.f. [11, 13]), switching the initial frequency-
dependent spectral density S(ω) into a directional spec-
trum E(ω, ϑ) = S(ω) × D(ω, ϑ), where D(ω, ϑ) is a di-
rectional spreading function. For the present experiment,
E(ω, ϑ) was evaluated at the centre of the tank with a
wavelet directional method [40], using records from the 6-
probe array. The reconstructed spectra from both wave
fields are presented in the upper panels of Fig. 3 (en-
ergy is shown in logarithmic scale to highlight directional
spreading at high frequencies). Remarkably, the figure
confirms that the initial unidirectional wave fields de-
velop into weakly directional ones by the centre of the
wave tank. The directional width at each frequency can
be summarised as the standard deviation of directional
function D(ω, ϑ) [41]:

ζ(ω) =

√∫ +π

−π

[
2 sin

ϑ

2

]2
D(ω, ϑ)dϑ (2)

The distribution of ζ as a function of frequency is re-
ported in the lower panel of Fig. 3. Directional spread-
ing is narrow at the peak with ζ ≈ 10◦, while it broadens
towards lower and higher frequencies (ζ ≈ 50◦). The di-
rectional width is marginally more pronounced for the
most nonlinear sea state.

As a reference, the directional width associated to
the empirical directional function of the form cos2s(ϑ/2)
proposed by [42]—often used to describe directional sea
states for engineering applications [43]—is reported in
the lower panel of Fig. 3. The frequency-dependent di-
rectional coefficient assumes the form s = (ω/ωp)

−2.5sp
for ω ≥ ωp and s = (ω/ωp)

5sp for ω < ωp; the variable sp
is the spreading coefficient at the spectral peak. In Fig.
3, the spreading of the cos2s function is evaluated with
sp = 25, which corresponds to a narrow directional swell
in the ocean [43]. Interestingly, the directional distribu-
tion that develops in the tank is consistent with the em-
pirical counterpart. It is worth noting, however, that the
transition from the narrow peak to broad tails is faster
in the tank than predicted by [42].

B. Wave statistics

The input wave fields are Gaussian random processes
(surface elevation follows a normal distribution, while

FIG. 4. Evolution of the probability density function (p.d.f.)
of the normalised wave intensity |A|2/〈|A|2〉 along the tank:
ε = 0.06 (upper panel); and ε = 0.11 (lower panel). The
reference distribution exp(−|A|2/〈|A|2〉) is also shown.

amplitudes are distributed according to a Rayleigh dis-
tribution). Whereas this initial condition remains invari-
ant along the tank if nonlinear properties are weak, non-
Gaussian statistics develop for BFI = O(1) [10, 11, 13].
For the purpose of the present study, wave statistics of
the surface elevation are evaluated by the probability
density function (p.d.f.) of the wave intensity, defined
as the square modulus of the wave envelope |A2| [44]; the
average intensity 〈|A2|〉 is applied as normalising factor.
For a Gaussian random process, the intensity follows an
exponential function, which represents a benchmark for
the Rayleigh distribution [18, 44, 45]. Fig. 4 shows the
p.d.f. of wave intensity at different distances from the
wave-maker (nearby the wave-maker, at the centre of the
tank, and nearby the beach) and for both initial condi-
tions.

For the less nonlinear sea state (ε = 0.06; BFI = 0.4),
the intensity is consistent with the exponential distribu-
tion throughout the tank (upper panel in Fig. 4), indi-
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FIG. 5. Probability density function of the normalised mode intensity Pf i/〈Pf i〉 for: ε = 0.06 and BFI = 0.4 (blue circles);
and ε = 0.11 and BFI = 0.8 (orange squares). The yellow solid line refers to an exponential distribution.

cating that nonlinear interactions, if any, do not affect
the statistical properties of the surface elevation, which
remains a Gaussian random process. Note that the wave
envelope does not capture second-order effects and the
concurrent weak deviations from Gaussianity (e.g. [5]).
On the contrary, the wave intensity exhibits notable de-
partures from the exponential function for the more non-
linear case (ε = 0.11; BFI = 0.8). Under these cir-
cumstances, nonlinear interactions are responsible for the
growth of large individual waves, forcing the emergence
of an heavy tail in the p.d.f. Departures from the expo-
nential function enhance with distance from the wave-
maker, marking a transition from a weakly to a strongly
non-Gaussian process as the wave field evolves in space
(lower panel in Fig. 4). A similar behavior has been ob-
served in other experiments tracking wave statistics in
water and nonlinear fibers (e.g. [10, 11, 13, 45], among
others). Although the significant wave height remains
unchanged throughout the tank [36, 37] and breaking
probability is minimised for the selected sea state con-

ditions [26], it cannot be excluded that sporadic wave
breaking might have affected the highest waves in the
records [26, 46] and hence the p.d.f. at low probability
levels.

IV. SINGLE FOURIER MODE ANALYSIS

A. Probability density function of mode intensity

Time series were subdivided into consecutive blocks of
256 data points with 50% overlap and a Fourier Trans-
form with Hanning window was applied to convert these
blocks into frequency amplitude spectra. A record for
statistical analysis was compiled by including Fourier
mode amplitudes Afi from all the blocks at frequencies
0.5ωp 6 ωi 6 6ωp. At each mode, the corresponding in-
tensity (Pfi) was computed as the modulus of the squared
amplitudes (i.e. |A2

fi|); for convenience, intensities were
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normalised by the concurrent mean 〈Pfi〉. Consistent
with the wave intensity |A2|, Pfi also distributes accord-
ing to an exponential function, which represents a bench-
mark for Rayleigh distributed modes.

Fig. 5 shows the p.d.f. of Pfi/〈Pfi〉 for modes at 1.5ωp,
3ωp and 6ωp and at different distances from the wave-
maker. Modes close to the spectral peak (1.5ωp, upper
panels in Fig. 5), distribute according to the exponen-
tial function exp(−Pfi/〈Pfi〉) at any distances from the
wave-maker and regardless of the level of nonlinearity of
the wave field, i.e. Fourier mode amplitudes in the prox-
imity of the spectral peak maintain the initial Rayleigh
distribution. Mode intensities at higher frequencies (3ωp
and 6ωp) exhibit conspicuous deviations from the ex-
ponential function, with departures enhancing with dis-
tance from the wave-maker (middle and bottom panels
in Fig. 5). Specifically, the exponential function over-
estimates the probability density for Pfi/〈Pfi〉 < 7 and
under-estimates for Pfi/〈Pfi〉 > 7, i.e. large intensities
happen far more frequently than an exponential distri-
bution would predict. Whereas there is little difference
among sea states at low probability levels (middle panels
in Fig 5), a heavier tail emerges at high probability lev-
els for more nonlinear wave fields (ε = 0.11; BFI = 0.8).
This heavy tail is associated with the presence of inter-
mittent bursts [30] that are generated as a consequence of
the anomalous scaling in the energy cascade [27, 28, 30],
symptomatic of deviations from the classical weak wave
turbulence regime. An example of the surface elevation η
(normalised by its standard deviation ση) and the concur-
rent non-dimensional intensities Pfi/〈Pfi〉 at ω = 3ωp for
the nonlinear case ε = 0.11 and BFI = 0.8 are presented
in Fig. 6. Bursts of high intensity equal to or greater
than 10 times the standard deviation of the modal sur-
face elevation are evident and often associated to large
wave groups.

Although divergence from the exponential function is
qualitatively similar at 3ωp and 6ωp, departures are far
more pronounced at 6ωp, indicating the development of
strongly non-Rayleigh distributed properties at modes in
the upper range of the spectral tail (bottom panels in
Fig 5). It is worth noting that the p.d.f. of high fre-
quency modes shows a notable dependence on distance
from the wave-maker, especially for the more nonlinear
sea state (ε = 0.11; BFI = 0.8). There is an evident
evolution strengthening the non-Rayleigh properties as
waves propagate along the tank and energy cascades to
high frequencies. For the less nonlinear case (ε = 0.06;
BFI = 0.4) this evolution is still notable but slower,
consistent with the weaker nonlinearity of the wave field
(cf. [11]). The observed dependence of the p.d.f. on
distance from the wave-maker is an example of how non-
linear effects take time to develop, and how this timescale
depends on wave steepness.

FIG. 6. Example of the surface elevation (top) and intermit-
tent burst at 3ωp (bottom) for nonlinear wave field (ε = 0.11
and BFI = 0.8).

B. Kurtosis of Fourier mode amplitudes

Deviations from the underlying Rayleigh distribution
can be summarised over the entire frequency band by
the fourth-order statistical moment (i.e. kurtosis) of the
Fourier mode amplitudes Afi. The kurtosis describes the
tailedness of the distribution and it is equal to 6 for a
Rayleigh distributed population. Fig. 7 shows the kurto-
sis as a function of frequency at different distances from
the wave-maker and for both sea states.

For modes around the spectral peak, approximately
0.5ωp ≤ ωi ≤ 2.5ωp, amplitudes follow the Rayleigh dis-
tribution. Observed values of kurtosis are comparable
with the reference value of 6, regardless of the degree of
nonlinearity of the sea state and the distance from the
wave-maker. This result is consistent with the exponen-
tial distribution of intensity Pfi observed for modes at
1.5ωp (upper panels in Fig. 5).

Modes at high frequencies (ωi > 2.5ωp) exhibit kurto-
sis greater than 6 for both sea states, indicating the emer-
gence of intermittency in the spectral tail and thus de-
viations from the classical weak wave turbulence regime.
Near the wave-maker, deviations from the Rayleigh dis-
tribution are weak as nonlinearity requires some space to
fully develop. Nevertheless, deviations do not enhance
notably for the weak sea state (ε = 0.06; BFI = 0.4)
as the wave field moves towards the beach. Although
intermittent bursts appear in this wave condition too,
their impact on the statistical properties of high fre-
quency modes remains small (this is also consistent with
the weak deviation at the tail of the p.d.f. of Pfi). On the
contrary, energy cascading at high frequency gives rise to
a substantial divergence from the Rayleigh distribution
for more nonlinear sea states (ε = 0.11; BFI = 0.8). The
maximum departure is at the centre of the tank (approx-
imately 25 wavelengths from the wave-maker) where kur-
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FIG. 7. Kurtosis of Fourier mode amplitudes Afi for the entire frequency range: weakly nonlinear sea state ε = 0.06 (blue
dashed line); nonlinear sea state ε = 0.11 (red solid line); benchmark value of kurtosis for Rayleigh distributed Fourier modes
(black dotted line).

tosis reaches values well above 20 for ωi > 4ωp, in what
appears a monotonic increase of kurtosis with frequency.
Towards the end of the tank, sporadic wave breaking par-
tially affects high frequency modes, resulting in a drop
of the kurtosis. Exceptionally large values of kurtosis re-
flects the substantial deviation of Pfi at the tail of the
p.d.f. for modes at 3ωp and 6ωp (cf. Fig. 5).

V. CONCLUSIONS

An experimental model to track the spatial evolution
of random wave fields has been investigated in the frame-
work of weak wave turbulence. Tests were carried out at
the Ocean Engineering Tank of the University of Tokyo.
Waves were mechanically generated at one end of the
tank to replicate sea states with two target spectral con-
figurations: a weakly nonlinear (ε = 0.06; BFI = 0.4)
and a nonlinear sea state (ε = 0.11; BFI = 0.8). Condi-
tions at the wave-maker were initialised using Rayleigh
distributed amplitudes around a unidirectional target
spectrum and uniformly distributed phases, i.e. the ini-
tial conditions were a Gaussian random processes.

As the wave fields propagated along the tank, nonlinear
interactions freely developed, producing an energy trans-
fer across modes. The macroscopic effect was the growth
of large amplitude waves, which modified the initial sta-
tistical properties of the wave fields. For the weakly non-
linear sea state, statistics of the intensity of the surface
elevation were Gaussian. For the more nonlinear condi-
tion, on the other hand, large amplitude waves were ob-
served far more often than a Gaussian distribution would
have predicted, producing heavy tails in the probability
density function of wave intensity.

Nonlinear energy transfer, moreover, produced changes

to the spectral space. A notable fraction of energy
moved towards low frequency modes and the spectral
peak downshifted. Concomitantly, nonlinear wave inter-
action transferred energy to high frequencies and redis-
tributed it on multiple directions, causing the initial uni-
directional wave field to evolved into a weakly directional
one. Note that emergence of directionality was more pro-
nounced for the nonlinear case (ε = 0.11; BFI = 0.8).

Energy cascading towards high frequency—as in a clas-
sical fluid turbulent regime—was associated with the
appearance of intermittent bursts localised at high fre-
quency modes. This resulted in the emergence of a
heavy-tailed distribution for Fourier mode amplitudes,
departing from the originally imposed Rayleigh distribu-
tion. Deviations were evident in both sea states, albeit
they were less pronounced in the weakly nonlinear field
(ε = 0.06; BFI = 0.4) and more substantial for non-
linearity sea state (ε = 0.11; BFI = 0.8). These re-
sults provide evidence that the general hypothesis that
Fourier mode amplitudes are Rayleigh distributed does
not extend to the high frequency range (approximately
ωi > 2.5ωp), even for weakly nonlinear (almost linear)
sea state conditions.
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