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OPENtubular epithelial cells
Ischemia-reperfusion injury in renal
transplantation: 3 key signaling pathways in
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Renal ischemia-reperfusion injury (IRI) is a significant
clinical challenge faced by clinicians perioperatively in
kidney transplantation. Recent work has demonstrated the
key importance of transmembrane receptors in the injured
tubular epithelial cell, most notably Toll-like receptors,
activated by exogenous and endogenous ligands in
response to external and internal stresses. Through
sequential protein-protein interactions, the signal is
relayed deep into the core physiological machinery of the
cell, having numerous effects from upregulation of pro-
inflammatory gene products through to modulating
mitochondrial respiration. Inter-pathway cross talk
facilitates a co-ordinated response at an individual cellular
level, as well as modulating the surrounding tissue’s
microenvironment through close interactions with
the endothelium and circulating leukocytes. Defining the
underlying cellular cascades involved in IRI will assist the
identification of novel interventional targets to attenuate
IRI with the potential to improve transplantation outcomes.
We present a focused review of 3 key cellular signalling
pathways in the injured tubular epithelial cell that have
been the focus of much research over the past 2 decades:
toll-like receptors, sphingosine-1-phosphate receptors and
hypoxia inducible factors. We provide a unique perspective
on the potential clinical translations of this recent work in
the transplant setting. This is particularly timely with the
recent completion of phase I and ongoing phase 2 clinical
trials of inhibitors targeting specific components of these
signaling cascades.
Kidney International (2019) 95, 50–56; https://doi.org/10.1016/
j.kint.2018.10.009

KEYWORDS: ischemia-reperfusion injury; tubular epithelial cells

Copyright ª 2018, International Society of Nephrology. Published by

Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Correspondence: Sarah A. Hosgood, University of Cambridge Department of
Surgery, Box 202, Level 9, Addenbrooke’s Hospital, Hills Road, Cambridge. CB2
0QQ, UK. E-mail: sh744@cam.ac.uk

Received 1 February 2018; revised 25 September 2018; accepted 2
October 2018

50
T reatment options for end-stage renal disease include
kidney transplantation and dialysis. However, a signifi-
cant gap exists between the demand and the supply of

brainstem-dead donor organs for transplantation; at the time
of writing, 95,003 patients in the United States1 and 4803 pa-
tients in the United Kingdom2 are awaiting kidney transplan-
tation. Significant efforts are being made to bridge this gap
and reduce waiting lists. In the United Kingdom, a rise in
organ donation after circulatory death and use of
expanded-criteria organs has contributed to rising rates of or-
gan donation and transplantation.3

Ischemia-reperfusion injury (IRI) might be considered
the transplant surgeon’s enemy and is a particular threat
during transplantation of kidneys donated after circulatory
death because of their long exposure to warm ischemia.4

IRI leads to loss of tubular epithelial cell (TEC) function,
contributing to the development of acute kidney injury,
delayed graft function, and acute and chronic organ
rejection.5 Research during the past decade has vastly
improved our understanding of the myriad interconnected
molecular pathways that contribute to IRI and has identi-
fied potential interventional pharmacologic targets and
prognostic biomarkers.6 Translation of these bench-side
advances to novel therapeutics ultimately may lead to
improved graft function and clinical outcomes for kidney
transplant recipients.

The molecular and cellular events that occur in IRI are
complex, involving oxidative damage and the activation of the
innate immune system.7 Signaling components of particular
relevance to IRI in TECs are the pathways used by Toll-like
receptors (TLRs),8 sphingosine-1–phosphate (S1P) re-
ceptors,9 and hypoxia inducible factors (HIFs).10 From a
physiological perspective, this inherent pathway complexity
in vivo has numerous advantages, enabling integration of
molecular messaging, specificity of cellular response, and
response amplification. In the context of IRI, in addition to
influencing the individual injured TEC, these proin-
flammatory cascades have diverse modulating effects on the
surrounding microenvironment through upregulation of
chemokines and cytokines, promoting recruitment of leuko-
cytes and triggering dilation of the vasculature. As such, the
TECs can be considered to be both the victims and the per-
petrators of IRI. TEC signaling pathways have potential for
significant intra- and intercellular influence, making them
powerful targets in ameliorating IRI.
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Toll-like receptors
TLRs, a class of receptors that form part of the innate im-
mune cellular armory, belong to the interleukin (IL)-1 re-
ceptor family.11 They recognize pathogen-associated
molecular patterns, conserved structural motifs. The TLR-
activated cellular pathways result in production of proin-
flammatory cytokines and chemokines. The human TLR
family comprises 10 members, TLR1 to TLR10.12 Multiple
studies suggest that ischemia upregulates TLR2 and TLR4
expression in TECs,13–17 as determined by immunohisto-
chemical and reverse transcriptase–polymerase chain reaction
techniques across various IRI models in vitro and in vivo. In a
murine genetic knockout model, TLR2 and TLR4 have shown
equal importance in initiating apoptosis in renal IRI.15

Ischemia-driven TLR expression is fine-tuned by the action
of cytokines such as interferon-g and tumor necrosis factor–
a,16 as well as the enzyme spermidine/spermine N1-
acetyltransferase that is upregulated in IRI.17

TLR2 and TLR4 display multivalent ligand-binding activ-
ity, because they are activated by exogenous ligands (e.g.,
lipopolysaccaride [LPS]) and endogenous ligands such as
heat-shock proteins, nonhistone chromatin-binding protein
high-mobility group box 1, and extracellular matrix compo-
nents (hyaluronan, fibronectin, heparan sulfate, and bigly-
can).13 For instance, Allam et al.18 demonstrated that direct
injection of histones into the renal arteries of mice induced
leukocyte recruitment, microvascular vascular leakage, renal
inflammation, and structural features of acute kidney injury
in a TLR2/TLR4-dependent manner and was suppressed by
antihistone IgG.18

Another layer of complexity to the receptor-ligand inter-
action is afforded by the presence of a small number of
cytosolic adapter proteins that bridge TLRs and facilitate
downstream signal transduction. Adaptor proteins relevant to
TLR4 signaling include myeloid differentiation primary
response 88 (MyD88), TIR-domain-containing adapter-
inducing interferon-b, transmembrane adaptor protein, and
TRIF-related adaptor molecule; adaptor proteins relevant to
TLR2-mediated signaling include transmembrane adaptor
protein and MyD88.19 Of these, MyD88 has proven to be a
fruitful target for amelioration of IRI in murine models
among pharmacologic and genetic knockout studies to date.
Inhibition of MyD88 with small molecular compound
TJ-M2010-2 resulted in amelioration of IRI and inhibition
of transforming growth factor-b1–induced epithelial-
mesenchymal transition of renal TECs.20 Li et al.21 demon-
strated that hypoxia resulted in significant increases in cytokine
production and apoptosis/necrosis in wild-type proximal tubular
epithelial cells, but these responses were significantly blunted in
MyD88(–/–) proximal tubular epithelial cells.21

TLR-mediated signal transduction activates proin-
flammatory transcription factors. The cascade of events is
detailed in Figure 1; the MyD88-dependent pathway com-
mences with the recruitment of IL-1 receptor-associated ki-
nase 4, ultimately activating IkB kinase (inhibitor of nuclear
factor–kB [NF-kB] kinase complex) and also activation of the
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mitogen-activated protein kinase pathway, which causes
activation of transcription factors NF-kB and activator pro-
tein 1, respectively.22 It is termed “early phase” NF-kB acti-
vation. It is thought that ligand binding can confer specificity
in the signaling pathway; for example, biglycan binding will
activate p38, whereas heat shock protein 60 activates p38, c-
Jun N-terminal kinases 1 and 2, and IkB kinase. The MyD-88
independent pathway promotes TIR-domain-containing
adapter-inducing interferon-b activation and ultimately re-
sults in activation of the transcription factors NF-kB and
interferon regulatory factor 3.12 In both pathways, the tran-
scription factors NF-kB and activator protein 1 contribute to
upregulation of proinflammatory products including cyto-
kines and chemokines. Therefore, whereas pharmacologic
ligand design may provide the potential to inhibit certain IRI
pathways with some degree of specificity at the point of
MyD88 divergence, there appears to be pathway convergence
at the nuclear level at transcription.

From a more global perspective of cellular signaling, it is
important to note the interaction between the TLR and
complement pathways in IRI, which occur through at least
2 mechanisms. First, both systems share common activating
ligands (e.g., LPS). Second, emerging evidence shows that
the TLR-activated pathways interact with the complement
system through mitogen-activated protein kinases.23 How-
ever, at present, no studies have been performed specifically
in renal TECs to investigate the cross talk between TLR and
complement system activation. Zhang et al.24 postulated
that the “missing link” between the 2 systems is MyD88.
They demonstrated that when decay accelerating factor–
deficient mice were treated with the TLR4 agonist LPS,
the mice showed increased IL-6, tumor necrosis factor–a,
IL-1b, and IL-10 levels. They had lower levels of IL-12
compared with the wild-type control subjects. In dual
decay accelerating factor and C3 knockout mice, LPS-
induced cytokine release was absent. In dual decay accel-
erating factor and TLR4 knockout mice, LPS-induced
cytokine release also was absent.24 Therefore one can
anticipate that an inhibitor designed to share the multi-
valency of LPS would possess the ability to dampen IRI
through multiple synergistic pathways.

The complement inhibitor eculizumab, a monoclonal
antibody blocking C5, is currently undergoing clinical trials in
renal transplantation.25 Thus far, these trials mostly have been
focused on its beneficial effect in ameliorating antibody-
mediated allograft injury; however, an ongoing trial in
Russia (NCT01756508) is specifically investigating the use of
eculizimab for prevention and treatment of reperfusion injury
in kidney transplantation. Results are anticipated upon
completion of the trial in May 2019.

In summary, potential targets for pharmacologic antago-
nism in the TLR pathway exist at the level of the trans-
membrane receptor, cytosolic adapter proteins, downstream
messengers, and transcription factors. Whereas much of our
present understanding of the signaling pathway comes from
murine models, we are starting to see research making the
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Figure 1 | Toll-like receptor 4 (TLR4) is activated by different ligands (extracellular matrix [ECM] components, heat shock proteins
[HSPs], nonhistone chromatin-binding protein high-mobility group box 1 [HMGB1], pathogen-associated molecular pattern molecules
[PAMPs], and damage-associated molecular pattern molecules [DAMPs]). There are 2 main pathways, as illustrated in the diagram. The
myeloid differentiation primary response 88 (myD88)–dependent pathway involves recruitment of interleukin-1 receptor-associated kinase 4
(IRAK4) and IRAK1 activation, with myD88 acting as a cytosolic adapter protein. Activation of transforming growth factor b–activated kinase 1
(TAK1) is dependent on tumor necrosis factor receptor–associated factor 6 (TRAF6) interacting with the ubiquitin conjugating (UBC) system. This
interaction results in upregulation of activator protein 1 (AP-1) and nuclear factor–kB (NF-kB) and hence upregulation of proinflammatory
genes. The alternate pathway involves activation of TANK-binding kinase 1 (TBK1) and IkB kinase epsilon (IKKε), with TIR-domain-containing
adapter-inducing interferon-b (TRIF) acting as an adapter protein. This process results in activation of interferon regulatory factor 3 (IRF3), as
well as NF-kB, resulting in upregulation of proinflammatory genes. Of note, there is convergence at this level with pathways activated by
reactive oxygen species (ROS), which activate NF-E2 p45-related factor 2 (Nrf2) and Kelch-like ECH-associated protein (Keap1). TAB, TAK1-
binding protein.
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leap to clinical trials. Of note, anti-TLR2 antibodies have
shown some promise in mice and in humans.

Farrar et al.26 demonstrated that antibody-mediated inhi-
bition of TLR2 promoted graft function in an isograft murine
model of renal transplantation whereby recipient mice were
treated with the antibody prior to reperfusion of the trans-
planted kidney (which had been exposed to 30 minutes of
cold ischemia).

Clinical trials relating to TLR signaling pathways. The hu-
manized anti-TLR2 antibody called OPN-305 is currently
undergoing clinical trials for delayed graft function in kidney
transplantation. An initial phase 1 study performed in 2013
yielded preliminary safety data, and dosing of 0.5mg/kg given
as an infusion over 1 hour fully inhibited the TLR2 and
demonstrated an 80% reduction of IL-6 release, with effects
for up to 2 weeks.27

Arguably, in the context of our review, one limitation of
these studies is that OPN-305 does not act specifically on TEC
cells; beneficial effects in this context also are likely mediated
52
by cross-reactivity with circulating leukocytes. Although it is a
matter of debate as to whether the antibody indeed passes
through the glomerular filtration barrier in vivo in a state of
physiological normality, in the context of kidney injury, it
seems likely that this would occur. After the success of the
phase 1 trial, OPN-305 progressed to phase 2 studies in
kidney transplant patients; it was administered as an IV
infusion for 1 hour at the start of the transplant procedure.28

The highly anticipated results of this recently completed phase
2 trial (NCT01794663) will arguably provide the most clini-
cally relevant evidence yet on the potential of TLR inhibitors
in the field of renal transplantation.

Sphingosine-1-phosphate receptors
It is believed by some Chinese and Tibetan herbalists that
tonic infused with Isaria sinclairii is an anti-aging elixir.
Although the validity of these claims is beyond the purview of
this review, this unusual fungus, native to Asia, produces a
substance called myriocin that has been extensively studied
Kidney International (2019) 95, 50–56



S1P AA

S1P1RS1P1RS1P1R EGFREGFREGFR

PLA2

20-HETE EETs
sEH

caspase 3

MAPK

P13K

mek erk

Figure 2 | During inflammation, sphingosine-1-phosphate (S1P)
released by platelets, endothelial cells, and leukocytes results in
activation of S1P1 receptors that stimulate the mitogen-
activated protein kinase (MAPK) (extracellular signal-regulated
kinase [erk]) and P13K (Akt) pathways in tubular epithelial cells.
Convergence occurs at this level with pathways stimulated during
inflammation by the production of cytochrome P450-dependent ei-
cosanoids. Arachidonic acid (AA) is converted by phospholipase A2
(PLA2) and cytochrome p450 enzymes to produce 20-
hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic
acids (EETs). Soluble epoxide hydrolase (sEH) metabolizes EETs to
inactive dihydroxyeicosatrienoic acids (DHETs). 20-HETE increases Akt
phosphorylation and promotes activation of the epidermal growth
factor receptor (EGFR). Overexpression of 20-HETE has been associ-
ated with cellular damage mediated by caspase-3 activation. mek,
mitogen-activated protein kinase kinase.

SF Smith et al.: IRI signaling pathways in the tubular epithelium rev i ew
and has rejuvenated our understanding of S1P signaling
pathways in IRI. S1P is a phospholipid that participates in
signaling pathways mediated by G-protein–coupled receptors
relevant to IRI, as illustrated in Figure 2. S1P is released during
inflammation in ischemia by platelets, endothelial cells, and
leukocytes.29 G-protein–coupled receptors present on renal
proximal TECs include S1P1R and S1P2R; our understanding of
downstream signaling from these receptors is still evolving. The
study of fungalmetabolite sphingosine-like immunosuppressant 1
led to the derivation of a small molecule called fingolimod
(FTY720), a nonselective S1PR agonist. Fingolimod has been used
in in vitromodels and also has been featured in clinical trials for a
range of different conditions that implicate IRI in their etiology,
including acute ischemic stroke and, most recently, in kidney
transplant recipients.

Bajwa et al.30 studied S1P in proximal TECs. In a 2010 study,
they investigated the effects of S1PR agonists on kidney IRI on
lymphopenic mice (Rag1 knockouts). These investigators found
that administering FTY720 or selective S1P1R agonist SEW2871
reduced IRI in the Rag1 knockout and the wild-type mice.
Interestingly, they demonstrated that the S1P1R agonist
SEW2871 increased activation of the mitogen-activated protein
kinase (extracellular signal-regulated kinase) or P13K (Akt)
pathways in proximal TECs.30 In a more recent study in 2015,
they again used FTY720, which attenuated IRI. They also found
that the agonist reduced the effects of cisplatin-induced AKI.
Kidney International (2019) 95, 50–56
Using S1P1 knockout mice, these investigators demonstrated
that FTY720 was achieving the effects via the S1P1 receptor. Cells
overexpressing S1P1 were resistant to the effects of cisplatin.
Bajwa et al.30 also presented evidence to suggest that S1P is
important in mitochondrial structure and function; they noted
that in S1P1R overexpressing cells, the mitochondria were longer
and thinner, with high rates of basal respiration. However, as
they discussed, it is unclear if the protective effect of S1P on
mitochondria is mediated through cellular cascades via a cell
surface S1P1 receptor or through a direct effect of S1P on
mitochondria.31 In a rat model of transplantation following 24
hours of cold ischemia, FTY720 has been shown to reduce
apoptosis and increase cellular proliferation in the tubular
epithelium and can be considered to increase tubular epithelial
protection in the presence of severe IRI.32

S1P2R is thought to mediate proapoptotic, proin-
flammatory effects.29 Ishizawa et al.33 demonstrated that in
rat TECs, S1P2R stimulation activates Rho kinase, resulting in
changes to E-cadherin distribution and increased a-smooth
muscle actin expression.33

The S1P pathway does not act in isolation; evidence sug-
gests cross talk between S1P and other signaling pathways. For
instance, the S1P pathway is influenced by adenosine
signaling in IRI. Park et al.34 found that a selective adenosine
A1 receptor agonist (2-chloro-N(6)-cyclopentyladenosine)
increased S1P synthesis and selectively induced sphingosine
kinase 1 in mouse kidney and human kidney–2 cells.
Knockout mice deficient in S1P1Rs were not protected against
renal IRI by 2-chloro-N(6)-cyclopentyladenosine. 2-Chloro-
N(6)-cyclopentyladenosine increased the translocation of
HIF-1a in HK-2 cells, and selective HIF-1a inhibition
blocked the A1R-mediated sphingosine kinase 1 induction.34

Clinical trials related to S1P receptors. Fingolimod
(FTY720) reached clinical trials for kidney transplant recipients,
with 10 registered complete clinical trials existing on the U.S.
database; the last trial was completed in 2006. Unfortunately,
fingolimod has not been as successful as anticipated. In clinical
trials CFTY720A124 and CFTY720A125, it was associated with
decreased graft function, respiratory adverse effects, and
increased rates of macular edema compared with mycopheno-
late mofetil with cyclosporin. As a result, Novartis discontinued
its clinical trials for fingolimod in renal transplantation.

Hypoxia-inducible factors
HIF factors (subtypes HIF-1 and HIF-2) are transcription
factors that regulate the expression of numerous transcription
targets important in renal function. They are heterodimeric
molecules, each composed of an oxygen-sensing a subunit
and a constitutively expressed b subunit.35 HIFs are stabilized
during hypoxia and promote adaptation to a low availability
of oxygen. They therefore have an important role in ischemia-
reperfusion signaling pathways.

Characterizing HIF-1 and HIF-2 regulatory pathways is
relevant to understanding IRI in TECs. Key regulators of HIF
include reactive oxygen species (from various sources) and
von Hippel–Lindau and prolyl hydroxylase domain (PHD)
53
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proteins. Ubiquitination and degradation plays an important
role in regulation of HIF. von Hippel–Lindau proteins and
HIF-prolyl hydroxylase domain enzymes 1-3 (PHD1, 2, and
3) coordinate these processes. During normoxia, HIF binds to
von Hippel–Lindau proteins and PHD enzymes. This com-
plex then recruits ubiquitin, which results in degradation.
During hypoxia, the prolyl hydroxylases are inactivated,
resulting in termination of degradation. HIF accumulates and
is stabilized.36

Several studies suggest an initial protective role of HIF-1a/
HIF-1 during kidney IRI.37–40 Zhang et al.41 demonstrated
that HIF-1a expression was significantly increased after 60
minutes of hypoxia in a porcine model during simulated
partial nephrectomy with warm ischemia. Furthermore, Oda
et al.42 demonstrated that upregulation of HIF-1a after
reperfusion may be a predictor of early recovery of graft
function after cadaveric kidney transplantation. HIF-2 also
has protectant functions. A Japanese group demonstrated the
importance of HIF-2a using a knockout murine model.
Kojima et al.43 found that HIF-2a knockout mice were more
susceptible to renal IRI (as assessed by blood urea nitrogen
levels and semiquantitative histologic analysis). They
demonstrated the importance of endothelial HIF-2a in the
restoration of HIF-2a in the endothelium by intercrossing
with Tie1-Cre mice, which ameliorated renal injury by IRI.43

HIF in the injured TEC has been specifically investigated in
a number of studies.44–46 Conde et al.47 demonstrated that
HIF-1a was stabilized in proximal tubule cells during IRI;
they observed stabilization of HIF-1a in ischemia and also
during normal oxygen tension in reperfusion. HIF has
numerous transcriptional targets including vascular endo-
thelial growth factor, erythropoietin, and heme oxygenase-147

and can be considered a gatekeeper to the hypoxia-driven
cellular response. In addition to these direct transcriptional
effects, evidence is emerging to suggest that HIF activation can
modulate other signaling pathways. For instance, He et al.48

demonstrated cross talk between the HIF and NF-kB path-
ways. In their study, LPS treatment led to HIF-2a accumula-
tion in endothelial cells in a mouse model of IRI due to NF-kB
activation. Inactivation of HIF-2a resulted in loss of
LPS-mediated protection against IRI. LPS-mediated protection
is thought to be related to inducible nitric oxide synthase and
endothelial nitric oxide synthase.48

HIF-1 is implicated in chronic changes as well as the acute
IRI response. Luo et al.49 demonstrated that HIF-1a upre-
gulated a-smooth muscle actin expression and reduced
E-cadherin expression in an in vitro model of IRI. The
microRNA miR-21 was positively correlated with HIF-1a,
suggesting that miR-21 may be a regulatory factor in the
process by which HIF-1a promotes epithelial to mesenchymal
transition in IRI.49

PHD inhibitors have been studied therapeutically to pro-
tect against ischemia through their mechanism of HIF sta-
bilization.50 Wang et al.51 demonstrate in a rat model of renal
IRI that using PHD-1 inhibitor acetate as a preconditioning
agent to stabilize HIF resulted in significantly improved
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creatinine levels and renal structure. Bernardt et al.52 used a
specific PHD inhibitor called FD-4497 in a rat model of
allogenic kidney transplantation. Donors received a single
dose prior to nephrectomy, and it was found that donor
preconditioning resulted in HIF accumulation. Acute renal
injury (as measured by serum creatinine levels) and early
mortality were reduced among the recipients after pre-
conditioning with FD-4497.52

The role of reactive oxygen species in the regulation of HIF
is complex. In addition to having a direct effect on HIF
regulation, reactive oxygen species have indirect effects via
modulation of intermediates including nitric oxide and
microRNAs.53 Other molecules interact with the HIF
pathway, including Muc1 and ID1. Pastor-Soler et al.54

studied the role of a cell surface glycoprotein, MUC1, inter-
acting with HIF during IRI in TECs. Muc1 was induced
during IRI (normally localized on the cell surface but
appeared in the cytoplasm and nucleus of tubular epithelia
during IRI). Muc1 knockout mice exhibited more severe
kidney damage compared with control subjects, and Muc1
knockouts had reduced HIF-1a levels.54 Inhibitor of DNA
binding 1 (ID1) is a transcription factor that functions to
interact with basic helix-loop-helix transcription factors. Wen
et al.55 recently demonstrated that ID1 was upregulated
during hypoxia and reoxygenation in an in vitro model of
renal IRI, with expression localized primarily to the TECs. A
relationship exists between ID1 and HIF-1a, because
silencing of the HIF-1a gene resulted in reduction of ID1
mRNA. The functional significance of ID1 is still being
appreciated; it has been previously shown in renal TECs that
ID1 can drive cell de-differentiation through suppression of
E-cadherin expression.56

Interestingly, some evidence shows that hyperoxia can have
detrimental effects on the developing kidney. This effect is
thought to be mediated through hyperoxia-induced degra-
dation of HIF. Popescu et al.57 demonstrated in a rodent
model that HIF-1a expression was reduced in developing
kidneys after exposure to hyperoxia. Administration of the
HIF-1a stabilizer dimethyloxalylglycine (a PHD inhibitor)
resulted in increased HIF-1a expression and improved
nephrogenesis.57

Clinical trials related to HIFs. As yet, no HIF-1a antago-
nists have entered clinical trials for renal transplantation.
However, a locked nucleic acid antagonist called EZN-2968 is
being investigated for its role in oncogenesis and potential as
an antitumor drug, because HIF-1 is often overexpressed in
malignant cells.58 A number of PHD inhibitors also have been
developed and are undergoing clinical trials for the treatment
of anemia in persons with chronic kidney disease; it is
possible these PHD inhibitors also have relevance and po-
tential applications as ameliorators of IRI.59

CONCLUSION
Signaling pathways are necessary for the detection and cellular
reaction to IRI in TECs. Transmembrane receptors, notably
TLRs and S1PRs, are of key importance; they are activated by
Kidney International (2019) 95, 50–56
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exogenous and endogenous ligands in response to external
and internal stresses. Through sequential protein-protein in-
teractions, the signal is relayed deep into the core physio-
logical machinery of the cell and have numerous effects from
upregulation of proinflammatory gene products to modula-
tion of mitochondrial respiration. Interpathway cross talk
facilitates a coordinated response at an individual cellular
level and modulates the microenvironment of surrounding
tissue through close interactions with the endothelium and
circulating leukocytes.

Most of the evidence base surrounding renal IRI pathways
to date has come from rodent models in which mRNA or
protein expression has been examined in isolation. Few in-
vestigators have studied the impact of these interventions on
transplantation, and therefore further research in these
models is required to determine whether targeting theoretical
IRI cascades leads to improved graft function. Future research
will provide further insight into the potential of microRNA as
a specific tool for cell signaling intervention. The work on
TLR inhibitors has shown great promise, particularly the
TLR2 inhibitors currently undergoing clinical trials in renal
transplantation. However, as demonstrated by fingolimod,
translating from scientific studies to clinical studies is not
always straightforward, with unforeseen adverse effects oc-
casionally emerging at a late stage in trials.
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