British Journal for the History of Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tbsh21

Taylor & Francis

Taylor &Francis Group

The B B Newman spelling theorem

Carl-Fredrik Nyberg-Brodda

To cite this article: Carl-Fredrik Nyberg-Brodda (2021) The B B Newman spelling theorem, British
Journal for the History of Mathematics, 36:2, 117-131, DOI: 10.1080/26375451.2021.1904735

To link to this article: https://doi.org/10.1080/26375451.2021.1904735

8 © 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

@ Published online: 17 Apr 2021.

N
CJ/ Submit your article to this journal &

E

Article views: 274

O

View related articles &'

View Crossmark data &

]

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tbsh21


https://www.tandfonline.com/action/journalInformation?journalCode=tbsh21
https://www.tandfonline.com/loi/tbsh21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/26375451.2021.1904735
https://doi.org/10.1080/26375451.2021.1904735
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsh21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsh21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/26375451.2021.1904735
https://www.tandfonline.com/doi/mlt/10.1080/26375451.2021.1904735
http://crossmark.crossref.org/dialog/?doi=10.1080/26375451.2021.1904735&domain=pdf&date_stamp=2021-04-17
http://crossmark.crossref.org/dialog/?doi=10.1080/26375451.2021.1904735&domain=pdf&date_stamp=2021-04-17

British Journal for the History of Mathematics, 2021 Taylor &Francis
Vol. 36, No. 2, 117-131, https://doi.org/10.1080/26375451.2021.1904735 Taylor& Erancis Group

The B B Newman spelling theorem

CARL-FREDRIK NYBERG-BRODDA™
Department of Mathematics, University of East Anglia Faculty of Science, Norwich, United Kingdom

This article aims to be a self-contained account of the history of the B B Newman Spelling
Theorem, including the historical context in which it arose. First, an account of B B
Newman and how he came to prove his Spelling Theorem is given, together with a
description of the author’s efforts to track this information down. Following this, a high-
level description of combinatorial group theory is given. This is then tied in with a
description of the history of the word problem, a fundamental problem in the area. After a
description of some of the theory of one-relator groups, an important part of combinatorial
group theory, the natural division line into the torsion and torsion-free case for such groups
is described. This culminates in a statement of and general discussion about the B B
Newman Spelling Theorem and its importance.

Keywords: Combinatorial group theory; geometric group theory; right-angled
Artin group; spelling theorem; Gilbert Baumslag

athematical research is done by mathematicians. It is all too easy to

forget that whereas the truth of mathematical statements is independent

of the people who proved them, the process of research leading up to
these proofs is very human. When reading the title of this essay, one may expect to
find herein the statement of the B B Newman Spelling Theorem, and an explanation
and history of some of the relevant terms; perhaps an exposition of the history of the
mathematical context in which the theorem appears is also to be expected. All of this
is present. However, one may also justifiably ask who B B Newman was. Beginning
this article is therefore a section on the very human story of the mathematician
behind the theorem, and how my efforts to track him down instead led to my being
tracked down by him. It is not expected of the reader to understand all of the math-
ematics within. The heart of this story does not lie with its mathematical content.

1. B B Newman

I was first made aware of the B B Newman Spelling Theorem following a meeting with
my doctoral supervisor at the very beginning of my PhD, and while it would be wholly
incorrect to claim that this initial encounter resulted in any deep understanding of the
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theorem, it left me in no doubt as to its importance. In 1968, when the theorem was first
proven, the machinery used to prove the theorem was not as well oiled as it is today. My
curiosity was therefore piqued as to what the original proof may have looked like,
naively expecting a relatively straightforward path to finding it. It is difficult to over-
state how wrong these expectations would turn out to be.

In any case, the optimism was not necessarily unjustified, as there was not one, but
two natural starting points for my search. In most citations two references were cited
for the Spelling Theorem: a bulletin article from 1968, and B B Newman’s doctoral
thesis from 1968, submitted to the University of Queensland (UQ), in Australia.
While the bulletin article certainly contained the statement of the Spelling
Theorem, and many of its consequences, it, understandably, did not contain the
proof I sought. Neither was any light yet shone on the mysterious initials ‘B. B.’,
and so my attention moved towards finding the doctoral thesis. Writing to the univer-
sity library at UQ, the amount of information available to me on this topic was sig-
nificantly increased after some correspondence. Bill Bateup Newman, hereinafter
simply referred to as Bill, was born in 1936, and graduated with, among other
degrees, an MSc from the School of Mathematics at UQ in 1964, and was on
record for completing a PhD in 1970. The master’s thesis, entitled ‘Almost Just Meta-
belian Groups’, was freely available in the archives, and a copy was sent to me.
However, there was no trace of any doctoral thesis. Furthermore, the mystery thicken-
ing, there was not even any sign as to who might have been his doctoral supervisor.
After much effort from the librarian and archivists, little else was found in the
archives. Slightly defeated, I decided to slump into my chair to at least try and
figure out what an almost just metabelian group might be.

As I was reading through the preface of the master’s thesis, a line suddenly caught
my eye, in which Bill thanked his supervisor, a Dr M F Newman. The trail was picked
up again, and looking around the staff pages of various Australian universities, [ was
able to find Professor Emeritus Michael (Mike) Frederick Newman at the Australian
National University. I wrote to him, almost, but not entirely, convinced that this
surely must be the same mathematician, and a couple of days later received a response.
‘T am the M. F. Newman you are looking for’ he began reassuringly. While Mike had
not had any contact with Bill for many years, nor even knew whether he was still alive,
nor knew the whereabouts of any copies of his thesis, he did inform me of something
which took me by surprise. While the doctoral studies had been for a degree at UQ,
the doctoral supervisor of Bill had been Gilbert Baumslag. This was surprising for a
number of reasons. The first was that Baumslag, as will become clear from the number
of mentions of the same in the following sections, was a very major name in the area,
and a quick search revealed that there was no record' online of him ever having super-
vised Bill. The second was that Baumslag had been based at City College New York
(CCNY), in a city almost antipodal to Queensland, for a large portion of his life. Of
course, there was only one thing I could do at this point. I wrote to CCNY, and asked
them whether they had a copy of Bill’s thesis. A few days later, I received an email.

It would not be an exaggeration to say that I have never been as surprised by an
email as I was upon seeing who had sent it. There, in my inbox, was an email from B B
Newman. It was beyond words; what had come to pass was that for all my efforts to

'After discovering the connection, I submitted an entry to the Mathematics Genealogy Project (https:/
genealogy.math.ndsu.nodak.edu), which now lists Bill as a student of Baumslag’s.
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track this mathematician down, he had managed to find me first. A myriad of ques-
tions began piling up, but I pushed these aside® and started reading the email. Now
long since retired, Bill was nevertheless able to fill in the pieces of the picture I was
missing. His doctoral studies had indeed started at UQ, but not at the main
campus in Brisbane. Instead, he had been based in Townsville, almost a thousand
miles away, at the University College of Townsville, a college of UQ. There, since
1961, at the same time as he was pursuing his doctoral studies, he had quite remark-
ably held a lectureship in mathematics. By 1968, he had finished writing his thesis, and
was ready to graduate by 1969. Around that time, however, the college officially
became James Cook University (JCU), the second university in Queensland; hence
Bill was given the option to graduate with a degree from either UQ or JCU, and
chose the latter. This explained why UQ did not have a copy of his thesis, as no
copy was ever submitted there.

As to the matter of his supervisor, it was sporadic® enough that even Bill himself
was not entirely certain on the matter. He thought it might have been Mike Newman
initially,* which quickly changed when Baumslag visited Australia in 1964. Baumslag
agreed to supervise Bill, but disappeared almost as soon as he had appeared. Not long
thereafter, however, Baumslag sent a copy of a draft of a chapter on one-relator
groups from a forthcoming book on combinatorial group theory by Magnus,
Karass, and Solitar.” In Bill’s own words, this was ‘the most useful help [Baumslag]
provided’, and it prompted a fruitful investigation into one-relator groups that
would culminate in the Spelling Theorem.

After spending some time working with one-relator groups,® Bill was due for a sab-
batical leave, and Baumslag was in 1967 able to set up a lectureship for him at Fair-
leigh Dickinson University in Teaneck, New Jersey. This meant that the two
mathematicians were able to meet face to face again. At their very first meeting,
when explaining how far he had come in proving a Spelling Theorem, Bill realised
that his proof was correct. Baumslag enthusiastically suggested that the theorem be
presented at Magnus’ weekly group theory seminar at the State University in
Washington Square, and this came to pass. In the audience that day were both
Magnus and Solitar, two of the three who had taught Bill extensively about one-
relator groups. What was more, one of these was, of course, Wilhelm Magnus, the
man who had proved the Freiheitssatz, the most significant result on one-relator
groups to date. Not fazed by this, Bill presented his results, and concluded his presen-
tation. At that point, Magnus had a remarkable reaction. He jumped to his feet, and
exclaimed for the entire room to hear: ‘I don’t believe this! I don’t believe this!’. In

2] later learned that it was Mike who had passed on my email, but finding Bill’'s email address had taken
some digging. It was provided, via a colleague of Mike’s at UQ and a colleague of Bill’s at JCU, by the
widow of a former colleague of Bill’s.

3Bill recalls how Baumslag sent him a letter written on a German hotel letterhead, told him he was writing
from England, and had two weeks later posted the letter from South Africa.

“As mentioned earlier, Mike had been Bill’s master’s supervisor. The two met at a conference, and got
talking because of their shared surname. Mike Newman had himself in turn been supervised by B H
Neumann, much like Baumslag — the two had shared a student office at the Victoria University of Manche-
ster — and in this case, the similarity in surnames was not coincidental: the two were first cousins once
removed.

This book, including the chapter on one-relator groups, later appeared as (Magnus et al. 1966).
®Among other things, he proved a 1964 conjecture due to Baumslag, the proof of which later appeared in
(Newman 1968b).
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Bill’s own words, he was saying that ‘he could not believe that an unheard of mathe-
matician, from some unknown university in outback Australia, could have come up
with these results’. But the proof was correct.

After my correspondence with Bill, there yet remained a major unresolved issue in
the recovery of the thesis. I wrote an abridged email to JCU containing only the essen-
tials of the story up to that point, for fear of the thesis slipping through my fingers in
the time it would take them to read the entire story. Due to time differences, I woke up
the next morning pleasantly surprised, having discovered that I had been copied into
an overnight flurry of emails sent back and forth between the archivists, heads of
research, and librarians at JCU. Then, at last, the final email of the conversation
stated that the thesis had been found, alive and well, and I could not have been
happier. Shortly thereafter, I received an email containing the scanned thesis.

And so, a few weeks after it had begun, that chapter of the story was more or less
over. I was able to read through the original proof, just as I had wanted, and I do not
believe that I will ever read a proof with as much enthusiasm again. The thesis was
later uploaded to JCU’s online archives, and also passed on to UQ, so that they
may quickly help anyone in the future digging into the same story. There was, at
this point, only one small part of the story remaining. At the time of his graduation,
Bill worked as a bookbinder. Indeed, at the formal opening of James Cook University
in 1970 a visitors’ book bound by him was present’ and signed by Queen Elizabeth II.
Due to this bookbinding interest, Bill had also decided to bind a copy of his own
thesis in kangaroo leather, inlaid with a diagram of the amalgamated free product,
and had it sent to Baumslag. I have been in contact with numerous people regarding
the current whereabouts of this piece of paraphernalia but, as of yet, have not had any
luck in tracking it down. One day, it might be found, or it may simply be lost to time.

As for Bill Newman himself, after leaving New Jersey — and following a six month
visiting lectureship at Pahlavi University, Shiraz, Iran — he resumed his lectureship at
what had become James Cook University in 1970. He retained this position after his
graduation, and would remain employed there until his retirement in 2000. A number
of sabbatical years during this time are noteworthy. In 1980, he spent some months as
a visiting professor at the California Institute of Technology, and worked together
with Dr R Miller at the nearby Jet Propulsion Laboratory. This interest in space
travel would continue; at his next sabbatical in 1982, Bill worked in London and
the Netherlands as a consultant to a company contracted by the European Space
Agency. This work, on space communication and error-correcting codes, was for
the 1985 interception by the Giotto spacecraft of Halley’s comet; Bill’s involvement
in this project subsequently made the front-page of the Townsville local newspaper.
In 2000, Bill retired from his lectureship, and, at the time of the writing of this
article, currently lives in the Philippines.

2. Combinatorial group theory

Group presentations, the objects of interest for spelling theorems, were introduced by
Walther Dyck (1856-1934), later von Dyck, in (1882), and exposed the field of group
theory to a new approach for dealing with infinite groups. Dyck’s approach to the
subject via presentations was combinatorial in nature, and grew naturally out of the

"This book lies in the Vice-Chancellor’s office to this day, and remains in constant use.
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geometric and topological approaches which permeated the topic at the time, with
ideas stemming from e.g. Lie group theory (Lie 1880) and the topological work of
Klein, Fricke, and Poincaré. For example, the notion of a fundamental group of a
topological space was introduced by (Poincaré 1895) in the mid-1890s, but to study
such groups in depth it was clear that a more combinatorial approach was called
for. This proved to be the beginning of a fruitful marriage of ideas from group
theory and topology.

A presentation of a group G is a way of giving G as a quotient of a free group. In
other words, it is a way of representing elements of G as equivalence classes of
elements of a free group, and hence, by choosing representatives, a way to represent
elements of G as elements of a free group. Throughout this text, elements of free
groups will always be referred to as words, and this is no misnomer: they are words
with alphabet any set of cardinality twice the rank of the free group, to accommodate
formal inverse symbols. One of Dyck’s many insights was that it is possible to give a
presentation for any group. This is done by specifying a number of generators and a
number of defining relations. In practice, this latter quantity often turns out to be
much more vital to the structure of the group than the former. If the generating alpha-
bet is A and the set of defining relations, viewed as words over the alphabet and its
inverses, is R, then we record this presentation as (4| R = 1), or simply (4| R), and
we say that G is defined by this presentation.

It is often prudent to consider only presentations with finitely many generators and
defining relations. Such presentations are called finite, and a group which is defined by
some finite presentation is called finitely presented, a finiteness condition on the
group. It is important to note that not all groups can be finitely presented. Finite pre-
sentations allow us to deal with groups in a combinatorial way, by dealing with group
elements not as abstract objects floating in a void,® but as equivalence classes of words.
While in general a given element will have infinitely many words representing it in this
manner, the multiplication of such words through simple concatenation is compatible
with the group structure, which results in a very convenient manner of describing the
group. This is especially true of finite presentations, in which case one can, for
instance, describe an infinite group by only specifying a finite amount of information,
a considerable improvement. This section is not meant to serve as an introduction to
combinatorial group theory, and the only notion essential to understanding the
remainder is that one may use formal words to represent group elements. The
reader is directed to (Lyndon and Schupp 1977) or (Magnus et al. 1966) for excellent
introductions to the subject, and to (Stillwell 1980) for a good overview of the topo-
logical background.

Although all finite groups are finitely presented, for studying finite groups finite
presentations are not always particularly helpful. Consider the example of the alter-
nating group As, a finite group with a great deal of history in the theory of groups.
It can be described uniquely in many ways; for example, it is the set of all even permu-
tations on a set with five elements; the smallest non-abelian simple group, proved
already by Galois (1828); the smallest non-solvable group; or indeed the collection
of rotational symmetries of the icosahedron. All of these descriptions reveal a great
deal of information about the group. On the other hand, 45 also admits the following

81t may be helpful to compare this with geometric group theory, in which group elements are studied
through the way in which they act on certain geometric objects.
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presentation, which was given already in (1856) by W R Hamilton,’ and which
additionally appears in Dyck’s (1882) article:

(a,b|a® = b* = (ab)’ = 1).

Almost no information about the structure of the group is revealed directly by this pres-
entation. In particular, it is not immediately clear that the group defined by this presen-
tation should be finite or indeed non-trivial, let alone non-abelian simple. One can
obtain similar presentations for all symmetric groups S,, and alternating groups 4,;
this was first done in (1896) by E H Moore,'” and these presentations are similarly
terse regarding the many properties of the groups they present. The primary target
class of groups for presentations as a tool, then, lies outside of the finite.""

On the other hand, some infinite groups admit straightforward and illuminating
presentations. For example, the free abelian group Z> admits the presentation
(a, b|[a, b] = 1), where [a, b] = aba—'hb~! denotes the commutator. Indeed, the
group G defined by this presentation is abelian (as ab=ba) and 2-generated (by a
and b). Furthermore, one may check without much difficulty that no element of G
has finite order. It thereby follows by the classification theorem of finitely generated
abelian groups that G is isomorphic to the free abelian group Z2 Thus, in this case,
the presentation captures quite succinctly all the important information about the
group it presents.

The reader may at this point feel confounded as to what the usefulness of presen-
tations may be. One major advantage of presentations is that they may easily be
manipulated, leading to new presentations for known groups. In (1908), Heinrich
Tietze (1880-1964) worked from a topological viewpoint to introduce a number of
transformations of presentations, which today bear his name. These permit the trans-
formation of some given presentation into another equivalent presentation, that is, a
presentation defining the same group, with one possible end goal of finding the sim-
plest presentation for the group. For example, removing a generator which can be
expressed as a word in the other generators, and subsequently replacing any occur-
rence of it in the presentation by this word, is a Tietze transformation. For
example, the presentation (a, b, ¢|abc = 1, ¢cb~> = 1) defines the same group as the
presentation (a, b |ab(bb) = 1), by removing the generator ¢ = h>. We may now see
that as, in this new presentation, @ = b3, we can remove the generator a, and find
that our original presentation defines the same group as does (b | @), namely the infi-
nite cyclic group Z.

Importantly, Tietze proved that any two presentations defining the same group
can be transformed into each other through a finite sequence of applications of
Tietze transformations.'? Using his transformations, Tietze was able to prove in
(1908) that the fundamental group of a topological space is invariant under

°The author thanks John Stillwell for bringing this fact to his attention.

9The author thanks James East for bringing this fact to his attention.

"For completeness, it is true that some more modern approaches to the use of presentations to studying
finite groups have been found on the computational side, as well as some specialised work by e.g.
Coxeter and Moser (1980).

2This proof is not constructive, and the problem of deciding whether two presentations define the same
group, known as the isomorphism problem, remains; indeed, this problem was acknowledged already by
Tietze in (1908).
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homeomorphism; this was known in part previously to Poincaré under the additional
assumption that the fundamental group be finite. Another use of presentations comes
from knot theory. An important invariant of any knot is its knot group, that is, the
fundamental group of the complement in R® of the knot. Given any knot, it is
straightforward to write down a finite presentation for this group. In (1910), Dehn
showed that a knot is trivial if and only if its fundamental group is abelian, hence
relating the important, and very topological, problem of deciding whether a knot is
trivial to solving problems about finite presentations. For more details on the topolo-
gical underpinnings of presentations, the exposition given by Stillwell (1982) is an
excellent starting point.

Furthermore, presentations have a key selling point: they allow us to ask questions
about presentations of groups of a combinatorial nature, and, by extension, ask such
questions about the groups themselves. A typical example of such a question is asking
about the structure of groups given by presentations with only a single defining
relation, commonly called one-relator groups. Questions of this nature can only
arise in this combinatorial context, and are central to combinatorial group theory.

3. The word problem

The word problem is a central problem in the theory of presentations. Here, it will
serve as a natural stepping stone from presentations to spelling theorems. Presenta-
tions let us represent group elements as words. Given a presentation and two
words, it is therefore natural to ask whether the two words represent the same
element. The problem of producing an effective procedure for deciding this
problem in a finite time for any two input words is known as the word problem for
the presentation. The word problem was introduced” in (1911) by Max Dehn
(1878-1952), a highly prolific student of Hilbert’s, in a seminal article. Coming
from a topological background, he had already proved results regarding knot
groups the year before, and in (1914) solved the word problem for the trefoil knot
group. Using an elegant approach, he was able to apply this solution of the word
problem to devise a proof that the trefoil knot is not isotopic to its mirror image.
This gave credence to the notion that combinatorial group theory, having grown
out of topological considerations, was already becoming a useful tool for proving
results on its own.

Contemporary with this work of Dehn was the Norwegian mathematician Axel
Thue (1863-1922). He stated the word problem in the more general context of semi-
groups, and in 1914 he founded an attempted systematic approach for solving the
word problem. It is important to note that even at this time there was a great deal
of pessimism as to whether such an approach would ever be successful. Indeed,
Dehn himself had not understated the difficulty of these decision problems in 1911,
and in his own words ‘solving the [word] problem for groups may be as impossible
as solving all mathematical problems’ (Chandler and Magnus 1982). He was, as we
shall now see, correct in this assertion. An important branch of mathematics which
appeared in the 1930s, many of whose further branches would quickly become conflu-
ent with combinatorial group theory, arose from the Entscheidungsproblem and

BMore accurately, Dehn presented three problems for presentations: the identity problem, the conjugacy
problem, and the isomorphism problem. The identity problem is equivalent to the word problem for groups.
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computability theory. One of the goals of this branch was to show the general unsol-
vability of certain types of decision problems. In other words, it was focused on
showing that there are certain problems which cannot be solved in finite time by
any effective procedure; no computer could solve them for us.

Not long thereafter, the existence of unsolvable decision problems was proved.
This led to a frenzy of research on the algebraic side, in which efforts were made to
encode these unsolvable decision problems in the word, conjugacy, and isomorphism
problems for groups and semigroups, to prove the same problems unsolvable. This
frenzy became a successful venture. In (1937), Church published a proof of the exist-
ence of a finitely generated semigroup with unsolvable word problem; ten years later
this was extended to the existence of a finitely presented semigroup with unsolvable
word problem, independently by Post (1947); Markov (1947). In (1950), Turing
built on this by demonstrating the existence of a finitely presented cancellative semi-
group, an intermediary structure between semigroups and groups, with unsolvable
word problem. Novikov proved in (1954) that the conjugacy problem is unsolvable
in general for finitely presented groups. Finally, in (1955), Novikov proved the exist-
ence of a finitely presented group with unsolvable word problem, placing the final nail
in the coffin for the hope of a general procedure for solving the word problem for
groups; it is worth mentioning that Boone independently re-proved this result in
(1958). Around this time, the isomorphism problem for finitely presented groups
was also proved to be unsolvable in general by Adian (1955); Rabin (1958). Thus
all three of the problems posed by Dehn in 1911 had been proved unsolvable in
general, and the impact they had made on the development of combinatorial group
theory was undeniable.

Indeed, the word problem continued, and continues, to play a key role in combi-
natorial group theory in spite of these negative results. The general unsolvability of the
word problem may be phrased another way: the way a word is spelled, that is, written
as an element of a free group, is not in general enough to decide what kind of an
element it represents in the quotient. This prompts the natural question of under
which circumstances one may prove that the spelling of a word is enough to decide
what kind of an element it represents. It is answers to this question that lead us to
the notion of spelling theorems.'*

The first spelling theorem appeared in the context of surface groups. A surface
group is the fundamental group of some closed 2-manifold (or surface), which we
for brevity will assume to be orientable. If O, denotes a surface of genus g > 0,
then the fundamental group of O, admits the presentation

<a13 bl: cee ag9 bg | [ala bl][azs b2] T [ag, bg] = 1>

where [a;, b;] = a;ba;'b;! as usual denotes the commutator. Importantly, the funda-
mental group admits a presentation with only a single defining relation. Dehn had
proved already in 1911 that the word problem is decidable for surface groups using
geometric methods, but in 1912 he presented what became known as Dehn’s algorithm,

“The name spelling theorem is originally due to B B Newman. As a child in the 1940s, his sometimes less
than adequate spelling led to frequent canings in the headmaster’s office. It was thus with a sense of
delighted vindication that he decided to name his own spelling theorem.
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an algebraic method for solving the word problem for surface groups, and of which a
key component is a spelling theorem.

Theorem 3.1. Dehn’s Spelling Theorem, 1912  Let
G - (ala b1> e ag’ bg | [als bl][aZa bZ] e [ags bg] - 1)

be the fundamental group of a genus g > 2 closed orientable 2-manifold. Let w be a non-
trivial reduced word in the generators which represents the identity element of G. Then
there exists a subword u of w such that u is a subword of some cyclic conjugate of the
defining relation, and such that the length of u is strictly more than half the length of
the defining relation.

This spelling theorem roughly states that any word representing the identity
element should contain a large subword of the relator word (or some cyclic conjugate
of the relator word). Through an iterative procedure, one then replaces this large
subword with the shorter inverse of what remains of the relator word, and applies
the spelling theorem again, this time to a shorter word. This process is guaranteed
to terminate, as the word becomes shorter at every step, and the final word in the
sequence is the empty word if and only if the original word represents the identity.
This is enough to solve the word problem. In other words, Dehn was able to
control the spelling of any word representing the identity sufficiently much to solve
the word problem. This is at the heart of the notion of a spelling theorem. In
honour of this, any presentation which admits a spelling theorem, once rigorously
defined, is often called a Dehn presentation. The interested reader may find a
lucid exposition of Dehn’s algorithm in the more modern context of rewriting
systems in Book and Otto (1993). We now turn from spelling theorems to the
theory of one-relator groups, the final piece needed to state the B B Newman Spelling
Theorem.

4. One-relator groups

A one-relator group is one which can be presented using only a single defining relation.
We have already seen examples of one-relator groups in the earlier surface groups, but
there is an abundance of other examples, especially in the topological setting. For
example, the knot group of the trefoil knot, or indeed any torus knot, is a one-
relator group. The growth of combinatorial group theory in the mid-1900s correlates
well with the development of the theory of one-relator groups. It is not far off to say
that Dehn initiated this theory when he in 1928 asked his doctoral student Wilhelm
Magnus (1907-1990) to prove a result about one-relator groups: the Freiheitssatz, or
freeness theorem. Given a one-relator group, with a set of generators and a single
relation, in which we may without loss of generality assume all generators appear at
least once, the Freiheitssatz says that any proper subset of the generating set generates
a free group. Dehn was himself more or less convinced that this important structural
result was true through geometric intuition, and presented a sketch of a geometric
proof, intending Magnus to fill in the details (O’Connor and Robertson 2008). To
the geometer Dehn’s surprise, and perhaps slight disapproval, Magnus proved the
result in 1930 using purely combinatorial methods, foregoing the geometric
methods of his supervisor; indeed, Magnus recalled in (1978/1979) that, upon
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hearing of the algebraic nature of the proof, Dehn exclaimed ‘Da sind Sie also blind
gegangen! [So you went about it blind!]’. But the proof was correct.

What was more, Magnus was shortly thereafter able to use the Freiheitssatz to
prove that the word problem is decidable for any one-relator group, a result which
remains spectacular in its profundity to this day (Magnus 1932)."> The theory of
one-relator groups was much developed in the decades following this result, but
importantly, most results were fundamentally proved using a key strategy. This strat-
egy relies on the Magnus- Moldavanskii hierarchy, named after Magnus, who first used
it in the proof of his Freiheitssatz, and Moldavanskii, who in (1967) developed it into
its modern form.'® The general idea is that one may prove results about one-relator
groups by induction on the length of the defining relation. Starting with any one-
relator group Gy = (A4g|wy = 1), one associates to Gy a new one-relator group
Gy = (A1 |w1 = 1), where |w;| < |w|, 1.e. w; is a shorter word than w over the new
finite generating set A;. By a careful analysis, one finds that many properties of the
group G) can now be lifted to properties of Gy. One may then iterate this procedure,
obtaining from G| a one-relator group G», giving a sequence Gy, G, G, ... of one-
relator groups. As the length |w;| is strictly decreasing, this sequence always termi-
nates, and in fact always terminates in a one-relator group isomorphic to a direct
product F, x C; for some finitely generated free group F, and some finite cyclic
group Ci (possibly trivial). As the properties of F, x C; are well understood, this
means, modulo understanding the iteration above, that all one-relator groups can
be made well understood. It is precisely in this manner that Magnus proved the
word problem decidable for all one-relator groups.

While the proofs involving the procedure above can get rather intricate, the actual
process of obtaining G;;; from G; is very straightforward to write down. We give an
example of this. Suppose we start with the one-relator group Gy given to us as
Go = (a, b|abab™ a='ba~'b~! = 1), i.e. we have

wo = abab™'a a7,

We notice that the exponent sum op(wy) of b in wy, i.e. the total sum of the exponents
of the occurrences of b in wy, is o, (wg) = 0. Using this, we first obtain a word w;, from
wo by replacing every occurrence of the letter a (resp. a~') by a; (resp. a;!), where i is
the sum of the exponents of the bs appearing before that occurrence in wy. In our
example, the reader may verify that we obtain the word

r —1—1p —1p-1
wy = apbaib™ ay ba; b

We now remove from wj, all occurrences of our exponent-sum zero letter b, leaving us
with the word

w| = aoalaglal_l.

!SRemarkably, the word problem for two-relator groups remains an open problem; this is Problem 9.26 of
the Kourovka Notebook (Khukhro and Mazurov 2018).
1The hierarchy was originally not studied through HNN-extensions, a notion introduced in and named
after the authors of Higman et al. (1949), but they are present in Moldavanskii (1967), and the formulation
of the hierarchy through such extensions is very elegant.
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The set of generators A; is now just the set of letters a; which appear in this word,
which in this case is 41 = {ao, a1}, and we find

G = (a0, a1 |aparay'ay' = 1) = (ao, a1 | [a, ar] = 1).

Thus G is isomorphic to the free abelian group Z°. For ease of notation, we make a
change of generating set, and write G| = (¢, d | cdc='d~! = 1). We now repeat the
same process — this time using, say, the letter d, which has exponent sum zero in
cdc'd~' — and obtain the group

Gy = (co, c1 | oyt = 1)

as the reader may verify. Using a Tietze transformation, we find that this group is iso-
morphic to the free group on one generator, i.e. the infinite cyclic group Z, completing
the procedure.

Of course, in a general one-relator group (A4 | w = 1), there may not be any letter
a € A such that the exponent sum o,(w) is 0. In this case, one may without much dif-
ficulty modify the defining relation slightly, by the introduction of a new generator, in
a way which simultaneously ensures the group-theoretic properties are virtually
unchanged as well as ensures that the new defining relation contains a generator
with exponent sum 0. Furthermore, we can generalise the above from two generators
to arbitrarily many in the obvious way, i.e. by choosing a single generator with expo-
nent sum zero, and re-indexing the other generators as above. Hence, this allows the
above procedure to apply to all one-relator groups. For a full and rigorous treatment
of the hierarchy (with more examples), we refer the reader to the excellent exposition
found in McCool and Schupp (1973).

One key player who entered the world of one-relator groups around 1960, and
made extensive use of the Magnus-Moldavanskii hierarchy, was Gilbert Baumslag
(1933-2014), a student of B H Neumann’s. His work proved invaluable to developing
the field into its modern form, and we will now focus on one central aspect of this
development. There is a natural split of the theory of one-relator groups into
two areas of study: the torsion and torsion-free case. A group has torsion if it has
non-trivial elements of finite order, and is torsion-free otherwise. In 1960, a simple
combinatorial characterisation on the defining relation of a given one-relator group
was found, which determines whether the group has torsion or not: a one-relator
group (4 |w = 1) has torsion if and only if w =" for some word r and n> 1, and
any element of finite order is conjugate to some power of r (Karrass et al. 1960). In
other words, the only torsion is the obvious one. At this point in time, the general
consensus was that the torsion case seemed significantly more well-behaved and
easier to study than its torsion-free counterpart. This prompted Baumslag to pose
a series of conjectures regarding one-relator groups with torsion.

Conjecture 4.1 Baumslag’s Conjectures Let G = (4 |w" = 1) be a finitely generated
one-relator group with torsion. Then

(1) G is residually finite (Baumslag 1964);
(2) G is virtually free-by-cyclic (Baumslag 1967);
(3) G is coherent (Baumslag 1974).
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Here, a residually finite group is one in which the intersection of all subgroups of
finite index is trivial; a virtually free-by-cyclic group is one with a finite index subgroup
which is an extension of a free group by a cyclic group; and a coherent group is one in
which every finitely generated subgroup is finitely presented. All of these notions are
rather specialised, and will not be expanded upon further in the course of this article.
However, it bears mentioning that all such properties are very strong; for example,
none of the properties hold for two-relator groups, in general, and there exist non-resi-
dually finite and not virtually free-by-cyclic torsion-free one-relator groups. One of
the major reasons that such strong conjectures can be made in the torsion case is
directly because of the B B Newman Spelling Theorem. As we shall see, it is in fact
one of the foundational results behind the recent affirmative resolutions to the first
and the third of the three above conjectures.

5. The B B Newman spelling theorem

With a sufficient apercu of some of the relevant theory of one-relator groups provided,
it is now possible to present the namesake of this article: a spelling theorem, much like
Dehn’s spelling theorem for surface groups.

Theorem 5.1 The B B Newman Spelling Theorem, 1968 Let G = (A|R" = 1) be a
one-relator group with torsion such that R is cyclically reduced and not a proper
power. Let w be a non-trivial reduced word representing the identity element of G.
Then w contains a subword u such that either u or u=" is a subword of R", and such
that the length of u is strictly more than % times the length of R".

The reader who recalls the formal statement of Dehn’s spelling theorem for surface
groups will pleasantly note many similarities. The theorem first made an appearance
in a 1968 bulletin article (Newman 1968a, 1968b),'” but can be found in almost any
context in which one-relator groups are discussed. In particular, a very accessible
proof of the theorem can be found in either of Lyndon and Schupp (1977)
or McCool and Schupp (1973), and this proof takes full advantage of the Magnus-
Moldavanskii hierarchy. We give an idea of the proof.

The proof, as with most proofs of theorems about one-relator groups, is by induc-
tion on the length of the relator word. One may first observe some base cases. If
G = (A|R"=1) only has a single generator, then G = (a|a" = 1) is a finite cyclic
group. A non-trivial word &' (i € Z \ {0}) in the free group on the single generator
a is equal to the identity element of G if and only if i = 0 n. Thus, any such word o’
contains either ¢" or a=" as a subword, and the statement of the theorem is quickly
checked to hold. If instead G = (4| R" = 1) has more than a single generator, and
at least two generators appear in R, then one may apply the Magnus-Moldavanskii
procedure illustrated earlier. At each step of shortening the relation, one must now
ensure that one maintains control over words equal to the identity; originally, this
was done via a clever shifting of the subscripts of the new generators obtained at
each stage of the hierarchy, at which point the inductive hypothesis may be applied.

"The Spelling Theorem is written in a slightly different form in the bulletin article and Newman’s thesis. In
that form, the theorem instead gives similar information as above about the spelling of non-trivial words
equal to each other.
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The original proof in Newman (1968b) is not long, taking up six typewritten pages,
and the main issue to be resolved are the many different cases of potential exponent
sums; the proof given in Lyndon and Schupp (1977) is very similar.

There are many important consequences of the Spelling Theorem. The first is
that it allows for Dehn’s algorithm to be used to solve the word problem for one-
relator groups with torsion, just as it was used to solve the word problem for
surface groups. In view of Magnus’ 1932 solution of the word problem for all
one-relator groups, this consequence is perhaps not particularly exciting.'® A stronger
consequence, already observed in Newman (1968a, 1968b), is that the conjugacy
problem, one of Dehn’s three original problems, is decidable for one-relator groups
with torsion. Furthermore, (Pride 1977) relies heavily on the Spelling Theorem in
his celebrated article showing that the isomorphism problem is solvable for two-gen-
erated one-relator groups with torsion, and therein presents an entirely combinatorial
argument of this fact, free of geometry. The well-behaved combinatorial nature of
the setting has made the theorem straightforward to generalise to much broader
geometric situations (Howie and Pride 1984).

The Spelling Theorem can also be directly applied to prove that one-relator groups
with torsion are hyperbolic, a property introduced by Gromov (1987), and the conju-
gacy problem is decidable for any hyperbolic group. This hyperbolicity plays a crucial
role in Wise’s (2009) highly geometric resolution of Baumslag’s conjecture on the
residual finiteness of one-relator groups with torsion, where it is shown that any
such group admits a quasiconvex hierarchy; in combination with hyperbolicity, this
is sufficient to guarantee virtual specialness, a property more than sufficient for
residual finiteness. The interested reader may consult (Wise 2012) for a full exposition
of the first resolution. The hyperbolicity plays a similar role in the recent proof due to
Louder and Wilton (2018) (and, independently, Wise (2018))'? that all one-relator
groups with torsion are coherent, thus also resolving the third of Baumslag’s
conjectures. It is therefore clear that the Spelling Theorem was an important part
of resolving both the first and the third of Baumslag’s three conjectures in the
affirmative. Baumslag’s second conjecture remains open.

Hence, serving as a stepping stone from combinatorial to geometric methods, as
well as an important tool for one-relator groups in distinguishing the torsion case
from the torsion-free, it is clear that the Spelling Theorem remains one of the most
important results proved in combinatorial group theory to date, and continues to
play a key and active réle in modern research on the topic.
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