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To cause disease, many fungal pathogens develop specialised structures to rupture the tough

outer layers of their plant or animal hosts. These infection cells, called appressoria, have been

extensively studied in many fungal species [1]. However, once inside host tissue, pathogens

must also invade new cells and traverse host cell junctions. How they do this has received

much less attention, but recent evidence from the rice blast fungus suggests that cell invasion

within a host plant may also require the development of a specialised infection structure. Here,

we compare the developmental biology of invasive growth during different stages of plant

infection by the rice blast fungus. We identify the remarkable parallels between the biology of

appressorium development and cell-to-cell movement. Finally, we evaluate evidence suggest-

ing that a specialised infection cell—the transpressorium—is necessary for invasive growth.

How does the rice blast fungus puncture an intact leaf?

Rice blast disease is one of the world’s most important crop diseases, each year destroying

enough rice to feed 60 million people [2]. Given that rice is the staple food for almost 3.7 bil-

lion of the world’s population—many of them in low-income countries—blast disease repre-

sents a clear and present danger to global food security. The blast fungus Magnaporthe oryzae
can, however, infect more than 50 different grass species, including other major cereals such as

barley, oats, finger millet, and wheat. Significant outbreaks of wheat blast have occurred in

Brazil, Bangladesh [3,4], and, most recently, in Zambia [5]—now threatening wheat produc-

tion on 3 continents. Understanding the biology of blast diseases is therefore important if new

disease control strategies are to be developed.

To gain entry to a plant, M. oryzae uses a dome-shaped, melanin-pigmented appressorium

[1]. A conidium germinates on the leaf surface to form a polarised germ tube, which differenti-

ates into an appressorium within 4 to 6 hours. There are 3 important prerequisites for appres-

sorium morphogenesis. First of all, a hard hydrophobic surface [6] must be recognised by

M. oryzae, which requires the Pmk1 mAU : PleasenotethatMAPhasbeendefinedasmitogen � activatedproteininthesentenceFirstofall; ahardhydrophobicsurface½6�mustbe::::Pleasecheckandcorrectifnecessary:itogen-activated protein kinase (MAU : PleasenotethattheabbreviationMAPKhasbeenintroducedformitogen � activatedproteinkinaseinthesentenceFirstofall; ahardhydrophobicsurface½6�mustbe::::Pleasecheckandcorrectifnecessary:APK) signalling

pathway. Upstream sensory proteins trigger a phosphorylation cascade that involves Mst11

(mitogen-activated protein kinase kinase kinase, MAU : PleasenotethatMAPKKKhasbeendefinedasmitogen � activatedproteinkinasekinasekinaseinthesentenceUpstreamsensoryproteinstriggera::::Pleasecheckandcorrectifnecessary:APKKK), Mst7 (mitogen-activated protein

kinase kinase, MAU : PleasenotethatMAPKKhasbeendefinedasmitogen � activatedproteinkinasekinaseinthesentenceUpstreamsensoryproteinstriggera::::Pleasecheckandcorrectifnecessary:APKK), and Pmk1 (MAPK). In the absence of Pmk1, the fungus is unable to

form an appressorium, and, therefore, incapable of causing disease [7]. The second prerequi-

site is that the germinating cell of the 3-celled conidium must undergo mitosis. An S phase

checkpoint is necessary for the initiation of appressorium development, and the nucleus must

then pass through G2-M to enable appressorium maturation to progress [8]. Finally, the
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3-celled conidium undergoes autophagy and an iron-dependent programmed cell death pro-

cess, called ferroptosis, before its contents are trafficked to the appressorium [9,10]. If this pro-

cess is impaired by mutation of genes required for autophagy, then the fungus is unable to

cause disease because appressoria cannot repolarise. TAU : PleasecheckwhethertheeditstothesentenceTheinitiationofautophagyrequires:::arecorrect; andprovidecorrectwordingifnecessary:he initiation of autophagy requires both

Pmk1 and cell cycle progression, but is also linked to starvation stress and a target of rapamy-

cin (TAU : PleasenotethatTORhasbeendefinedastargetofrapamycininthesentenceTheinitiationofautophagyrequires::::Pleasecheckandcorrectifnecessary:OR) kinase–dependent metabolic checkpoint [11], because appressoria only develop in

the absence of exogenous nutrients.

How does the appressorium function?

Once formed, the appressorium adheres tightly to the leaf cuticle and develops enormous tur-

gor of up to 8.0 MPa (approximately 80 atmospheres of pressure). This huge pressure is gener-

ated by accumulating high concentrations of glycerol and other polyols [12,13], which draw

water into the cell by osmosis. The appressorium has a differentiated cell wall rich in melanin,

which reduces cell wall porosity, thereby preventing exodus of polyols but allowing water

entry to continue. Melanisation of the appressorium is essential for turgor generation, and

mutants that cannot synthesise dihydroxynaphthalene melanin are unable to cause blast dis-

ease [14]. Turgor is applied at the base of the appressorium as mechanical force, enabling a

narrow, rigid penetration hypha to rupture the rice leaf cuticle [13]. This requires cytoskeletal

reorientation, followed by rapid actin polymerisation [15–17]. Filamentous actin forms a

toroidal network around the appressorium pore, a region at the base of the appressorium lack-

ing melanin, which marks the points from which the penetration peg emerges [15,18]. Septin

guanosine triphosphatases (GAU : PleasenotethatGTPaseshasbeendefinedasguanosinetriphosphatasesinthesentenceSeptinguanosinetriphosphatasesðGTPasesÞarenecessary::::Pleasecheckandcorrectifnecessary:TPases) are necessary for actin remodelling, forming a ring

structure around the appressorium pore, which provides cortical rigidity and acts as a lateral

diffusion barrier. This facilitates the organisation of polarity determinants and proteins

involved in membrane deformation and exocytosis [15,17]. In the absence of any of the 4 core

septins that form the hetero-oligomeric septin ring at the appressorium pore, the cell is unable

to repolarise and puncture the leaf cuticle. Penetration peg emergence therefore involves a

switch from isotropic to polarised, anisotropic growth at the appressorium pore [19]. It is also

clear that these changes in cytoskeletal conformation only occur once a critical threshold of

appressorium turgor has been achieved [20]. A turgor-sensing histidine-aspartate kinase, Sln1,

is necessary for sensing when maximal turgor has been reached, modulating further pressure

generation. Mutants lacking the Sln1 kinase generate excess appressorial turgor, but cannot

repolarise and are thus unable to apply the pressure generated as protrusive force [20]. Sln1 is

necessary to down-regulate both glycerol synthesis, likely regulated by the cAMP-dependent

protein kinase A pathway, and melanisation. As a consequence, sln1 mutants form hypermela-

nised nonfunctional appressoria [20]. In addition, a pressure-dependent cell cycle S phase

checkpoint in the appressorium is essential for septin-dependent repolarisation [21].

How is rice tissue colonised by the blast fungus?

Once inside a plant cell, the penetration hypha differentiates into bulbous, branched hyphae

that rapidly fill the interior of the cell. These invasive hyphae grow by budding, and the fungus

undergoes significant changes in primary metabolism [22] during initial cell colonisation.

Soon after its entry into a plant cell, a plant membrane–rich cap is also observed at the tip of

the penetration peg. The fungus buds at this point and differentiates into an invasive hypha,

but the membrane-rich structure remains and is known as the biotrophic interfacial complex

(BIC) [23,24]. The BIC might originate as a focal plant defence reaction, but an increasing

body of evidence suggests that M. oryzae utilises this structure to deliver effector proteins into

plant cells. Effectors are secreted pathogen proteins necessary for suppression of plant immune
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responses. Secretion of effectors into the cytoplasm involves a distinct secretory pathway to

conventional hyphal tip–mediated secretion of extracellular effectors [24]. Only once the fun-

gus has fully occupied the initial epidermal cell does it invade adjacent cells, normally in a

highly synchronous manner, spreading from cell to cell and rapidly occupying host tissue

(Fig 1).

What is a transpressorium?

How fungal pathogens spread from cell to cell in host tissue is largely unstudied in either plant

or animal pathogenic fungi. In M. oryzae, severe hyphal constrictions were observed during

invasive growth and appeared to correlate with pit fields where plasmodesmata accumulate

[23]. Plasmodesmata are cytoplasmic conduits that link together plant cells [25]. Live-cell

imaging of cell-to-cell movement by M. oryzae has shown that invasive hyphae become swol-

len (approximately 5.0 μm in diameter) at rice cell junctions and then undergo severe hyphal

constriction to a diameter of 0.6 to 0.8 μm (measured by electron microscopy) [26]. This is

very similar to the process that occurs when an appressorium forms a penetration peg, with

both structures having a similar diameter when visualised by light microscopy (0.8 to 0.9 μm),

as shown in Fig 2. Hyphal constriction is accompanied by actomyosin ring formation at the

cell junctions. Interestingly, it has been reported that the Pmk1 MAPK cascade, which regu-

lates appressorium morphogenesis, is also necessary for hyphal constriction and cell-to-cell

invasion in a septin-dependent mechanism [26]. Using a conditional analogue–sensitive

mutant of Pmk1, it was shown that the inhibition of the Pmk1 MAPK with the ATP analogue

Napthyl-PP1 prevents M. oryzae from moving between rice cells [26]. This suggests that the

Pmk1 pathway is involved in the morphogenetic switch of bulbous hyphae into narrow infec-

tion pegs that traverse rice cells. Interestingly, Pmk1 also regulates the expression of a subset of

fungal effector genes that may be required for suppression of plasmodesmatal immunity. Dur-

ing initial infection, plasmodesmatal conductance is maintained to enable effectors to move

Fig 1. Infection structures of the rice blast fungus: The appressorium and transpressorium. A schematic figure

describing the characteristics and developmental biology of appressoria and transpressoria—specialised infection

structures formed by Magnaporthe oryzae to penetrate the host cuticle and traverse cell junctions, respectively. MAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1and2:Pleaseverifythatallentriesarecorrect:AP,

mitogen-activated protein.

https://doi.org/10.1371/journal.ppat.1009779.g001
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into adjacent unoccupied plant cells, which may involve manipulation of plasmodesmata by

fungal effectors to prevent their closure. However, it is also clear that even when plant immune

responses are suppressed or host tissue is killed, the fungus still needs to undergo pit field loca-

tion and hyphal constriction in order to traverse cell junctions [26].

Appressorium development and cell-to-cell movement therefore appear to be morphoge-

netically related processes. Both involve isotropic expansion of a swollen germ tube or a hyphal

tip, followed by the generation of a much narrower infection peg, to rupture either the cuticle

or plant cell wall at pit fields. This similarity has been noted previously by careful observers of

plant–fungal interactions, who coined the term “transpressorium” to describe in planta infec-

tion structures formed by fungi to move between host cells. Liese and Schmid were the first to

describe transpressoria when they studied Ceratocystis sp. infection of Pinus strobus [27,28].

They reported how swollen structures underwent severe constriction to form hyphae of much

smaller diameter involved in the penetration of the cell wall of neighbouring cells [27]. Once

the transpressorium peg reached the lumen of the adjacent cell, it then expanded to the normal

diameter of an invasive hypha [27]. Liese suggested that the transpressorium penetrates the

cell wall using a combination of localised enzymatic activity and mechanical pressure [29].

Appressoria and transpressoria therefore fulfil a very similar function, enabling traversal of a

physical obstacle [27,30]. Although these findings were reported more than 55 years ago, there

have not been further reports of transpressorium morphogenesis. Recent observations in M.

oryzae of its Pmk1-dependent, septin-mediated cell-to-cell movement mechanisms, however,

Fig 2. Cell-to-cell movement during the rice blast infection. Live-cell imaging of Magnaporthe oryzae strain expressing gelsolin–GFP during rice infection. (A, B)

Three-dimensional projection micrographs showing the appressorium entry site into rice leaf sheath. The arrow indicates the penetration peg, which subsequently

differentiates into a primary invasive hypha at 24 hpi. (C) Three-dimensional rendering of the base of the M. oryzae appressorium with a penetration peg (arrowed)

and primary invasive hypha within an epidermal rice cell. (D, E) Three-dimensional projection micrographs to show the specialised transpressorium required for cell-

to-cell invasion by M. oryzae. The cyan colour indicates the constriction site when the fungus passes through a plasmodesmata-rich pit field. (AU : PleasenotethatðEÞEnlargedimageofthetranspressoriumcrossingpointhasbeenchangedtoðFÞEnlargedimageofthetranspressoriumcrossingpointinFig2caption:Pleasecheckandcorrectifnecessary:F) Enlarged image of the

transpressorium crossing point. The dotted line indicates the region selected for measurement of the diameter of the hyphal constriction point. (AU : PleasenotethatðFÞPlotshowingthemeandiameteroftheAppandTranshasbeenchangedtoðGÞPlotshowingthemeandiameteroftheAppandTransinFig2caption:Pleasecheckandcorrectifnecessary:G) Plot showing the

mean diameter of the App and Trans. Data were collected from 3 different rice seedling infections (n = 8 pegs measured in each experiment), with data points colour

coded for each biological replication of the experiment. App, appressorium penetration peg; Trans, transpressorium penetration peg.

https://doi.org/10.1371/journal.ppat.1009779.g002
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are completely consistent with the experiments of Liese and Schmid [27] and thoughtful

reviewers of appressorium biology [28].

Transpressorium-like structures have also been reported in other filamentous fungi. Hyphal

morphogenetic reprogramming into specialised structures has been largely studied in model

fungal species, such as Neurospora crassa and Aspergillus nidulans [31]. Recent studies in

Podospora anserina have, for example, shown that narrow hyphae are developed during fungal

growth in order to breach cellulosic substrates such as cellophane [32]. Additionally, recent

elegant studies of hyphal morphological adaptation to occupy extremely narrow channels sug-

gest that a trade-off may exist between plasticity and velocity in hyphal growth [33]. These

observations provide evidence that generation of specialised hyphae-derived structure for

invasive growth may be a conserved mechanism in filamentous fungi. Elucidating the com-

mon morphological components of transpressorium and transpressorium-like invasive

hyphae will be an exciting future challenge.

What are the parallels between appressoria and transpressoria?

Many common features are shared between appressoria and transpressoria. First, their devel-

opment involves departure from polarised growth and formation of an isotropically expanded

hyphal/germ tube tip. Both types of infection cell also form following recognition of physical

cues of the surfaces they encounter [34]. A symmetry breaking process then occurs, whereby a

polarised infection peg is formed to rupture the host cell wall, either at the leaf surface or at pit

fields between host cells. Finally, after passing through the structural barrier, the emerging

infection hypha is surrounded by the invaginated plant plasma membrane. This occurs not

only upon initial infection, but also, remarkably, every time the fungus enters a new host cell

[26]. A separate extra-invasive hyphal membrane compartment is always formed as well as a

BIC [23,26]. These morphogenetic processes during both appressorium and transpressorium

development require the Pmk1 MAPK—acting downstream of the thigmotropic perception of

the cell/cuticle surface—which regulates septin-dependent cytoskeletal remodelling.

What do we not understand about invasive growth by the blast fungus?

The obvious parallels between appressorium and transpressorium development raise many

questions. What are the thigmotropic signals, for example, perceived by hyphal tips, which

lead to appressorium and transpressorium morphogenesis, and which sensory proteins are

necessary for their perception? While some putative sensors have been identified for appresso-

rium development [35,36], this process is far from well understood. Does perception of these

surface cues lead to membrane curvature generation in the fungus, acting as a signal for septin

aggregation during development of infection cells [37,38]? This might, for example, explain

how pit fields are recognised as indentations in the cell wall surface. Is there a cell cycle depen-

dency for transpressorium development, as there is for appressorium formation? Mitosis

occurs at cell junctions [39], but is this a prerequisite for transpressorium formation, and, if so,

does a similar S phase checkpoint mechanism act at this time [21]? Is there a quorum sensing

or nutritional dependency for transpressorium development? Invasive hyphae appear to fill

epidermal cells completely before invasion of neighbouring cells, suggesting that such a signal

might exist, while it is also clear that transpressorium function and biotrophic growth may be

linked to metabolic control and TOR kinase regulation [40]. Finally, and perhaps most intrigu-

ing of all, does transpressorium function require pressure generation and application of

mechanical force in the same way as an appressorium, and, if so, are transpressoria ever mela-

nised? Or, alternatively, does cell wall crossing occur exclusively via enzymatic activity?
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We have much to learn about the mechanisms of invasive growth by pathogenic fungi, but

the role of the transpressorium—which has hitherto been largely unrecognised—may prove to

be as significant to fungal pathogenesis as that of the appressorium.
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