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H I G H L I G H T S

� The upregulation of glycolysis in tumors is common even when oxygen is not limiting.
� The adaptive value of this “Warburg effect” is unclear.
� Glycolysis is costly for a cell but the ensuing acidity is beneficial for the tumor.
� A collective action problem among cancer cells arises.
� Game theory shows that the acidity induced by glycolysis can explain the Warburg effect.
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a b s t r a c t

The upregulation of glycolysis in cancer cells (the “Warburg effect”) is common and has implications for
prognosis and treatment. As it is energetically inefficient under adequate oxygen supply, its adaptive
value for a tumor remains unclear. It has been suggested that the acidity produced by glycolysis is
beneficial for cancer cells because it promotes proliferation against normal cells. Current models of this
acid-mediated tumor invasion hypothesis, however, do not account for increased glycolysis under non-
limiting oxygen concentrations and therefore do not fully explain the Warburg effect. Here I show that
the Warburg effect can be explained as a form of cooperation among cancer cells, in which the products
of glycolysis act as a public good, even when oxygen supply is high enough to make glycolysis
energetically inefficient. A multiplayer game with non-linear, non-monotonic payoff functions that
models the benefits of the acidity induced by glycolysis reveals that clonal selection can stabilize
glycolysis even when energetically costly, that is, under non-limiting oxygen concentration. Characterizing
the evolutionary dynamics of glycolysis reveals cases in which anti-cancer therapies that rely on the
modification of acidity can be effective.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The Warburg effect

The upregulation of glycolysis (the conversion of glucose to
pyruvate, with consequent production of ATP, which does not require
oxygen) by cancer cells, first reported byWarburg (1930), is a common
feature of tumors and may seem an adaptation to hypoxia, which
often occurs as a consequence of the fact that oxygen concentration
decreases with distance from a capillary (Krogh, 1919, Thomlinson &
Gray 1995, Dewhirst et al., 1994; Helmlinger et al., 1997). Tumors,
however, consistently rely on glycolysis even in the presence
of abundant oxygen (Beckner et al., 2005; Griguer et al., 2005;

Kelloff et al., 2005; Rajendran et al., 2003). Since the anaerobic
metabolism of glucose to lactic acid is substantially less efficient than
oxidation to CO2 and H2O, tumor cells must increase glucose flux in
order to maintain sufficient ATP production. This is the basis of the
detection of glycolysis with Fluoro-deoxy-D-Glucose Positron Emission
Tomography (FdG PET) (Pauwels et al., 2000; Gambhir, 2002). It is
now so clear that the Warburg effect occurs even under non-limiting
oxygen conditions, that FdG PET is commonly used for diagnosis and
for monitoring treatment.

Why do cancer cells upregulate glycolysis? Although some
organisms use glycolysis preferentially during periods of sustained
growth (because the byproducts are useful as building blocks in
the anabolic process), glycolysis is highly inefficient when oxygen
is not a limiting factor because the anaerobic metabolism of
glucose to lactic acid produces fewer ATP molecules per molecule
of glucose than oxidation to CO2 and H2O, and therefore leads to
slower proliferation. Since cancer progression is a process of clonal
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selection (Cairns, 1975; Nowell, 1976; Crespi and Summers, 2005;
Merlo et al., 2006; Greaves and Maley, 2012), upregulation of
glycolysis must confer a selective advantage to a cell to compen-
sate for its slower proliferation. If it is not simply an adaptation to
hypoxia, what is the adaptive value of the Warburg effect for
cancer cells?

Besides its relevance to our basic understanding of cancer
biology and the diagnostic and monitoring applications mentioned
above, the Warburg effect has implications for treatment, as
hypoxic tumors are often more invasive and metastatic than those
with normal oxygen levels (Kunkel et al., 2003; Mochiki et al.,
2004, Postovit et al., 2002, 2004; He et al., 2004; Buchler et al.,
2003; but see also Krtolica and Ludlow, 1996), and treatments like
anti-angiogenic drugs that aim at impairing the provision of
oxygen to the tumor may fail if tumors can switch to glycolysis
(Bergers and Hanahan, 2008).

1.2. The acid-mediated tumor invasion hypothesis

In a series of papers, Gatenby and others (e.g.: Gatenby and
Gawlinski, 1996, 2003; Gatenby and Gillies, 2004, 2007) have
suggested that the Warburg effect is a way for the tumor to
increase its proliferation rate against normal cells, due to the fact
that glycolysis induces microenvironmental acidification
(Schornack and Gillies, 2003; Griffiths et al., 2001; Bhujwalla
et al., 2002). An acidic microenvironment is known to confer an
advantage to tumor cells by promoting the death of normal cells
(Rubin, 1971; Dairkee et al., 1995; Casciari et al., 1992), since
normal cells lack a mechanism to adapt to extracellular acidosis
(such as mutations in p53 or other components of the apoptotic
pathway, over-expression of NHE and autophagy (Park et al., 1999;
Williams et al., 1999; Wojtkowiak et al., 2012)). Furthermore,
acidity increases extra-cellular matrix degradation by proteolytic
enzymes such as cathepsin B (Rohzin et al., 1994), which facilitates
tumor invasiveness, it stimulates the release of vascular endothe-
lial growth factor and interleukin 8 (Shi et al., 2001), which
promote neo-angiogenesis, and inhibits immune function
(Lardner, 2001).

In short, the hypothesis is that, even though glycolysis leads to
slower proliferation for an individual cell, the consequent benefits
for the tumor as a whole due to the acidification of the extra-
cellular space (which results in toxicity for normal cells, promotes
neo-angiogenesis and inhibits immune reaction) confers an overall
proliferative advantage to the tumor. The hypothesis, if correct, has
significant implications for cancer therapy, as manipulation of
acidity could lead to anti-cancer effects.

Models of this acid-mediated tumor invasion hypothesis
(Gatenby and Gawlinski, 1996; Patel et al., 2001; Smallbone et al.
2005, 2007; Basanta et al., 2008, 2011; Silva et al., 2010) show that
cells with increased glycolysis will also evolve resistance to acid-
induced toxicity, which can lead indeed to a significant prolifera-
tive advantage for the tumor. These models, however, make a
crucial assumption: that resistance can only arise in cells with
glycolysis (e.g.: Basanta et al., 2008) or that, even if resistance is
not limited to hyperglycolytic cells, mutations are irreversible
(e.g.: Smallbone et al., 2007; Silva et al., 2010), not allowing
therefore resistant non-glycolytic cells to arise from resistant
glycolytic cells. The problem that these models leave unsolved is
that, by not allowing resistance to evolve in cells with aerobic
metabolism or by assuming that resistant hyperglycolytic cells
cannot mutate back to aerobic metabolism, they leave unexplained
the very problem that the acid-mediated tumor invasion hypoth-
esis wanted to address in the first place: why is higher glycolysis
also observed under normal oxygen concentrations? In other
words: what prevents a cell that forego glycolysis to invade a
population?

If resistance to acidity arises in cancer cells with aerobic
metabolism as well (and there is no compelling reason to assume
otherwise), or if resistant cells can mutate back and abandon
glycolysis (which is also reasonable), these cells would have more
efficient metabolism than cancer cells with glycolysis, and could
still exploit the benefit of acidity (against normal cells) induced by
other cancer cells with glycolysis. Clonal selection occurs not just
between cancer cells versus normal cells, but also between cancer
cells with aerobic metabolism versus cancer cells with anaerobic
metabolism. What maintains glycolysis (given its private cost)
among cancer cells, if the hypothesized (public) benefit (acidity)
accrues to all cancer cells, including those that forego glycolysis to
revert to aerobic metabolism?

1.3. Glycolysis as a public goods game

The problem can be understood more easily in game-theoretic
terms. Glycolysis is a private benefit under low oxygen concentra-
tions (because it allows a cell to survive), whereas under non-
limiting oxygen concentrations it is a private cost (due to the
consequent inefficient metabolism); glycolysis also produces a
public good (for the cancer cells): the associated acidity (against
the normal cells). The benefit of acidity accrues to all tumor cells,
irrespective of whether they have aerobic or anaerobic metabo-
lism. Cells that do not pay the cost of an inefficient metabolism
could free-ride on the acidity induced by neighboring tumor cells,
thereby exploiting its benefit without paying the cost. In short,
glycolysis can be considered a cooperative phenotype, and reverting
to aerobic metabolism can be considered free-riding. This raises a
classical collective action problem: why, under normal oxygen
conditions, do not cells resistant to acidity forego glycolysis and
revert to the more efficient aerobic metabolism, free-riding on the
benefits of acidosis produced by the other cells' glycolysis? Current
models of the acid-mediated tumor invasion hypothesis do not
address this problem because they assume that resistance can only
arise in cells with increased glycolysis or that resistant hyperglyco-
lytic cells cannot forego glycolysis. Allowing resistant cells to revert
to aerobic metabolism would make make glycolysis inefficient, and
the hypothesis would fail.

The problem can be analyzed using evolutionary game theory.
There are, a number of differences between the scenario of the
Warburg effect and previous game theory models, which make
such analysis non trivial. First, as already observed, previous game
theory models of cancer progression related to the problem of
glycolysis (Basanta et al., 2008, 2011) only allow the evolution of
resistance in the glycolytic type. Moreover, these models assume
that interactions occur between pairs of cells. In the case of
glycolysis-induced acidosis, however, as acidification depends on
the diffusion of the metabolic products of glycolysis, such as lactic
acid and hydrogen ions (Hþ), in the extracellular space (Schornack
and Gillies, 2003; Griffiths et al., 2001; Bhujwalla et al., 2002),
a cell's fitness depends on the collective interactions with neigh-
boring cells, rather than on the payoff of multiple pairwise
encounters with individual cells. In other words, because the
products of glycolysis act as diffusible public goods, glycolysis
should be modeled as a public goods game, rather than as a game
with pairwise interactions; games with pairwise interactions, even
when multiple interactions are allowed, do not generally have the
same results as multi-player, collective action (public goods)
games. An important difference is that, while in two-player non-
linear games the maximum benefit for the population is achieved
when all players cooperate, in multi-player games the best out-
come for the population is achieved at intermediate frequencies of
cooperators (Archetti and Scheuring, 2012). This, as we will see,
has important implications for the dynamics of potential therapies
based on the modification of acidosis.
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Second, even if we resort to public goods games to model the
Warburg effect, there are differences between the benefit function
of public goods games generally assumed in evolutionary game
theory and the benefit function we must assume for cancer cells
with glycolysis, which makes the analysis more complex. While
evolutionary models have generally assumed a linear or a step
benefit function (Archetti, 2009a,b), or synergistic and saturating
benefits (Motro, 1991; Hauert et al., 2006), games with more
complex non-linear benefits, such as the benefits likely to arise in
the case of glycolysis, cannot be solved using current standard
methods. As a result, while we have some intuition of the results
for sigmoid benefits (Archetti and Scheuring, 2011, 2012) a full
analytical account of the problem of non-linear public goods has
been so far beyond the reach of evolutionary game theory (but see
Archetti, 2013). To complicate matters further, excessive acidity
leads to self-poisoning, and is hence deleterious even for tumor
cells (Thomlinson and Gray, 1955; Holash et al., 1999). The benefit
function that must be modeled is, therefore, not only non-linear,
but also non-monotonic, which complicates the analysis even
more.

Here I use a new approach to non-linear public goods games
(based on the properties of Bernstein polynomials [used also in the
analysis of the dynamics of growth factor production: Archetti,
2013]) to characterize the dynamics and find the equilibria of a
multi-player, public goods game with non-linear, non-monotonic
benefits that models the scenario of the Warburg effect. This
enables us to model the collective benefit arising from glycolysis
assuming (unlike previous models) that resistance can evolve in
cells with aerobic metabolism, or that resistant cells can forego
glycolysis, and that oxygen is not limiting. We will show that, even
in these cases, glycolysis can evolve in cancer populations because
of the acid-mediated tumor invasion effect, thereby explaining the
Warburg effect under general circumstances, and revealing further
details of the dynamics of the system that can be useful in
planning adaptive therapies.

2. Model and results

2.1. The game

Cells with glycolytic metabolism can be considered cooperators
(C) because they pay a cost c40, due to their inefficient metabo-
lism, leading to slower cell proliferation; the resulting benefit (due
to the products of glycolysis that induce environmental acidity;
against normal cells) accrues to all cancer cells, including those
without glycolysis (defectors, D) that do not pay the cost of an
inefficient metabolism. This benefit b(j) is a non-linear function of
the number j of C cells in the group; a cell's group is defined by the
diffusion range of the products of the glycolysis of the surrounding
cells or, more properly, as the range of the benefit resulting from
the acidity induced by these cells. Non-linear benefits are gen-
erally modeled by a sigmoid function, which allows to describe
various types of synergistic effects (Archetti and Scheuring, 2011,
2012; Archetti, 2013); here, however, in order to take into account
the possibility that high levels of glycolysis are detrimental to
tumor cells (self-poisoning) we must use a double sigmoid func-
tion

bð jÞ ¼
b1ð jÞ jodUn

b2ð jÞ jZdUn

(
ð1Þ

where

b1ðjÞ ¼ ½l1ðjÞ� l1ð0Þ�=½l1ðdUnÞ� l1ð0Þ� ð2aÞ

b2ðjÞ ¼ 1�½l2ðj; yÞ� l2ðdUn; yÞ�=½l2ðn;1Þ� l2ðdUn;1Þ� ð2bÞ

are the normalized versions of the logistic functions

l1ðjÞ ¼
1

1þes1 U ðh1 �ððj=nÞ=dÞÞ ð3aÞ

l2ðj; yÞ ¼
y

1þes2 U ðh2 �ððj=n�dÞ=ð1�dÞÞÞ ð3bÞ

The parameter d describes the value of j at which the benefits of
acidity are overcome by its deleterious effects; for jodn, the
function is monotonically increasing and has an inflection point at
h1 and steepness s1; for j4dn, the function is monotonically
decreasing and has an inflection point at h2 and steepness s2 (with
0oh1,h2r1 and s1,s240); the additional parameter y measures
the maximum damage of self-poisoning. This function is shown
graphically in Figs. 1d and 2.

In a large population with no assortment, we can approximate
the analysis by assuming an infinite, well-mixed population, and
the fitnesses of C and D cells are given by, respectively

πCðxÞ ¼ ∑
n�1

j ¼ 0

n�1
j

 !
xjð1�xÞn�1� j Ubðjþ1Þ�c ð4aÞ

Fig. 1. Possible types of evolutionary dynamics. The benefit of glycolysis b(j) as a
function of the number (j) of C cells (left; the continuous line is for ease of
visualization) and the corresponding β(x) (right: full line) and Δbj (right: dashed
line). The equilibria are found where β(x)¼c, that is, where the curve intersects the
constant line c (dotted arrow; the arrows show the direction of the change); the
fraction of glycolytic cells increases if β(x)4c and decreases if β(x)oc. Five types of
dynamics are possible, identified by labeled numbered from 1 to 5: only x¼0 is
stable (type 1); both x¼0 and x¼xs(0oxso1) are stable (type 2); only x¼xs is
stable (type 3); both x¼0 and x¼1 are stable (type 4); only x¼1 is stable (type 5).
A–C: no self-poisoning (A: h¼0.2; B: h¼0.5; C: h¼0.8; in all cases d¼1, s¼5); D:
self-poisoning (d¼0.5, s¼10, h¼0.3, y¼2, s2¼10, h2¼0.5); in all cases n¼50.
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πDðxÞ ¼ ∑
n�1

j ¼ 0

n�1
j

 !
xjð1�xÞn�1� j Ubð jÞ ð4bÞ

where 0rxr1 is the fraction of C cells in the population, Since a
C cell pays a cost c that a D cell does not pay, but its group has one
more contributor (itself).

2.2. Dynamics

In a clonal population, the replicator dynamics (Hofbauer and
Sigmund, 1998) of this game is given by

_x¼ xð1�xÞU ½βðxÞ�c� ð5Þ

where the fitness difference πCðxÞ�πDðxÞ is written in the form
βðxÞ�c, and

βðxÞ ¼ ∑
n�1

j ¼ 0

n�1
j

 !
xjð1�xÞn�1� j UΔbj ð6Þ

with Δbj¼b((jþ1)/n)�b(j/n).
This replicator dynamics (5) can be easily shown to have two

trivial rest points x¼0 and x¼1; further possible interior rest
points are found by setting the fitness difference to zero, that is, by
the roots of the equation

βðxÞ�c¼ 0 ð7Þ

Even for the simplest sigmoid function given by the logistic function,
an exact analytical solution for (7) is not possible. Because β(x) is a
polynomial in Bernstein form (Bernstein, 1912; Lorentz, 1953;
Phillips, 2003) of the coefficient Δbj, however, we can resort to the
properties of Bernstein polynomials to characterize the dynamics,
and to Bernstein theorem to find an approximate solution for the
equilibria; a similar approach has been used in the study of growth
factor production (Archetti, 2013). In short, because of the variation-
diminishing property of Bernstein polynomials we known that the
number of internal equilibria of β is less than the number of sign
changes of Δb by an even amount. Moreover, because of the end-
point values property, we know that β(0)¼Δb0 and β(1)¼Δbn�1. The
assumption that the benefit function has the double sigmoid shape
defined by (1) implies that there are at most one maximum and one
minimum in (0,1). This allows to characterize the dynamics of the
system according to the following types (Fig. 2), where βMAX is the
maximum value of β(x).

� If c4βMAX, then β(x)o0 8x, and x¼0 is the only stable
equilibrium and x¼1 is the only unstable equilibrium.

� If Max[Δb0,Δbn�1]ocoβMAX then β(x)40 for xuoxoxs, while
β(x)o0 for xoxu and for x4xs; the interior unstable equili-
brium xu divides the basins of attraction of the two stable
equilibria x¼0 and x¼xs; x¼1 is an unstable equilibrium.

� If Δbn�1ocoΔb0 then β(x)40 for xoxs and β(x)o0 for x4xs;
therefore the unique interior stable equilibrium xs divides the
basin of attraction of the two unstable equilibria x¼1 and x¼0.

� If Δb0ocoΔbn�1 then β(x)40 for x4xu and β(x)o0 for
xoxu; therefore the unique interior unstable equilibrium xu
divides the basin of attraction of the two stable equilibria x¼1
and x¼0.

� If coMin[Δb0,Δbn�1] then β(x)40 8x, and x¼1 is the only
stable equilibrium.

The analysis above holds for any double sigmoid functions (not
limited to the double logistic function). The latter two types are
not possible with self-poisoning (Fig. 1d).

2.3. Equilibria

We can find the equilibria numerically by (7) (Fig. 3). Since by
Bernstein theorem (Bernstein, 1912) β(x) converges uniformly to Δbj
(the forward difference of the benefit function with spacing 1/n) in
[0,1], we can also approximate the solution by setting Δbj to zero. If
we exclude self-poisoning (d¼1) we can find an approximate
analytical solution (see Archetti, 2013) by b′(x)¼cn, since ΔbjE(1/
n)b′(j/n) and since for any x, j/n converges in probability to x; in
this case the internal equilibria are given therefore by (for the
logistic function)

x7 ¼ h1�
s1
n
log

17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4cs1 UB

p
2cs1 UB

�1

" #

Fig. 2. Effect of the type of benefit of glycolysis on the dynamics. Different types of
benefit b(j) as a function of the number (j) of glycolytic cells (left; the continuous
line is for ease of visualization) and the corresponding β(x) for different values of h1
(with d¼0.5, h2¼0.8, n¼100, s1¼10, s2¼10, y¼1), s1 (with d¼0.7, h1¼0.5, h2¼0.8,
n¼100, s2¼5, y¼0.5), h2 (with d¼0.5, h1¼0.5, n¼50, s2¼10, s¼10, y¼0.5), s2
(with d¼0.3, h2¼0.5, h1¼0.3, n¼100, s1¼5, y¼2), y (with d¼0.3, h2¼0.8, h1¼0.3,
n¼50, s2¼10, s1¼10) and d (with h2¼0.5, h1¼0.5, n¼50, s2¼20, s1¼10, y¼1.2).
Equilibria are obtained, as in Fig. 1, by the intersection of the constant line c (not
shown here for clarity) and β(x). Note that, because the cost of glycolysis c is always
positive, y, h2 and s2 (and therefore self-poisoning) have no effect on the position of
the equilibria but only on the speed of the dynamics.
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with xs¼x- for the stable equilibrium and xu¼xþ for the unstable
equilibrium, where B¼ l1(1)� l1(0). As predicted by the analysis of the
dynamics, the glycolytic type can go to extinction under certain
circumstances, but it can also be maintained at equilibrium in
coexistence with the non-glycolytic type (Fig. 3). If self-poisoning
occurs, as noted above, the glycolytic type will not go to fixation.

2.4. Effect of the parameters

The parameters that describe self-poisoning (s2, h2, y) affect
only the speed of change when x4xs, but not the equilibria

(Fig. 2). The type of dynamics depends on how steep the benefit
function is at h1 (that is, on s1), and on the fraction of C cells
necessary before self-poisoning occurs (d); bistability occurs more
often when d and s1 are high (Fig. 3). In all cases, increasing the
cost c reduces the frequency of C types and average fitness at
equilibrium (Fig. 3), which is intuitive. The effect of h1 are less
straightforward: reducing h1 leads to a lower value of the
frequency of C at equilibrium, but this does not necessarily
translate to a lower fitness for the population (Fig. 3), since a
lower amount of C types is necessary to achieve a benefit;
furthermore, very low (or very high) h1 values allow an internal

Fig. 3. Equilibrium frequency of glycolysis and tumor fitness. The frequency of cells (C) with glycolysis (xs) and the average fitness of the tumor at this internal equilibrium xs,
as a function of h1 (the inflection point of the benefit of acidity) and c (the energetic cost of glycolysis), for different values of d (the fraction of cells with glycolysis above
which self-poisoning begins) and s1 (the steepness of the benefit of acidity); the benefit functions b(j) are shown on the right for different values of h1. Enclosed numbers
show parameter spaces corresponding to different types of dynamics (type 2 and 3 – see Fig. 1). Other parameters used: n¼20, s2¼10, h2¼0.8, y¼1.
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equilibrium to exist even for costs (c) that lead to no internal
equilibrium at intermediate values of h1 (Fig. 2).

2.5. Effect of changes in acidity

How does tumor fitness change in response to externally imposed
(not produced by the cancer cells themselves) changes in acidity?
Consider a change in acidity equal to that that would be produced by
a further fraction ζ of C cells (Fig. 4): a negative change (ζo0) clearly
reduces the benefit for the cancer cell population because of lower
acidity; a positive change (ζ40) can reduce tumor fitness if the
change is large enough that it leads to self-poisoning; if the change is
small, however, it can lead to an increase in fitness (especially for low
values of h1 and high values of c; see Fig. 4a). This is because the
equilibrium frequency of C cells is generally inefficient, that is, it
leads to a suboptimal public good being produced (the maximum
benefit is achieved for slightly higher frequencies of C): increasing
the fraction of C cells (x, which in this case is mimicked by the
additional exogenous acidity ζ) can increase average population
fitness, as long as the increase is not too large (Fig. 4b).

3. Discussion

We have analyzed a scenario in which glycolysis is costly (because
energetically inefficient, thus leading to slower proliferation)
but produces a collective benefit (acidity) for all cancer cells

(glycolytic or not). Glycolysis is, therefore, a form of cooperation
among cancer cells for increased acidity, which confers an advantage
to the tumor as a group. The resulting dynamics enables glycolysis to
persist even under non-limiting oxygen conditions (that is, even if
glycolysis is inefficient) under many circumstances because the
benefit of acidification is a non-linear function of the frequency of
glycolytic cells. A typical outcome of this dynamics (Fig. 1, case 2) is
that too few glycolytic cells would lead to not enough acidity for
glycolysis to be useful, and its intrinsic energetic cost would make it
go extinct from the population; the marginal additional benefit of
further acidity in the presence of too many other glycolytic cells, on
the other hand, would not be worth the cost in terms of inefficient
metabolism (note that this would be true even in the absence of self-
poisoning); glycolysis, however, confers a higher fitness to an
individual cell if there are neither too many nor too few other
glycolytic cells; the result is that, unless the cost of glycolysis is too
high, glycolytic cells can persist at intermediate frequencies in the
tumor even when glycolysis is inefficient, that is, even under normal
oxygen concentrations.

This leaves unexplained the problem of the origin of glycolysis,
since a critical fraction of glycolytic cells is necessary, in this case,
to lead a population to the basin of attraction of this stable
equilibrium. In other words, the first glycolytic cell will pay a cost
without gaining any benefit, and will therefore not invade. In other
cases, however, this origin problem does not exist, either because
acidification confers diminishing returns without self-poisoning
(Fig. 1, case 3) or because the cost of glycolysis is low (Fig. 1, case 5);

Fig. 4. Changes in tumor fitness as a consequence of exogenous changes in acidity. A: The average cell fitness at the internal equilibrium as a function of h1 (the inflection
point of the benefit of acidity) and c (the energetic cost of glycolysis), for different values of ζ (the amount of exogenous acidity, each unit of ζ corresponds to the equivalent
fraction of C cells, x). B: The fitness of C (black line) and D (gray line) cells and the average fitness of the population (dashed line) as a function of x (the fraction of C cells);
arrows show the effects of changes in ζ; c¼0.1, h1¼0.5. In all cases: n¼20, s1¼10, s2¼10, h2¼0.8, y¼1, d¼0.5.
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in this case the population will move towards a higher frequency of
glycolytic cells, and the glycolytic type can even go to fixation; if
oxygen concentrations then revert to normal, the cost of glycolysis will
increase, leading the system to a stable coexistence of glycolytic and
non-glycolytic types (Fig. 1, from case 5 to case 2). The problem
of the origin can also be solved by assuming that cells increase their
anaerobic metabolism, through increase in glycolysis, during epis-
odes of hypoxia or when far from vascularized tissue, for example
during tumor expansion not accompanied by angiogenesis (Smallbone
et al., 2007).

Studying the dynamics of glycolysis in terms of collective
interactions between cancer cells for the acidification of the
extra-cellular environment solves a problem that previous
models (Gatenby and Gawlinski, 1996; Patel et al., 2001;
Smallbone et al., 2005, 2007; Basanta et al., 2008, 2011) of
the acid-mediated tumor invasion hypothesis (Gatenby and
Gawlinski, 1996, 2003; Gatenby and Gillies, 2004, 2007, Gillies
and Gatenby 2007) had left unsolved: why does the Warburg
effect occur under normal oxygen concentrations? Considering
the products of glycolysis as a diffusible public good with non-
linear (non-monotonic) benefits, therefore, enables us to fully
explain the Warburg effect.

Glycolysis and the acid-mediated tumor invasion hypothesis
have implications for treatment, and it has been suggested that
manipulating acidity can lead to adaptive anti-cancer therapies
(Gatenby and Gillies, 2007; Robey et al., 2009; Ibrahim Hashim
et al., 2011, 2012; Martin et al., 2011, 2012). Reducing acidity
will lead to an immediate reduction in fitness for the tumor
because of a reduction in the benefits of acidity; this is intuitive
(Fig. 4). Less intuitively, analyzing the Warburg effect as a public
goods game reveals also that increasing acidity can have
opposite effects: while a large increase can lead to self-poison-
ing, and therefore be a potential anti-cancer strategy
(as suggested by Smallbone et al., 2010), a mild increase may
lead to a higher fitness for the tumor (Fig. 4). In the short term,
therefore, modifying acidity may lead to a reduction of the
proliferation rate of the tumor. The long term effect, on the
other hand, depend on how large, fast and persistent the change
is; the population may simply readapt to the new acidity
conditions: the frequency of C types will change, leading the
population to a new equilibrium (that will have improved
proliferation), unless the change (the external increase in
acidity) is such that, when the original acidity is restored, the
equilibrium fraction of C is so low that the C type goes extinct.

We must keep in mind that certain features of the Warburg
effect have been ignored in the model. Notably, we have assumed
that cells can be of two different, fixed types (glycolytic or not).
In reality, a cell could modulate the amount of glycolysis based on
external conditions. That is, we have modeled a purely evolu-
tionary dynamics in which changes occur only because of clonal
selection. Cells can, however, also have more immediate physio-
logical responses to environmental conditions that resemble the
“best response” dynamics of rational players used in economic
game theory, rather than the adaptive dynamics used in evolu-
tionary game theory (adopted here). While the type of equilibria
are unlikely to change, the dynamics would be slightly different
from the one described here.

Mutations that confer resistance to therapies designed to
inhibit glucose metabolism can clearly evolve (Gatenby and
Gillies, 2007). Resistance to anti-cancer therapies arises because
cancer progression is an evolutionary process of clonal selection.
Studying glycolysis as a multiplayer public goods game for the
production of a non-linear (non-monotonic) diffusible good can
not only explain the adaptive value of the Warburg effect, but also
reveal properties of the evolutionary dynamics that can be used to
devise or optimize adaptive therapies.
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