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Abstract 

 

Mammals are important components of biodiversity that have been drastically and rapidly 

impacted by climate change, habitat loss, and anthropogenic pressure. Understanding key species 

distribution to optimize conservation targets is both urgent and necessary to reverse the current 

biodiversity crisis. Herein, we applied habitat suitability models for a key Neotropical forest 

ungulate, the white-lipped peccary (WLP Tayassu pecari), to investigate the effects of climate 

and landscape modifications on its distribution, which has been drastically reduced in Brazil. We 

used 318 primary records of WLP to derive habitat suitability maps across Brazil. Our models 

included bioclimatic, topographic, landscape, and human influence predictors in two modelling 

approaches. Models including all categories of predictors obtained the highest predictive ability 

and showed prevalence of suitable areas in forested regions of the country, covering 49% of the 

Brazilian territory. Filtering out small forest fragments (<2050ha) reduced the suitable area by 

5%, with a further reduction of 4% that was caused by deforestation until 2020, therefore until 

2020, the species has suffered a reduction of ~60% from its historical range in Brazil. Of the 40% 

of the Brazilian territory suitable to WLP, only 12% are protected. In the Atlantic Forest, only 

half of all protected areas have suitable habitat for WLP and even less in Pantanal (44%), Cerrado 

(14%) and Caatinga (7%). In a second modelling approach, mapping the areas with suitable 

climate and those with suitable landscapes separately, allowed us to identify four categories of  

conservation values, and showed that only 17% of the Brazilian territory has both high landscape 

and climatic suitability for WLP. Our models can help with complementary conservation 

management strategies and actions that could be essential in slowing down and possibly reversing 

current trends of population and geographic range reductions for te species, thereby averting a 

possible future collapse of forest ecosystem functioning in the Neotropical region.  
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Graphical Abstract 

 

Graphical abstract - In this study we show how anthropogenic pressure, and habitat loss are driving range 

reduction for white-lipped peccaries (Tayassu pecari) in Brazil. We reviewed and analyzed the records for 

the species in recent years and discovered that currently only 40% of country has suitable areas for the 

species and even in protected areas, suitable habitats are becoming scarce. In a second model we 

propose that conservation management actions could be distinct in four regions of the country where 

climatic and landscape suitabilities are distinct to slow down and possibly reverse current trends in 

declining populations and geograpic range of white-lipped peccaries. 

 

Keywords: Tayassu pecari; species distribution model; deforestation; habitat fragmentation; 

habitat loss; defaunation, protected areas. 
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1. Introduction 

 Climate change and landscape modifications are major causes of biodiversity loss 

worldwide (e.g. Newbold, 2018; Newbold et al., 2015; Urban, 2015). However, identifying 

species responses to climate change, land cover modifications, habitat loss, forest fragmentation, 

and other antropic pressures (such as hunting, creation of artificial barriers and pollution) require 

new modelling efforts (e.g. Struve et al. 2010, Barlow et al. 2016, Behr et al. 2017).  Habitat 

Suitability Models (HSMs) have been used to assess the effects of climate change and landscape 

modification on biodiversity (Elith and Leathwick, 2009) and predict future biodiversity 

responses to environmental changes at multiple scales (see Guisan and Rahbek, 2011), thus 

defining goals and regions where conservation management actions could be most effectively 

applied (e.g. Crouzeilles et al., 2015; Newbold, 2018).  

Mammals play key roles in forest ecosystems (Schipper et al., 2008) and are important 

components of biodiversity, and currently, over 27% of all mammal species are threatened 

(Schipper et al., 2008), Defaunation induced by hunting pressure (Antunes et al., 2016), and 

habitat loss and fragmentation (e.g. Fahrig, 2003; Pardini et al., 2017) are considered the new 

drivers of a mass extinction event (Barnosky et al., 2011; Galetti et al., 2017). Therefore,  

understanding the effects of those factors on key mammal species distribution can help optimize 

conservation actions and are both urgent and necessary (Ceballos and Ehrlich, 2006).  

White-lipped peccaries (WLP; Tayassu pecari) are the only Neotropical forest ungulates 

that form large herds (hundreds and up to thousands of individuals, see Keuroghlian et al., 2013; 

Sowls, 1997) and exert strong local top-down effects on forest ecosystems (Keuroghlian et al., 

2009). Their extirpation from native areas may cause additional biodiversity losses through 

cascading effects (e.g. Altrichter and Almeida, 2002; Keuroghlian et al., 2009), which makes 
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them a key species for the conservation of Neotropical forests. Due to the impacts of WLP herds 

on soil, litter, plant recruitment and dispersal, the species directly and indirectly alters its 

environment, with associated effects on local communities (Beck, 2006; Keuroghlian and Eaton, 

2009), and functions as ecosystem engineers (Beck et al., 2010; Ringler et al., 2015). The 

selective habitat use associated with extensive home ranges and movements (Altrichter and 

Almeida, 2002; Fragoso, 1998; Hofman et al., 2016; Jorge et al., 2021, 2019; Keuroghlian et al., 

2015; Reyna-Hurtado et al., 2009) renders WLPs an ideal species to investigate how landscape 

changes affect their spatial distribution. 

Due to habitat loss and hunting (e.g. Antunes et al., 2016; Keuroghlian et al., 2013; Peres, 

1996), WLPs have shown reduced abundance and low probability of long-term survival within 

48% of their current distribution, which was estimated in 2012 as 11,177,435 km
2
 (79% of the 

historical range, see Altrichter et al., 2012), thereby being classified as Vulnerable on the IUCN 

Red List. In Brazil, WLP population had a reduction that reached more than 30% in the last 

decade, the species has been virtually extirpated from the northern Atlantic Forest region (Canale 

et al., 2012) and the arid Caatinga biome, where it is mainly threatened by landscape 

modification, deforestation and hunting, and it only occurs in specific protected areas 

(Keuroghlian et al., 2012). Additionally, WLPs in Brazil suffered impacts of livestock, including 

infectious diseases (de Freitas et al., 2010; Fragoso, 2004). Recent studies indicate that a 

reduction in WLP abundance and geographic distribution will continue for the next three 

generations (Keuroghlian et al., 2013). Thus, identifying threats influencing the persistence of 

WLP within different biomes will allow prioritizing areas for conservation actions, which will in 

turn benefit regional biodiversity. 

For this purpose, we quantified the amount of remaining suitable habitat areas for WLPs in 

Brazil, the country with the largest portion of the species current range (~ 65% or 7,336,197 km
2
) 
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(Altrichter et al., 2012). Furthermore, we explored how landscape and climate predicted WLP 

suitability, and how the remaining suitable areas were distributed across different Brazilian 

biomes. Finally, we discuss how forest loss in Brazil in recent years (until 2020) has affected the 

amount of suitable habitat available for the species. 

 

2. Material and Methods 

2.1. Model species 

The White-lipped peccary (WLP; Tayassu pecari) (Link, 1795) is one of three species 

belonging to the Tayassuidae family, in the superorder Cetartiodactyla. This social, frugivorous–

omnivorous ungulate is distributed across the Americas from southeastern Mexico to northern 

Argentina and southern Brazil (Sowls, 1997). The species presents some plasticity in occupying 

different vegetation habitats (e.g. rainforests, dry forests, savannahs, and wetlands), but 

preferentially uses forest habitats and riparian zones (Fragoso, 1999; Keuroghlian and Eaton, 

2008a). WLP is a highly social species (Figure 1) with a promiscuous mating system (Biondo et 

al., 2011; Leite et al., 2018) and their fusion-fission social structure is characterized by the 

formation of herds that are divided into sub-herds, with frequent exchange of individuals (Biondo 

et al., 2011; Keuroghlian et al., 2004). Adults weigh 30 kg on average, WLP represent the largest 

mammal biomass in the Neotropical forests where they are present (e.g. Beck, 2006; Eisenberg, 

1980; Peres, 1996). WLP have key ecological roles: as prey for large carnivores (e.g. the jaguar, 

Panthera onca, and the cougar, Puma concolor), as seed predators and dispersers, and as 

ecosystem engineers due to their impacts on forest soil and plant trampling (Keuroghlian and 

Eaton, 2009; Kiltie and Terborgh, 1983; Ringler et al., 2015).  
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Figure 1. The white-lipped peccary, Tayassu pecari, in Brazil. 

 

2.2. Presence records 

A database with geographic locations of 318 presence records of WLPs in Brazil was 

compiled via literature review and specialists databases. Only direct observations, camera trap 

data and signs (e.g. footprints and hair) collected between 1987 and 2017 were considered (for 

details please see Supplementary material section SM1).  

2.3. Environmental predictors 

Four sets of environmental layers were used to model habitat suitability for WLP: a) 

bioclimatic (Isothermality, Mean Temperature of Warmest Quarter, Precipitation of Wettest 

Quarter, and Precipitation of Driest Quarter, see Karger et al., 2017);  b) topographic (Terrain 

slope, see Valeriano and Rossetti, 2012); c) landscape (Percentage of tree canopy cover, see 

Hansen et al., 2013), Spatial heterogeneity/habitat diversity, see Tuanmu and Jetz, 2015), Inland 

surface water frequency dataset, see Feng et al., 2016); and d) Human influence (Human density, 
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see Brazilian Demographic data at www.ibge.gov.br). For details, please see Supplementary 

material section SM2.  

All predictors were calculated or spatially rescaled for a resolution of approximately 1 km
2
 

(0.00833º) and projected to the WGS 84 geographic system using ArcGIS 10.2 (ESRI 2011. 

ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute). We 

used a factorial analysis to group climatic variables into a smaller set of meaningful variables, and 

looked for collinearity among all layers using bivariate Pearson correlations, excluding correlated 

variables with rho > 0.7 (Supplementary material SM3).  

2.4. Removing sampling bias from occurrence data 

 In HSMs, identifying and removing sampling bias from occurrence data is important 

(Elith et al., 2011), as it can significantly affect model predictions (Araújo et al., 2019; Merow et 

al., 2013). To do so, we filtered occurrences with similar environmental information or spatially 

clumped, as well as removed possible duplicated data (Supplementary Material SM4) using the 

SDMtoolbox (Brown, 2014) in ArcGIS 10.2. We retained 278 occurrence records after the 

filtering. Following the methods proposed by (Fitzpatrick et al., 2013) we checked if the use of 

accessibility bias masks would improve modelling results, which it did not (see Supplementary 

material SM5). Therefore we corrected bias for clumped data using the filtering procedure only. 

2.5. Modelling methods 

Four algorithms (Bioclim, Gower Distance, Support Vector Machines and MaxEnt) based 

on presence-only and presence-background data were tested to infer habitat suitability for WLP 

using the packages dismo (Hijmans et al., 2017) and kernlab (Karatzoglou and Feinerer, 2010) in 

R. We fitted all models using a partitioning criterion to randomly select 75% of data for training 

and 25% for the test, with 10 replications per algorithm. We calculated the frequency map for 

Jo
ur

na
l P

re
-p

ro
of



9 
 

each algorithm, as well as the mean and standard deviation of all models of all algorithms 

(Supplementary Material SM9). 

 To measure predictions accuracy, we used the area under the receiver operating curve 

(AUC) with a threshold of AUC > 0.7. As only MaxEnt models achieved such standards for the 2 

modelling approaches we opted to use only the MaxEnt algorithm results for our final analysis. 

We used MaxEnt defaults as set in R in the dismo package (Hijmans et al., 2017), and the logistic 

outputs for the suitability models, but we set the jackknife of regularized training gain to true to 

calculate the predictors’ percent of contribution, and set 10,000 background points and 500 

iterations for the runs.  

To derive binary (suitable/unsuitable) raster maps from the model predictions, we used the 

maximum training sensitivity and specificity  thresholds (Liu et al., 2013), and converted each cell 

to values of 0 (unsuitable) or 1 (suitable). We then summed the output raster maps and divided the 

cell values by the number of summed maps to set the values to a scale of 0 to 1 and determined 

the frequency in which each cell was predicted as suitable. We used a 10 percentile threshold for 

model cut-off for the different models, and computed the final predicted binary maps (Pearson et 

al., 2007).  

We first modeled the habitat suitability for WLP using all the predictors together in a so- 

called Full model, which was the base model to determine suitable areas for the species and for 

further analysis of forest cover loss impacts (Figure 2). The importance of each environmental 

variable to determine habitat suitability for WLPs was explored assessing the Jackknife training 

gain results for the MaxEnt models and with a principal component analysis to verify how the 

magnitude of values varied among the four Brazilian biomes where the species still occurs 

(Atlantic Forest, Cerrado, Pantanal and the Amazon) (Janekovi and Novak, 2012; Moreira et al., 

2014).  
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In a second approach (Ecoland model), we modeled the climatic suitability for WLP using 

only the four bioclimatic variables as predictors (Climatic model) and the landscape suitability 

using only the landscape, topographic and anthropogenic variables (percent of tree cover, 

homogeneity, inland water frequency, terrain slope and human density) (Landscape model). 

2.6. Ecoland model 

For the Ecoland modelling approach (Santos et al., 2020; Sobral-Souza et al., 2021) we 

ran the climatic and landscape models separately at first and then combined the two outputs. This 

approach allowed us to disentangle and map the consensus and disagreement areas between the 

two model predictions. We repeated the modelling approach described for the Full model for each 

set of predictors separately and used the binary maps from five MaxEnt climatic models and five 

MaxEnt landscape models with highest AUC > 0.7. We then quantified the level of 

consensus/disagreement into four categories, using 50% threshold to separate low suitability 

regions from high suitability ones (Figure 2).  
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Figure 2. A conceptual framework for the Full and Ecoland models used to analyze habitat suitability for 

Tayassu pecari in Brazil, with the spatial analysis steps used to quantify the impact of forest loss on its 

distribution. 
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Specifically, we defined four different classes of habitat suitability: i) high climatic and 

landscape suitability - more than 0.5 for both model outputs, ii) high climatic and low landscape 

suitability - more than 0.5 for climatic and less or equal 0.5 for landscape model, iii) high 

landscape and low climatic suitability values - more than 0.5 for landscape and less or equal than 

0.5 for climatic model, iv) low climatic and low landscape suitability – less or equal than 0.5 for 

both model outputs. Wit that procedure, it was possible to identify areas where both climatic and 

landscape were suitable for WLP, and areas with high climatic suitability and low landscape 

suitability, or vice-versa.  

2.7. Suitable forest fragments, forest loss effects and protection status 

We used the results from the Full model with a resolution of 1 km
2
, projected to South 

America Albers Equal Area Conic projection system (Datum SAD69), to calculate the suitable 

area for WLP in Brazil. We then evaluated how much of the suitable areas were too small to 

retain viable populations of WLP, based on the size of the available forest patches and 

information about WLP home range size (Fragoso, 1998; Jácomo et al., 2013; Jorge et al., 2019; 

Keuroghlian et al., 2015). We established a threshold of 2050 ha (20.5 km
2
), which also concurs 

with Magioli et al. (2015) that found the same threshold area for sensitive species, such as WLPs, 

of the Neotropical forests. We used the patch size raster to identify forest fragments that were 

larger than 2050 ha and also suitable for WLP. 

After that, we calculated how much forest cover loss affected suitable areas between 2000 

and 2020. We identified the percentage of forest area loss, using data of the total area of gross 

forest cover loss available from the Global Forest Change dataset (Hansen et al., 2013) with the 

resolution rescaled to 1 km
2
. We did this for each one of the biomes (Amazon, Cerrado, Atlantic 
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Forest and Pantanal), using the delimitation provided by IBGE 2016, to make a new evaluation of 

the suitable areas not affected by loss during this period.  

Finally we quantified how much of these suitable areas were inside protected areas, using 

the delimitation shapefile of the Brazilian Environment Ministry (available at 

http://mapas.mma.gov.br/i3geo/datadownload.htm) as a mask. 

 

3. Results 

3.1. General results 

A total area of 4,095,810 km
2 

was predicted as suitable using the Full MaxEnt binary 

model, which corresponds to 49% of the Brazilian territory. The Full model (based on the 

combination of all environmental predictors) consistently had higher AUC values than the models 

built using only climatic or landscape-level predictors, and showed a large prevalence of suitable 

areas in forested regions with less suitable areas in regions dominated by agricultural crops. In the 

Caatinga, northeastern region of Brazil, and in the extreme south of the country (Pampas) the 

model showed lower habitat suitability for the species than the other biomes. The climatic and the 

landscape models produced divergent predictions for WLP in many regions of the country, 

showing that climatic and landscape models can provide complementary information for habitat 

suitability analysis (Figure 3). The total suitable area predicted with the Climatic MaxEnt model 

was 3,443,007 km
2
 and the total area predicted by the Landscape MaxEnt model was 2,735,182 

km
2
.  

We also calculated the consensus areas predicted by all four algorithms (Supplementary 

Material SM7) of the Full model, which encompass 2,489,205 km
2 

(Supplementary material 

SM8), as well as mean and standard deviation from those outputs. The use of the four different 

algorithms allowed for comparisons of the suitable areas and determination of uncertainty 
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(standard deviation map) between predictions, indicating regions where more information about 

the species occurrence could improve model predictions (Supplementary material SM9).  

3.2. Ecoland model  

The Ecoland model allowed for comparisons about how climatic and landscape variables 

can provide different estimates of suitable areas, leading to the identification of four categories of 

suitable areas for WLP in Brazil (Figure 3). Around 17% of the total area of Brazil (1,382,008 

km
2
 – dark green in Figure 3) has high suitability in both climatic and landscape models. Areas 

high climatic suitability values and medium/low current landscape suitability cover 24% of Brazil 

(1,994,341 km
2
 – orange colour in Figure 3) and represent those most affected by habitat loss and 

anthropogenic alteration. Approximately 16% of Brazil (1,352,077 km
2 

– light green colour in 

Figure 3) has high landscape suitability but low climatic suitability for WLP, especially in 

specific regions in the South, and in some regions of the nothwest of the Amazon, and in its 

ecotone with the Cerrado. Finally, 44% of Brazil (3,643,425 km
2 

– yellow colour in Figure 3) is 

neither climatic nor has landscape suitable for WLPs. These areas are characterized by a 

predominance of shrubland vegetation and dry rainfall regime in the northeast (Caatinga), areas of 

grassland and low seasonal temperature in the south (Pampas) (representing drier and colder 

regions), and areas with high land-use change, used mainly for agriculture within the “dry 

diagonal” in the center of the country (Cerrado).  Jo
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Figure 3. Climatic, Landscape, and Ecoland models of habitat suitability for white-lipped peccaries 

(Tayassu pecari) in Brazil. 

 

3.3. Suitable forest fragments, forest loss effects and protection status 

Filtering out fragments smaller than 2050 ha (based on average home range size and 

threshold for forest patch size) reduced suitable areas by 5% (from 4,095,810 km
2
 to 3,683,796 

km
2
). Forest cover loss between 2000 and 2020 (Hansen et al., 2013) removed a further 4% of 

suitable areas (350,701 km
2
) for WLP. Considering both aspects (patch size and forest loss) 

resulted in 40% of Brazilian territory (3,333,094 km
2
) suitable for the species (Figure 4). The 

suitable forest areas estimated per biome varied between 8,242 km
2
 for the Pampa (where the 
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species is currently considered extinct) and 2,782,287 km
2
 for the Amazon (Figure 4 and 

Supplementary Material SM12). 

 

Figure 4. Effects of forest loss between 2000 and 2020 in suitable forest fragments (larger than 2050 ha) 

for white-lipped peccaries (Tayassu pecari) in Brazil. 

 

Jo
ur

na
l P

re
-p

ro
of



17 
 

Finally, only 12% of Brazil territory has suitable habitats for WLP within protected 

regions (992,546 km
2
), of which 389,123 km

2
 is in strictly protected areas and 603,423 km

2
 is in 

sustainable use areas (Figure 4), albeit with strong regional variation (Supplementary Material 

SM14). Most protected regions in the Amazon biome (83%) are suitable for the species, whereas 

in the Atlantic Forest, this value is close to 50%, in the Pantanal, 44%, in the Cerrado, 14%, only 

7% in the Caatinga, and in the Pampas only 6%, where the species is currently considered 

regionally extinct (Supplementary Material SM13). 

 

4. Discussion 

4.1. Climatic and landscape suitability and WLP conservation  

Our modelling approach allows us to identify areas that require different conservation 

prioritization. It is critical that forest areas with high suitability of both climate and landscape, 

have protection and connectivity assured by environmental laws, such as the Brazilian Forest 

Code (Azevedo et al., 2017; Soares-Filho et al., 2014). Deforestation monitoring through remote 

sensing coupled with ground truthing inspections through national programs such as MapBiomas 

(http://mapbiomas.org) and the “SiCAR” system (Sistema Nacional de Cadastro Ambiental Rural) 

(Alix-Garcia et al., 2018) can help identify land-use violations at the landholding scale to levy 

appropriate fines. It is also important to provide protection to those areas identified as high 

climate and landscape suitability, enhancing connectivity and enforcing surveillance to avoid 

illegal hunting and deforestation. Besides those national initiatives, environmental education is 

important to reduce illegal hunting locally and regionally in the biomes where the species is 

largely threatened – Atlantic Forest and Cerrado (Keuroghlian et al., 2013), and in south Amazon 

in the “arc of deforestation” where hunting acting synergistically with forest loss can have 

dramatic effects on WLP populations (Antunes et al., 2016).  
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Areas with high climatic suitability and low landscape suitability can be targeted for 

restoration and wildlife corridors, promoting greater landscape suitability and connectivity where 

climatic conditions are favorable. Moreover, these regions are also important ecotones and may 

be used strategically to favor gene flow among populations across different biomes. Recent 

studies show that large mammals, including WLPs, can occupy secondary savannahs regenerated 

from clear-cutting in areas of protected Cerrado, suggesting a potential reversal of the non-habitat 

matrix to suitable habitats for WLPs and other forest-dwelling species occupying regenerated 

landscapes (Ferreira et al., 2017). 

Areas with low climatic suitability and high landscape suitability areas (south, northeast 

and some specific regions of the Amazon) should be monitored especially for climate change 

effects. As discussed by Keuroghlian et al. (2015), extreme droughts can affect resource 

availability, change activity patterns (Hofmann et al., 2016), and increase the impacts of land-use 

change on WLPs. It is predicted that synergetic effects of climate change and land use change will 

increase species losses in tropical savannahs, grasslands and forests, and result in significant 

alteration in the structure of ecological communities by 2070 (Newbold, 2018). WLP populations 

in these are likely to be strongly affected by climate change and rely on appropriate landscape 

suitability to survive. New survey efforts in the Amazon and continued monitoring could help to 

increase the understanding of WLP presence and distribution in the region, especially in the areas 

where uncertainty was high (standard deviation map in Supplementary material SM9).  

Although the species’ historical ecological distribution (Altrichter et al., 2012) suggests 

that WLPs exhibit considerable plasticity in habitat use at a local scale, from a macroecological 

perspective, such plasticity is climatically restricted to the warmer regions of the Neotropics. 

Conservation strategies are critical for retaining suitable forest fragments for the species in areas 

where climatic suitability is high, since climate change and range shifts might require 
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evolutionary adaptations and phenotypic plasticity that lack for most medium and large mammals 

(Hetem et al., 2014), including WLPs. This is further hindered by land-use change and 

anthropogenic barriers that limit movements and dispersal of organisms (Shepard et al., 2008).  

4.2. Forest loss and WLP conservation 

In 2012, Altrichter et al. showed that WLP had a reduction of 13% of its historical range in 

Brazil (Altrichter et al., 2012). Our study shows that this reduction increased to 60% in 2020. 

Although each study used different modeling approaches, both show a rapid range decline for 

WLP. Between 2000 and 2020, the suitable areas for WLP affected by forest loss in Brazil 

represent 4.2% of the total country area, which is larger than the predicted range size for the 

species in most countries of Mesoamerica (see Altrichter et al., 2012). Recent studies have shown 

that a rapid population decline may also be occurring in Mesoamerica, suggesting a range 

reduction of 63% from the current IUCN distribution and 87% from WLP historical distribution 

for that region (Thornton et al., 2020). WLPs depend mostly on forest areas to acquire food 

resources (Desbiez et al., 2009; Keuroghlian and Eaton, 2008b) and reduce thermoregulation 

costs (Hofmann et al., 2016), hence urgent, and more effective than hitherto, conservation actions 

are urgently needed for the species and similar forest-dependent species in Brazil. However, 

because the conservation status of WLP populations is highly variable across the Neotropics, 

ranging from virtually extirpated to hyper-abundant in different regions, it can be misleading, and 

the species can be considered not threatened by local communities and landowners. For example, 

WLP herds are considered extremely abundant agricultural pests throughout the southern 

Amazonian soybean frontier, where they are being poisoned or shot by the thousands in 

retaliation for crop-raiding losses (Lima et al., 2018). 

Our suitability maps for WLP also reflect how land-use change has affected the species in 

different regions of Brazil. In the biomes where the conservation status of WLPs is currently 
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considered less critical – Pantanal and Amazon (Keuroghlian et al., 2013), forest loss occurs 

mostly at the edges of the biomes and the land is predominantly used for cattle-ranching. Reduced 

human density and reduced access through roads (Oliveira et al., 2016) help prevent larger 

anthropogenic impacts in those regions. In the Cerrado, expansion of cropland and cattle-ranching 

are the main land-use changes (Carvalho et al., 2009; Roque et al., 2016). Moreover, in some 

regions of the Cerrado, the matrix consists of corn cropland that is attractive to WLP and the 

fertilizer used in the soil is a second attractive factor (Morato personal communication), which 

can increase human conflicts and consequently illegal hunting pressure and human/wildlife 

conflicts near forest fragments (Lima et al., 2018). One example is Emas National Park, where the 

main surrounding areas consist of corn monoculture (Jácomo et al., 2013) and there has been 

increased human-WLPs conflict in the area. 

 In the Atlantic Forest, in addition to higher human density in urban areas near the coast, 

there is a predominance of large tracts of forest fragments in coastal areas, especially in high-

elevation areas in the Serra do Mar and Mantiqueira mountain ranges. WLPs are already absent 

from many protected areas (Jorge et al., 2013) which can generate cascading effects on plants and 

animals (Galetti et al., 2015; Kurten, 2013). Interior regions of the Atlantic Forest have smaller 

and more isolated forest remnants (Ribeiro et al., 2009) and some of the remaining WLP 

populations are very isolated (Keuroghlian et al., 2004), thus it is important to invest in increasing 

connectivity among populations in this biome following, for example, the guidelines proposed by 

Ribeiro et al. 2009 and Crouzeilles et al. 2013.  

4.3. Other anthropogenic effects that impact WLP populations 

Our models highlighted the broad scale impacts of forest loss and fragmentation, climate, 

and direct human disturbance (human density) on the spatial distribution of suitable areas for 

WLPs in recent years. Nevertheless, the conservation scenario is more problematic due to other 
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human-driven disturbances, like increasing human activities – light and sounds for example – 

which have been shown to alter the activity patterns of mammals (Gaynor et al., 2018), create 

barriers (Shepard et al., 2008), increase poisoning and slaughtering because of human/wildlife 

conflicts (Lima et al., 2018) and increase hunting pressures (Peres et al., 2016), occurring on the 

landscape and local scales within forest fragments. These local impacts can highly increase 

biodiversity loss even where forested areas still remain (Barlow et al., 2016; Galetti et al., 2017; 

Peres et al., 2016), which could be the case for many regions where the WLPs occur. Thus, 

conservation measures derived from our results are urgently required, but will nonetheless need to 

be complemented by further actions to allow coexistence of WLP and humans, such as identifying 

key regional stakeholders to propose educational and social projects for conservation, increasing 

environmental inspection and applying fines to reduce other local impacts within the forest areas. 

Also, priority areas for conservation, where the species has been locally extirpated due to hunting 

in past years, could receive translocated animals from areas where human-wildlife conflicts are 

occurring. This will demand further studies of spatial ecology, genetics and disease ecology but 

could be a potential solution to conservation management for WLP populations. 

4.4. Protected areas and conservation strategies to reduce the impact of forest loss for WLP 

Models that predicted habitat suitability for WLP at the landscape scale showed that the 

presence of protected areas was a very important variable to explain the areas that were most 

frequently used by WLPs (Norris et al., 2011). Our results show that suitable forest fragments 

larger than 2050ha that are currently inside protected areas represent only 11.7% of the historical 

range for WLP in Brazil (Altrichter et al., 2012). The proportion of suitable areas, i.e. fragments 

larger than 2050 ha, represents only half of protected areas in the Atlantic Forest, and even less in 

the Pantanal (44%), Cerrado (14%) and Caatinga (7%). Thus another key conservation outcome 

from this work is to show that only 39% (389,123 km
2
) of the suitable areas for WLP in protected 
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areas are of stricted protection. Unfortunately, even strict protected areas such as National and 

State Parks are not necessarily a safe place for wildlife, local extinctions of WLPs also occurred 

in numerous parks in Brazil (Keuroghlian et al., 2012). 

Recent changes in legislation that protect the forest fragments in Brazil reduced the extent 

of areas that should be protected near rivers. Riparian vegetation and small remnants could be 

further reduced in the near future (Soares-Filho et al., 2014), and these are important habitats for 

WLP (Keuroghlian and Eaton, 2008a) not located inside protected areas, representing 28% of the 

Brazilian territory suitable for WLP. Furthermore, applying sustainable agricultural production 

strategies that minimize forest reduction, such as rotation management systems for cattle and crop 

production - reducing area requirement and the impact on native trees (Eaton et al., 2011), 

encouragement for programs of payment for ecosystem services (Pearce, 2001), compliance of the 

forest code as a criteria for marketing, as well as the use of green certificates for exportation of 

rural products and reduction of meat consumption (Eisler et al., 2014), will be essential to 

decrease the impact of food production on white-lipped peccaries and other wild species (Phalan 

et al., 2011). 

4.5. Model limitation and conclusions 

We believe that the conservation scenario for WLP might be even more serious than our 

results suggest because the edges and the shapes of fragments loose definition on a scale of 1 km
2
 

limiting our model accuracy for the size of the area estimated. That could drive suitable areas to 

be overestimated for the species due to the model resolution. Nevertheless, although higher 

resolution could provide a more accurate estimate, our predictions provide the best current 

overview of the status of suitable areas for WLPs in a country of continental dimensions and a 

myriad of environments. Testing two different modelling approaches and a range of different 
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environmental variables was important for selecting the final set of variables and providing 

models that explored divergences between climate and landscape suitability.  

Our results represent an important step in evaluating the currently remaining suitable areas 

for WLPs in Brazil because they provide spatial information about how landscape modifications 

affect the species persistence. This is essential to evaluate the species current conservation status 

and to define more efficient conservation actions, such as new areas for population surveys and 

monitoring, placement of corridors and target regions for educational programs that seek to 

reduce habitat loss and illegal hunting. Finally, our models showed that WLPs respond to 

landscape changes and have been losing habitat in recent years. Applying national conservation 

strategies for WLPs could therefore optimize conservation efforts for other vertebrate species with 

similar sensitiveness to fragmentation.  

 

Credit authorship contribution statement 

Júlia Emi de Faria Oshima: Conceptualization, Methodology, Investigation, Formal analysis, 

Writing - original draft, Funding acquisition. Maria Luísa S. P. Jorge: Supervision, 

Methodology, Investigation, Writing - review & editing, Funding acquisition. Thadeu Sobral-

Souza: Methodology, Formal analysis, Writing - review & editing. Luca Börger: Supervision, 

Methodology, Writing - review & editing, Funding acquisition. Alexine Keuroghlian: 

Investigation, Funding acquisition, Writing - review & editing. Carlos Peres: Investigation, 

Writing - review & editing. Maurício Humberto Vancine: Methodology, Formal analysis, 

Writing - review & editing. Ben Collen: Supervision, Methodology, Writing - review & editing, 

Funding acquisition. Milton Cezar Ribeiro: Supervision, Methodology, Formal analysis, Writing 

- review & editing, Funding acquisition. 

 

Jo
ur

na
l P

re
-p

ro
of



24 
 

Acknowledgements 

This research was funded by Coordination for the Improvement of Higher Education Personnel 

(CAPES) agreement with São Paulo Research Foundation (FAPESP) for grants (2014/23132-2, 

2016/09957-4, 2013/50421-2, and 2017/09676-8) and National Council for Scientific and 

Technological Development (CNPQ grant: 161089/2014-3). Authors would like to acknowledge 

Altrichter M., Tortato F., Carmignotto A.P., Palmeira F., Regolin A., Cherem J., Hoogesteijn R., 

Amorin E., Ferreira G., Monteiro E., Beisegel B., Lima F. and Eaton, D.P. for their help with the 

review of Tayassu pecari presence records. We also thank Sugai L.S.M., Pinto F., Fieberg J., 

Niebuhr B., Pearson R., Newbold T., Biondo C, Magioli M., Mokross K., Morato R., Pupim, F. 

and the anonymous reviewers for their important comments during preparation of the 

environmental layers, the habitat suitability models and the manuscript text. We also thank 

Desbiez, A.L.J, Gatti, A., Mendes Pontes, A.R., Campos, C.B., Azevedo, F.C., Pinho, G.M., 

Cordeiro, L.P., Santos Jr., T.S., Morais, A.A., Mangini, P.R., Flesher, K., Rodrigues, L.F. for their 

important contribution to the first evaluation of the white-lipped peccary conservation status 

(ICMBio) which provided essential data for this manuscript. Julia Oshima also acknowledge 

Oshima W.L.F, Pupim F., Pupim P.O. and Oshima E.H. (in memorian) for their help and love 

during the review of this manuscript. 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



25 
 

References 

Alix-Garcia, J., Rausch, L.L., L’Roe, J., Gibbs, H.K., Munger, J., 2018. Avoided Deforestation 

Linked to Environmental Registration of Properties in the Brazilian Amazon. Conserv. Lett. 

11, e12414. https://doi.org/10.1111/conl.12414 

Altrichter, M., Almeida, R., 2002. Exploitation of white-lipped peccaries Tayassu pecari 

(Artiodactyla: Tayassuidae) on the Osa Peninsula, Costa Rica. Oryx 36, 126–132. 

https://doi.org/10.1017/S0030605302000194 

Altrichter, M., Taber, A., Beck, H., Reyna-Hurtado, R., Lizarraga, L., Keuroghlian, A., 

Sanderson, E.W., 2012. Range-wide declines of a key Neotropical ecosystem architect, the 

Near Threatened white-lipped peccary Tayassu pecari. Oryx 46, 87–98. 

https://doi.org/10.1017/S0030605311000421 

Antunes, A.P., Fewster, R.M., Venticinque, E.M., Peres, C.A., Levi, T., Rohe, F., Shepard, G.H., 

2016. Empty forest or empty rivers? A century of commercial hunting in Amazonia. Sci. 

Adv. 2, e1600936. https://doi.org/10.1126/sciadv.1600936 

Araújo, M.B., Anderson, R.P., Márcia Barbosa, A., Beale, C.M., Dormann, C.F., Early, R., 

Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R.B., Zimmermann, N.E., 

Rahbek, C., 2019. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, 

eaat4858. https://doi.org/10.1126/sciadv.aat4858 

Azevedo, A.A., Rajão, R., Costa, M.A., Stabile, M.C.C., Macedo, M.N., dos Reis, T.N.P., 

Alencar, A., Soares-Filho, B.S., Pacheco, R., 2017. Limits of Brazil’s Forest Code as a 

means to end illegal deforestation. Proc. Natl. Acad. Sci. 114, 7653–7658. 

https://doi.org/10.1073/pnas.1604768114 

Barlow, J., Lennox, G.D., Ferreira, J., Berenguer, E., Lees, A.C., Nally, R. Mac, Thomson, J.R., 

Ferraz, S.F.D.B., Louzada, J., Oliveira, V.H.F., Parry, L., Ribeiro De Castro Solar, R., 

Jo
ur

na
l P

re
-p

ro
of



26 
 

Vieira, I.C.G., Aragaõ, L.E.O.C., Begotti, R.A., Braga, R.F., Cardoso, T.M., Jr, R.C.D.O., 

Souza, C.M., Moura, N.G., Nunes, S.S., Siqueira, J.V., Pardini, R., Silveira, J.M., Vaz-De-

Mello, F.Z., Veiga, R.C.S., Venturieri, A., Gardner, T.A., 2016. Anthropogenic disturbance 

in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147. 

https://doi.org/10.1038/nature18326 

Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., Marshall, C., 

McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B., Ferrer, E.A., 2011. Has the Earth’s 

sixth mass extinction already arrived? Nature 471, 51–57. 

https://doi.org/10.1038/nature09678 

Beck, H., 2006. a Review of Peccary–Palm Interactions and Their Ecological Ramifications 

Across the Neotropics. J. Mammal. 87, 519–530. https://doi.org/10.1644/05-MAMM-A-

174R1.1 

Beck, H., Thebpanya, P., Filiaggi, M., 2010. Do Neotropical peccary species (Tayassuidae) 

function as ecosystem engineers for anurans? J. Trop. Ecol. 26, 407–414. 

https://doi.org/10.1017/S0266467410000106 

Behr, D.M., Ozgul, A., Cozzi, G., 2017. Combining human acceptance and habitat suitability in a 

unified socio-ecological suitability model: a case study of the wolf in Switzerland. J. Appl. 

Ecol. 54, 1919–1929. https://doi.org/10.1111/1365-2664.12880 

Biondo, C., Keuroghlian, A., Gongora, J., Miyaki, C.Y., 2011. Population genetic structure and 

dispersal in white-lipped peccaries (Tayassu pecari) from the Brazilian Pantanal. J. Mammal. 

92, 267–274. https://doi.org/10.1644/10-MAMM-A-174.1 

Brown, J.L., 2014. SDMtoolbox: A python-based GIS toolkit for landscape genetic, 

biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700. 

https://doi.org/10.1111/2041-210X.12200 

Jo
ur

na
l P

re
-p

ro
of



27 
 

Canale, G.R., Peres, C.A., Guidorizzi, C.E., Gatto, C.A.F., Kierulff, M.C.M., 2012. Pervasive 

Defaunation of Forest Remnants in a Tropical Biodiversity Hotspot. PLoS One 7, e41671. 

https://doi.org/10.1371/journal.pone.0041671 

Carvalho, F.M. V, De Marco, P., Ferreira, L.G., 2009. The Cerrado into-pieces: Habitat 

fragmentation as a function of landscape use in the savannas of central Brazil. Biol. Conserv. 

142, 1392–1403. https://doi.org/10.1016/j.biocon.2009.01.031 

Ceballos, G., Ehrlich, P.R., 2006. Global mammal distributions, biodiversity hotspots, and 

conservation. Proc. Natl. Acad. Sci. 103, 19374–19379. 

https://doi.org/10.1073/pnas.0609334103 

Crouzeilles, R., Beyer, H.L., Mills, M., Grelle, C.E.V., Possingham, H.P., 2015. Incorporating 

habitat availability into systematic planning for restoration: A species-specific approach for 

Atlantic Forest mammals. Divers. Distrib. 21, 1027–1037. https://doi.org/10.1111/ddi.12349 

Crouzeilles, R., Lorini, M.L., Grelle, C.E.V., 2013. The importance of using sustainable use 

protected areas for functional connectivity. Biol. Conserv. 159, 450–457. 

https://doi.org/10.1016/j.biocon.2012.10.023 

de Freitas, T.P.T., Keuroghlian, A., Eaton, D.P., de Freitas, E.B., Figueiredo, A., Nakazato, L., de 

Oliveira, J.M., Miranda, F., Paes, R.C.S., Carneiro Monteiro, L.A.R., Lima, J.V.B., da Neto, 

A.A.C., Dutra, V., de Freitas, J.C., 2010. Prevalence of Leptospira interrogans antibodies in 

free-ranging Tayassu pecari of the Southern Pantanal, Brazil, an ecosystem where wildlife 

and cattle interact. Trop. Anim. Health Prod. 42, 1695–1703. https://doi.org/10.1007/s11250-

010-9622-2 

Desbiez, A.L.J., Santos, S.A., Keuroghlian, A., Bodmer, R.E., 2009. Niche Partitioning Among 

White-Lipped Peccaries (Tayassu pecari), Collared Peccaries (Pecari tajacu), and Feral Pigs 

(Sus Scrofa). J. Mammal. 90, 119–128. https://doi.org/10.1644/08-MAMM-A-038.1 

Jo
ur

na
l P

re
-p

ro
of



28 
 

Eaton, D.P., Santos, S.A., Santos, M. do C.A., Lima, J.V.B., Keuroghlian, A., 2011. Rotational 

Grazing of Native Pasturelands in the Pantanal: An Effective Conservation Tool. Trop. 

Conserv. Sci. 4, 39–52. https://doi.org/10.1177/194008291100400105 

Eisenberg, J., 1980. The density and biomass of tropical forest ungulates, in: In Soule ME, 

Wilcox BA (Eds). Conservation Biology: An Evolutionary-Ecological Perspective. pp. 35–

55. 

Eisler, M.C., Lee, M.R.F., Tarlton, J.F., Martin, G.B., 2014. Steps to sustainable livestock. Nature 

507, 32–34. https://doi.org/10.1038/507032a 

Elith, J., Leathwick, J.R., 2009. Species Distribution Models: Ecological Explanation and 

Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. 

https://doi.org/10.1146/annurev.ecolsys.110308.120159 

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical 

explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. 

https://doi.org/10.1111/j.1472-4642.2010.00725.x 

Fahrig, L., 2003. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 

34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 

Feng, M., Sexton, J.O., Channan, S., Townshend, J.R., 2016. A global, high-resolution (30-m) 

inland water body dataset for 2000: first results of a topographic–spectral classification 

algorithm. Int. J. Digit. Earth 9, 113–133. https://doi.org/10.1080/17538947.2015.1026420 

Ferreira, G.B., Ahumada, J.A., Oliveira, M.J.R., de Pinho, F.F., Barata, I.M., Carbone, C., Collen, 

B., 2017. Assessing the conservation value of secondary savanna for large mammals in the 

Brazilian Cerrado. Biotropica 49, 734–744. https://doi.org/10.1111/btp.12450 

Fitzpatrick, M.C., Gotelli, N.J., Ellison, A.M., 2013. MaxEnt versus MaxLike: empirical 

comparisons with ant species distributions. Ecosphere 4, art55. https://doi.org/10.1890/ES13-

Jo
ur

na
l P

re
-p

ro
of



29 
 

00066.1 

Fragoso, J.M. V., 2004. A Long-Term Study of White-Lipped Peccary (Tayassu pecari) 

Population Fluctuations in Northern Amazonia, in: FRAGOSO J., SILVIUS K., & B.R. 

(Ed.), People in Nature. Wildlife Conservation in South and Central America. Columbia 

University Press, pp. 286–296. https://doi.org/10.7312/silv12782.21 

Fragoso, J.M. V., 1999. Perception of Scale and Resource Partitioning by Peccaries: Behavioral 

Causes and Ecological Implications. J. Mammal. 80, 993–1003. 

https://doi.org/10.2307/1383270 

Fragoso, J.M. V., 1998. Home Range and Movement Patterns of White-lipped Peccary (Tayassu 

pecari) Herds in the Northern Brazilian Amazon1. Biotropica 30, 458–469. 

https://doi.org/10.1111/j.1744-7429.1998.tb00080.x 

Galetti, M., Brocardo, C.R., Begotti, R.A., Hortenci, L., Rocha-Mendes, F., Bernardo, C.S.S., 

Bueno, R.S., Nobre, R., Bovendorp, R.S., Marques, R.M., Meirelles, F., Gobbo, S.K., Beca, 

G., Schmaedecke, G., Siqueira, T., 2017. Defaunation and biomass collapse of mammals in 

the largest Atlantic forest remnant. Anim. Conserv. 20, 270–281. 

https://doi.org/10.1111/acv.12311 

Galetti, M., Guevara, R., Neves, C.L., Rodarte, R.R., Bovendorp, R.S., Moreira, M., Hopkins, 

J.B., Yeakel, J.D., 2015. Defaunation affects the populations and diets of rodents in 

Neotropical rainforests. Biol. Conserv. 190, 2–7. 

https://doi.org/10.1016/j.biocon.2015.04.032 

Gaynor, K.M., Hojnowski, C.E., Carter, N.H., Brashares, J.S., 2018. The influence of human 

disturbance on wildlife nocturnality. Science (80-. ). 360, 1232–1235. 

https://doi.org/10.1126/science.aar7121 

Guisan, A., Rahbek, C., 2011. SESAM - a new framework integrating macroecological and 

Jo
ur

na
l P

re
-p

ro
of



30 
 

species distribution models for predicting spatio-temporal patterns of species assemblages. J. 

Biogeogr. 38, 1433–1444. https://doi.org/10.1111/j.1365-2699.2011.02550.x 

Hansen, M.C.C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S.A. a, Tyukavina, A., 

Thau, D., Stehman, S.V. V, Goetz, S.J.J., Loveland, T.R.R., Kommareddy, A., Egorov, A., 

Chini, L., Justice, C.O.O., Townshend, J.R.G.R.G., 2013. High-Resolution Global Maps of 

21st-Century Forest Cover Change. Science (80-. ). 342, 850–853. 

https://doi.org/10.1126/science.1244693 

Hetem, R.S., Fuller, A., Maloney, S.K., Mitchell, D., 2014. Responses of large mammals to 

climate change. Temperature 1, 115–127. https://doi.org/10.4161/temp.29651 

Hijmans, R.J., Phillips, S., Leathwick, J.R., Elith, J., 2017. Species Distribution Modeling. 

Package ‘dismo’. dismo: Species Distribution Modeling. CRAN. 

https://doi.org/10.1016/j.jhydrol.2011.07.022. 

Hofman, M.P.G., Signer, J., Hayward, M.W., Balkenhol, N., 2016. Spatial ecology of a herd of 

white-lipped peccaries (Tayassu pecari) in Belize using GPS telemetry: challenges and 

preliminary results. Therya 7, 21–37. https://doi.org/10.12933/therya-16-335 

Hofmann, G.S., Coelho, I.P., Bastazini, V.A.G., Cordeiro, J.L.P., de Oliveira, L.F.B., 2016. 

Implications of climatic seasonality on activity patterns and resource use by sympatric 

peccaries in northern Pantanal. Int. J. Biometeorol. 60, 421–433. 

https://doi.org/10.1007/s00484-015-1040-8 

Jácomo, A.T.D.A., Furtado, M.M., Kashivakura, C.K., Marinho-Filho, J., Sollmann, R., Tôrres, 

N.M., Silveira, L., 2013. White-lipped peccary home-range size in a protected area and 

farmland in the central Brazilian grasslands. J. Mammal. 94, 137–145. 

https://doi.org/10.1644/11-MAMM-A-411.1 

Janekovi, F., Novak, T., 2012. PCA – A Powerful Method for Analyze Ecological Niches, in: 

Jo
ur

na
l P

re
-p

ro
of



31 
 

Sanguansat P (Ed.), Principal Component Analysis - Multidisciplinary Applications. pp. 

127–142. https://doi.org/10.5772/38538 

Jorge, M.L.S.P., Bradham, J.L., Keuroghlian, A., Oshima, J.E.F., Ribeiro, M.C., 2021. 

Permeability of Neotropical agricultural lands to a key native ungulate—Are well‐connected 

forests important? Biotropica 53, 201–212. https://doi.org/10.1111/btp.12861 

Jorge, M.L.S.P., Galetti, M., Ribeiro, M.C., Ferraz, K.M.P.M.B., 2013. Mammal defaunation as 

surrogate of trophic cascades in a biodiversity hotspot. Biol. Conserv. 163, 49–57. 

https://doi.org/10.1016/j.biocon.2013.04.018 

Jorge, M.L.S.P., Keuroghlian, A., Bradham, J., Oshima, J.E.F., Ribeiro, M.C., 2019. White-

Lipped Peccary Movement and Range in Agricultural Lands of Central Brazil, in: Movement 

Ecology of Neotropical Forest Mammals. Springer International Publishing, Cham, pp. 39–

55. https://doi.org/10.1007/978-3-030-03463-4_4 

Karatzoglou, A., Feinerer, I., 2010. Kernel-based machine learning for fast text mining in R. 

Comput. Stat. Data Anal. 54, 290–297. https://doi.org/10.1016/j.csda.2009.09.023 

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, 

N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth’s land 

surface areas. Sci. Data 4, 1–20. https://doi.org/10.1038/sdata.2017.122 

Keuroghlian, A., Andrade Santos, M.D.C., Eaton, D.P., 2015. The effects of deforestation on 

white-lipped peccary (Tayassu pecari) home range in the southern Pantanal. Mammalia 79, 

491–497. https://doi.org/10.1515/mammalia-2014-0094 

Keuroghlian, A., Desbiez, A.L.J., Beisiegel, B.M., Medici, E.P., Gatti, A., Pontes, A.R.M., 

Campos, C.B., Tófoli, C.F. de, Júnior, E.A.M., Azevedo, F.C. de, Pinho, G.M. de, Cordeiro, 

J.L.P., Santos Jr., T.S., Moraes, A.A., Mangini, P.R., Flesher, K., Rodrigues, L.F., Almeida, 

L.B. de, 2012. Avaliação do Risco de Extinção do Queixada Tayassu pecari Link, 1795, no 

Jo
ur

na
l P

re
-p

ro
of



32 
 

Brasil. Biodiversidade Bras. 1, 84–102. 

Keuroghlian, A., Desbiez, A.L.J., Reyna-Hurtado, R., Altrichter, M., Beck, H., Taber, A., 

Fragoso, M., 2013. Tayassu pecari [WWW Document]. IUCN Red List Threat. Species 

2013. URL http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T41778A44051115.en. 

Keuroghlian, A., Eaton, D.P., 2009. Removal of palm fruits and ecosystem engineering in palm 

stands by white-lipped peccaries (Tayassu pecari) and other frugivores in an isolated Atlantic 

Forest fragment. Biodivers. Conserv. https://doi.org/10.1007/s10531-008-9554-6 

Keuroghlian, A., Eaton, D.P., 2008a. Importance of rare habitats and riparian zones in a tropical 

forest fragment: Preferential use by Tayassu pecari, a wide-ranging frugivore. J. Zool. 275, 

283–293. https://doi.org/10.1111/j.1469-7998.2008.00440.x 

Keuroghlian, A., Eaton, D.P., 2008b. Fruit availability and peccary frugivory in an isolated 

Atlantic forest fragment: Effects on peccary ranging behavior and habitat use. Biotropica 40, 

62–70. https://doi.org/10.1111/j.1744-7429.2007.00351.x 

Keuroghlian, A., Eaton, D.P., Desbiez, A.L.J., 2009. The response of a landscape species, white-

lipped peccaries, to seasonal resource fluctuations in a tropical wetland, the Brazilian 

pantanal. Int. J. Biodivers. Conserv. 1, 87–97. 

Keuroghlian, A., Eaton, D.P., Longland, W.S., 2004. Area use by white-lipped and collared 

peccaries (Tayassu pecari and Tayassu tajacu) in a tropical forest fragment. Biol. Conserv. 

120, 415–429. https://doi.org/10.1016/j.biocon.2004.03.016 

Kiltie, R.A., Terborgh, J., 1983. Observations on the Behavior of Rain Forest Peccaries in Perú: 

Why do White‐lipped Peccaries Form Herds? Z. Tierpsychol. 62, 241–255. 

https://doi.org/10.1111/j.1439-0310.1983.tb02154.x 

Kurten, E.L., 2013. Cascading effects of contemporaneous defaunation on tropical forest 

communities. Biol. Conserv. 163, 22–32. https://doi.org/10.1016/j.biocon.2013.04.025 

Jo
ur

na
l P

re
-p

ro
of



33 
 

Leite, D.A., Keuroghlian, A., Rufo, D.A., Miyaki, C.Y., Biondo, C., 2018. Genetic evidence of 

promiscuity in a mammal without apparent sexual dimorphism, the white-lipped peccary 

(Tayassu pecari). Mamm. Biol. https://doi.org/10.1016/j.mambio.2018.05.005 

Lima, M., Peres, C.A., Abrahams, M.I., Silva Junior, C.A. da, Costa, G. de M., Santos, R.C. dos, 

2018. The paradoxical situation of the white-lipped peccary (Tayassu pecari) in the state of 

Mato Grosso, Brazil. Perspect. Ecol. Conserv. https://doi.org/10.1016/j.pecon.2018.12.001 

Liu, C., White, M., Newell, G., 2013. Selecting thresholds for the prediction of species 

occurrence with presence-only data. J. Biogeogr. 40, 778–789. 

https://doi.org/10.1111/jbi.12058 

Magioli, M., Ribeiro, M.C., Ferraz, K.M.P.M.B., Rodrigues, M.G., 2015. Thresholds in the 

relationship between functional diversity and patch size for mammals in the Brazilian 

Atlantic Forest. Anim. Conserv. 18, 499–511. https://doi.org/10.1111/acv.12201 

Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ 

distributions: What it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–

1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x 

Moreira, D. de O., Leite, G.R. ocha, Ferreira de Siqueira, M., Coutinho, B.R. ocha, Zanon, M.S. 

antos, Mendes, S.L., 2014. The distributional ecology of the maned sloth: environmental 

influences on its distribution and gaps in knowledge. PLoS One 9, e110929. 

https://doi.org/10.1371/journal.pone.0110929 

Newbold, T., 2018. Future effects of climate and land-use change on terrestrial vertebrate 

community diversity under different scenarios. Proc. R. Soc. London Ser. B, Biol. Sci. 

20180792. https://doi.org/10.1098/rspb.2018.0792 

Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, 

D.J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., 

Jo
ur

na
l P

re
-p

ro
of



34 
 

Edgar, M.J., Feldman, A., Garon, M., Harrison, M.L.K.K., Alhusseini, T., Ingram, D.J., 

Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D.L.P., Martin, C.D., 

Meiri, S., Novosolov, M., Pan, Y., Phillips, H.R.P.P., Purves, D.W., Robinson, A., Simpson, 

J., Tuck, S.L., Weiher, E., White, H.J., Ewers, R.M., MacE, G.M., Scharlemann, J.P.W., 

Purvis, A., Borger, L., Bennett, D.J., Choimes, A., Collen, B., Day, J., Palma, A. De, Dı, S., 

Edgar, M.J., Feldman, A., Garon, M., Harrison, M.L.K.K., Alhusseini, T., Echeverria-

london, S., Ingram, D.J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., 

Laginha, D., Correia, P., Martin, C.D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H.R.P.P., 

Purves, D.W., Robinson, A., Simpson, J., Tuck, S.L., Weiher, E., White, H.J., Ewers, R.M., 

MacE, G.M., 2015. Global effects of land use on local terrestrial biodiversity. Nature 520, 

45–50. https://doi.org/10.1038/nature14324 

Norris, D., Rocha-Mendes, F., Frosini de Barros Ferraz, S., Villani, J.P., Galetti, M., 2011. How 

to not inflate population estimates? Spatial density distribution of white-lipped peccaries in a 

continuous Atlantic forest. Anim. Conserv. 14, 492–501. https://doi.org/10.1111/j.1469-

1795.2011.00450.x 

Oliveira, U., Paglia, A.P., Brescovit, A.D., de Carvalho, C.J.B., Silva, D.P., Rezende, D.T., Leite, 

F.S.F., Batista, J.A.N., Barbosa, J.P.P.P., Stehmann, J.R., Ascher, J.S., de Vasconcelos, 

M.F., De Marco, P., Löwenberg-Neto, P., Dias, P.G., Ferro, V.G., Santos, A.J., 2016. The 

strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian 

terrestrial biodiversity. Divers. Distrib. 22, 1232–1244. https://doi.org/10.1111/ddi.12489 

Pardini, R., Nichols, E., Püttker, T., 2017. Biodiversity Response to Habitat Loss and 

Fragmentation. Ref. Modul. Earth Syst. Environ. Sci. 0–11. https://doi.org/10.1016/B978-0-

12-409548-9.09824-9 

Pearce, D.W., 2001. The economic value of forest ecosystems. Ecosyst. Heal. 7, 284–296. 

Jo
ur

na
l P

re
-p

ro
of



35 
 

https://doi.org/10.1046/j.1526-0992.2001.01037.x 

Pearson, R.G., Raxworthy, C.J., Nakamura, M., Townsend Peterson, A., 2007. Predicting species 

distributions from small numbers of occurrence records: A test case using cryptic geckos in 

Madagascar. J. Biogeogr. 34, 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x 

Peres, C.A., 1996. Population status of white-lipped Tayassu pecari and collared peccaries T. 

tajacu in hunted and unhunted Amazonian forests. Biol. Conserv. 77, 115–123. 

https://doi.org/10.1016/0006-3207(96)00010-9 

Peres, C.A., Emilio, T., Schietti, J., Desmoulière, S.J.M., Levi, T., 2016. Dispersal limitation 

induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 

113, 892–897. https://doi.org/10.1073/pnas.1516525113 

Phalan, B., Onial, M., Balmford, A., Green, R.E., 2011. Reconciling food production and 

biodiversity conservation: Land sharing and land sparing compared. Science (80-. ). 333, 

1289–1291. https://doi.org/10.1126/science.1208742 

Reyna-Hurtado, R., Rojas-Flores, E., Tanner, G.W., 2009. Home Range and Habitat Preferences 

of White-Lipped Peccaries ( Tayassu pecari ) in Calakmul, Campeche, Mexico. J. Mammal. 

90, 1199–1209. https://doi.org/10.1644/08-MAMM-A-246.1 

Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M., 2009. The Brazilian 

Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications 

for conservation. Biol. Conserv. 142, 1141–1153. 

https://doi.org/10.1016/j.biocon.2009.02.021 

Ringler, M., Hödl, W., Ringler, E., 2015. Populations, pools, and peccaries: Simulating the impact 

of ecosystem engineers on rainforest frogs. Behav. Ecol. 26, 340–349. 

https://doi.org/10.1093/beheco/aru243 

Roque, F.O., Ochoa-Quintero, J., Ribeiro, D.B., Sugai, L.S.M., Costa-Pereira, R., Lourival, R., 

Jo
ur

na
l P

re
-p

ro
of



36 
 

Bino, G., 2016. Upland habitat loss as a threat to Pantanal wetlands. Conserv. Biol. 30, 

1131–1134. https://doi.org/10.1111/cobi.12713 

Santos, J.P., Sobral‐Souza, T., Brown, K.S., Vancine, M.H., Ribeiro, M.C., Freitas, A.V.L., 2020. 

Effects of landscape modification on species richness patterns of fruit‐feeding butterflies in 

Brazilian Atlantic Forest. Divers. Distrib. 26, 196–208. https://doi.org/10.1111/ddi.13007 

Schipper, J., Chanson, J.S., Chiozza, F., Cox, N.A., Hoffmann, M., Katariya, V., Lamoreux, J., 

Rodrigues, A.S.L., Stuart, S.N., Temple, H.J., Baillie, J., Boitani, L., Lacher, T.E., 

Mittermeier, R.A., Smith, A.T., Absolon, D., Aguiar, J.M., Amori, G., Bakkour, N., Baldi, 

R., Berridge, R.J., Bielby, J., Black, P.A., Blanc, J.J., Brooks, T.M., Burton, J.A., Butynski, 

T.M., Catullo, G., Chapman, R., Cokeliss, Z., Collen, B., Conroy, J., Cooke, J.G., Da 

Fonseca, G.A.B., Derocher, A.E., Dublin, H.T., Duckworth, J.W., Emmons, L., Emslie, 

R.H., Festa-Bianchet, M., Foster, M., Foster, S., Garshelis, D.L., Gates, C., Gimenez-Dixon, 

M., Gonzalez, S., Gonzalez-Maya, J.F., Good, T.C., Hammerson, G., Hammond, P.S., 

Happold, D., Happold, M., Hare, J., Harris, R.B., Hawkins, C.E., Haywood, M., Heaney, 

L.R., Hedges, S., Helgen, K.M., Hilton-Taylor, C., Hussain, S.A., Ishii, N., Jefferson, T.A., 

Jenkins, R.K.B., Johnston, C.H., Keith, M., Kingdon, J., Knox, D.H., Kovacs, K.M., 

Langhammer, P., Leus, K., Lewison, R., Lichtenstein, G., Lowry, L.F., Macavoy, Z., Mace, 

G.M., Mallon, D.P., Masi, M., McKnight, M.W., Medellín, R.A., Medici, P., Mills, G., 

Moehlman, P.D., Molur, S., Mora, A., Nowell, K., Oates, J.F., Olech, W., Oliver, W.R.L., 

Oprea, M., Patterson, B.D., Perrin, W.F., Polidoro, B.A., Pollock, C., Powel, A., Protas, Y., 

Racey, P., Ragle, J., Ramani, P., Rathbun, G., Reeves, R.R., Reilly, S.B., Reynolds, J.E., 

Rondinini, C., Rosell-Ambal, R.G., Rulli, M., Rylands, A.B., Savini, S., Schank, C.J., 

Sechrest, W., Self-Sullivan, C., Shoemaker, A., Sillero-Zubiri, C., De Silva, N., Smith, D.E., 

Srinivasulu, C., Stephenson, P.J., Van Strien, N., Talukdar, B.K., Taylor, B.L., Timmins, R., 

Jo
ur

na
l P

re
-p

ro
of



37 
 

Tirira, D.G., Tognelli, M.F., Tsytsulina, K., Veiga, L.M., Vié, J.C., Williamson, E.A., Wyatt, 

S.A., Xie, Y., Young, B.E., 2008. The status of the world’s land and marine mammals: 

diversity, threat, and knowledge. Science (80-. ). 322, 225–230. 

https://doi.org/10.1126/science.1165115 

Shepard, D.B., Kuhns, A.R., Dreslik, M.J., Phillips, C.A., 2008. Roads as barriers to animal 

movement in fragmented landscapes. Anim. Conserv. 11, 288–296. 

https://doi.org/10.1111/j.1469-1795.2008.00183.x 

Soares-Filho, B., Rajão, R., Macedo, M., Carneiro, A., Costa, W., Coe, M., Rodrigues, H., 

Alencar, A., 2014. Cracking Brazil ’ s Forest Code. Science (80-. ). 344, 363–364. 

https://doi.org/10.1126/science.124663 

Sobral-Souza, T., Santos, J.P., Maldaner, M.E., Lima-Ribeiro, M.S., Ribeiro, M.C., 2021. 

EcoLand: A multiscale niche modelling framework to improve predictions on biodiversity 

and conservation. Perspect. Ecol. Conserv. https://doi.org/10.1016/j.pecon.2021.03.008 

Sowls, L.K., 1997. Javelinas and Other Peccaries, The W.L. Moody. 

Struve, J., Lorenzen, K., Blanchard, J., Börger, L., Bunnefeld, N., Edwards, C., Hortal, J., 

MacCall, A., Matthiopoulos, J., Moorter, B. Van, Ozgul, A., Royer, F., Singh, N., Yesson, 

C., Bernard, R., 2010. Lost in space? Searching for directions in the spatiaI modelling of 

individuals, populations and species ranges. Biol. Lett. 6, 575–578. 

https://doi.org/10.1098/rsbl.2010.0338 

Thornton, D., Reyna, R., Perera-Romero, L., Radachowsky, J., Hidalgo-Mihart, M.G., Garcia, R., 

McNab, R., Mcloughlin, L., Foster, R., Harmsen, B., Moreira-Ramírez, J.F., Diaz-Santos, F., 

Jordan, C., Salom-Pérez, R., Meyer, N., Castañeda, F., Valle, F.A.E., Santizo, G.P., Amit, 

R., Arroyo-Arce, S., Thomson, I., Moreno, R., Schank, C., Arroyo-Gerala, P., Bárcenas, H. 

V., Brenes-Mora, E., Calderón, A.P., Cove, M. V., Gomez-Hoyos, D., González-Maya, J., 

Jo
ur

na
l P

re
-p

ro
of



38 
 

Guy, D., Jiménez, G.H., Hofman, M., Kays, R., King, T., Menjivar, M.A.M., de la Maza, J., 

León-Pérez, R., Ramos, V.H., Rivero, M., Romo-Asunción, S., Juárez-López, R., la Cruz, 

A.J., de la Torre, J.A., Towns, V., Schipper, J., Reyes, H.O.P., Artavia, A., Hernández-Perez, 

E., Martínez, W., Urquhart, G.R., Quigley, H., Pardo, L.E., Sáenz, J.C., Sanchez, K., Polisar, 

J., 2020. Precipitous decline of white-lipped peccary populations in Mesoamerica. Biol. 

Conserv. 242, 108410. https://doi.org/10.1016/j.biocon.2020.108410 

Tuanmu, M.N., Jetz, W., 2015. A global, remote sensing-based characterization of terrestrial 

habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 

1329–1339. https://doi.org/10.1111/geb.12365 

Urban, M.C., 2015. Accelerating extinction risk from climate change. Science (80-. ). 348, 571–

573. https://doi.org/10.1126/science.aaa4984 

Valeriano, M. de M., Rossetti, D. de F., 2012. Topodata: Brazilian full coverage refinement of 

SRTM data. Appl. Geogr. 32, 300–309. https://doi.org/10.1016/j.apgeog.2011.05.004 

 

  

Jo
ur

na
l P

re
-p

ro
of



39 
 

Declaration of competing interest  

The authors declare that they have no known competing interests or personal relationships that 

could have appeared to influence the work reported in this paper. 

 

 

Jo
ur

na
l P

re
-p

ro
of




