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Abstract 31 

1. Identifying important sites for biodiversity is vital for conservation and management. However, there 32 

is a lack of accessible, easily-applied tools that enable practitioners to delineate important sites for 33 

highly mobile species using established criteria.  34 

2. We introduce the R package ‘track2KBA’, a tool to identify important sites at the population level using 35 

tracking data from individual animals based on three key steps: (1) identifying individual core areas, 36 

(2) assessing population-level representativeness of the sample, and (3) quantifying spatial overlap 37 

among individuals and scaling up to the population. 38 

3. We describe package functionality and exemplify its application using tracking data from three taxa in 39 

contrasting environments: a seal, a marine turtle, and a migratory land bird.  40 

4. This tool facilitates the delineation of sites of ecological relevance for diverse taxa and provides output 41 

useful for assessing their importance to a population or species, as in the Key Biodiversity Area (KBA) 42 

Standard. As such, ‘track2KBA’ can contribute directly to conservation planning at global and regional 43 

levels. 44 

 45 
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Introduction 52 

Site-based conservation is a key strategy for protecting biodiversity worldwide (Watson et al., 2014). 53 

However, to be effective, sites designated for protection must represent ecologically meaningful processes. 54 

Amid the rush to meet protected area coverage targets, there is a risk that governments protect spaces 55 

opportunistically where there are few competing interests, rather than where biodiversity is concentrated 56 

and at risk (Venter et al., 2018). Avoiding this scenario requires practical and accessible tools be made 57 

available to process ecological data for conservation planning. 58 

One method for assessing the importance of a site for biodiversity is to use systematic criteria, such as those 59 

of the Key Biodiversity Area (KBA) Standard (IUCN, 2016). Under such criteria, ecological data are used to 60 

assess whether a site contributes significantly to the persistence of biodiversity, which is useful for 61 

conservation planning and the design and evaluation of protected areas networks (Boucher et al., 2014). 62 

However, delineating ecologically relevant boundaries for sites that can be assessed against such criteria 63 

remains challenging, particularly for highly mobile species in habitats that are spatially dynamic or otherwise 64 

hard to map directly. Although there are many tools available to analyze tracking data (Joo et al., 2019),  65 

bespoke tools that enable the use of tracking data to identify important sites for biodiversity are lacking.  66 

We introduce the R package ‘track2KBA’, a tool for analyzing tracking data and deriving ecological 67 

information useful for (1) delineating important sites for local animal populations, and (2) assessing the 68 

importance of these sites against quantitative criteria of importance for regional or global biodiversity, such 69 

as the KBA Standard. The approach underlying ‘track2KBA’ was originally developed to identify marine 70 

Important Bird and Biodiversity Areas (mIBAs) for seabirds (Lascelles et al., 2016). Here, we exemplify 71 

applications of the method in three different taxa and environments: 1) Antarctic fur seals (Arctocephalus 72 

gazella) during the breeding season in the South Atlantic; 2) green sea turtles (Chelonia mydas) during the 73 

post-nesting period off the coast of West Africa, and 3) white storks (Ciconia ciconia) during migration 74 

between the breeding grounds in southern Europe and the wintering grounds in sub-Saharan Africa. 75 



Methods 76 

Package overview 77 

The R package ‘track2KBA’, based on the approach of Lascelles et al. 2016, has three key steps: (1) 78 

estimating individual core areas, (2) assessing sample representativeness, and (3) quantifying spatial overlap 79 

among individuals and scaling up to the population level. Four functions perform these key steps, and nine 80 

accessory functions are available for processing tracking data and plotting (Fig. 1, Table S1). See 81 

Supplementary Information S1 for a detailed description of the package workflow. 82 

Identify individual core areas 83 

In ‘track2KBA’, the space used during each independent tracking event is calculated using kernel density 84 

estimation (KDE). KDE is a non-parametric technique for deriving a probability surface, known as the 85 

utilization distribution (UD), from point data. When the input are animal locations regularly spaced in time, 86 

the UD represents the probability of an animal occurring in space (Worton, 1989). KDE was selected as the 87 

method to estimate space use given its accessibility and familiarity to a wide range of users, which facilitates 88 

the description and communication of the method to non-scientists, e.g., at policy fora (Lascelles et al., 89 

2016).  90 

UDs for several independent tracks can be derived using the function estSpaceUse. KDE requires the 91 

setting of a smoothing parameter (h, or ‘scale’ in package documentation) that affects kernel width and the 92 

resulting spatial estimate (Gitzen et al., 2006; see Supplementary Information S1B for details). When 93 

determining important sites for biodiversity, it is important that the results are not under- or over-94 

smoothed, and that the h value reflects both the resolution of the available data (i.e., larger h for coarser 95 

data) and the ecology of the study species (Lascelles et al., 2016). The function findScale calculates 96 

several candidate h values, allowing the user to select the most appropriate for the study organism and 97 

objective (Supplementary Information S1B); for central-place foragers, the functions tripSplit and 98 

tripSummary may be used to derive metrics to facilitate comparison between candidate h values. Once 99 



an h value is selected, it is important to consider 1) the resolution of the spatial grid used for KDE and 2) the 100 

probability quantile that reflects the core areas of the track (‘UDLev’); 50% is a standard choice, but in some 101 

cases other values may be more appropriate (Dias et al., 2018). 102 

Assess sample representativeness 103 

Whether a tracking dataset is representative of the distribution of the source population is fundamental to 104 

identifying areas of importance for population persistence (Lascelles et al., 2016). Therefore, a vital step in 105 

the ‘track2KBA’ workflow is to assess the degree of representativeness of the tracked sample using the 106 

repAssess function (Supplementary Information S1C). repAssess iteratively selects sub-samples of 107 

individual tracks, averages them into a pooled UD and outlines a desired quantile (e.g., 50%), and then 108 

calculates the proportion of out-of-sample tracking locations within the resulting area (i.e., ‘inclusion rate’). 109 

A non-linear least squares regression is fitted to the relationship between sample size and inclusion rate to 110 

project this rate until its asymptote (i.e., the sample size which fully represents the source population 111 

distribution) and calculate the degree to which the tracked sample represents the space use of the wider 112 

population. The inclusion rate at the maximum sample size should approximate the specified UD quantile 113 

when the tracked sample is fully representative (Supplementary Information S1C). repAssess returns the 114 

percent representativeness, the estimated asymptote, and estimates of the sample sizes needed to achieve 115 

70% and 95% representativeness.  116 

Population-scaling and site delineation 117 

The final step in the ‘track2KBA’ workflow is to delineate areas used by a substantial portion of the 118 

population, and produce quantitative information of site importance (Supplementary Information S1D). To 119 

delineate a candidate site, the function findSite calculates the proportion of individual core areas 120 

overlapping each grid cell and multiplies this by the proportional representativeness of the tracked sample. 121 

The result is a scaled estimate of the proportion of the source population that predictably uses each grid cell 122 

in the study region in the season of interest (Fig. S2). Potential important sites are then delineated by 123 

grouping together grid cells used by a threshold percentage of the source population (Fig. S2, Supplementary 124 



Information S1D). If the size of the source population is known or estimated, findSite multiplies the 125 

estimated proportion of the population using each grid cell by the population size to estimate the number of 126 

animals predictably using the candidate site; this is useful for assessing sites against standardized criteria, 127 

such as the KBA Standard (IUCN, 2016). 128 

Example applications 129 

We analyze data from three species to illustrate how ‘track2KBA’ can be used to identify important sites for 130 

populations of mobile animals. We emphasize that sites identified here are illustrative examples, not 131 

proposed sites for conservation. See Supplementary Information S2 for a walk-through with code and 132 

Supplementary Information S3 for further details. 133 

Antarctic fur seals 134 

Using tracking data from Antarctic fur seals from Bird Island, South Georgia we illustrate a typical workflow 135 

for deriving important sites for a population and their preliminary assessment against global KBA criteria. An 136 

estimated 64,545 female seals breed at Bird Island (Boyd, 1993), amounting to 8% of the global adult 137 

population. Using data from 117 females tracked during the breeding season, we identify important at-sea 138 

sites for this population and assess whether they might meet global KBA criteria (i.e., areas used predictably 139 

by ≥ 1% of global population under ‘Demographic aggregations’ Criterion D1a; IUCN, 2016). 140 

During the breeding season, female fur seals forage at sea and regularly return to suckle their pups on land. 141 

Using the function tripSplit, we split the tracking data into foraging trips, defines as periods of ≥ 12 h 142 

away from the colony at a distance of ≥ 5 km (Fig. 2A), and filtered out points falling within this radius 143 

(argument ‘rmNonTrip’).  We then calculated trip characteristics using the function tripSummary, which 144 

showed that seals travelled a mean maximum distance of 114 km (max 296 km) and spent a median of 5.6 145 

days (max 19.8 days) at sea per foraging trip. Next, we projected the tracks to a custom-centered equal-area 146 

projection with the function projectTracks, and estimated core areas (i.e., 50% UDs) for each individual 147 

seal using the function estSpaceUse with an h parameter value of 4.65 km (Fig. 2B). The h value was 148 



calculated using the function findScale and represents the log of the median foraging range (in km); this 149 

value was selected as it captured areas representing ecologically realistic estimates of the space in which 150 

individuals spent most of their time at sea (Fig. S1B). Using repAssess, we estimated the 151 

representativeness of this tracked sample for the distribution of the wider Bird Island population, obtaining a 152 

value of 96% (Fig. 2C).  153 

Next, we provided the individual core areas, the representativeness estimate, and the population size 154 

estimate as input to the function findSite and delineated sites used by at least 10% of the population 155 

(i.e., the default threshold when representativeness > 90%; Fig. 2D, Fig. S2). We identified an area of 1,576 156 

km2 to the north-west of South Georgia used by up to 23.6% (16,787 seals) of the female population (Fig. 3D, 157 

Fig. 4A). This translates to an estimated 1.7-2% of the 700,000-1,000,000  fur seals globally (Hofmeyr, 2016) 158 

that predictably use the site during breeding, potentially meeting the criteria for a global KBA under 159 

Criterion D1. 160 

Green turtles 161 

To demonstrate the utility of the package for a marine species when not foraging from a central place, we 162 

analyzed tracking data from green turtles at Poilão Island in the Bijagós archipelago of Guinea-Bissau. Poilão 163 

hosts one of the largest rookeries in the Atlantic (Catry et al., 2009), with an estimated laying population of 164 

18,573 females (Supplementary Information 3). After nesting, female green turtles disperse to foraging 165 

grounds where they feed and remain resident until the subsequent breeding event (Hamann et al., 2002). 166 

We used ‘track2KBA’ to identify core areas for 23 tracked females and assess the degree to which this 167 

sample captures the distribution of the adult female population during the post-nesting foraging period. For 168 

each individual, we estimated core areas (50% UD) using an h parameter of 2.18 km, which was the median 169 

of the reference bandwidth across individuals (Fig. S5A) and reflects an ecologically realistic scale for the 170 

species when foraging. 171 

Due to the broad area over which turtles disperse in the post-nesting period, and the restricted scale of their 172 

movement when foraging, the sample achieved only 32% representativeness and is therefore not considered 173 



representative of the population-level distribution. Given the low level of representativeness, no important 174 

sites for the source population were delineated. We estimated that 98 turtles would need to be tracked in 175 

order to achieve 70% representativeness, a level at which delineating important sites at the population level 176 

is more feasible (Lascelles et al., 2016). Nonetheless, we found overlapping core areas among the tracked 177 

individuals, indicating that important sites may be identifiable for this population with further data collection 178 

(Fig. 3B).  179 

White storks 180 

We used data from the population of white storks in Portugal to exemplify a use-case in a migratory system. 181 

Of the 46,027 white storks in Portugal, an estimated 26,196 migrate to sub-Saharan Africa and back each 182 

year (see Supplementary Information S3). During migration, white storks often aggregate in large numbers 183 

at stopover sites to refuel (Arizaga et al., 2018). We used ‘track2KBA’ to identify important stopover sites for 184 

this population on migration to and from sub-Saharan Africa, using the GPS tracks of 76 individuals.  185 

We estimated core areas (50% UD) for each individual using an h parameter of 7.5 km, which was 186 

determined as the median peak in the variance of the log First-Passage Time across individuals (Fig. S7A). 187 

This method identifies the spatial scale at which the birds are spending the most time (Fauchald and Tveraa, 188 

2003), which on migration should represent stopover sites. The estimated representativeness of the sample 189 

for migratory Portuguese white storks was 96% (Fig. S7B). 190 

We delineated nine stopover sites, covering areas of between 19 km2 and 1,150 km2 in Spain and Morocco, 191 

used by at least 10% of the Portuguese population of migrating white storks. Of these sites, four are 192 

predictably used by up to 8,600 (2 sites), 9,600, and 11,580 storks, respectively representing 18.7%, 20.9%, 193 

and 25.2% of the total Portuguese population (i.e., migratory and resident birds) of white storks.  194 

 195 

Conclusion 196 



Sites of importance for avian diversity (i.e., mIBAs) have been identified for seabirds across the world using 197 

this framework (Dias et al., 2018; Lascelles et al., 2016). Our example applications illustrate that, given a 198 

representative sample of the population-level distribution, this method can be used to identify important 199 

sites for species other than seabirds. ‘track2KBA’ facilitates application of the method across other 200 

vertebrate taxonomic groups, which could assist expansion of the taxonomic coverage of important areas 201 

and ultimately protected-area networks. 202 

For formal assessment of sites against global criteria, as in the KBA Standard, users must consult with the 203 

relevant body and additional steps may be required, such as consulting with relevant stakeholders to ensure 204 

that site boundaries reflect the management landscape. Users are encouraged to provide feedback about 205 

possible extensions to package functionality that may facilitate yet broader implementation of ‘track2KBA’. 206 
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Figures 267 

Fig. 1. Overiew of ‘track2KBA’ R package workflow for identifying important areas from tracking data. ‘Key 268 

steps’ are the essential functions for identifying and delineating areas of importance for biodiversity while 269 

‘Optional steps’ are case-dependent. 270 
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 275 

 276 

Fig. 2.  Example ‘track2kba’ output from a tracking data set of Antarctic fur seals from South Georgia. (A) 277 

Using function tripSplit, data from each individual is split into foraging trips. (B) With the 278 

estSpaceUse function, the core areas are estimated for each individual, with colors representing 279 

individuals. (C) The degree to which the tracked sample (n=117) represents the distribution of the source 280 

population is estimated using the repAssess function. The sample was estimated to achieve 96% 281 

representativeness. (D) Using the findSite function, a conservative scaling up to the population is made 282 

based on the representativeness and the sample-derived pattern of overlap. Areas used by a threshold 283 

proportion of the population are delineated; here areas within the red border are used by at least 10% of 284 

the local population of fur seals. 285 
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 289 

Fig. 3. Mapped results of ‘track2KBA’ tracking data analysis. (A) Areas used by at least 10% of the population 290 

of female Antarctic fur seals on Bird Island, South Georgia. (B) Areas used by female green turtles during 291 

post-nesting foraging in West Africa; areas shown reflect only overlap of the tracked individuals. (C) 292 

Stopover-sites used by 10% of white storks which migrate between Portugal and sub-Saharan Africa. Red 293 

diamonds signify the breeding colony or nesting beach. 294 
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