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Abstract: Sulforaphane (SFN), an isothiocyanate (ITCs) derived from glucosinolate that is found in 

cruciferous vegetables, has been reported to exert a promising anticancer effect in a substantial 

amount of scientific research. However, epidemical studies showed inconsistencies between cru-

ciferous vegetable intake and bladder cancer risk. In this study, human bladder cancer T24 cells 

were used as in vitro model for revealing the inhibitory effect and its potential mechanism of SFN 

on cell growth. Here, a low dose of SFN (2.5 µM) was shown to promote cell proliferation (5.18–

11.84%) and migration in T24 cells, whilst high doses of SFN (>10 µM) inhibited cell growth sig-

nificantly. The induction effect of SFN on nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expres-

sion at both low (2.5 µM) and high dose (10 µM) was characterized by a bell-shaped curve. Nrf2 

and glutathione (GSH) might be the underlying mechanism in the effect of SFN on T24 cell growth 

since Nrf2 siRNA and GSH-depleting agent L-Buthionine-sulfoximine abolished the effect of SFN 

on cell proliferation. In summary, the inhibitory effect of SFN on bladder cancer cell growth and 

migration is highly dependent on Nrf2-mediated GSH depletion and following production. These 

findings suggested that a higher dose of SFN is required for the prevention and treatment of 

bladder cancer. 
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1. Introduction 

Bladder cancer (BC) is the ninth most common cancer worldwide, with an estimated 

550,000 new cases and 200,000 deaths in 2018, and the incidence of this disease increases 

with age [1]. Approximately 75% of newly diagnosed BCs are noninvasive, and more 

than half of them have recurrence and progression despite local surgery; the remaining 

25% of the patients present with muscle invasion and often have poor outcomes despite 

systemic therapy [2]. 
Isothiocyanates (ITCs) are a class of well-known cancer-prevention phytochemicals 

derived from glucosinolates found in cruciferous vegetables such as broccoli, cauliflower 

and Brussel sprouts. The most extensively studied ITCs, for its protective effects 

demonstrated in various cell culture systems and animal models, is SFN 

(4-methylsulfinylbutyl isothiocyanate). Results from epidemiologic studies on BC inci-
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dence and survival support a protective effect of cruciferous vegetable intake. For exam-

ple, a strong and significant inverse association was observed between BC mortality and 

broccoli intake in a total of 239 BC patients after an average of 8 years of follow-up [3]. In 

a prospective study involving 47,909 men over 10 years, cruciferous vegetable consump-

tion was inversely associated with BC risk [4]. In another hospital-based case-control 

study involving 275 patients with primary BC and 825 individuals without cancer, there 

was a strong and statistically significant inverse association between the risk of BC and 

intake of raw cruciferous vegetables [5]. However, the results from epidemiologic studies 

were inconsistent. A meta-analysis of five cohorts and five case-control studies suggested 

that only a high intake of cruciferous vegetables was associated with the reduced risk of 

bladder cancer [6]. A prospective population-based cohort study of 82,002 Swedish 

women and men showed that no associations were observed between cruciferous vege-

tables and bladder cancer incidence [7]. In another prospective cohort study, there was 

also no association observed between cruciferous vegetable intake and bladder cancer 

risk in 27,111 male smokers aged 50–69 years over a median of 11 years follow-up [8]. 

Results from a meta-analysis of prospective cohort studies of 14 cohorts with 17 studies 

including 9,447 cases also suggested that there was no correlation between cruciferous 

vegetable intake and bladder cancer risk [9]. 

Despite mixed outcomes from epidemiologic studies, reports from animal studies 

have confirmed that SFN or SFN-containing broccoli sprout extract inhibit carcinogene-

sis, cancer development and/or progression in a wide variety of organs, including breast, 

colon, liver, stomach, prostate, and especially bladder [10–16]. Our previous results, both 

in vitro and in vivo, have also confirmed the inhibitory effect of SFN on bladder cancer 

[14,17–19]. 

The inhibitory effect of SFN on BC depends on its metabolic characteristic. After oral 

ingestion, ITCs are rapidly absorbed, metabolized, and almost exclusively excreted and 

concentrated in the urine. The most abundant ITCs metabolite is selectively accumulated 

in bladder tissue as NAC-ITC metabolite (mercapturic acid). As a result, the bladder ep-

ithelium, where the majority of the bladder cancer originates (90–95%), is the most ex-

posed tissue to the ITCs and their metabolites in vivo, due to the physiological storage of 

urine containing NAC-ITCs by bladder [20]. The metabolic characteristic suggests that 

dietary SFN is highly effective in defending against cancer in the bladder than in any 

other target organs [21]. The chemopreventive effects of the ITCs are traditionally at-

tributed to their ability to prevent tumorigenesis through enhancement of carcinogen 

detoxification by phase 2 detoxification; induction and the blocking of carcinogen acti-

vation by phase 1 inhibition; ITCs also inhibit tumor formation regulating cell prolifera-

tion and controlling cell migration [22]. The induction of phase 2 enzymes is strictly re-

lated to the translocation of the nuclear factor NF-E2–related factor 2 (Nrf2) into the nu-

cleus. Epidemiological studies aim to reveal the association between vegetable intake and 

disease risk in a population. These findings from epidemiological studies indicate a 

promising anticancer effect of SFN on BC, although there are some inconsistencies. 

Here, in this study, human bladder cancer T24 cell was used as an in vitro model in 

this study for maximizing the beneficial effects and revealing the potential of mechanism 

of SFN on cancer prevention or treatment therapy. Our results suggested that the inhib-

itory effect of SFN on cell proliferation and migration is highly dependent on the level of 

GSH depletion and the following production by Nrf2 translocation. 

2. Results 

2.1. Effect of SFN on Cell Growth and Migration in T24 Cells 

As shown in Figure 1A, T24 cell proliferation was increased by 5.18–11.84% after 

6–48 h SFN (2.5 µM) treatment. SFN was shown to have a significant inhibitory effect on 

T24 cell growth, particularly at concentrations between 10–160 µM after 24 and 48 h 

treatment. 
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In Figure 1B, SFN at 2.5 µM slightly increased cell migration in contrast with the 

control group. After treatment with SFN (10 and 20 µM) for 24 and 48 h, cellular migra-

tion was inhibited significantly (Figure 1C). As shown in Figure 1D, SFN at 2.5 µM in-

creased cell migration but not in a significant percentage in comparison with the control 

cells. SFN from 5 to 40 µM reduced the cell migration in a dose-dependent manner, with 

the most significant reduction observed at 20 and 40 µM, where cell migration was re-

duced by 60 and 80%, respectively. 
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Figure 1. Effects of SFN on cell viability and cell migration in T24 cells. (A) T24 cell viability was determined by MTT cell 

proliferation assay. T24 cells were treated with serial concentrations of SFN (2.5–160 µM) for 6, 24, and 48 h. Each data 

point represents the mean ± standard deviation (SD) of three experiments, and each treatment was performed in six rep-

licates. (B) Scratch assay. A plastic tip was used to scratch a clean wide wound area. Cells were then incubated with SFN 

for 24 and 48 h. Migration areas were photographed (×100) and calculated with Image J software (C). (D) Effects of SFN 

on cell migration. After starvation overnight, T24 cells were treated with SFN (0–40 μM) for 24 h. Cell migration was 

measured by cell migration assay. Results were compared to control. All data represent the mean ± SD of three experi-

ments, each treatment in six replicates. Statistical significance versus control: *P < 0.05, **P < 0.01. 

2.2. Effect of SFN on Nrf2 Expression and Cell Growth in T24 Cells 

Since the multi-functions of SFN primarily through Nrf2, we analyzed Nrf2 expres-

sion after treatment with serial concentrations of SFN. Compared with Nrf2 cytosolic 

protein expression (Figure 2A), Nrf2 nuclear expression increased significantly after SFN 

10 µM treatment (for 1–4 h). The maximum value of Nrf2 nuclear protein was observed 

after 4 h treatment (6.52-fold vs. control), then went down to 2.40-fold after 24 h treat-

ment. Results in Figure 2A showed a particularly high induction of Nrf2 nuclear protein 

after SFN 10 µM in the early response (1 and 4 h). Nrf2 nuclear fraction resulted in a sig-

nificant increase of 6.60 ± 1.80-fold compared to the control after 1 h treatment with SFN 
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(10 µM), and the maximum value of 8.10 ± 2.60-fold was observed after 4 h treatment. 

Treatment of 8–24 h SFN (10 µM) also showed induction of nuclear Nrf2, but at a slower 

rate. The values at 24 h were 3.60 ± 1.30-fold higher than the control (time 0). The analysis 

of both the cytosolic and the nuclear fractions of Nrf2 showed (Figure 2A) that the in-

duction of nuclear Nrf2 did not result in a corresponding increase in cytosolic Nrf2 ex-

pression. This observation confirms the active translocation of Nrf2 from the cytosol into 

the nucleus. 

In Figure 2B, Nrf2 nuclear protein expression was slightly increased after 2.5 µM 

SFN treatment in early response (1, 4, and 8 h). The maximum value of Nrf2 nuclear 

protein was observed after 4 h treatment (1.89 ± 0.45 vs. control). After 8 h treatment, the 

induction effect of SFN (2.5 µM) on Nrf2 nuclear protein expression went down to 1.09 ± 

0.25 for 12 h and 0.90 ± 0.13 for 24 h. Between 0 and 4 h (early response), SFN (both 2.5 

and 10 µM) increased the nuclear Nrf2 expression in a time-dependent manner; the late 

response was characterized by the induction of Nrf2 as well. 

 

Figure 2. Effect of SFN on Nrf2 expression and cell viability. (A) Effect of SFN (10 µM) on Nrf2 nuclear and cytosolic ex-

pression after treatment from 0 to 24 h. SAM68 was used as loading control for the nuclear fraction, β-Actin was used as 

loading control for the cytosolic fraction. (B) Nrf2 nuclear expression after SFN 2.5 µM treatment from 0 to 24 h. SAM68 

was used as a loading control for the nuclear fraction. (C) T24 cell viability was tested after treatment with 10 µM SFN 

from 0 to 24 h. All data represent the mean ± SD of three experiments in which each treatment was performed in six rep-

licates. Statistical significance versus control: *P < 0.05, **P < 0.01. 

To determine whether the early and late response of SFN on Nrf2 activation in rela-

tion to cell growth, cell viability was tested. In Figure 2C, cell proliferation was decreased 

by 5.45 to 18.11% when compared with the counterparts after treatment with SFN (10 

µM) for 0–24 h. 
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2.3. Effect of SFN on the Cellular Glutathione (GSH) Level in T24 Cells 

Cellular reduced GSH affects the accumulation of SFN in cells. It led us to examine 

whether the potency of SFN was similarly affected. The cells were exposed to increasing 

concentrations of SFN (5–20 µM) and exposure times (0–24 h). T24 cells were treated with 

SFN 5–20 µM. As shown in Figure 3A, the concentration of total GSH in T24 cells at time 

0 was 58.11 ± 0.55 nmol/mg. When T24 cells were treated with SFN for up to 24 h, the 

GSH concentration decreased in a time-dependent manner and reached a nadir of 22.33 ± 

3.30; 13.06 ± 1.50 and 9.54 ± 0.81 nmol/mg between 3–6 h respectively after 5, 10 and 20 

µM of SFN treatments (Figure 3A) and gradually increased to the control level at 12 h 

and 5–10 nmol/mg higher than the control at 24 h. Our results have demonstrated a 

completely different effect of SFN; at all the doses tested (5–20 µM), between the short 

exposition time (0–12 h, early response) and the long exposition time (12–24 h, late re-

sponse). From this result, the transient down-regulation of GSH, observed between 0–6 h 

(early response), can be associated with the formation of SFN-GSH adducts. After the 

transient decrease of intracellular GSH (0–6 h), the GSH level was reestablished within 12 

h, and above at 24 h. The concomitance between the down-regulation of GSH level (0–6 

h) and the strong induction of Nrf2 (0–4 h) suggests a probable connection between the 

two events. 

 

Figure 3. Effect of SFN on GSH synthesis by targeting Nrf2 and γ-GCS in T24 cells. (A) Cellular GSH concentrations in 

T24 cells exposed to SFN. Subconfluent T24 cells were treated with SFN 5–20 µM. At the indicated time (0–24 h), control 

cells and those treated with SFN 5–20 µM were derivatized and the samples analyzed by HPLC. The significant difference 

was reported *P < 0.05, **P < 0.01. (B) Cellular GSH levels in T24 cells exposed to L-Buthionine-sulfoximine (BSO) and 

SFN. T24 cells were incubated with dimethylsulphoxide (DMSO, vehicle) as control, SFN 10 µM and BSO 200 µM in co-

treatment and separately, for 24 h. GSH level was evaluated using HPLC method and has been expressed as nmol/mg of 

proteins. Significantly difference in GSH concentrations monitored in untreated cells (vehicle), **P < 0.01; significantly 
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difference in GSH concentrations monitored in SFN treated cells, ##P < 0.01. (C) Effect of SFN (10 µM) treatment on GSH 

level in Nrf2 and γ-Glutamylcysteine Synthetase (γ-GCS) suppressed T24 cells. T24 cells were treated with Nrf2 siRNA or 

γ-GCS siRNA, then treated with SFN (10 µM) for 3 h and 24 h. No transfected cells with DMSO (final concentration 0.1%) 

for 3 h and 24 h were used as a vehicle. Cells transfected with AllStar siRNA and then treated with SFN 10 µM for 3 h and 

24 h were used as negative control. Results are mean ± SD of 3 samples. A significant change from basal level is indicated 

with **P < 0.01, # P< 0.05 is significantly different in GSH level at 24 h for Nrf2 siRNA and γ-GCS siRNA treatment 

compared with the AllStar group. 

2.4. Effect of γ-GCS on SFN-Induced GSH Increase 

Given that SFN is capable of stimulating GSH synthesis in T24 cells, we tested 

whether the mechanism involved was dependent on γ-GCS induction; a key enzyme in 

glutathione biosynthesis regulated at the transcriptional level by Nrf2. To this aim, cells 

were co-treated with the SFN (10 µM) and a GSH-depleting agent BSO, a specific inhib-

itor of γ-GCS at 200 µM. The results showed that BSO alone was able to reduce signifi-

cantly intracellular GSH content by 75% while SFN treatment alone increased GSH con-

tent. Interestingly, BSO and SFN co-treatment reduced GSH level by 95% at 24 h. These 

results support the main role of γ-GCS in SFN-induced GSH increase at 24 h (Figure 3B). 

As is known, Nrf2 can regulate the expression of more than 200 genes that contain 

an antioxidant response element (ARE) in their promoter region, such as phase 2 en-

zymes, redox-active proteins, GSH-related enzymes, and several other novel enzymes 

recently identified [23]. Next, since we found that SFN induced the activation of Nrf2, we 

decided to knock out Nrf2 and evaluated the effect on GSH. To further understand the 

molecular mechanism through which ITCs modulate GSH level, we knocked down the 

expression of Nrf2 and γ-GCS in T24 cells. Nrf2 and γ-GCS silencing in T24 cells resulted 

in a severe depletion of GSH concentration after 3 h treatment with SFN 10 µM (early 

response); this depletion, as shown in Figure 3C, was significant (P < 0.01) compared with 

the control but not significant if compared with the negative control (AllStar transfected 

cells). A significant difference in GSH concentration was evident after SFN 10 µM treat-

ment for 24 h (late response), in fact, at this time point (24 h), the GSH concentrations, 

after siNrf2 or siGCS transfection and treatment with SFN 10 µM, appeared significantly 

lower compared to control cells transfected with AllStar and treated with SFN 10 µM as 

well (Figure 3C). These results showed the effective capacity of SFN (10 µM) to reestab-

lish the GSH level within 12 h, and further increased beyond the control after 24 h 

treatment. The mechanism lies in the activation of Nrf2 translocation and induction of the 

expression of GSH-related genes, promoting the production of GSH. In contrast, when 

Nrf2 and γ-GCS were silenced, GSH was not reestablished. 

2.5. Effect of SFN on UDP-glucuronosyltransferase (UGT) and Cyclooxygenase-2 (COX-2) Ex-

pression in T24 Cells 

To evaluate the effect of SFN on phase 2 enzyme expression, we measured UGT 

protein expression after exposing cells to SFN (2.5, 5, 10 and 20 µM) treatment for 6 and 

24 h. As shown in Figure 4A, there was a dose-dependent inductive effect of SFN on UGT 

protein expression. A significant increase was particularly evident when cells were 

treated with SFN of 5, 10 and 20 µM. When Nrf2 was knocked down using siRNA, the 

SFN-induced UGT expression was abolished (data not shown). 

COX-2, an important enzyme in the synthesis of prostaglandin from arachidonic 

acid, is inducible in response to cytokines, mitogens, growth factors, and tumor promot-

ers. In the present study, we evaluated the effect of SFN (2.5. 5, 10 and 20 µM) on COX-2 

expression in T24 cells after 6 and 24 h treatments. As shown in Figure 4C, COX-2 ex-

pression was shown with no significant changes after 6 h treatment (2.5, 5, 10 and 20 µM). 

As reported in Figure 4C, SFN down regulated COX-2 protein expression in a 

dose-dependent manner after treatment with SFN (2.5, 5, 10 and 20 µM) for 24 h. A sig-

nificant decrement of COX-2 expression was evident when cells treated with SFN 10 and 

20 µM for 24 h, with a reduction of the protein expression from 49.89 to 90% (Figure 4C, 
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4D). However, knockdown of Nrf2 using siRNA did not affect the down-regulation effect 

of SFN on COX-2 expression (data not shown). 

Figure 4. Effect of SFN on UGT and COX-2 expression in T24 cells. (A,B) Effect of SFN on UGT protein expression after 

treatment for 6 and 24 h. T24 cells were treated with SFN (2.5, 5, 10 and 20 µM) for 6 and 24 h. (C,D) Effect of SFN on 

COX-2 protein expression after treatment for 6 and 24 h. T24 cells were treated with SFN (2.5, 5, 10 and 20 µM) for 6 and 

24 h. Data were normalized for β-Actin, and reported as fold variation with respect to the Vehicle group. Statistical sig-

nificance versus control: *P < 0.05, **P < 0.01. 

2.6. Effect of SFN on Nrf2 Expression and Cell Growth by Targeting γ-GCS 

The results in Figure 3B,C confirmed that the role of γ-GCS in SFN-induced GSH. 

Here, BSO was used to examine the expression of Nrf2, UGT, and COX-2 and its role in 

cell proliferation. As shown in Figure 5A, nuclear Nrf2 expression was increased by 

3.75-fold after 10 µM SFN treatment, whereas no significant change was observed in the 

BSO + SFN treatment group when compared with the control group. The expression of 

UGT was increased by 1.94 and 1.73-fold in SFN and BSO + SFN treatment group. COX-2 

expression was decreased by 0.23-fold after 10 µM SFN treatment for 24 h. BSO treatment 

decreased COX-2 expression by 0.47-fold. In Figure 5D, cell growth was inhibited by 

42.84% after SFN treatment, whereas the number was decreased to 35.58% in BSO + SFN 

treatment group. For BSO treatment only, cell proliferation rate was decreased to 70.47% 

compared with the control group. 

All the results suggest that the effect of SFN on bladder cancer cell growth and mi-

gration is probably attributable to Nrf2-mediated GSH production and phase 2 enzyme 

expression. 
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Figure 5. Effect of SFN on the expression of Nrf2 and UGT and cell viability by targeting γ-GCS. T24 cells were incubated 

with SFN 10 µM and BSO 200 µM in co-treatment and separately for 24 h. Cells were treated with 0.1% DMSO as control. 

(A) Nrf2 nuclear expression in T24 cells exposed to BSO and SFN. SAM68 was used as a loading control. (B) UGT and 

COX-2 expression in T24 cells exposed to BSO and SFN. β-actin was used as loading control. (C) After treatment with 

BSO or SFN, cells were photographed with a microscope (×100). (D) After treatment with BSO or SFN, T24 cell viability 

was determined by MTT cell proliferation assay. **P < 0.01 is represented with a significant difference compared with 

untreated cells (the Vehicle group). Statistical significance versus SFN treatment: #P < 0.05, ##P < 0.01. 

3. Discussion 

The present findings show that low doses of SFN activate cell proliferation and high 

doses decrease cell viability and migration. Nrf2 activation and GSH level might play a 

key role in the effect of SFN on cell proliferation. On the basis of these findings, our re-

sults imply that a higher dose of SFN is required for the prevention and treatment of 

bladder cancer. 

The epidemiological evidence with respect to the consumption of cruciferous vege-

tables against bladder cancer is inconsistent. The results from some epidemiological 

studies suggested that a high ITCs intake is associated with decreased risk of bladder 

cancer [4,24]. Our previous results from in vitro cell models show that a low dose of SFN 

promotes several types of cancer cell growth, including liver and colon cancer [23]. A low 

dose of ITCs that promotes cancer cell growth may help to explain the inconsistent re-

sults in epidemiological studies [25]. For the majority of the population, the plasma con-

centration of ITCs is probably to be much lower than sub-µM. Plasma ITCs can be im-

proved by taking supplements and increasing intake. So, a relatively high dose of SFN is 

needed to achieve its beneficial effect in cancer chemoprevention or treatment. 

Here, the results from cell viability and migration revealed the characteristic 

bell-shaped curve identified as early and late response effect of SFN on Nrf2 expression 
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(Figure 1). SFN (2.5 and 10 µM) increased nuclear Nrf2 expression in a manner of an early 

and late response effect (Figure 2A&B). Nrf2 is a major regulator of cell survival [26,27]. 

Corresponding to the early and late response of SFN on Nrf2 expression, the transient 

down-regulation of GSH was observed between 0–6 h (early response) and then 

up-regulation of GSH level during 12–24 h (Figure 3). It was demonstrated that ITCs in-

tracellular accumulation is dependent on the intracellular GSH level [28,29], and also it 

was demonstrated that SFN rapidly conjugates with GSH causing a transient GSH de-

pletion [30]. However, our results have also shown that after the transient decrease of 

intracellular GSH (0–6h), the GSH level was re-established within 12 h, and then in-

creased at 24 h. 

Phase 2 enzymes, for example, UGT, is shown characteristically with both an early 

and late response, which significantly increased after treatment with SFN for 6 and 24 h 

(Figure 4A). A large body of literature suggests that COX-2 is overexpressed in human 

bladder cancer and is closely related to the progression, prognosis, and recurrence of 

bladder cancer [31,32]. COX-2, a key mediator in inflammation, promotes reactive oxy-

gen species (ROS) production and shifts redox state in cells [33]. Here, COX-2 expression 

shows with late response only after SFN treatment since it is unchanged at the time point 

of 6 h. Our previous results suggested that p38 MAPK activation, not Nrf2, is essential in 

SFN-mediated COX-2 expression [19]. 

Results show that Nrf2 expression and its induction effect on GSH is pivotal in the 

inhibitory effect of SFN on bladder cancer cell growth by using Nrf2 siRNA and 

GSH-depleting agent BSO (Figures 3 and 5). SFN is able to react with free thiols and 

consequently, once into the cell, it reacts with glutathione causing a transient intracellular 

alteration of the GSH:GSSG ratio. This, in turn, produces a redox stress and a marked 

GSH depletion within the first 4 h after SFN treatment. In terms of eliciting an adaptive 

response and then Nrf2 activation to such stress, SFN directly forms adducts with cys-

teines in Keap1 causing a covalent modification of Keap1 that prevents its binding with 

Nrf2 or indirectly induces oxidative modifications on Keap1 through intracellular GSH 

depletion [34]. Enzyme γ-GCS, the rate limiting step in GSH synthesis, is regulated at 

transcriptional level by Nrf2. Nrf2 mediated γ-GCS gene expression leading to elevate 

GSH levels. Nrf2 once migrates into the nucleus, binds with the ARE sequence and in-

duces the synthesis of the Nrf2 dependent enzymes such as γ-GCS that reestablish the 

GSH level between 12–24 h, finally, cell growth is inhibited. The mechanistic profile of 

SFN on cell growth is summarized in Figure 6. The results from Edward and co-workers 

suggest that Nrf2 related pathway provides an explanation for its dose responses in in-

flammatory degenerative diseases, which is quite consistent with our findings [35]. 

In conclusion, our data provide evidence that SFN is a promising and complicated 

pleiotropic chemopreventive and therapeutic agent for bladder cancer. The chemopre-

ventive effect can be optimally achieved by frequent consumption of isothiocyanates at 

relatively high concentrations. Nrf2 expression and GSH production may contribute to 

the inhibitory effect of SFN on bladder cancer cell growth. Further work should be war-

ranted to study the effect of ITCs/ SFN on cell growth in vivo for maximizing the benefi-

cial effects and minimizing the potential risks of ITCs in cancer management. 
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Figure 6. A proposed mechanism of the inhibitory effects of SFN on cell growth and migration. 

4. Materials and Methods 

4.1. Experiment Reagents 

Sulforaphane was purchased from Toronto Research Chemicals (Toronto, Canada). 

Sodium/Mc selenite, DMSO, BSO, and Bradford reagent were all purchased from Sigma 

(Dorset, UK). Protease inhibitor cocktail tablets were obtained from Roche Applied Sci-

ence (UK). RPMI-1640 medium was purchased from Invitrogen Corporation (UK). An-

tibodies against Nrf2 (Catalog No.13032), Sam68 (Catalog No.333), COX-2 (Catalog 

No.376861), UGT (Catalog No.271268), β-actin (Catalog No.7210) were all purchased 

from Santa Cruz Biotechnology (Santa Cruz, Heidelberg, Germany). The nuclear Extrac-

tion Kit was purchased from Active Motif® International (UK). Electrophoresis and 

Western blotting supplies were obtained from Bio-Rad (Hertfordshire, UK). The HiPer-

fection Transfection Reagent Kit was purchased from QIAGEN® (west Sussex, UK), Nrf-2 

siRNA (ID 115764) was obtained from Applied Biosystems (Manchester, UK). 

4.2. Cell Culture 

Human bladder cancer T24 cells were obtained from the European Collection of 

Cell Cultures (ECACC) and grown in RPMI-1640 medium supplemented with 10% (v/v) 

heat-inactivated fetal bovine serum, 1% Penicillin/Streptomycin (5000 U), and 1% 

L-Glutamine (200 mM). Cells were grown in a humidified atmosphere (37 °C, 5% CO2). In 

this study, all treatments and controls contained a final DMSO concentration of 0.1%. 
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4.3. Cell Viability Assay 

The MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) cell pro-

liferation assay was employed to detect the toxicity of SFN (2.5–40 μM) in T24 cells. T24 

cells were seeded in a 96 well plate at 5.0 × 103/well, and incubated for 48 h. After being 

treated and incubated with SFN for 6, 24 and 48 h, MTT reagent 10 µL/100 µL per well 

(final concentration 0.5 mg/mL, mix with fresh medium) were added to the 96 well 

plates. Incubate at 37 ℃ for 1 h. Then, extracted the medium by using a pump and 

re-suspended with DMSO. The final absorbance in the well was recorded using a micro-

plate reader (BMG Labtech Ltd., Bucks, UK) at a test wavelength of 570 nm and a refer-

ence wavelength of 670 nm, and IC50 was calculated using software Calcusyn (Biosoft, 

Cambridge, UK). 

4.4. Scratch Assay 

T24 cells were seeded in 12 well plates at 0.3 × 106 cells/well in a final volume of 1 

mL. The day after, when reaching ~90–100% confluence, without changing the medium, 

gently and slowly, with a 1 mL pipette tip, the monolayer was scratched across the center 

of the well in a long-axial line creating a gap. To remove the detached cells, each well was 

gently washed twice with prewarmed medium. The medium containing SFN (2.5–20 

μM) or DMSO 0.1% (vehicle), was added. Cells were incubated for 24 or 48 h. Three 

photographs were made for each well (top, center and bottom). Image J software was 

used for measuring the scratch width, three measurements for each photograph were 

made (top, center, and bottom) and results expressed as an average of these three meas-

urements. Results were shown as a percentage of wound closure. 

4.5. Cell Migration Assay 

Cell migration was quantified using a ThinCert cell culture inserts cell migration 

assay (Greiner Bio-One Ltd., Kremsmünster, Austria). After overnight starvation in se-

rum-free medium, cells were treated with various concentrations of SFN for 24 h, the cells 

migrating through a PET membrane were labeled fluorescently with Calcein-AM and 

quantified by microplate reader (BMG Labtech Ltd., Aylesbury, UK) with an excitation 

wavelength of 485 nm and emission wavelength of 525 nm. 

4.6. Protein Extraction and Western Blot Analysis 

For protein isolation, cells were seeded in a 6-well plate at 1 × 105/ mL or 10 cm 

dishes at 5 × 105/ mL in triplicate. T24 cells were harvested and washed with cooled PBS. 

Nuclear and cytoplasmic extractions were isolated using the Active Motif® Nuclear Ex-

traction Kit, following the manufacturer’s instructions. For total protein, cells were 

washed twice with ice-cold PBS, incubated in 20 mM Tris-HCl buffer (pH 8.0), 2 mM 

EDTA, 150 M NaCl, and 10% glycerol; 7 × protease inhibitor solution for 30 min at 4 °C. A 

sterile cell scraper was used to scrape the cells off the plate, gently transferred into 

pre-cooled Eppendorf tubes, centrifuged at 13,000 × g, for 15 min at 4°C. Pro-

tein-containing supernatant was collected for each sample and stored at −80 °C. The 

protein concentration was determined by Brilliant Blue G dye-binding assay of Bradford 

using bovine serum albumin as a standard. 

The protein extractions (10–40 μg) were run in 10% SDS-polyacrylamide gel elec-

trophoresis (SDS-PAGE). The resolved protein bands were transferred onto PVDF 

membranes (Bio-Rad, Hertfordshire, UK) using a semi-dry transfer system. The mem-

branes were blocked with 5% fat-free dry milk in PBS (pH 7.4) containing 0.1% Tween-20 

for 30 min at room temperature, followed by incubation with primary antibodies 

(working dilution 1:1000) in PBS overnight at 4 °C. The targeted protein was visualized 

with an enhanced chemiluminescent system (GE Healthcare, Little Chalfont, UK) or 

Odyssey system according to the manufacturer’s instructions. 
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4.7. HPLC Analysis of Intracellular GSH 

T24 cells were seeded in six-well plates at 1 × 105 cells/well in a final volume of 3 mL 

and then were treated with SFN (5–20 μM) or vehicle DMSO (0.1% as control). After 

treatment, cells were counted and collected. Then, cells were resuspended in 75 μL di-

ethylenetriaminepentaacetic acid (DPTA) and 300 μL of 50 mM methanesulfonic acid 

(MSA), and transferred into 1.5 mL Eppendorf tubes and stored in −80 °C. The samples 

(GSH-containing supernatants) were subjected to three freeze-thaw cycles alternating 

between −80 °C and 37 °C heat block for 6 min each time and vortexed, then collected the 

supernatant after centrifuged. Quantification was performed using Bradford assay. To 

compare the results with an accurate standard curve, four standards samples (20, 10, 5, 

1.25 µg/mL) were prepared from a 1 mg/mL GSH stock solution. A premix buffer (25 μL), 

prepared by mixing 10 µL of 0.5 M HEPEs, 1 µL 0.5 M EDTA, 1.5 µL of 1 M NaOH, 2 µL 

of 0.1 M mBBr, and 10.5 μL of Acetonitrile (100%), was added to 75 μL of each sample, 

vortexed immediately and incubated for 15 min in the dark at room temperature. MSA 

was added to acidify the samples. GSH-mBBr adduct was measured by HPLC, chroma-

tographic separating was achieved using a Synergi Hydro-RP vs. Luna® C18 4.6 × 150 

mm, 5 μm, 100 A column (Phenomenex) equilibrated at 37°C with solvent A: 90% Milli Q 

water in methanol containing 0.25% (v/v) acetic acid, adjusted to pH 4 with NaOH. Sam-

ples were eluted with a gradient of Solvent B (90% Methanol) at a 1.0 mL /min flow rate 

as follows: 0-10 min, 0% Solvent B; 10–11 min, 50 % Solvent B; and 11–15 min, 100% Sol-

vent B, 16–20 min, 0% Solvent B; followed by equilibration and re-injection. Detection 

was carried out with a Jasco fluorescence detector with excitation at 385 nm and emission 

at 460 nm, and a gain of 1 × GSmB eluted at 7.1 min, and was quantified against a stand-

ard curve. The level of GSH was expressed as nmol/mg of cellular soluble protein. 

4.8. Knockdown Gene by siRNA 

The siRNAs of Nrf2 and γ-GCS sequences, were obtained from Applied Biosystems. 

T24 cells were seeded in 6 well plates at 2 × 105 cells/well in a final volume of 3 mL of 

growth medium, then transfected with siRNA (10 nM) for Nrf2 or AllStars (negative 

control, that has no homology to any known mammalian gene) for 24 h following the 

manufacturer’s instructions. 

4.9. Statistical Analysis 

Data were represented as the mean ± SD. One-way ANOVA with Tukey’s post 

hoc analysis was used to assess multiple groups when all or many groups pairwise 

comparisons were of interest. A P value < 0.05 as considered statically significant. 
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