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Generating neutron-star magnetic fields: three dynamo phases

S. K. Lander?

School of Physics, University of East Anglia, Norwich, NR4 7TJ, U.K.

25 July 2021

ABSTRACT
Young neutron stars (NSs) havemagnetic fields in the range 1012−1015 G, believed to be generated by dynamo
action at birth. We argue that such a dynamo is actually too inefficient to explain the strongest of these fields.
Dynamo action in the mature star is also unlikely. Instead we propose a promising new precession-driven
dynamo and examine its basic properties, as well as arguing for a revised mean-field approach to NS dynamos.
The precession-driven dynamo could also play a role in field generation in main-sequence stars.
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1 INTRODUCTION

The strongest long-livedmagnetic fields B in theUniverse are hosted
by neutron stars (NSs), with inferred external dipole fields Bdip up to
1015 G in strength, but usually considerably weaker. For older NSs
some of this variability can be attributed to accretion or field evolu-
tion, but even among young NSs the variation is huge: for example,
the Crab pulsar and the magnetar SGR 1806-20 are both around
1000 yr old, but the former has Bdip = 3.8 × 1012 G and the latter
Bdip ≈ (0.8− 2) × 1015 G. The physics that leads to some NSs – but
not others – having Bdip ∼ 1015 G is still poorly understood, despite
being of interest both on theoretical grounds, and for observed as-
trophysical phenomena. For example, early generation of a strong B
is essential for leading models of superluminous supernovae, γ-ray
bursts and afterglows (Zhang & Mészáros 2001; Thompson et al.
2004), and might result in the star emitting detectable gravitational
radiation (Stella et al. 2005).

The simplest explanation for NS magnetism is that it is a ‘fos-
sil’, inherited from the degenerate iron core of its progenitor star.
Magnetic flux scales with the square of the stellar radius R∗; as-
suming this is conserved in the compression of a typical progenitor
(R∗ ∼ 106 km) to NS proportions (R∗ ∼ 10 km) yields a factor-1010

amplification of B. One can thus account for the highest B in NSs,
since there do indeed exist main-sequence stars with B up to ∼ 104

G (Landstreet 1992; Donati & Landstreet 2009) – although the ac-
tual amplification factor will be less than 1010, since only the flux
of the progenitor’s iron core is inherited by the NS. Immediately
before collapse this core has a radius ∼ 3000 km (Sukhbold et al.
2016), so within the fossil field scenario its B would in some cases
be as high as (10/3000)2 × 1015 G = 1010 G. NS magnetic fields
are unlikely to be fossils, however, for at least two reasons: there
appear to be too few suitable progenitors to explain the likely mag-
netar birth rate (Makarenko et al. 2021); and the violent dynamics
in which a NS is born will not leave B unaffected.

? samuel.lander@uea.ac.uk

If B is not a fossil, then, it must be amplified after birth to the
kind of strengths we see. Large-scale efficient amplification of B
requires a dynamo: a mechanism for converting kinetic energy of
(generally) small-scale fluid motions to magnetic energy (Moffatt
1978; Rincon 2019). NSs have extremely low electrical resistivity
η, and so field lines are ‘frozen’ into the fluid. A dynamo exploits
this: any field lines threading a fluid element are stretched as the
fluid moves, thus increasing the magnetic energy. At the same time,
this amplified and distorted field needs η , 0 in order to reconnect
in its new geometry. We will show that reconnection is particularly
difficult in the unique physical conditions of a NS.

Here we assess the possibility of dynamo action in a NS during
three different phases of its life, with a view to understand how and
when its intense B is generated. We argue for a revision of dynamo
theory for this problem, show how the usual scenario for magnetic-
field generation in NSs may not work, and present a promising new
alternative.

2 PHASE 1: THE HOT CONVECTIVE STAR

In its very early life a NS experiences differential rotation (e.g.
Janka & Moenchmeyer (1989)), a consequence of the approximate
conservation of angular momentum of cylindrical shells of matter
during core collapse. In addition, its outer half will be convectively
unstable (Epstein 1979). These are just the ingredients needed for
dynamo action, with the prospect of amplifying the star’s large-
scale B up to ∼ 1015 G by drawing on kinetic energy from turbulent
motions (Thompson & Duncan 1993).

A stellar dynamo involves dynamics over a wide range of
lengthscales, from R∗ down to a typically microscopic scale re-
lated to e.g. damping/reconnection, making it intractable to study
without some kind of approximation. One either attempts a high-
resolution direct numerical simulation, hoping that the unresolvable
fine lengthscales are not essential for the dynamo, or uses lower res-
olution with a method to explicitly account for the effect of the
subgrid physics. Studies of magnetic-field generation often employ
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mean-field theory (Krause & Raedler 1980), an averaging proce-
dure in which B and the velocity v are split into large-scale mean-
averaged quantities, and small-scale fluctuating/stochastic terms.
Only the former (here denotedwith overbars) directly enter the field-
evolution equations, with the influence of the latter felt through a
dynamo closure relation – essentially an assumption about the form
the small-scale v × B term takes upon mean-averaging. In particu-
lar, turbulent convection is accounted for through an additional ‘α
effect’ term in the mean-B evolution:

∂B̄

∂t
= ∇ ×

[
v̄ × B̄ + αB̄ − η∇ × B̄

]
(1)

(a similar result may be derived in general relativity;
Bucciantini & Del Zanna (2013)). B can be amplified through the
joint action of turbulent convection with differential rotation – an
‘α −Ω dynamo’ – or by convection alone through an ‘α2 dynamo’.
Evolving the mean-field equations, Bonanno et al. (2003) find that
the dominant dynamo effect for a proto-NS seems to vary with
rotation rate. Recent direct numerical simulations give additional
information: that although the highest B are generated in rapidly-
rotating models (Raynaud et al. 2020), some dynamo activity is still
present at slower rotation (Masada et al. 2020).

Two dimensionless numbers are key to understanding NS dy-
namos: the magnetic Reynolds and magnetic Prandtl numbers,
Rm and Prm respectively. Rm ≡ vcharlchar/η gives the ratio of
advection to diffusion of B by the flow (where vchar and lchar
are the characteristic velocity and lengthscale of the flow), and
Prm ≡ νs/η shows the relative importance of kinematic shear vis-
cosity νs to resistivity in dissipating energy of the magnetised
fluid. In a young NS1 η is primarily due to electron-proton scat-
tering, with a typical value of 10−6 − 10−4 cm2s−1 (Baym et al.
1969; Raynaud et al. 2020). The main contribution to νs changes
depending on whether the stellar matter has cooled enough to be
neutrino-transparent, a transition that occurs within a minute from
birth. If so, neutron-neutron scattering dominates and ≈ 1 cm2s−1

(Cutler & Lindblom1987); if not, neutrino-nucleon scattering dom-
inates, leading to a much higher νs ≈ 108 cm2s−1 (Keil et al. 1996).
The latter, neutrino-opaque, regime is relevant for a proto-NS, and
so Prm ∼ 1013. To find Rm we follow Thompson & Duncan (1993)
and take vchar = 108cm s−1, lchar = 105cm, yielding Rm ∼ 1017.

The best-understood dynamos are ‘slow’, with growth rates
that tend to zero as Rm → ∞. ‘Fast’ dynamos, by constrast, still
generate B in this limit, even if they cannot be truly non-diffusive
(Moffatt & Proctor 1985); the archetypical example is the stretch-
twist-fold dynamo (Vaĭnshteĭn & Zel’dovich 1972). Rigorous anal-
ysis is difficult, but any dynamo in aNSmust – given their enormous
Rm – be fast, so we will assume that results for both fast and high-
Rm dynamos (in principle distinct notions) are relevant here.

Any dynamo has to create magnetic flux more quickly than
it is dissipated, suggesting that a large Rm is helpful – but the
huge values associated with proto NSs in particular are, in fact,
problematic. At least some such dynamos involve chaotic fluid mo-
tions that result in fractally-distributed B with a strongly fluctuating
direction (Finn & Ott 1988); reconnection could then cause local
cancellations of parallel and antiparallel field vectors, leaving a
weak large-scale B. Indeed, Vainshtein & Cattaneo (1992) found
that high-Rm dynamos saturate at values of flux too low to explain
typical astrophysical B. A related concern is how a large-scale B

1 Throughout this paper, unless stated otherwise, we report typical numer-
ical values for a proto-NS core, with ρ ≈ 1014g cm−3, T ≈ 1010 − 1011 K.

can be rearranged, given that the low η suggests a microscopic re-
connection scale. This was allayed by Lazarian & Vishniac (1999),
who showed that high-Rm MHD turbulence with a weak stochas-
tic component does allow for fast reconnection of the large-scale
B – and Parker (1992) argues that fast reconnection in turn sup-
ports a fast dynamo. Furthermore, an inverse cascade effect can
convert small-scale helicity into large-scale B (Frisch et al. 1975;
Brandenburg 2001). Together, these studies give confidence in the
ability of high-Rm dynamos to amplify large-scale B, and also sug-
gest that numerical simulations of astrophysical dynamos – which
necessarily employ unphysically small Rm– are nonetheless faithful
to the astrophysical phenomena they intend to represent.

Key to these results, however, is that Prm is small, as is the case
for non-degenerate stars but emphatically not for NSs. At large Prm
turbulence will tend to be viscously smoothed out on lengthscales
longer than those on which reconnection takes place. This causes a
reduction in reconnection speed by a factor (Jafari et al. 2018)

Pr−1/2
m

1 + ln(Prm)
(2)

compared with the Prm = 1 case; for a proto-NS the reduction factor
is 108, and the effect on dynamo actionmay be similarly deleterious.
In addition, at large Prm the inverse cascade effect is replaced by
a ‘reversed dynamo’, in which conversion of magnetic to kinetic
energy occurs at short lengthscales (Brandenburg & Rempel 2019),
potentially thwarting efficient large-scale field amplification.

Pessimistically, one could therefore envisage that whilst a real
proto-NS dynamo amplifies a small-scale multidirectional B, this is
then substantially annulled as it slowly reconnects, never managing
to amplify the large-scale B. Furthermore, the work of Jafari et al.
(2018) and Brandenburg & Rempel (2019) suggests that typical
proto-NS dynamo simulations – in which Rm, Prm are factors of
∼ 1016, 1011 (respectively) too small – may not be representative of
the real system2.

These issues would vex not only the convective dynamo,
but also any other field-amplification mechanism during this
phase: e.g. one driven by the magneto-rotational instability
(Obergaulinger et al. 2009; Sawai et al. 2013; Mösta et al. 2015;
Reboul-Salze et al. 2021) or the Tayler-Spruit dynamo (Spruit
2002).

How can we understand the details of a proto-NS dynamo, if
realistic Rm and Prm values are unattainable in a numerical ap-
proach? One possibility could be evolutions employing a revised
mean-field dynamo that reflects the unique small-scale conditions
of a high-Rm, high-Prm dynamo through a suitable closure relation.
It is known that such conditions tend to produce a field concen-
trated into flux ropes (Galloway et al. 1978), which is analogous to
a similar problem in the context of a mature NS core, where type-II
superconductivity quantises the local field into thin fluxtubes. The
global magnetic-field evolution of this latter problem has been stud-
ied in some detail (Mendell 1998; Graber et al. 2015), and provides
a promising starting point for revising the NS dynamo equations.

2 Some such simulations (e.g. Mösta et al. (2015)) evolve the ideal MHD
(η = 0) equations, relying on the unphysical artefact of numerical resistivity
to provide reconnection. These ‘ideal’ simulations therefore have dissipation
on the grid spacing (103+ cm) and so an effective Rm≪ 1017.
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Three NS dynamo phases 3

3 PHASE 2: THEWARM PRECESSING STAR

Precession was originally proposed as a possible mechanism for
driving the geodynamo (Bullard 1949; Malkus 1968), and both
numerical models (Tilgner 2005, 2007; Wu & Roberts 2009) and
laboratory experiments (Giesecke et al. 2018) have established its
viability for amplifying B; in all cases a solid boundary precesses
and drives internal fluid motion. Precession consists of a vector sum
of rotations about two axes:

Ω = Ω0 +Ωp (3)

whereΩ0,Ωp are the primary and secondary rotations. In literature
on fluid dynamics, the ratio of these two is often called the Poincaré
number Po = Ωp/Ω0, with a typical value being Po = 0.1.

A NS can undergo free precession (i.e. no external driving
force) due to the presence of a distortion misaligned from Ω0 by
some angle χ. Often this is assumed to be an elastic asymmetry in
the star’s solid crust (Jones & Andersson 2001), but by the time the
star has cooled enough for this to form, dynamo action may well be
totally suppressed, as discussed later.

Here we describe a new precession-driven dynamo that can
operate in an entirely fluid body, applying the idea to a young NS. It
uses the key result that the star’s B always induces some distortion
(or ‘rigidity’) εB ∝ B2 that is typically misaligned fromΩ0 by some
angle χ and thus drives precession (Spitzer 1958).

A dominantly poloidal (toroidal) field induces an oblate (pro-
late) distortion. The two cases have different minimum-energy
states: χ = 0◦ (90◦) for an oblate (prolate) body. Now, once the
proto-NS phase has finished it is likely that differential rotation will
have wound up the birth B to leave a strong toroidal component
Btor roughly symmetric about Ω0 (i.e. χ ≈ 0◦ afterwards). We will
therefore regard this Btor component as dominant, so that the star
has a tendency for χ to increase towards its minimum-energy state
of χ = 90◦, and so to precess spontaneously. Purely toroidal fields
are, however, unstable (Tayler 1973) – and so we assume the pres-
ence of a poloidal component Bpol weak enough to be neglected in
the first instance, but strong enough to stabilise the overall B. Using
a solution for εB of a toroidal field (Lander & Jones 2009), we may
then calculate:

Po =
Ωp
Ω0
=
Ω0 |εB | cos χ

Ω0
= 3 × 10−6

(
Btor

1015 G

)2
cos χ, (4)

clearly far smaller than in the fluid-dynamics context.
Understanding how long the precession phase lasts requires

a more detailed look at the dynamics of a young magnetised NS.
Although its bulk motion is precession, within the star this must
be supported by a complicated field of hydromagnetic motions Ûξ
(Mestel & Takhar 1972), with the first self-consistent solution be-
ing found by Lander & Jones (2017). Secular viscous damping of Ûξ
reduces the precessional kinetic energy, and thus causes the evolu-
tion of χ towards 90◦ for our assumed dominantly-toroidal B (Jones
1975). Solutions of the coupled Ω − χ differential equations indi-
cate that the phase of increasing χ happens around 100 s after birth,
when the temperature T ∼ 1010 K (Lander & Jones 2020).

Precession alone can amplify both components of B, but since
we anticipate that Btor will already be large, we are most interested
in how much Bpol (potentially considerably weaker) can catch up.
Bpol is also the field component that extends beyond the star, con-
necting to the surface dipole value Bdip we estimate from NS spin-
down, and whose factor-1000 range of strengths we wish to explain.
The convection-like structure of Ûξ (see fig. 8 from Lander & Jones
(2017)) is already promising for dynamo action: simulations of

fully-convective M stars show that the interplay of (uniform) rota-
tion with relatively slow convection can lead to a strong large-scale
axisymmetric B (Browning 2008).

To understand the effect of possible precession-driven dy-
namo action on Bpol, we imagine taking the stellar model of
Lander & Jones (2017) (precessing, with a toroidal background
field) and adding a seed poloidal field Bseed, which will be pas-
sively advected by the fluid motion (on large scales given by Ûξ ,
and on small scales probably turbulent, given the large Reynolds
number vcharlchar/νs ∼ 108). Bpol thus undergoes a kind of forced
precession analogous to the set-up in previous work on precession-
driven dynamos. This is a reasonable first approximation as long as
Bpol is small enough for the overall magnetic distortion to remain
prolate, and for the effect on Ûξ to be negligible.

As a first step towards understanding this dynamo scenario, we
will take the standard approach of considering its initial kinematic
phase, where one can assume that a turbulent v drivesmagnetic-field
amplification, but without considering the Lorentz force associated
with this newly-created B. The small-scale turbulent v averages to
the fluid precession solution discussed above, v̄ = Ûξ , and in the
kinematic limit the induction equation becomes:

∂B̄

∂t
= ∇ ×

[ Ûξ × B̄ − η∇ × B̄
]
. (5)

We plug into this equation an ansatz of an exponentially-growing
mode, Bpol(r, t) = Bseed(r)et/τamp , where τamp the field amplifica-
tion timescale. This yields:

1
τamp

Bseed = ∇ × ( Ûξ × Bseed) − ∇ × (η∇ × Bseed) (6)

– an eigenvalue problem for 1/τamp, which we assume admits solu-
tions with positive real part, corresponding to exponential (dynamo)
growth of Bpol. In such analysis one generally finds that dynamo
action is only possible above a certain Rm, but η is so small for NS
matter that this will not be a limiting factor, and in this kinematic
phase may be neglected. Now rearranging eq. (6) and using scalings
from Lander & Jones (2017), we find that:

τamp =
B2

seed
Bseed · [∇ × ( Ûξ × Bseed)]

∼ lchar
νR∗εΩεB cos χ

, (7)

where ν = Ω/2π is the rotation rate in Hz and εΩ the centrifugal
distortion. For a given seed field we can quantitatively calculate
τamp, since we also know Ûξ (Lander & Jones 2017). Bseed is proba-
bly highly model-dependent, however, so to maintain generality we
will instead use the above approximation in terms of lchar.

We need τamp to be short compared with the duration τχ of
the precession phase, which in our scenario is set by damping of Ûξ
due to bulk viscosity. This effect is sensitive toΩ, B and T , but once
T . 1010 K the limiting case given by eq. 61 of Lander & Jones
(2018) becomes increasingly accurate. Using this result and eq. (7),
we arrive at the following criterion for significant dynamo action:

1 .
τχ

τamp
≈ 20

(
1 cm
lchar

) ( ν

100Hz

) (
1010 K

T

)6 (
Btor

1015 G

)4

× sin2 χ cos χ. (8)

Wefirst note that if other quantities are close to the fiducial valueswe
use, lchar . 20 cm is required for an effective dynamo. Although the
ratio increases rapidly for cooler stellar models, dynamo action will
be stifled for T . 109 K when the core becomes superconducting;
see next section. It is noteworthy that the dynamo depends only
linearly on rotation, but strongly on Btor – which suggests that
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Figure 1. The maximum lengthscale (colourscale; in cm) on which the
precession-driven dynamo is effective, for a parameter space of models with
different Btor, ν0 as shown.

slight variations in (e.g.) the birth differential rotation couldmanifest
themselves as the kind of factor-1000 differences we infer in Bdip.

As a more quantitative complement to eq. (8), let us demand
τχ = τamp and rearrange eq. (7) to give an expression for the thresh-
old lchar = l∗char for an effective dynamo, as a function of τχ,Ω, χ.
From the results of self-consistent time-evolutions of the coupled
Ω − χ equations (Lander & Jones 2020) we find τχ and Ω, χ time-
averaged over the χ-evolution phase, for models with different Btor
and birth rotational frequency ν0

3. From these quantities we calcu-
late l∗char, plotting the results in fig. 1. For a wide range of models we
find l∗char = 1 − 50 cm, in broad agreement with eq. (8). Generally
speaking l∗char is proportional to ν0 and Btor, as seen from the diago-
nal contours, but for Btor > 1014 G the relationship ismore complex:
l∗char is larger than expected for low ν0, and smaller than expected
for high ν0. This is a manifestation of the nontrivial behaviour of
viscous damping during the precession phase (Dall’Osso & Perna
2017; Lander & Jones 2018).

Dynamo action could end either through the usual mechanism
of saturation – a backreaction of the newly-created B on the flow
generating it – or by precession ceasing, as reflected in the trigono-
metric dependences in τχ/τamp. The latter scenario will occur for
χ → 90◦ (if Btor remains dominant) or χ → 0◦ (if the newly-
created Bpol grows to become dominant, or if the star’s external
alignment torque is enhanced, e.g. by fallback matter). The most
optimistic scenario would be for Bpol to grow large enough to ar-
rest the evolution of χ at some intermediate angle, prolonging the
precession phase and therefore the dynamo. Since this process ul-
timately taps rotational energy Erot, a firm upper limit Bmax for
the increase in average B-field strength is given by equating its
associated energy with Erot and rearranging:

Bmax =

√
8πErot

4πR3
∗/3
≈ 4 × 1015

( ν

100 Hz

)
G. (9)

Let us assume, as before, that the dynamo acts to amplify Bdip,
since Btor is already large. Then the above estimate suggests that
it is plausible to amplify a very weak Bdip to magnetar strength,
but reaching the value Bmax would need ideal conditions. If the
dynamo is ineffective, the resulting star would still have a strong
Btor but a more typical pulsar-like Bdip ∼ 1012 G. We argued in the
last section that a birth dynamo may be inhibited at high Prm. Why

3 Using Bdip = 0.01Btor, alignment torque prefactor k = 2, and defining
τχ as the era for which 2◦ < χ < 88◦.

should this precession-driven dynamo fare any better? Firstly, since
vchar = Ûξ ∼ 10 − 103 cm s−1 is not so high (Lander & Jones 2018),
Rm is a comparatively modest ≈ 1012 for the precession phase.
Perhaps more importantly though,

Prm = 2 × 105(T/1010 K)−4 ≈ 104 − 106 (10)

in this case (combining results from Baym et al. (1969) and
Cutler & Lindblom (1987)). Note that we calculate Prm using shear
viscosity and not the far stronger bulk viscosity; typically it is shear-
ing rather than compressional motions that drive dynamo action.
The above Prm will still substantially slow down reconnection, but
by a factor 103 (using eq. (2)) rather than the proto-NS’s 108. Fur-
thermore, since the precession phase typically lasts a factor 100+
longer than the convective phase4, there is also less urgency for
reconnection and an inverse cascade to amplify B.

4 PHASE 3: THE COLD SUPERCONDUCTING STAR

Very little work has considered the possibility of magnetic-field
generation in the core of a mature NS, mainly because it seems
unlikely the star undergoes the kind of fluid motion needed for a
dynamo – it is, for example, not convectively unstable. Differential
rotation might, however, persist into this late phase (Melatos 2012),
and if χ is not very close to 0◦ or 90◦ precession is also possible.

If suitable fluid motions exist, the main obstacle to late-stage
dynamo action is superconductivity of the core’s protons. The criti-
cal temperature for NS superconductivity is density-dependent and
poorly constrained, but generally in the range (1 − 6) × 109 K. At
an age of roughly a month to a year, most of a NS’s core will have
cooled sufficiently to be superconducting (Ho et al. 2015).

Intrinsic to dynamo action is that on small enough scales
magnetic-field lines must reconnect. In contrast with the case of
normally-conducting matter, the field lines in the type-II supercon-
ducting NS core are associated with distinct physical structures:
fluxtubes. In their equilibrium state these form an Abrikosov lattice
with spacing of 3.5 × 10−10(B/1012 G)−1/2 cm (Mendell 1998).
Although our understanding of the physics of B in the supercon-
ducting core is still rudimentary, the dissipation (and therefore re-
connection) timescale is expected to be substantially longer than
in the normally-conducting state (Baym et al. 1969). The energy
penalty for breaking a fluxtube and the distinct inter-fluxtube spac-
ing both hinder reconnection, which we believe will only happen
at the crust-core boundary, where superconductivity ceases. As a
result, dynamo action within the core seems unlikely. A dim pos-
sibility remains, however, that fluid motions could act to bunch up
fluxtubes enough for superconductivity to be destroyed locally, thus
allowing for a dynamo in some region of limited size.

5 OUTLOOK

We have argued that powerful amplification of a NS’s large-scale
B is difficult during both its birth and mature phases. Although the
conditions in a proto-NS superficially resemble those of a classic
dynamo, the high values of Rm and Prm may lead to qualitatively
different – and ineffectual – action. If so, proto-NSs would never at-
tainmagnetar-strength Bdip, casting doubt on the viability of various
models for e.g. γ-ray bursts and their afterglow light curves.

4 Using the code from Lander & Jones (2020) for typical magnetar param-
eters; for extremely high Ω the precession phase is shortened.
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Magnetic-field amplification is required at some stage, how-
ever, and this paper introduces a potentially promising new mecha-
nism for doing so: a precession-driven dynamo acting ∼ 100 s after
birth. This could bypass some of the problems associated with the
proto-NS phase, may be a universal feature of a NS’s early evolu-
tion, and can naturally explain the observed large variation of Bdip
in young NSs. If χ evolution stalls once the dynamo stops, there
is an intriguing possibility of inferring a NS’s internal magnetic-
field geometry (whether it is dominantly poloidal or toroidal) from
measurements of its present-day χ.

The ideas outlined here are, however, clearly preliminary. They
could become considerablymore plausible throughwork on two key
issues: the hydromagnetic dynamics of the precession phase, and
the development of B during and beyond the kinematic phase of the
dynamo. Both of these will require numerical simulations.

There are a number of hints fromobservations that amagnetar’s
interior field may be considerably stronger than its external one:
Makishima et al. (2021) argue that long-term modulation in the
pulse profile of a few magnetars can be explained by precession,
if Btor ≈ 1016 G ≈ 100Bdip, and Granot et al. (2017) suggests
that Btor & 30Bdip for the magnetar Swift J1834.9-0846. If Btor is
so high, equation (8) suggests that amplification of Bdip during a
precession-driven dynamo should have been relatively efficient, but
the observed Bdip ≈ 1014 G are rather lower than expected values of
Bmax from equation (9). One possibility is that the dynamo saturates
for a poloidal field of ∼ 1014 G.

The puzzling nature of the central compact objects, very young
NSs with Bdip ∼ 1010 K (Halpern & Gotthelf 2010), could be in-
terpreted as the result of a failed precession-driven dynamo. Even if
Btor = 1015 G, say, χ could be kept small by a strong torque due to
fallback matter, thus limiting any precession-driven amplification
of Bdip; if so, the χ of these objects should still be small today.

Previous work on precession-driven dynamos has focussed on
a fluid coupled to a precessing container; in the context of the
Earth, its crust. By contrast, we have argued that a similar effect
could act in a magnetised fluid star, and therefore many of the ideas
presented here could also be viable for explaining long-term field
(re)generation in main-sequence oblique rotators.
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