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Abstract. We give a topological proof that a free inverse monoid on one or more generators
is neither of type left-FP2 nor right-FP2. This strengthens a classical result of Schein that such
monoids are not finitely presented as monoids.

Given how easy it is to prove that a group G is finitely presented as a group if and only if
it is finitely presented as a monoid, it is rather surprising that the same result does not hold
for inverse monoids. Indeed it is a classical result of Schein [13] that free inverse monoids on a
non-empty set of generators are not finitely presented as monoids.

Our goal in this paper is to prove the following stronger result about free inverse monoids.

Theorem 1. A free inverse monoid on one or more generators is neither of type left-FP2 nor
right-FP2.

The free inverse monoid is an object of central importance in inverse semigroup theory. Recall
that an inverse monoid is a monoid S with the property that for every element s ∈ S there is a
unique t ∈ S such that sts = s and tst = t. The element t is called the inverse of s and is usually
denoted t = s−1. Since every group clearly satisfies this property, inverse monoids form a class of
structures that lies between groups and arbitrary monoids. As explained in [7], inverse monoids
arise naturally in mathematics when studying partial symmetries of structures. Inverse monoids
form a variety of algebras, in the sense of universal algebra, and as a consequence it follows
that free inverse monoids exist; see [4, Exercise 1.1.20]. Free inverse monoids were studied in
detail in classical work of Munn [8] and Scheiblich [12]. As we will explain in more detail below,
it follows from that work that the word problem is decidable for free inverse monoids. For a
general introduction to the theory of inverse monoids, including proofs of the basic facts about
inverse monoids mentioned above, we refer the reader to [5, Chapter 5] and [7].

Recall that a monoid M is said to be of type left-FPn if there is a projective resolution
P = (Pi)i≥0 of the trivial left ZM -module Z such that Pi is finitely generated for i ≤ n. There
is a dual notion of right-FPn, and we say a monoid is of type FPn if it is both of type left- and
right-FPn. It is well known (see e.g. [9]) that every finitely presented monoid is of type left-
and right-FP2. Hence an immediate corollary of Theorem 1 is Schein’s theorem [13] that free
inverse monoids on a non-empty set of generators are not finitely presented.

Corollary 2. Free inverse monoids on one or more generators are not finitely presented.

Since inverse monoids are isomorphic to their duals, it suffices to show that M is not of
type left-FP2, which henceforth shall be called simply FP2. Pride [11] showed that the class of
monoids of type FP2 is closed under taking retracts. Since the free monogenic inverse monoid
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2 FREE INVERSE MONOIDS

M is a retract of any free inverse monoid on a non-empty set of generators, it suffices to prove
that M is not of type FP2. Here, an inverse monoid is called monogenic if it is generated by a
single element.

Theorem 3. The free monogenic inverse monoid is not of type FP2.

Before proving this result we briefly review some facts about free inverse monoids and the
representation of their elements via Munn trees. For a full account of this theory we refer the
reader to [7, Chapter 6]. Let X be a non-empty set and let X−1 be a set disjoint from X and
in bijective correspondence with X via x 7→ x−1. The free inverse monoid FIM(X) is defined
to be Y ∗/ρ where Y = X ∪X−1 and ρ is the congruence generated by the set

{(ww−1w,w) : w ∈ Y ∗} ∪ {(ww−1zz−1, zz−1ww−1) : w, z ∈ Y ∗}.

Recall that a congruence η on a monoid S is an equivalence relation on S that is compatible with
multiplication in the sense that (s, t), (s′, t′) ∈ η implies (ss′, tt′) ∈ η for all s, s′, t, t′ ∈ S. Also,
for any relation σ on S, the congruence generated by σ is the intersection of all congruences on
S containing σ, that is, it is the smallest congruence on S containing σ.

For each word u ∈ Y ∗ we associate a tree MT(u), called the Munn tree, of u where u is
obtained by tracing the word u in the Cayley graph Γ(FG(X)) of the free group FG(X) with
respect to the generating set X. So MT(u) is a finite birooted subtree of Γ(FG(X)) with initial
vertex (also called in-vertex) 1 and terminal vertex (also called out-vertex) the reduced form
red(u) of the word u in the free group. Here we use 1 to denote the empty word which is the
identity element of FG(x). Munn’s solution to the word problem in FIM(X) says that u = v
in FIM(X) if and only if MT(u) = MT(v) as birooted trees. For a detailed explanation of
free inverse monoids and the theory of Munn trees we refer the reader to [4, Chapter 2] and
also [10, Chapter VIII, Section 3]. In this paper we will only be concerned with the special case
of the free monogenic inverse monoid, that is, the inverse monoid FIM(X) with |X| = 1. This
monoid is considered in detail in [10, Chapter IX, Section 1] where several different constructions
of this monoid are exhibited. For the convenience of the reader, we will give full details below of
the theory of Munn trees, and how it can be used to solve the word problem, in the particular
case of the free monogenic inverse monoid.

So, let us now turn our attention to the special case of the free monogenic inverse monoid
and the proof of Theorem 3. For the remainder of this article, let M denote the free monogenic
inverse monoid. Let x be the free generator of M and to simplify notation let y denote its
inverse y = x−1. Given two words w1, w2 ∈ {x, y}∗ we shall write w1 ≡ w2 to denote that w1

and w2 are equal as words in the free monoid {x, y}∗.
Following [10, Chapter VIII] we shall now explain how to determine when two words w1, w2 ∈

{x, y}∗ are equal in the free monogenic inverse monoid M . In the usual way we identify the
elements of the free group FG(x) with the freely reduced words over {x, x−1} so FG(x) = {xi :
i ∈ Z}. For any word w ∈ {x, y}∗ we use red(w) to denote the reduced word obtained by freely
reducing the word w in the free group FG(x). For example red(xyxyxx) = red(xx−1xx−1xx) =
x2 while red(xyyy) = red(xx−1x−1x−1) = x−2. Also, for any word w ∈ {x, y}∗ we use pref(w)
to denote the set of all prefixes of the word w in {x, y}∗. Here u ∈ {x, y}∗ is a prefix of
w ∈ {x, y}∗ if w ≡ uv for some word v ∈ {x, y}∗. Furthermore, for each w ∈ {x, y}∗ we define

Pw = {red(u) : u is a prefix of w} ⊆ FG(x).

For example if w = xyyxxxy then

Pw = {1, red(x), red(xy), red(xyy), red(xyyx), red(xyyxx), red(xyyxxx), red(xyyxxxy)}
= {1, x, 1, x−1, 1, x, x2, x}
= {xi : −1 ≤ i ≤ 2}.

Note that in this example Pw is a prefix closed subset of the free group FG(x), that is, it is
a set of the form {xi : m ≤ i ≤ n} for some m ≤ 0 and n ≥ 0. In fact, it follows from the
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definition that for any word w ∈ {x, y}∗ the set Pw is a prefix closed subset of FG(x). Also
note that by definition red(w) ∈ Pw for every w ∈ {x, y}∗. Thus using these definitions we see
that for each word w ∈ {x, y}∗ we can associate a pair (Pw, red(w)) where Pw is a prefix closed
subset of FG(x) and red(w) ∈ Pw. The following result shows that two words give rise to the
same pair if and only if they represent the same element of the free monogenic inverse monoid
M . We refer the reader to [10, Construction VIII 1.2 and Theorem VIII 1.5] for a proof of this
result.

Lemma 4. Let w1, w2 ∈ {x, y}∗. Then w1 = w2 in the free monogenic inverse monoid M if
and only if (Pw1 , red(w1)) = (Pw2 , red(w2)).

In fact, the proof of [10, Theorem VIII 1.5] shows that the map w 7→ (Pw, red(w)) defines a
surjection from {x, y}∗ to the set of all pairs (P, t) where P is a finite prefix closed subset of
FG(x) and t ∈ P . Hence this map defines a bijection between elements of the free monogenic
inverse monoid M and the set of all such pairs (P, t).

When doing computations in the free monogenic inverse monoid M rather than computing
the pairs (Pw1 , w1) and (Pw2 , w2) each time we want to see whether two words w1 and w2 are
equal in M , it is usually easier to think in terms of Munn trees, as we now explain. For any
word w ∈ {x, y}∗ the Munn tree MT(w) of w is defined to be the subgraph of the Cayley
graph of FG(x) (with respect to the generating set {x, x−1}) induced on the set Pw. The
Munn tree MT(w) also comes with two distinguished vertices, the initial vertex (also called
in-vertex) which in this formulation of Munn trees we will always set to be the vertex 1, and
the terminal vertex (also called out-vertex) which we set to be red(w). Hence the Munn MT(w)
of a word w is a finite connected induced subgraph of the Cayley graph of the free group FG(x)
containing the vertex 1, with initial vertex 1 and terminal vertex red(w). In terms of Munn
trees, Lemma 4 says that two words w1 and w2 are equal in M if their Munn trees are equal,
meaning that their Munn trees have equal vertex sets Pw1 = Pw2 , and have equal terminal
vertices red(w1) = red(w2).

The intuition behind the Munn tree MT(w) of a word w ∈ {x, y}∗ is that we start at the
vertex 1 in the Cayley graph of FG(x) and we follow the walk in this Cayley graph labelled by
the word w. If we visualise the Cayley graph of FG(x) drawn in the plane as follows

x−4 x−2 x−2 x−1 1 x x2 x3 x4

then to compute MT(w) where w ∈ {x, y}∗ we start at 1, then we read the word w one letter
at a time from left to right. When we read an x we take one step to the right in the Cayley
graph (corresponding to right multiplication by x) and whenever we read a y we take one step
left in the Cayley graph (corresponding to right multiplication by x−1 = y). As we trace out
this walk, we keep a record of the set of all the vertices that were visited during the walk, this
is the set Pw, and we keep a record of the final vertex of the walk, this is the terminal vertex
which is equal to red(w).

For example if w = xyyxxxy, which is the word we considered in an earlier example above
when we defined Pw, then the Munn tree is obtained by starting at 1 in the Cayley graph of
FG(x), taking one step right (reading x), then two steps left (reading yy), then three steps
right (reading xxx), followed finally by one last step left (reading the final letter y of the word
w). Tracing out this walk in the Cayley graph of FG(x) and recording the terminal vertex
red(w) = x we see that the Munn tree of this word w = xyyxxxy is

x−1 1 x x2

where the initial vertex of this Munn tree is 1 and the terminal vertex of this Munn tree is
x which is coloured in black. Note that this Munn tree does indeed have vertex set Pw and
terminal vertex red(w). Comparing this with the calculation we made above of Pw for this word
w = xyyxxxy one can see that the computation of the set Pw is exactly the same as recording
the vertices visited by the walk labelled by the word w.
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Thinking in terms of Munn trees gives a useful way of checking whether two words are equal
in the free monogenic inverse monoid M . For example, continuing with the above example,
if we want to prove that the equality w1 = w2 holds in M where w1 ≡ xyyxxxy and w2 ≡
xxyyyxxxy, then we can either compute the sets Pw1 and Pw2 and verify that (Pw1 , red(w1)) =
(Pw2 , red(w2)), or equivalently we can compute the Munn tree for the word w2 just as we did
for the word w1 above and observe that both Munn trees have the same vertex set, and the
same terminal vertex. This is true since if we start at 1 and read the word w2 it says take two
steps right in the Cayley graph of FG(x) (reading xx), then three steps left (reading yyy), then
three steps right (reading xxx), then finally take one step left (reading the last letter y of w2).
The set of vertices visited by this walk is {x−1, 1, x, x2} and the terminal vertex of the walk is
x. Hence we obtain the same Munn tree as we computed for the word w1 above. This proves
that xyyxxxy = xxyyyxxxy in the free monogenic inverse monoid M . Throughout this article
we will use this method to prove equalities between words in the free monogenic inverse monoid
M .

Recall that if S is a monoid and A ⊆ S, then the (right) Cayley digraph Γ(S,A) of S with
respect to A is the graph with vertex set S and with edges in bijection with S × A where
the directed edge (arc) corresponding to (s, a) starts at s and ends at sa. Let Γ be the Cayley
digraph of the free monogenic inverse monoid M with respect to the generating set {x, y} where
y = x−1. Then M acts on the left of Γ by cellular mappings. The augmented cellular chain
complex of Γ gives a partial resolution of the trivial module

C1(Γ)
d1−−→ C0(Γ)

ε−→ Z −→ 0.

Moreover, since the vertices of Γ form a free M -set on 1 generator (the vertex 1) and the edges

form a free M -set on 2 generators (the arrows 1
x−−→ x and 1

y−→ y), this is, in fact, a partial free
resolution which is finitely generated in each degree. Therefore, if M is of type FP2, we must
have that ker d1 = H1(Γ) is finitely generated as a ZM -module (by [1, Proposition VIII.4.3]).
So our goal now is to show that H1(Γ) is not finitely generated as a ZM -module. We remark
that H1(Γ) is isomorphic as a ZM -module to the relation module of M in the sense of Ivanov [6];
see [3, Section 6].

If p is a path in Γ, there is a corresponding element p of C1(Γ) which is the weighted sum of
the edges traversed by p, where an edge receives a weight of n− k if it is traversed n times in
the forward direction and k times in the reverse direction.

If T is a spanning tree for Γ (and we will choose a particular one shortly), then H1(Γ) is a free
abelian group with a basis in bijection with the directed edges of Γ\T . If v, w are vertices, then
[v, w] will denote the geodesic in T from v to w. The basis element be of H1(Γ) corresponding to

a directed edge e of Γ \T is [1, ι(e)]e[1, τ(e)]−1 where ι, τ denote the initial and terminal vertex
functions, respectively. If p is a closed path in Γ, then the homology class of p is the weighted
sum of the basis elements be where the weight of be is n− k with n the number of traversals of
e by p in the forward direction and k the number of traversals in the reverse direction.

We now use the theory of Munn trees for M described above to identify a prefix-closed set of
normal form words for the elements of the free monogenic inverse monoid M , which we will use
to define our spanning tree. Recall from above that these Munn trees are finite connected prefix
closed subgraphs of the Cayley graph of FG(x). To obtain normal forms for these Munn trees
the idea is that, starting at 1, we first sweep to the right in the Munn-tree as far as possible,
then to the left as far as possible, and then, if necessary, back to the right. This leads to the set
of normal form words in the following lemma where we end up with two families of normal form
words which correspond to whether or not the Munn tree contains negative powers of x. See
Figure 1 for one example of each kind of normal form word. We note that the normal form we
give in this lemma closely relates to a normal form for elements of free inverse monoids using
a left-right-left sweep defined by Gluskin in [2].
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1 x x2 x3 x4 x5 x−2 x−1 1 x x2 x3 x4

Figure 1. The Munn tree on the left has normal form x5y3, while the Munn
tree on the right has normal form x4y6x3. In each example, the in-vertex is the
identity 1 of the free group FG(x) and the out-vertex is coloured in black.

xn−k 1 x x2 xn xn+1

Figure 2. The Munn tree used in the proof of Lemma 6 part (1) to show that
xnykxk+1 = xn+1yk+1xk+1 in M for k > n ≥ 0. The in-vertex is 1 and the
out-vertex is xn+1 which is coloured in black.

Lemma 5. The set of elements of the forms xnyk with 0 ≤ k ≤ n and xnykxj with 0 ≤ n < k
and 0 ≤ j ≤ k constitute a prefix-closed set of normal forms for M .

Proof. This normal form is essentially the dual of the normal form established in [10, IX.1.5
Proposition]. For the convenience of the reader we provide a proof here. From the results on
Munn trees and the free monogenic inverse monoid above we see that there are two kinds of
Munn trees: those whose vertex set contains negative powers of x, and those whose vertex set
does not. We consider each case separately.

First consider a Munn tree which does not contain negative powers of x. So this Munn tree
has vertex set {xi : 0 ≤ i ≤ n} for some n and terminal vertex in this set which we can write
as xn−k where 0 ≤ k ≤ n. We can read this Munn tree starting at 1, then reading right until
the largest power xn in the vertex set, and then reading left and stopping when we reach the
terminal vertex xn−k. This reading of the Munn tree gives the word xnyk with 0 ≤ k ≤ n.
Clearly distinct choices of n and k give distinct Munn trees.

On the other hand, given a Munn tree which does contain negative powers of x we can
read the Munn tree by starting at 1, reading right and stopping at the rightmost vertex xn,
then reading left to the leftmost vertex xn−k with k > n, and then finally reading right up
until the terminal vertex xn−k+j where 0 ≤ j ≤ k. So this is the Munn tree with vertex set
{xi : n−k ≤ i ≤ n} and terminal vertex xn−k+j . This reading of this Munn tree gives the word
xnykxj with 0 ≤ n < k and 0 ≤ j ≤ k. Clearly, distinct choices of the parameters n, k and j
give rise to distinct Munn trees.

This completes the proof that these words constitute a set of normal forms for the free
monogenic inverse monoid M . Finally, it is immediate from the definition that any prefix of
one of these normal form words is again one of these normal form words. �

Since the set of normal forms in Lemma 5 is prefix-closed it defines a spanning tree of the
Cayley graph Γ of M . Let T be the spanning tree of Γ corresponding to the set of normal

forms in Lemma 5. Hence for any edge w1
z−−→ w2 from Γ, where w1 and w2 are both normal

form words and z ∈ {x, y}, this edge belongs to the spanning tree T if and only if w2 ≡ w1z
in the free monoid {x, y}∗. Note that [1, xnyk] consists of n x-edges followed by k y-edges for
0 ≤ k ≤ n and [1, xnykxj ] consists of n x-edges, followed by k y-edges, followed by j x-edges
for 0 ≤ n < k and 0 ≤ j ≤ k. Notice that T is a directed spanning tree rooted at 1.

A directed edge of Γ is called a transition edge if its initial and terminal vertices are in
different strongly connected components of Γ. Edges of T will be called tree edges. Here, we
say that two vertices u and v of the Cayley graph Γ belong to the same strongly connected
component of Γ if and only if there is a directed path from u to v, and also a directed path
from v to u.

Lemma 6. The following equalities hold in M .

(1) xnykxk+1 = xn+1yk+1xk+1 for k > n ≥ 0.
(2) yxnyk = xn−1ynxn−k for n ≥ 1 and 0 ≤ k ≤ n.
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(3) yxnyk = xn−1yk if 0 < n < k.

Proof. (1) Let k, n ∈ Z with k > n ≥ 0, and set w1 = xnykxk+1 and w2 = xn+1yk+1xk+1.
The equality w1 = w2 holds in M since the Munn trees of both of these words have vertex
set {xi : n − k ≤ i ≤ n + 1} and terminal vertex xn+1. Indeed, consider the Munn tree with
vertex set {xi : n− k ≤ i ≤ n+ 1} and terminal vertex xn+1. This Munn tree is illustrated in
Figure 2. The word w1 = xnykxk+1 is obtained by reading this Munn tree starting at 1, then
taking n steps to the right, then k > n steps left, and finally k + 1 steps right, ending on the
vertex xn+1. This walk clearly visits every vertex in the Munn tree. On the other hand, the
word w2 = xn+1yk+1xk+1 is obtained by reading the same Munn tree starting at 1, then taking
n + 1 steps right, then k + 1 steps left, and then k + 1 steps right ending on the vertex xn+1.
Again this walk clearly visits every vertex of the Munn tree. This completes the proof that
xnykxk+1 = xn+1yk+1xk+1 in M for k > n ≥ 0.

(2) This equality holds in M since for n ≥ 1 and 0 ≤ k ≤ n the Munn trees of the words
yxnyk and xn−1ynxn−k are the same. Specifically both of these words have the Munn tree with
vertex set {xi : −1 ≤ i ≤ n− 1} and terminal vertex xn−1−k.

(3) This equality holds since for 0 < n < k the words yxnyk and xn−1yk both have Munn
tree with vertex set {xi : n− 1− k ≤ i ≤ n− 1} and terminal vertex xn−1−k. �

The following lemma describes the right action of the generators {x, y} on the normal form
words from Lemma 5. These computations describe all the edges of the Cayley graph Γ.

Lemma 7. The right multiplicative action of the generators {x, y} on the normal form words
xnyk with 0 ≤ k ≤ n is given by

(xnyk)x =

{
xnyk−1 if k > 0

xn+1 if k = 0
, and (xnyk)y = xnyk+1.

The action on the normal form words xnykxj with 0 ≤ n < k and 0 ≤ j ≤ k is given by

(xnykxj)x =

{
xnykxj+1 if j < k

xn+1yk+1xk+1 if j = k
, and (xnykxj)y =

{
xnykxj−1 if j > 0

xnyk+1 if j = 0.

Proof. First we consider the action on normal form words xnyk with 0 ≤ k ≤ n. For right
multiplication by x, if k > 0 then xnykx = xnyk−1 in the free monogenic inverse monoid M
where xnyk−1 is a normal form word. The equality xnykx = xnyk−1 holds in M since both these
words have the same Munn tree with vertex set {1, x, . . . , xn} and terminal vertex xn−k+1. On
the other hand, if k = 0 and (xnyk)x = xnx = xn+1 which is a normal form word. For right
multiplication by y we have (xnyk)y = xnyk+1 which is already a normal form word.

Now consider the action on the normal forms words xnykxj where 0 ≤ n < k and 0 ≤ j ≤ k.
For right multiplication by x, if j < k then (xnykxj)x = xnykxj+1 which is a normal form word.
If j = k then (xnykxj)x = xnykxk+1 where xnykxk+1 is not a normal form word. It follows from
Lemma 6(1) that xnykxk+1 = xn+1yk+1xk+1 where xn+1yk+1xk+1 is a normal form word. Hence
we have shown that (xnykxj)x = xn+1yk+1xk+1 in the case that j = k. For right multiplication
by y, if j > 0 then (xnykxj)y = xnykxj−1 where xnykxj−1 is a normal form word. The equality
of words holds in M since they both have Munn tree with vertex set {xi : n− k ≤ i ≤ n} and
terminal vertex xn−k+j . Finally, if j = 0 then (xnykxj)y = xnyky = xnyk+1 which is a normal
form word. Since all cases have now been considered, this completes the proof. �

Now we describe which edges of Γ are in T .

Proposition 8. The following edges belong to T :

(1) xn
x−−→ xn+1 with n ≥ 0.

(2) xnyk
y−→ xnyk+1 with n ≥ 0 and k ≥ 0.

(3) xnykxj
x−−→ xnykxj+1 with 0 ≤ n < k and 0 ≤ j < k.
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All remaining edges do not belong to T .

Proof. For any edge w1
z−−→ w2 from Γ, where w1 and w2 are both normal form words and

z ∈ {x, y}, by definition, this edge belongs to T if and only if w2 ≡ w1z in the free monoid
{x, y}∗. We can now apply Lemma 7 to identify all of these edges. There are two cases.

First suppose that w1 ≡ xnyk where 0 ≤ k ≤ n. Then by the first part of Lemma 7, the
word w1z is a normal form if and only if either z = y, or z = x and k = 0. This gives the edges

xn
x−−→ xn+1 with n ≥ 0, and xnyk

y−−→ xnyk+1 with 0 ≤ k ≤ n.
Now suppose that w1 ≡ xnykxj with 0 ≤ n < k and 0 ≤ j ≤ k. Then by the second part

of Lemma 7, the word w1z is a normal form if and only if either z = x and j < k, or z = y

and j = 0. This gives the edges xnykxj
x−−→ xnykxj+1 with 0 ≤ n < k and 0 ≤ j < k, and

xnyk
y−−→ xnyk+1 with 0 ≤ n < k. This covers all cases, and hence completes the proof of the

lemma. �

Next we consider the edges of Γ that do not belong to T . We begin with non-transition edges.
It follows from the definitions that two elements m and n of M belong to the same strongly
connected component of Γ if and only if mM = nM , that is, m and n generate the same
principal right ideal in M . Such elements are said to be R-related. Necessary and sufficient
conditions for two elements of M to be R-related are given in [4, Theorem 2.1.15] and [10, VIII
3.9 Proposition]. See in particular the proof of part (ii) of [10, VIII 3.9 Proposition]. Using the
conventions of the present article, these results say that two elements of M are R-related if and
only if their Munn trees have the same vertex sets (but the terminal vertices of the Munn trees
need not be the same). Combining these observations and results gives the following lemma.

Lemma 9. Two normal form words w1 and w2 belong to the same strongly connected component
of Γ if and only if Pw1 = Pw2, that is, their Munn trees have the same vertex sets.

We can applying this lemma to prove the following result.

Proposition 10. An edge of Γ \ T belongs to a strongly connected component if and only if it
is of one of the following two forms:

(1) xnyk
x−−→ xnyk−1 with 0 < k ≤ n;

(2) xnykxj
y−→ xnykxj−1 with 0 ≤ n < k and 0 < j ≤ k.

Moreover, if e is as in (1), then

be = (xnyk−1
y−→ xnyk)(xnyk

x−−→ xnyk−1)

and if e is as in (2), then

be = (xnykxj−1
x−−→ xnykxj)(xnykxj

y−→ xnykxj−1).

Proof. Consider an edge w1
z−−→ w2 of Γ, where w1 and w2 are normal form words and z ∈

{x, y}. Further suppose that this edge does not belong to T and that w1 and w2 belong to the
same same strongly connected component of Γ, which by Lemma 9 means that the Munn trees
of w1 and w2 have equal vertex sets. We now apply Lemma 7 to identify all edges satisfying
these conditions. There are two cases to consider.

First suppose that w1 ≡ xnyk where 0 ≤ k ≤ n. In this case we cannot have z = y since then

the edge w1
z−−→ w2 would be equal to xnyk

y−−→ xnyk+1 which belongs to T . Hence we have

z = x. Then we must have k > 0 since if k = 0 then the edge w1
z−−→ w2 would be equal to

xn
x−−→ xn+1 which belongs to T . So in this case we obtain the set of edges xnyk

x−−→ xnyk−1

with 0 < k ≤ n none of which belong to T by Proposition 8. Furthermore all these edges do
connect vertices in the same strongly connected component since when 0 < k ≤ n the Munn
trees of xnyk and xnyk−1 both have vertex set {1, x, . . . , xn}.

Now suppose that w1 ≡ xnykxj with 0 ≤ n < k and 0 ≤ j ≤ k. If z = x then by the second
part of Lemma 7 we cannot have j = k since the Munn trees of xnykxj and of xn+1yk+1xk+1 have
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different vertex sets. But then j < k and the edge w1
z−−→ w2 is equal to xnykxj

x−−→ xnykxj+1

which belongs to T . This is a contradiction. Hence in this case there are no edges satisfying the
conditions and with z = x. On the other hand, if z = y then by the second part of Lemma 7

we cannot have j = 0 since the edge xnyk
y−−→ xnyk+1 belongs to T . Hence j > 0, so in this

case we obtain the set of edges xnykxj
y−→ xnykxj−1 with 0 ≤ n < k and 0 < j ≤ k. By

Proposition 8 none of these edges belong to T . Furthermore all these edges do connect vertices
in the same strongly connected component since when 0 ≤ n < k and 0 < j ≤ k. the Munn
trees of xnykxj and xnykxj−1 both have vertex set {xi : n− k ≤ i ≤ n}.

This completes the proof that an edge of Γ \ T belongs to a strongly connected component
if and only if it is of one of the two forms (1) and (2) given in the statement of the proposition.

For the first of the final two statements of the proposition, if e is an edge as in (1) then by
definition

be = [1, ι(e)]e[1, τ(e)]−1 = [1, xnyk]e[1, xnyk−1]−1

where 0 < k ≤ n. Note that xnyk is a normal form word, and all prefixes of this word are
normal form words, hence distinct prefixes of this word represent distinct elements of M . Since
the paths [1, xnyk−1] and [1, xnyk] have a common initial segment [1, xnyk−1], it follows that
all of the edges in this common initial segment cancel each other out in when computing the
weighted sum be leaving only

be = (xnyk−1
y−→ xnyk)(xnyk

x−−→ xnyk−1).

For the final claim in the proposition, let e be an edge as in (2). Then by definition

be = [1, ι(e)]e[1, τ(e)]−1 = [1, xnykxj ]e[1, xnykxj−1]−1

where 0 ≤ n < k and 0 < j ≤ k. Since [1, xnykxj−1] is a common initial segment of both
[1, xnykxj ] and [1, xnykxj−1] it follows that in the weighted sum be the edges in this common
initial segment cancel out leaving just two edges contributing to the sum, giving

be = (xnykxj−1
x−−→ xnykxj)(xnykxj

y−→ xnykxj−1).

�

The next result shows that there is only one type of transition edge not belonging to T .

Proposition 11. The transition edges of Γ not belonging to T are of the form xnykxk
x−−→

xn+1yk+1xk+1 with 0 ≤ n < k. The corresponding basis element of H1(Γ) is

[xn, xnykxk] + (xnykxk
x−−→ xn+1yk+1xk+1)− [xn, xn+1yk+1xk+1].

Proof. Let w1
z−−→ w2 be a transition edge not belonging to T , where w1 and w2 are normal

form words and z ∈ {x, y}. There are two cases depending on the form of the word w1.
First suppose that w1 ≡ xnyk where 0 ≤ k ≤ n. By the first part of Lemma 7 and Propo-

sition 8, since w1
z−−→ w2 does not belong to T the only possibility is that it is the edge

xnyk
x−−→ xnyk−1 and k > 0. But this is not a transition edge by Proposition 10(1). This

proves that we cannot have w1 ≡ xnyk where 0 ≤ k ≤ n.
Now suppose that w1 ≡ xnykxj with 0 ≤ n < k and 0 ≤ j ≤ k. By the second part of

Lemma 7, Proposition 8, and Proposition 10(2), the only possibility for the edge w1
z−−→ w2 is

that it is equal to xnykxk
x−−→ xn+1yk+1xk+1 with 0 ≤ n < k. It also follows from Proposition 8,

and Proposition 10(2) that these are all transition edges and they do not belong to T . Since all
cases for w1 have been considered, this completes the proof that these are exactly the transition
edges not belonging to T .

To complete the proof of the proposition, let e be the edge xnykxk
x−−→ xn+1yk+1xk+1 for

some 0 ≤ n < k. Then by definition

be = [1, ι(e)]e[1, τ(e)]−1 = [1, xnykxk]e[1, xn+1yk+1xk+1]−1.
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Since

[1, xnykxk] = [1, xn][xn, xnykxk] and [1, xn+1yk+1xk+1] = [1, xn][xn, xn+1yk+1xk+1]

have common initial segment [1, xn], all of the edges in this common segment cancel each other
out in the weighted sum be, which gives

be = [xn, xnykxk] + (xnykxk
x−−→ xn+1yk+1xk+1)− [xn, xn+1yk+1xk+1].

�

Our next goal is to assign a number, called the depth, to the basis element be of H1(Γ)
corresponding to a directed edge e of Γ \ T . If e belongs to a strongly connected component of
Γ, then we set be to have depth zero. If e is as in Proposition 11, then we set be to have depth
k (which is greater than 0). Also, for any directed edge e of Γ \ T , by the depth of the edge e
we mean the depth of the corresponding basis element be. Let Wk be the subgroup of H1(Γ)
generated by the be of depth at most k. Then we have a strictly increasing chain of subgroups

W0 (W1 (W2 ( · · ·
with

⋃
k≥0Wk = H1(Γ). Our goal is to show that each Wk with k ≥ 0 is a ZM -submodule.

Since a finitely generated module cannot be written as the union of a strictly increasing chain
of submodules, this will prove that H1(Γ) is not a finitely generated ZM -module and hence M
is not of type FP2.

Proposition 12. The subgroup W0 is a ZM -submodule of H1(Γ).

Proof. By Proposition 10, if be has depth zero then be = p where p is a directed cycle of length
2. But any translate of a closed directed path is a closed directed path and hence contained
in a strongly connected component of Γ. Since every edge of a strongly connected component
either belongs to the tree T or has depth zero, we see that W0 is indeed a ZM -submodule. �

We now extend this to all values of k.

Proposition 13. For all k ≥ 0, Wk is a ZM -submodule of H1(Γ).

Proof. Proposition 12 handles the case k = 0. By the definition of Wk, to complete the proof

of the proposition it suffices to show that for all k ≥ 1, if e is an edge of the form xnykxk
x−−→

xn+1yk+1xk+1 with 0 ≤ n < k and z ∈ {x, y}, then zbe ∈ Wk. By Proposition 11, this means
we need to show that ze and edges of z[xn, xnykxk], z[xn, xn+1yk+1xk+1] are of depth at most
k or tree edges.

Let us start with z = y. In what follows, x−1 should be interpreted as y; this situation arises
when n = 0. We consider first y[xn, xnykxk]. Note that

[xn, xnykxk] = [xn, xnyn][xnyn, xnyk][xnyk, xnykxk].

By Lemma 6, we have yxn = xn−1ynxn and yxnyn = xn−1yn, which belong to the same
strongly connected component. Thus each edge of y[xn, xnyn] is either a tree edge or an edge
of depth zero. On the other hand, y[xnyn, xnyk] is a string of k − n y-edges from xn−1yn to
yxnyk = xn−1yk (by Lemma 6) and these are all tree edges. Finally, y[xnyk, xnykxk] is a string
of k x-edges from xn−1yk to xn−1ykxk. Since k > n > n− 1, these are again tree edges.

Next, we consider y[xn, xn+1yk+1xk+1]. Write

[xn, xn+1yk+1xk+1] = [xn, xn+1][xn+1, xn+1yn+1][xn+1yn+1, xn+1yk+1]

· [xn+1yk+1, xn+1yk+1xk+1]

As yxn = xn−1ynxn and yxn+1 = xnyn+1xn+1, by Lemma 6, we see that y[xn, xn+1] =

xn−1ynxn
x−−→ xnyn+1xn+1 is an edge of depth n < k (or a tree edge if n = 0 by Proposi-

tion 8(3)). Note that xnyn+1xn+1 and xnyn+1 are in the same strongly connected component
of Γ by Lemma 9, since they both have Munn trees with vertex set {xi : −1 ≤ i ≤ n}. Since
yxn+1 = xnyn+1xn+1 and yxn+1yn+1 = xnyn+1 (see Lemma 6) belong to the same strongly



10 FREE INVERSE MONOIDS

connected component, we have that y[xn+1, xn+1yn+1] consists of tree edges and edges of depth
zero. Next, we have that the translate y[xn+1yn+1, xn+1yk+1] is a string of k − n y-edges
from yxn+1yn+1 = xnyn+1 to yxn+1yk+1 = xnyk+1, and all these edges are tree edges. Fi-
nally, y[xn+1yk+1, xn+1yk+1xk+1] is a string of k + 1 x-edges from yxn+1yk+1 = xnyk+1 to
yxn+1yk+1xk+1 = xnyk+1xk+1 by Lemma 6. These are again tree edges.

The translate ye is xn−1ykxk
x−−→ xnyk+1xk+1, which is an edge of depth k, using that

n− 1 < k, yxnykxk = xn−1ykxk and yxn+1yk+1xk+1 = xnyk+1xk+1 by Lemma 6, unless n = 0,
in which case it is a tree edge. This completes the argument that ybe ∈Wk.

So we next turn to z = x. There are two cases, k > n+ 1 and k = n+ 1.
Assume first that k > n+1. Then x[xn, xnykxk] = [xn+1, xn+1ykxk] and x[xn, xn+1yk+1xk+1] =

[xn+1, xn+2yk+1xk+1] consist of tree edges and xe = xn+1ykxk
x−−→ xn+2yk+1xk+1 is an edge of

depth k. Thus, in this case, xbe ∈Wk.
Finally, suppose that k = n + 1. Then xxnykxk = xn+1yn+1xn+1 = xn+1. Therefore,

x[xn, xnykxk] is a directed path from xn+1 to xn+1 and hence uses only tree edges and edges of
depth zero as it is contained in a strongly connected component. Observe that xxn+1yk+1xk+1 =
xn+2yn+2xn+2 = xn+2. Writing [xn, xn+1yk+1xk+1] = [xn, xn+1][xn+1, xn+1yk+1xk+1], we see

that x[xn, xn+1yk+1xk+1] is the concatenation of the tree edge xn+1 x−−→ xn+2 with a directed
path from xn+2 to itself and the latter path uses only tree edges and edges of depth zero as it

is contained in a strongly connected component. Also, we have that xe = xn+1 x−−→ xn+2 is a
tree edge. We conclude that xbe ∈ Wk in this case as well. This completes the proof that Wk

is a ZM -submodule of H1(Γ). �

Proposition 13 completes the proof of Theorem 3 in light of the discussion preceding Propo-
sition 12.
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