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Highlights 1 

• Shifts in Weddell Sea Bottom Water (WSBW) properties towards less dense 2 

varieties likely equate to less WSBW being produced over time. 3 

• The decline of WSBW volume ceased around 2005 and likely recovering after 4 

that. 5 

• Dense Shelf Waters drive and modulate the recent WSBW variability. 6 

• WSBW is composed by 71% of Warm Deep Water and 29% of Dense Shelf 7 

Waters. 8 

 9 

Abstract 10 

The role of Antarctic Bottom Water (AABW) in changing the ocean circulation 11 

and controlling climate variability is widely known. However, a comprehensive 12 

understanding of the relative contribution and variability of Antarctic regional deep water 13 

mass varieties that form AABW is still lacking. Using a high-quality dataset comprising 14 

three decades of observational shipboard surveys in the Weddell Sea (1984–2014), we 15 

updated the structure, composition and hydrographic properties variability of the Weddell 16 

Sea deep-layer, and quantified the contribution of the source waters composing Weddell 17 

Sea Bottom Water (WSBW) in its main formation zone. Shifts in WSBW hydrographic 18 

properties towards less dense varieties likely equate to less WSBW being produced over 19 

time. WSBW is primarily composed of 71±4% of modified-Warm Deep Water (mWDW) 20 

and 29±4% of Dense Shelf Waters, with the latter composed by ~two-thirds (19±2%) of 21 

High Salinity Shelf Water and ~one-third (10±6%) of Ice Shelf Water. Further, we show 22 

evidence that WSBW variability in the eastern Weddell Sea is driven by changes in the 23 

inflow of Dense Shelf Waters and bottom water from the Indian Sector of the Southern 24 

Ocean. This was observed through the rise of the WSBW contribution to the total mixture 25 

after 2005, following a twenty-year period (1984–2004) of decreasing contribution. 26 

Key words: Deep Ocean, Antarctic Bottom Water, Dense Shelf Water, Southern Ocean.  27 



3 
 

1. Introduction 28 

Several recent studies have debated about the causes and effects of Antarctic 29 

Bottom Water (AABW) variability and changes both in its source area and throughout 30 

the global ocean (e.g., Schmidtko et al. 2014; Azaneu et al., 2013; Purkey and Johnson, 31 

2010, 2012, 2013). AABW is one of the major water mass of the lower limb of the global 32 

overturning circulation (e.g. Talley, 2013) and is composed of distinct regional dense 33 

water varieties sourced and/or modified around the Antarctic continent (e.g. Whitworth 34 

et al., 1998; Pardo et al., 2012). Its formation is driven by numerous coupled ocean-35 

atmosphere-cryosphere processes taking place in the Southern Ocean (e.g., ocean-36 

atmosphere heat fluxes, sea ice formation and melting, ocean-ice-shelf interaction, water 37 

mass mixing, ocean frontal instabilities, etc.). Briefly, those coupled processes increase 38 

the water mass density in the resulting mixture, which eventually leads to a dense plume 39 

overflow down the continental slope towards the deep ocean (Orsi et al., 1999; 2001; 40 

Ivanov et al., 2004; Nicholls et al., 2009).  41 

Two distinct AABW formation processes have been previously described in the 42 

Weddell Sea (Fig. 1), the source region of the main AABW regional variety exported to 43 

the global ocean (e.g. Orsi et al., 2002; Kerr et al., 2012a; van Seville et al., 2013; Ferreira 44 

and Kerr, 2017). The first one was proposed by Foster and Carmack (1976a) after 45 

intensive studies in the Weddell Sea during the 1970s (e.g., Carmack, 1974; Carmack and 46 

Foster, 1975a, 1975b; Foster and Carmack, 1976b). It assumes that the mixing of dense 47 

High Salinity Shelf Water (HSSW) and modified-Warm Deep Water (mWDW; a mixture 48 

of Winter Water (WW) and Warm Deep Water (WDW)) at the continental shelf-break in 49 

the southern Weddell Sea forms the densest AABW regional variety: Weddell Sea 50 

Bottom Water (WSBW). As the dense WSBW follows the continental slope, it remixes 51 

with WDW resulting in the less dense variety of AABW in the Weddell Sea: Weddell Sea 52 
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Deep Water (WSDW). Recently, van Caspel et al. (2016) showed that the Larsen Ice 53 

Shelf region also plays a key role modulating the hydrographic properties and, 54 

consequently, the formation process of AABW varieties in the northwestern Weddell Sea 55 

(Gordon et al., 1993). The second process was introduced by Foldvik et al. (1985) and 56 

involves the mixture of WDW/mWDW and Ice Shelf Water (ISW)—a water mass with 57 

temperatures below surface freezing derived from the interaction of HSSW within the 58 

base of the ice-shelves in the southern Weddell Sea (Nicholls et al., 2001, 2004). 59 

 60 

Figure 1. The study area in the Weddell Sea showing the location of the hydrographic sections (solid blue 61 
lines) across the Weddell Gyre (schematically indicated by the dashed red arrow) along the Greenwich 62 
Meridian (southern part of WOCE A12 repeat line) and across the Weddell Sea (WOCE SR4 repeat line) 63 
between Kapp Norvegia and Joinville Island (JI). The yellow dots mark the primary areas of AABW 64 
varieties formation, while the yellow dotted arrows schematically show sinking water masses along the 65 
continental slope. The dotted purple arrows indicate Dense Shelf Water living the northwestern Weddell 66 
Sea. The dotted white arrows depict deep and bottom water circulation and water masses exporting the 67 
Weddell Basin. This figure was sketched according to the studies of Gordon et al. (2001), von Gyldenfeldt 68 
et al. (2002), Naveira Garabato et al. (2002), Fahrbach et al. (2011), and Ferreira and Kerr (2017). See 69 
Table 1 for the sections occupation periods between 1984 and 2014. The bathymetry (m) is represented as 70 
a color scale bar at the right. MR = Maud Rise; SST = South Sandwich Trench. Bathymetry line of 1000 m 71 
is represented by the thin black line. (For interpretation of the references to color in this figure legend, the 72 
reader is referred to the web version of this article.) 73 

 74 

Whitworth et al. (1998), through a detailed study of all Antarctic margins, 75 

proposed that WSBW can be formed by mixing of mWDW with HSSW or ISW 76 
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depending if the east or west side of the basin considered, i.e., combining the AABW 77 

formation processes proposed by Foster and Carmack (1976a) and Foldvik et al. (1985). 78 

A detailed review of ice-ocean processes on the continental shelf of the southern Weddell 79 

Sea was further compiled by Nicholls et al. (2009), whereas Heywood et al. (2014) 80 

summarized the processes at the Antarctic continental shelf-break that are important for 81 

cross-slope exchanges of heat, freshwater, nutrients, and biota. In summary, despite the 82 

local ocean-, atmosphere- and cryosphere-related processes involved in the formation of 83 

AABW varieties in the Weddell Sea sub-regions, WSDW and WSBW in the deep 84 

Weddell Basin can be considered as a mixture of WW (i.e. a remnant of the deep winter 85 

mixed layer), WDW, HSSW and ISW. The first two water masses mix and are modified 86 

through the dynamic processes occurring in the Weddell Gyre regime (often referred to 87 

as mWDW), while the AABW shelf-components are regionally confined and modified 88 

through the coastal, air-sea and ice-land-sea processes occurring in the continental shelf 89 

regime. 90 

Much less often, deep ocean convection in open ocean polynyas can directly form 91 

and modulate AABW varieties in the Southern Ocean (Gordon, 1978; Gordon, 2014). 92 

Although the recent appearance of this phenomenon in 2016 and 2017, this has not been 93 

observed with the dimensions and persistence of the Weddell Polynya since the events 94 

occurred in the 1970s (Comiso and Gordon, 1987; Gordon et al., 2007). This process, 95 

although more related to coastal polynyas, may occur in other important AABW 96 

formation regions outside the Weddell Sea as well (Ohshima et al., 2013; Kitade et al., 97 

2014). It is also important to consider that AABW varieties sourced in the Weddell Sea 98 

and present in the easternmost part of the Weddell Basin are strongly influenced by deep 99 

and bottom waters which originated to the East of the Weddell Sea (Meredith et al., 1999; 100 

2000). This AABW variety enters the Weddell Gyre from the Indian Sector of the 101 
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Southern Ocean, allowing further ventilation and densification of Weddell Sea AABW 102 

varieties within the gyre (Jullion et al., 2014). 103 

AABW has a global and climate importance because it ventilates and renews the 104 

properties of the near-bottom layer of the global ocean (Schröder et al., 2002; Jacobs, 105 

2004; Ferreira and Kerr, 2017). Considering the Weddell Sea regional AABW varieties, 106 

WSDW can enter the global ocean easier than WSBW (Naveira Garabato et al., 2002; 107 

Franco et al., 2007) because WSDW is less dense and thus not completely constrained 108 

within the Weddell Basin by the South Scotia Ridge (Gordon et al., 2001; Muench and 109 

Hellmer, 2002). Export of WSBW to the global ocean occurs through upward mixing 110 

with WSDW above or likely through outflows via deep passages (e.g., South Sandwich 111 

Trench; Fig. 1; Ferreira and Kerr, 2017). 112 

Recently, Hellmer et al. (2016) performed a comprehensive review study based 113 

on field observations and modelling efforts of meteorology and oceanography of the 114 

Atlantic Sector of the Southern Ocean (i.e. Weddell-Enderby Basin). Those authors 115 

synthetized the Weddell Sea state-of-the-art knowledge regarding the interaction between 116 

the ocean and ice shelves, the physical processes related to water mass formation and 117 

changes, and marine chemistry issues regarding the associated storage of anthropogenic 118 

carbon in that region. Furthermore, as highlighted by Meredith et al. (2014), there is an 119 

essential need to identify and understand the AABW (and its regional varieties) time-120 

varying formation and export processes, and the controls on properties and flows. For 121 

example, in the Australian Antarctic Sector Wijk and Rintoul (2014) have reported that 122 

the lightning of AABW layer cannot be explained by changes in formation rate alone, 123 

rather resulting from the contribution of less dense AABW varieties. On the other hand, 124 

Azaneu et al. (2013) suggested that changes in formation rate may also have significant 125 

contribution to the contraction of AABW volumes in the Weddell-Enderby Basin. Thus, 126 
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it is important to understand the causes of AABW properties, export and source-127 

composition variability (e.g. Fahrbach et al. 2004; 2011), especially at its source zones, 128 

to assess how AABW evolves during time. This may potentially affect its significance 129 

for the global ocean overturning circulation and climate. 130 

In this context, this study aims to investigate the temporal variability of the 131 

Weddell Sea deep water masses during the last three decades from 1984 to 2014. Taking 132 

advantage of an extensive dataset, we update the results regarding the temporal variability 133 

of the relative contribution of the deep water masses in the Weddell Sea previously 134 

reported by Kerr et al. (2009a). Those authors analyzed the Weddell Sea deep water mass 135 

structure between 1984 and 1998 and found a 20%-reduction in the WSBW contribution 136 

to the total mixture during that period. Moreover, the present analysis allows for a better 137 

understanding of the primary causes changing the WSBW layer and provides new insights 138 

to the scientific discussion about the causes of the Southern Ocean deep and bottom water 139 

variability and changes. 140 

 141 

2. Data and Methods 142 

2.1. Hydrographic section data 143 

The potential temperature (θ) and practical salinity (S) were selected from two 144 

World Ocean Circulation Experiment (WOCE) hydrographic repeat sections in the 145 

Weddell Sea (Tab. 1; Fig. 1) as follows: (i) section WOCE A12 (also referred to as WOCE 146 

SR2 in the literature) along the Greenwich Meridian, with an irregular sampling period 147 

spanning from 1984 to 2014; and (ii) section WOCE SR4 between Joinville Island and 148 

Kapp Norvegia, with an irregular sampling period spanning between 1989 and 2010. 149 

Section WOCE A12 was restricted here to latitudes higher than 60°S, whereas WOCE 150 

SR4 crossed the entire Weddell Sea (Fig. 1). Those sections were chosen because of their 151 
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importance to: (i) the regional basin circulation (e.g., Klatt et al., 2005; Meredith et al., 152 

2014), (ii) the export routes of deep and bottom waters (e.g., Naveira Garabato et al., 153 

2002; Kerr et al., 2012a), and the representativeness for the entire Weddell Basin (e.g., 154 

Kerr et al., 2009a; Fahrbach et al., 2011; Jullion et al., 2014). Moreover, here we extend 155 

the period analyzed by Kerr et al. (2009a) to ~30 years taking advantage of the inclusion 156 

of five/two additional years at the Greenwich Meridian (WOCE A12) and in the inner 157 

Weddell Sea (WOCE SR4), respectively (Table 1). We also performed a novel mixing 158 

scheme approach (see Sect. 2.3) to quantify changes in the source waters of the WSBW. 159 

 160 
Table 1. Overview of the hydrographic sections used in this study. Details of the observed data can be 161 
found in Whitworth and Nowlin (1987), Fahrbach et al. (2001, 2004, 2007, 2011), Fahrbach and De Baar 162 
(2010), Rohardt et al. (2011), van Heuven et al. (2011, 2014), Rohardt and Boebel (2015), and Driemel et 163 
al. (2017). 164 

Expedition Cruise Period (dd/mm/yyyy) WOCE section 

AJAX (leg 2) 16/01/1984 – 29/01/1984 A12 

ANT-VIII/2 06/09/1989 – 31/10/1989 SR4 

ANT-IX/2 16/11/1990 – 30/12/1990 SR4 

ANT-X/4 21/05/1992 – 30/07/1992 A12 

ANT-X7 03/12/1992 – 23/01/1993 SR4 

ANT-XIII/4 17/03/1996 – 20/05/1996 A12 and SR4 

ANT-XV/4 28/03/1998 – 23/05/1998 A12 and SR4* 

ANT-XVI/2 09/01/1999 – 16/03/1999 A12 

ANT-XVIII/3 05/12/2000 – 12/01/2001 A12 

ANT-XX/2 24/11/2002 – 23/01/2003 A12 

ANT-XXII/3 21/01/2005 – 06/04/2005 A12 and SR4 

ANT-XXVII/2 28/11/2010 – 05/02/2011 A12 and SR4 

ANT-XXIX/2 02/12/2012 – 14/01/2013 A12 

PS89 (ANT-XXX/2) 02/12/2014 – 31/01/2015 A12 

*During this year, the section WOCE SR4 was not completely surveyed. 165 

 166 

The dataset used was downloaded through the World Ocean Database 2013 167 

(WOD13; www.nodc.noaa.gov) and the Alfred Wegener Institute repository 168 

(www.pangaea.de) websites. All observed θ and S data were sampled by high-accuracy 169 

CTDs and passed through strict data quality control (e.g., Johnson et al., 2013), eventually 170 

spurious data was manually removed from the compiled dataset. Five different CTD types 171 

have been used onboard R/V Polarstern from 1983 to present days. As the instruments 172 

http://www.nodc.noaa.gov/
http://www.pangaea.de/
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have changed, so have the range, accuracy, stability, resolution, and response of the 173 

sensors. A detailed summary of the instruments’ manufacturer specifications of the 174 

instruments as well as the periods they have been on duty is provided in Table 1 and 175 

Figure 1 of Driemel et al. (2017), respectively. For reference, the accuracy limits officially 176 

adopted for WOCE are also listed in Table 1 of Driemel et al. (2017). In general, the 177 

accuracy of , S, and pressure is better than ±0.003ºC, ±0.003 and ±2 dbar for the cruises, 178 

respectively (Fahrbach et al., 2011; van Heuven et al., 2014). Data for dissolved oxygen 179 

(DO) was obtained from discrete bottle samples before 2005 and after that by profiling 180 

CTD sensors, which were regularly calibrated against Winkler titrations, with a reported 181 

final accuracy of 4.5 mol kg–1 (van Heuven et al., 2011). Other information regarding 182 

the quality, precision, and calibrations eventually applied to the , S, and DO dataset can 183 

be obtained through the references cited in the caption of Table 1. 184 

In addition, we used an ancillary dataset obtained in the Indian Ocean Sector of the 185 

Southern Ocean to discuss the results found (see Section 4). Four repeat occupations 186 

along the section WOCE I6S at 30˚E were obtained via the WOD13 for the years of 1993, 187 

1996, 2006, and 2008. The same dataset was previously analyzed by Couldrey et al. 188 

(2013), where more specific details about the dataset can be found. For this dataset, the 189 

northern limit was restricted to 60˚S and spurious data was manually removed. 190 

 191 

2.2. Optimum Multiparameter (OMP) analysis 192 

The OMP analysis package (Karstensen and Tomczak, 1999) has been used here 193 

to (i) estimate the vertical distribution, (ii) quantify the mixture, and (iii) elucidate about 194 

the temporal variability of the Weddell Sea deep water masses and the source waters of 195 

WSBW along to hydrographic sections across the Weddell Sea. The method was first 196 

introduced by Tomczak (1981) as an extension of the classical water mass analysis by 197 
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means of temperature-salinity diagrams (Mamayev, 1975). Mackas et al. (1987), 198 

Tomczak and Large (1989), and Karstensen and Tomczak (1997, 1998) considerably 199 

improved the method allowing for more robust applications. Since then, the OMP analysis 200 

has been successfully applied throughout the global ocean to determine the relative water 201 

mass fractions of contribution on (i) regional (e.g., Huhn et al., 2008; Jenkins et al., 2014; 202 

García-Ibáñez et al., 2015; van Caspel et al., 2015; Dotto et al., 2016), (ii) ocean basin 203 

(e.g., Poole and Tomczak, 1999; Kerr et al., 2009a; Pardo et al., 2012; Santos et al., 2016; 204 

Ferreira and Kerr, 2017), and (iii) global (e.g., Johnson, 2008) scales. The method was 205 

also effectively used to distinguish water mass fractions of mixtures and eventual biases 206 

in Southern Ocean studies using numerical modeling and ocean reanalysis products (e.g., 207 

Kerr et al., 2009b, 2012b).  208 

Briefly, the OMP analysis quantifies the relative fractions of a mixture (or 209 

contributions in % to the total mixture) of distinct source water types (SWT—parameter 210 

values that represent a water mass in its source region) by solving an over-determined 211 

system of linear mixing equations. The following parameters are considered to distinguish 212 

the water mass contributions: θ, S, and DO. Thus, the linear mixing equations can be 213 

expressed in matrix form as Eq. 1: 214 

 215 

𝐺𝑥 − 𝑑 =  𝑅         (1) 216 

 217 

where G is the SWT matrix, which contains the parameter indices (i.e. , S, and DO) that 218 

represent each of the SWT (i=1,…,3); x is the relative contribution from each water 219 

sample; and the vectors d and R correspond to the observed dataset and the analysis 220 

residuals, respectively. The only restriction to the method is that the total contribution 221 

from all SWT considered in the mixing scheme must add to 100%. Negative SWT 222 

contributions are not allowed as there is no physical meaning to such numbers. It is also 223 
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worth mentioning that the OMP analysis was applied in a region of AABW formation 224 

(see Section 2.3). Thus, the increase of one water mass in the mixture of a given year will 225 

necessarily mean that at least one other water mass will decrease its contribution to the 226 

total mixture to assure mass conservation.  227 

OMP assumes that all the parameters have the same representativeness. However, 228 

this criterion is not often met because of the influence of environmental variability and 229 

the accuracy of the measurements. Thus, a weighted version of the G matrix was applied 230 

by including a diagonal matrix W, which has respective weights for each parameter (j=, 231 

S, DO), to correct the external influences. According to Tomczak and Large (1989), the 232 

diagonal matrix W is obtained by Eq. 2: 233 

 234 

 𝑊𝑗 =
𝜎𝑗²

𝛿𝑗𝑚𝑎𝑥
                   (2) 235 

 236 

where 𝜎𝑗² is the variance of each parameter among all SWT and 𝛿𝑗𝑚𝑎𝑥 is the maximum 237 

variance, among the water masses, associated with the same parameter in the source 238 

region. Here, we estimated our own parameter weights instead of arbitrarily define the 239 

values (see caption of Table 2). Mass conservation normally receive the highest weights 240 

found amongst the parameter weights. Mixing equations are weighted to optimize the use 241 

of hydrographic data, so the mass conservation residuals objectively indicate the quality 242 

of the solution, which are normally assumed to be lower than 5–10% (e.g. Tomczak, 243 

1999; Kerr et al. 2009a). Therefore, a low mass conservation residual indicates that the 244 

properties of the water sample are well represented by the SWT considered in the mixing 245 

scheme (Poole and Tomczak, 1999). 246 

  247 

 248 



12 
 

2.3. Deep water mixing schemes and source water types (SWT) 249 

As the study region (i.e., the Weddell Sea) is also a source area of distinct AABW 250 

varieties, two mixing schemes have been considered here to tackle the proposed aims 251 

(Fig. 2). The first one (hereafter referred to as Case A) follows the same approach used 252 

by Kerr et al. (2009a), which aims to compute the fractions of mixture of the deep water 253 

masses that fill the Weddell Basin. In this sense, the following water masses are 254 

considered: Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW), and 255 

Weddell Sea Bottom Water (WSBW). This approach allows investigation of the spatial 256 

distribution and temporal variability of the AABW varieties (WSDW and WSBW) close 257 

to their main formation area. The reader is referred to inspect Kerr et al. (2009a) for 258 

additional information regarding the procedures to determine the SWT indices and 259 

parameter weights defined (Table 2). 260 

 261 

Figure 2. Mixing scheme for Weddell Sea Bottom Water (WSBW; light blue rectangle) formation in a 262 
potential temperature-salinity diagram. The horizontal dotted gray line is the surface freezing temperature. 263 
The gray and red dashed lines represent the mixing of Warm Deep Water (WDW; green rectangle) with 264 
Winter Water (WW; gray rectangle) to form modified-WDW (mWDW) and further mixing with High 265 
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Salinity Shelf Water (HSSW; purple rectangle), representing the Foster and Carmack (1976) process 266 
(named as FC76). The dark blue dashed line represents WSBW formation by mixing of WDW/mWDW 267 
with Ice Shelf Water (ISW; yellow rectangle), representing the Foldvik et al. (1985) process (named as 268 
F85). Case A (red dotted rectangle) quantifies the mixture of WDW, Weddell Sea Deep Water (WSDW; 269 
orange rectangle) and WSBW in the Weddell Sea, whereas Case B (dark blue dotted rectangle) informs 270 
about the source water mass (i.e. mWDW, HSSW and ISW) contribution to form WSBW. The colored dots 271 
refer to the source water types (SWT) representing the water masses used for each approach (see Table 2). 272 
(For the interpretation of the references to color in this figure legend, the reader is referred to the web 273 
version of this article.) 274 
 275 

Table 2. Range of source water types (SWT) and the parameter weights used in the OMP analyses 276 
performed, for each mixing scheme, through a Monte Carlo approach in the Weddell Sea. The parameter 277 
weights, for Case A, follow those determined by Kerr et al. (2009), whereas for Case B they were 278 
determined using Eq. 2 and a WOD13 data selection near the western and southern continental margins in 279 
the Weddell Sea. The dataset extracted to determine the weights for Case B was restricted to depths from 280 
100 m to 600 m. 281 
 282 

SWT      Case A                       Case B 

Parameters WDW WSDW WSBW Weights mWDW HSSW ISW Weights 

θ [°C] 0.5 | 1.0 –0.60 | –0.30 –0.90 | –0.80 11.5 –0.50 | 0.00 –1.95 | –1.91 –2.20 | –2.10 18.6 

S 34.70 | 34.75 34.65 | 34.66 34.64 | 34.65 11.5 34.54 | 34.65 34.77 | 34.87 34.60 | 34.68 18.6 

DO [µmol L–1] 208 | 212 234 | 248 255 | 263 11.9# 202.9 | 251.9 318.4 | 321.1 321.1 | 328.6 19.0# 

#Weight applied to the mass conservation. 283 

 284 

The second mixing scheme considered (hereafter referred to as Case B) was 285 

performed for depths greater than 3000 m, which embrace the WSBW core (see for 286 

instance Fig. 3). In this approach, the SWT precursors of WSBW contributing to the 287 

mixture were: modified-Warm Deep Water (mWDW), High Salinity Shelf Water 288 

(HSSW), and Ice Shelf Water (ISW). Thus, the mixing scheme considered in Case B 289 

allows (a) to investigate the contribution changes of the WSBW source water masses and 290 

(b) to define which source water mass has the main influence in modulating the changes 291 

of the WSBW contribution throughout the period analyzed (see for instance Fig. 4c). We 292 

prefer to use a mWDW index instead of separate indices for WW and WDW because of 293 

(i) the limitation regarding the number of parameters to solve an additional mixing 294 

equation and (ii) the lack of other potential semi-conservative parameters to be used as 295 

water mass tracers in some of the cruises. However, additional OMP runs considering 296 

SWT indices for WW, WDW and one of the shelf water variety indicate negligible 297 
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contribution of WW (< 5%) to the total mixture (not shown). Considering the Case B 298 

applied here, the SWT indices (Tab. 2) were defined using the WOD13 data available 299 

nearby the western and southern continental shelf and shelf-break of the Weddell Sea. 300 

This follows a previous investigation of the water mass properties executed by Huhn et 301 

al. (2008) to better define the SWT indices for HSSW and ISW. Finally, only one SWT 302 

was used to represent each of the water masses considered, independently of the mixing 303 

schemes (Fig. 2; Tab. 2).  304 

 305 

2.4. OMP sensitivity analysis 306 

The OMP analysis does not consider temporal changes in the SWT definition. 307 

However, the method is widely suitable for identifying the temporal variability of water 308 

masses (e.g. Leffanue and Tomczak 2004; Tomczak and Liefrink 2005; Kerr et al. 2009a; 309 

Dotto et al. 2016). Thus, to avoid changes in SWT contributions that are related to an 310 

artifact of the method instead of real variations in the SWT fractions, a sensitivity analysis 311 

was performed to evaluate the robustness of the static SWT results. We opted for applying 312 

a Monte Carlo approach to randomly vary the SWT indices between the properties end-313 

members (Table 2). A total of 100 OMP runs were performed with slightly modified SWT 314 

parameters considering the property range depicted in Table 2. Only the results that had 315 

a mass conservation residual below 10% were considered (Kerr et al., 2009a). In most 316 

cases, differences in the water mass contributions between the numerous OMP runs did 317 

not exceed 5%. Finally, the results presented in the following are the averaged 318 

contributions of all the 100 OMP runs performed. The minimum and maximum water 319 

mass contributions vary between 30-100%, with contribution values above 50% and 60% 320 

used hereafter as criterion to define a water mass layer and core, respectively. 321 

 322 
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3. Results  323 

3.1. Weddell Sea deep water mass structure 324 

 The Weddell Sea deep water structure revealed by both hydrographic sections 325 

(WOCE SR4 and A12; Fig. 3) follows that expected for the region (e.g. Kerr et al. 2009a). 326 

The vertical water mass distribution shows: WDW contributing to the mixture in the 327 

upper 1500 m (Fig. 3a, d), WSDW occupies the layer between WDW and WSBW with a 328 

contribution higher than 60% around 2000 m (Fig. 3b, e), and WSBW cascades down the 329 

western continental slope (Fig. 3c) filling the near-bottom layer below 3500 m with a 330 

contribution higher than 60% (Fig. 3c, f). On average, the contributions to the total 331 

mixture between 1989–2011 (1984–2014) in the core of the WDW, WSDW and WSBW 332 

at WOCE SR4 (WOCE A12) were 79±11% (84±13%), 68±5% (68±5%), 81±11% 333 

(75±9%), respectively (Fig. 4). The Weddell deep water mass contribution along the 334 

sections observed during each repeat cruise is shown in the Supplementary Material (Figs. 335 

S1 to S3). 336 
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 337 
Figure 3. Averaged contribution to the Weddell Sea deep water masses (%) at the WOCE SR4 (left, 1989–338 
2010) and WOCE A12 (right; 1984–2014) sections, respectively. (a, d) Warm Deep Water (WDW), (b, e) 339 
Weddell Sea Deep Water (WSDW), and (e, f) Weddell Sea Bottom Water (WSBW). (For the interpretation 340 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 341 
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 342 
Figure 4. Time series (1984–2014) of the averaged contribution to the total mixture (%; Case A) in the core 343 
of the water mass (contribution > 60%) of (a) Warm Deep Water (WDW), (b) Weddell Sea Deep Water 344 
(WSDW), and (c) Weddell Sea Bottom Water (WSBW) on the vertical sections across the Weddell Gyre 345 
at the Greenwich Meridian (WOCE A12; black line) and in the Weddell Sea from Kapp Norvegia to 346 
Joinville Island (WOCE SR4; red line). The vertical bars indicate the water mass standard error. (For the 347 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this 348 
article.) 349 
 350 

3.2. Weddell Sea deep water mass variability 351 

3.2.1. Water mass contribution to the total mixture 352 

Temporal changes in the core (contribution > 60%) of the Weddell Sea deep water 353 

masses show a remarkable degree of interannual variability (Fig. 4). The WDW 354 

contribution in the Weddell Sea slightly increased (5-10%) for both repeat sections during 355 
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the whole period (Fig. 4a). A decreasing WSDW contribution is observed after 1996 at 356 

WOCE SR4, while at WOCE A12 the contribution variability was about ~10% (Fig. 4b). 357 

The increased WSDW contribution after 2010 at WOCE A12 is an interesting feature in 358 

the region. Furthermore, WSBW shows a pronounced decrease of ~8-15% between 1989–359 

1996 and 1984–2005 in the central Weddell Sea and Greenwich Meridian repeat sections 360 

(Fig. 4c), respectively. In fact, the WSBW contribution continues to decrease until 2011 361 

at WOCE SR4, considering that the high contribution observed in 1998 reflects the 362 

western half-section occupation in that particular year. Thereafter, a recovering period is 363 

observed at WOCE A12 for the WSBW contribution, characterized by an increment of 364 

about 15% in the last decade (Fig. 4c). 365 

 366 

3.2.2. Water mass properties variability 367 

To understand the observed variability of the Weddell Sea deep water mass 368 

contributions (section 3.2.1), the time series of the average hydrographic properties of 369 

each water mass were further analyzed using two approaches: (i) a layer based on neutral 370 

density (n; Jackett & McDougall, 1997) isopycnals (Fig. 5) and (ii) a layer based on the 371 

water mass core (i.e., contribution > 60%; Fig. 6). The first one allows further comparison 372 

with previous studies in the region that used similar methodology to distinguish the water 373 

mass layers (e.g. Fahrbach et al., 2011), whereas the second one allows the investigation 374 

of property changes in the layer of a more homogeneous water mass (or in its most pure 375 

form with less mixture interference from other water masses). 376 

Time series of the averaged WDW properties (28.1 ≥ n > 28.27 kg m–3; Fig. 5 – 377 

left panels) show a warming of ~0.15ºC until 1996 and a cooling of ~0.1ºC afterwards, 378 

for both sections (Fig. 5a). Except for the anomalous year of 2005 that showed a drop 379 

(rise) of ~0.04 in the section A12 (SR4), changes in salinity are not pronounced 380 
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throughout the period analyzed (Fig. 5b). The WDW temperature fluctuations likely 381 

caused slight changes of the average density, with the decreasing temperature after 1996 382 

linked with the densification of the WDW between 1996 and 2014 (Fig. 5c). The DO 383 

variability in the WDW indicates a reduction of ~16 mol L–1 until 1996 and a recovery 384 

afterwards with similar magnitude (Fig. 5d). The year 2012 shows the minimum DO value 385 

recorded in the time series at the WOCE A12 section (Fig. 5d). 386 

When analyzing the average WDW properties only at the water mass core (Fig. 6 387 

– left panels), the time series indicates slight changes in temperature (~0.1ºC; Fig. 6a) and 388 

no significant fluctuations in salinity (~0.004; Fig. 6b), thus leading to small variability 389 

in terms of density (Fig. 6c). On the other hand, DO decreased by ~8 mol L–1 in WOCE 390 

A12 until 2005 (except for the year 1998), while in WOCE SR4 the decrease in DO of 391 

the same magnitude stopped in 1996 (Fig. 6d). Afterwards, one observes a DO increase 392 

of ~5 mol L–1 in the WDW at the WOCE SR4 section. The same magnitude of the DO 393 

increase can be observed at WOCE A12, even with the abrupt drop in DO during the year 394 

2011 (Fig. 6d). 395 

Time series of the average WSDW properties (28.27 ≥ n > 28.40 kg m–3; Fig. 5 – 396 

center panels) also indicate an interannual variability. Although minor changes were 397 

observed in the average temperature and salinity during the time, it is possible to infer an 398 

increase in temperature and salinity starting after the mid-1980s (Fig. 5e-f). The year 1998 399 

was marked by the lowest temperature and highest salinity in the central Weddell Sea 400 

(however, care should be taken in the interpretation of the patterns of variability as the 401 

WOCE SR4 section was not completely occupied during this year). The oscillations in 402 

the average temperature and salinity are reflected in the variability of WSDW average 403 

density, with an opposing phase between the sections analyzed (Fig. 5g). In the WOCE 404 
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A12, less dense WSDW was observed during the 1980s and after the year 2000, and a 405 

denser variety of WSDW appeared between 1995 and 2000 (Fig. 5g). The opposing 406 

pattern, with less variability, was observed in WOCE SR4. On the other hand, changes in 407 

the DO time series occur in phase for both sections and are marked by higher variability 408 

(Fig. 5h), with a similar pattern to that reported for WDW (Fig. 5d). 409 

 410 

Figure 5. Time series (1984–2014) of the average (top) potential temperature (ºC), (2nd row) salinity, (3rd 411 
row) neutral density (n; kg m–3), and (bottom) dissolved oxygen (DO; mol L–1) of (left) Warm Deep 412 
Water (WDW; 28.1 ≥ n > 28.27 kg m–3), (center) Weddell Sea Deep Water (WSDW; 28.27 ≥ n > 28.40 413 
kg m–3) and (right) Weddell Sea Bottom Water (WSBW; n ≥ 28.40 kg m–3) on the sections across the 414 
Weddell Gyre at the Greenwich Meridian (WOCE A12; black line) and across the Weddell Sea from Kapp 415 
Norvegia to Joinville Island (WOCE SR4; red line). The neutral density criterion informed was used to 416 
determine the average of each hydrographic property of each of the Weddell Sea deep water layers. The 417 
vertical bars indicate the properties standard error. (For the interpretation of the references to color in this 418 
figure legend, the reader is referred to the web version of this article.) 419 

 420 
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 421 
Figure 6. Time series (1984–2014) of the average (top) potential temperature (ºC), (2nd row) salinity, (3rd 422 
row) neutral density (n; kg m–3), and (bottom) dissolved oxygen (DO; mol L–1) in the core (water mass 423 
contribution > 60%; see Fig. S1–S3) of (left) Warm Deep Water (WDW), (center) Weddell Sea Deep 424 
Water (WSDW) and (right) Weddell Sea Bottom Water (WSBW) on the sections across the Weddell Gyre 425 
at the Greenwich Meridian (WOCE A12; black line) and across the Weddell Sea from Kapp Norvegia to 426 
Joinville Island (WOCE SR4; red line). The vertical bars indicate the properties standard error. (For the 427 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this 428 
article.) 429 

 430 

In contrast to the average WSDW properties based on neutral density layers, 431 

changes in the WSDW core are more pronounced (Fig. 6 – center panels). The WSDW 432 

average temperature decreased by ~0.10-0.15ºC until 1996 and increased by ~0.18ºC 433 

afterwards (Fig. 6e; obvious in WOCE SR4 and less evident in WOCE A12 because of 434 

the lowest averaged temperature recorded in 2005), while salinity slightly increased by 435 

~0.005 during the whole period in section SR4 (Fig. 6f). Thus, our results unveil two 436 

quite distinct periods (Fig. 6g): 1984–1996 (increasing density) and 1996–2014 437 

(decreasing density). DO decreases by ~2 mol L–1 in WOCE SR4 after the 1990s, while 438 



22 
 

a high degree of DO variability is observed in WOCE A12 with values close to those 439 

observed in the early 1990s for year 2014 (Fig. 6h). 440 

The variability observed in the WSBW properties (n ≥ 28.40 kg m–3; Fig. 5 – right 441 

panels) is small for average temperature, except for the coldest temperatures recorded in 442 

the year 1998 on WOCE SR4 that reflects the partial occupation of the section (Fig. 5i). 443 

Average salinity decreased by ~0.004 at the Greenwich Meridian, whereas changes on 444 

WOCE SR4 reveal small oscillations (Fig. 5j). Despite the year 1998, both temperature 445 

(~0.05ºC) and salinity (~0.06) increased in the inner Weddell Sea (Fig. 5i-j). The WSBW 446 

average density decreased on WOCE A12 when considering the whole period, whereas 447 

the density increased in the center Weddell Gyre between the start of the time series until 448 

1998 (this increase is also noticeable in the WOCE A12) and decreased afterwards (Fig. 449 

5k). The average DO in WSBW shows a high level of interannual variability (Fig. 5l). 450 

The year 1998 is marked by the highest average DO in WOCE SR4 (again reflecting the 451 

half-section occupation), whereas a pronounced increase in the DO concentration after 452 

2005 is observed in WOCE A12 (Fig. 5l). Thus, one can infer that after 2005 (inclusive) 453 

the WSBW formation recovered, using DO as a proxy to refer to recent water mass 454 

ventilation, i.e., indicating years of strong renewal of the WSBW layer (Fig. 5l). 455 

The variability observed only in the WSBW core (Fig. 6 – right panels) shows that 456 

both average temperature (~0.15ºC) and salinity (~0.005) decreased until 1996 on WOCE 457 

SR4, followed by an increase of ~0.2ºC and ~0.01, respectively (Fig. 6i-j). In spite of the 458 

high variability observed, the WSBW density time series reveals a lightening of that water 459 

mass starting in the mid-1990s (Fig. 6k), in parallel with a reduction of DO concentration 460 

of ~5-8 mol L–1 during ~20 years (1984-2005) in both sections (Fig. 6l). A rapid renewal 461 

of the WSBW layer, occurring within ~10 years, after that period is indicated by increased 462 
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values of DO with the same magnitude previously reported for the beginning of sampling 463 

on section WOCE A12 (Fig. 6l). 464 

  465 

3.3. Weddell Sea Bottom Water sources and changes 466 

The WSBW core (contribution > 60%), considering depths greater than 3000 m, 467 

was composed on average of 70±5% and 71±3% of mWDW, 19±3% and 20±1% of 468 

HSSW, and 11±7% and 9±4% of ISW (Fig. 7) on WOCE SR4 and WOCE A12, 469 

respectively (Fig. 4). As the mWDW and Dense Shelf Waters (sources of the WSBW) 470 

contributions changed throughout the time, it is possible to evaluate which physical 471 

processes potentially influenced the changes of WSBW (Fig. 8). 472 

The mWDW contribution increased by ~6-8% through the period analyzed (Fig. 473 

8a), same as reported for WDW quantified in Case A (Fig. 4a). Also, the mWDW 474 

contribution decreased by ~4% after 2005 on WOCE A12. The mWDW contribute to 475 

WSBW the most in year 2005 for both sections (Fig. 8a). As the OMP analysis is 476 

constrained by mass conservation in the mixing scheme, the changes observed, when 477 

combining the Dense Shelf Waters contributions (Fig. 8b), are mirrored to mWDW 478 

contribution (Fig. 8a). 479 

Although the contribution of both shelf-sources reflects intense interannual 480 

variability, a clear decrease of ~5% of Dense Shelf Waters is observed between 1984–481 

2005, followed by an increase of ~3% in the section WOCE A12 (Fig. 8b). Separating 482 

the WSBW shelf-sources in HSSW and ISW, one observes an increasing HSSW 483 

contribution of ~3% in the inner Weddell Sea (except for the drop observed in 1998) and 484 

no significant variations at the Prime Meridian (Fig. 8c). On the other hand, the 485 

contribution of ISW decreases between 6-8% for both sections (again excluding the year 486 
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1998 for WOCE SR4) until 2005 (Fig. 8d). After that, the ISW contribution to the WSBW 487 

mixture increases by ~2%, which is noticeable on the WOCE A12 section (Fig. 8d). 488 

 489 
Figure 7. Average contribution (%) of the source water masses of Weddell Sea Bottom Water to the layer 490 
with contributions > 50% (see Fig. 3c and f) on the sections WOCE SR4 (left panels, 1989–2010) and 491 
WOCE A12 (right panels; 1984–2014), respectively, (a, d) Warm Deep Water (WDW), (b, e) High Salinity 492 
Shelf Water (HSSW), and (e, f) Ice Shelf Water (ISW). (For the interpretation of the references to color in 493 
this figure legend, the reader is referred to the web version of this article.) 494 

  495 
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 496 
Figure 8. Time series (1984–2014) of the average source water mass contribution - (a) modified-Warm 497 
Deep Water (mWDW), (b) Dense Shelf Waters (merged contribution of HSSW and ISW), (c) High Salinity 498 
Shelf Water (HSSW), and (d) Ice Shelf Water (ISW) to the total mixture (%; Case B) in the Weddell Sea 499 
Bottom Water (Fig. 3c and f) on the section across the Weddell Gyre at the Greenwich Meridian (WOCE 500 
A12; black line) and across the Weddell Sea from Kapp Norvegia to Joinville Island (WOCE SR4; red 501 
line). The vertical bars indicate the water mass standard error. (For the interpretation of the references to 502 
color in this figure legend, the reader is referred to the web version of this article.) 503 
 504 

4. Discussion and Conclusion 505 

The Weddell Sea deep water mass structure presented in Figure 3 agrees with that 506 

previously described by Kerr et al. (2009a) as expected, because both studies used the 507 

same methodology and datasets overlap during part of the time series. However, the use 508 

of a more appropriate sensitive analysis here, through a Monte Carlo approach varying 509 

the SWT, causes changes in the average contribution and the depth-limits of WSDW 510 

boundary with other water masses when compared to the previous study. Thus, the 511 

WDW/WSDW and WSDW/WSBW boundaries changed approximately by 500 m from 512 

those previously reported by Farhbach et al. (2004; 2011). The authors split the water 513 
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mass layers in the Weddell Sea using the isopycnal (isotherm) boundary of 28.27 kg m–3 514 

(0 ºC) and 28.40 kg m–3 (–0.7 ºC), which changes the depth of the water mass mixing 515 

zone between the studies. However, the combined use of temperature, salinity, and DO, 516 

to distinguish the layer of the purest form of the water masses (i.e., its high percentage of 517 

mixture), reveals further important aspects regarding how a particular water mass evolves 518 

through time. That was sometimes masked using the above parameter thresholds. The 519 

temporal variability observed in the contribution to Weddell Sea deep waters (Sect. 3.2.1) 520 

is likely caused by a combination of changes in (i) the source water mass properties 521 

(Meredith et al., 2011; Azaneu et al., 2013; Schmidtko et al., 2014), (ii) the Weddell Gyre 522 

circulation and dynamics (Meredith et al., 2008; Jullion et al., 2014), and (iii) the 523 

production and export of Dense Shelf Waters from the shelf (Kerr et al. 2012a; Heywood 524 

et al., 2014). In fact, shifts in WSBW hydrographic properties towards less dense varieties 525 

(Figs. 5k) likely equate to less WSBW being produced over time, which is further 526 

supported by the decreasing of DO concentration (i.e., less ventilation)  in the bottom 527 

layer (Fig. 6k) of the Weddell Sea. 528 

The increasing contribution of WDW (Fig. 4a) during the three decades analyzed 529 

is possibly reflecting the intensification of the Southern Ocean winds driven by the 530 

positive long-term trend of the Southern Annular Mode (Jullion et al., 2010). That 531 

mechanism may play a role on the southward displacement of the fronts of the Antarctic 532 

Circumpolar Current (Sokolov and Rintoul, 2009) and on the intensity of mesoscale 533 

eddies in the Southern Ocean (Meredith, 2016). Both processes can possibly influence 534 

the inflow of Circumpolar Deep Water (CDW—a water mass precursor of WDW) into 535 

the Weddell Sea. Thus, the processes may allow the WDW contribution to increase in 536 

phase and at similar rates both along the Prime Meridian and in the inner Weddell Sea 537 

(Fig. 4a; Table 3). It is also important to highlight that the temporal changes in the WDW 538 
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layer are affected by a mixture of different CDW-inflows from the Antarctic Circumpolar 539 

Current and recirculated-WDW in the Prime Meridian region (Ryan et al., 2016). Hence, 540 

the WDW core gradually merges and becomes more homogeneous towards the west 541 

(Leach et al, 2011), such as observed by the property time series (Fig. 6 – left panels). In 542 

addition, the WDW increased availability within the Weddell Gyre during the three 543 

decades analyzed (Fig. 4a) has changed the WSBW layer, which now unveils a higher 544 

percentage of the former as part of its composition (Fig. 8a). In fact, that observation 545 

agrees with the reported declining ventilation of the Antarctic deep and bottom waters 546 

(Huhn et al., 2008), which was simultaneously manifested in the Weddell Sea by a 547 

decrease of ~20% in the WSBW contribution (Kerr et al. 2009a), the AABW volume 548 

contraction (Azaneu et al., 2013), and a decreasing trend in DO for the bottom layer (van 549 

Heuven et al., 2014). 550 

The temporal changes of the WSDW contribution (Fig. 4b) reveal a marked 551 

interannual variability (sometimes varying the contribution up to ~10%), which is likely 552 

driven by small changes in the rate its precursor water masses mix during the formation 553 

process (Daae et al., 2009), but also due to changes in the internal diapycnal mixing 554 

(Heywood et al., 2002; Sloyan, 2005) and Southern Ocean circulation (Naveira Garabato 555 

et al., 2014). This behavior is more obvious on the WOCE A12 section as that region is 556 

more dynamically active because of both the steep bathymetry and the vicinity to the 557 

inflow of CDW into the Weddell Sea (~20-30ºE; e.g. Gouretski and Danilov, 1993; 558 

Schröder and Fahrbach, 1999; Ryan et al., 2016). Furthermore, the rapid renewal of the 559 

WSBW layer observed after 2005 at the Prime Meridian (Fig. 4c) is also seen in the 560 

WSDW layer after 2010 (Fig. 4b). The ~5 years lag can be an indicator for the mixing 561 

time scale between WSDW and WSBW, although further investigation is needed due to 562 
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the relatively sparse temporal resolution combined with the strong temporal variability of 563 

the properties of those water masses. 564 

The decreasing WSDW contribution in WOCE SR4 is within the same range of 565 

the temporal variability as reported for the Prime Meridian (Fig. 4b). This suggests that 566 

the Weddell Gyre circulation can damp temporal changes within the Weddell Sea, but it 567 

also demonstrates that WSDW (the most voluminous water mass filling the Weddell 568 

Basin) is not completely matured. In fact, Robertson et al. (2002) pointed out that, 569 

although the average WSDW potential temperature between 1500 m and 3500 m was 570 

higher in the 1990s than in the 1970s, high variability in the data prevented the 571 

identification of a well-defined temporal trend. Moreover, changes in salinity were not 572 

observed in the deep layer of the Weddell Sea (n > 28.27 kg m–3) fusing a dataset of ~50 573 

years (1958–2010; Azaneu et al., 2013), which is an intriguing observation given the 574 

recent freshening of AABW varieties and AABW shelf-sources reported for sites all 575 

around the Antarctic continent (Aoki et al., 2005; Rintoul, 2007; Hellmer et al., 2011; 576 

Jullion et al., 2013; Dotto et al., 2016). Hence, a swifter circulation in the Weddell Sea 577 

(Meredith et al., 2011) can also contribute to an enhanced export of WSDW, newly 578 

formed in the northwestern Weddell Sea. That young water mass potentially carries out 579 

of the Weddell Sea the freshening signal resulting from changes in Dense Shelf Waters 580 

properties (Azaneu et al., 2013) due to ocean-ice interactions (Cook et al., 2005; Pritchard 581 

and Vaughan, 2007; Chen et al., 2008; Rignot et al., 2008; Cook et al., 2016). Thus, 582 

preventing those time changes in the properties of the WSDW sources leads to a more 583 

consistent impact on their contribution to the total mixture in the inner Weddell Sea. 584 

Moreover, the time series currently available are not long enough yet to allow for a 585 

distinction of the signals and further conclusions on the drivers of the WSDW temporal 586 

variability. 587 
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Changes in the WSBW contribution (Fig. 4c) agree with the ~20% decrease 588 

previously reported by Kerr et al. (2009a) until the end of the 1990s, but the WSBW 589 

formation strength recovers afterwards. The pattern reversal is clearly visible by the 590 

increased WSBW contribution after 2005 in WOCE A12, but not apparently manifested 591 

in the inner Weddell Sea. However, the vigorous increase of WSBW at the Prime 592 

Meridian indicates that other dense bottom water sources are influencing the region (e.g. 593 

Couldrey et al, 2013). In this context, the changes observed in the WSBW precursors 594 

(Fig. 8) indicate that Dense Shelf Waters are responsible for modulating the WSBW 595 

variability. This is particularly true because the mWDW contribution to the WSBW layer 596 

(Fig. 8a) and the strength of the WDW core in the Weddell Sea (Fig. 4a) both have 597 

increased throughout the time series. The Dense Shelf Waters (Fig. 8b) contribution 598 

unveils a behavior with similar temporal changes as in the WSBW contribution (Fig. 4c) 599 

and changes in the DO content of the WSBW layer (Fig. 6l). It is interesting to note that 600 

even the Dense Shelf Waters modulate the WSBW temporal changes when separating the 601 

contribution into HSSW and ISW. The variability of the WSBW in WOCE SR4 (Fig. 4c) 602 

is mostly driven by the increasing (decreasing) contribution of HSSW (ISW) (Fig. 8c), 603 

whereas ISW modulates the WSBW changes in WOCE A12 after 2005 since HSSW 604 

monotonically changes through time (Fig. 8d). 605 

The newly-formed WSBW, present in the region of WOCE A12, likely results 606 

from an increasing contribution of other AABW varieties formed in the Indian Sector of 607 

the Southern Ocean, being advected towards the Prime Meridian as previously proposed 608 

by Meredith et al. (1999; 2000) and Jullion et al. (2014). The potential temperature-609 

salinity diagram (Fig. 9), considering AABW varieties with n ≥ 28.40 kg m–3 at 30ºE, 0º, 610 

and the inner Weddell Sea, shows that the AABW variety marked as WSBW on WOCE 611 

A12 is derived from the Indian Ocean-variety of AABW after 2005 (Fig. 9c and d), which 612 
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has a density different from the varieties formed within the Weddell Sea. However, no 613 

distinction of the AABW sources is evident during the 1990s, because AABW varieties 614 

at the Prime Meridian and in the Indian Sector followed roughly the same isopycnals (Fig. 615 

9a and b). It is worth mentioning that both the different vertical resolution of each datasets 616 

(e.g., bottle and CTD) used and the possible inter-cruise systematic differences have a 617 

negligible effect on this conclusion (e.g., salinity differences are within the same range 618 

of the deviation of the label standard seawater salinity in laboratory measurements). 619 

Therefore, the observations indicate that prior to 2005 the bottom waters were well-mixed 620 

in the region and/or no pulses of AABW of Indian Ocean origin occurred during that 621 

period. 622 

 623 
Figure 9. Potential temperature-salinity diagrams considering the near-bottom layer (n ≥ 28.4 kg m–3) and 624 
latitude greater than 60ºS at the WOCE SR4 (inner Weddell Sea; red symbols), WOCE A12 (Prime 625 
Meridian; blue symbols), and WOCE I6S (30ºE; black dots) repeat sections. The dataset used for WOCE 626 
SR4 and WOCE A12 is the same used to perform the OMP analysis. The year of the measurement is 627 
indicated by the legend for each respective section, grouped in nearest sampling years: (a) 1990–1993, (b) 628 
1996–1998, (c) 2002–2006, and (d) 2008–2014. The isopycnals refers to 4. (For the interpretation of the 629 
references to color in this figure legend, the reader is referred to the web version of this article.) 630 

 631 
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In addition, the source water mass contributions to WSBW are redefined here to 632 

be composed by a mixture of 71±4% of mWDW, 19±2% of HSSW, and 10±6% of ISW 633 

(Fig. 7) for the whole Weddell Sea, with almost no difference between both regions 634 

analyzed. These results update the proportion of the sources forming WSBW, previously 635 

estimated to be approximately 65% of WDW and 35% of Dense Shelf Waters (Gill, 1973; 636 

Carmack, 1974). Also, assuming that Dense Shelf Waters are the youngest water masses 637 

of the WSBW precursors, our results corroborate with earlier estimates that 12% to 30% 638 

of the bottom waters in the Weddell Sea are newly-formed (Carmack and Foster, 1975). 639 

In summary, extending the time series analysis of Weddell Sea deep and bottom 640 

water properties to around three decades of investigation (even considering the sparse 641 

temporal resolution) allows us to better understand the WSBW origin in the Weddell Sea 642 

and how it has been evolved (transformed/modified) over time. This study shows that 643 

shifts in WSBW properties towards less dense varieties in the Weddell Sea likely equate 644 

to less WSBW being produced over time. The decline of WSBW volume observed until 645 

the 1990s ceased around 2005 and likely recovered thereafter (particularly in the WOCE 646 

A12 region, due to pulses of AABW from the Indian Ocean). The increase of the WSBW 647 

contribution results from changes in the proportion of WDW and Dense Shelf Waters, 648 

while the latter drive and modulate the recent WSBW variability. As a result, WSBW 649 

present in the Weddell Basin is now composed by 71% of WDW and 29% of Dense Shelf 650 

Waters. 651 

Finally, the distinction between the AABW varieties within the entire Southern 652 

Ocean is still a complex issue to be solved due to the proximity of their property values. 653 

However, as particular ocean-ice processes with different time scales are responsible for 654 

modifying the regional varieties of AABW in diverse ways, further efforts should be 655 

taken to correctly interpret the signals of recent AABW warming and freshening that 656 
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spread towards the global ocean (Bindoff and Hobbs, 2013). In this context, the Southern 657 

Ocean environment (mostly during austral winter when AABW formation in particular 658 

occurs) imposes a barrier for comprehensive synoptic observations around the continent 659 

even in the light of modern technologies and techniques. Nevertheless, some progress has 660 

been achieved to observe the ocean under the ice as this task has been receiving special 661 

attention from the international community (Meredith et al., 2013; 2015). Unfortunately, 662 

ocean models and reanalysis products normally lack to properly represent the AABW 663 

layer as well as its properties and formation processes (Kerr et al. 2009b; Kerr et al., 664 

2012a, b; Azaneu et al., 2014; Dotto et al., 2014). Nevertheless, a recent investigation on 665 

the representation of deep convection occurring in ocean reanalysis products revealed that 666 

the mechanism of AABW formation in the Indian Sector of the Southern Ocean is 667 

plausible by combining both continental shelf convection and the export of Dense Shelf 668 

Waters to the open ocean (Aguiar et al., 2017). These findings indicate that observations 669 

and modeling should be used together to fill the gaps and better understand the processes 670 

controlling the formation and variability of AABW regional varieties. 671 

 672 
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