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ABSTRACT
Background: Although growing evidence from trials and popula-
tion-based studies has supported a protective role for flavonoids in

relation to risk of certain chronic diseases, the underlying mecha-

nisms remain unclear. Several previous studies focused on individ-

ual inflammatory biomarkers, but because of the limited specificity

of any individual marker, an assessment of a combination of bio-

markers may be more informative.
Objective: We used an inflammation score (IS) that integrated 12
individual inflammatory biomarkers for the examination of associ-

ations with intakes of different flavonoid classes.
Design: The study was a cross-sectional analysis of 2375 Framing-
ham Heart Study Offspring Cohort participants. Intakes of total

flavonoids and their classes (anthocyanins, flavonols, flavanones,

flavan-3-ols, polymers, and flavones) were calculated from validated

food-frequency questionnaires. Individual inflammatory biomarkers

were ranked, standardized, and summed to derive an overall IS and

subgroup scores of functionally related biomarkers.
Results: In multivariate analyses, an inverse association between
higher anthocyanin and flavonol intakes and IS was observed with

a mean 6 SE difference between quintile categories 5 and 1 of

21.48 6 0.32 (P-trend # 0.001) and 20.72 6 0.33 (P-trend =

0.01), respectively. Results remained significant after additional ad-

justment for physical activity, and vitamin C and fruit and vegetable

intakes. Higher anthocyanin intake was inversely associated with all

biomarker subgroups, whereas higher flavonol intake was associated

only with lower cytokine and oxidative stress biomarker concentra-

tions. In food-based analyses, higher intakes of apples and pears,

red wine, and strawberries were associated with a lower IS with

differences between quintiles 5 and 1 of 21.02 6 0.43 (P = 0.006),

21.73 6 0.39 (P , 0.001), and 20.44 6 0.88 (P = 0.02), respec-

tively. Although intakes of other classes were not associated with

a reduction in overall IS, higher intakes of flavan-3-ols and their

polymers were associated with a significant reduction in oxidative

stress biomarkers.
Conclusion: These findings provide evidence to suggest that an anti-
inflammatory effect may be a key component underlying the reduction

in risk of certain chronic diseases associated with higher intakes of

anthocyanins and flavonols. The Framingham Offspring Study was

registered at clinicaltrials.gov as NCT00005121 (Framingham Heart

Study). Am J Clin Nutr doi: 10.3945/ajcn.115.108555.

Keywords: anthocyanins, dietary intake, flavonoids, flavonols,
inflammation

INTRODUCTION

Evidence from population-based studies and randomized
controlled trials has supported a protective role for several dietary
flavonoids in relation to a number of age-related chronic con-
ditions including cardiovascular disease, diabetes, some cancers,
Parkinson disease, and cognitive decline (1–8). One shared
mechanism for these conditions is low-grade systemic chronic
inflammation or metaflammation. A wealth of data from exper-
imental, clinical, and epidemiologic research links inflammation
and the biological networks integral to the inflammatory re-
sponse to their pathophysiology (9–11). Many dietary factors
influence various aspects of inflammation (11), and emerging
data support the potential for several flavonoids to reduce a pre-
disposition to chronic inflammation with particular interest in the
anthocyanin, flavonol, and flavan-3-ol subclasses. Specifically,
these bioactive compounds and their metabolites decrease in-
flammatory mediator production through effects on endogenous
cell signaling pathways, gene expression, and gut microbiota and
by exerting anti-inflammatory and neuroprotective effects (12–
15). Inflammation plays a key role in a range of different diseases
and conditions, and although resulting clinical signs and symp-
toms are different, many of the processes, cells, and molecules

1 Supported by grants from the International Life Sciences Institute North

America; the National Heart, Lung, and Blood Institute (contracts N01-HC-

25195, R01 HL064753, R01 HL076784, and R21 HL87217); the National

Institute for Aging (R01 AG028321); the Biotechnology and Biological

Sciences Research Council, United Kingdom (reference BB/J004545/1);

and the USDA Agricultural Research Service (agreement 58-1950-0-014).

AC is a Royal Society Wolfson Research Merit Award Holder. This is a free

access article, distributed under terms (http://www.nutrition.org/publications/

guidelines-and-policies/license/) that permit unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is

properly cited.

*Towhom correspondence should be addressed. E-mail: paul.jacques@

tufts.edu.

ReceivedFebruary 3, 2015. Accepted for publication April 28, 2015.

doi: 10.3945/ajcn.115.108555.

Am J Clin Nutr doi: 10.3945/ajcn.115.108555. Printed in USA. � 2015 American Society for Nutrition 1 of 10

 AJCN. First published ahead of print May 27, 2015 as doi: 10.3945/ajcn.115.108555.

Copyright (C) 2015 by the American Society for Nutrition 



involved in the inflammatory response are remarkably similar
and characterized by an increase in the number of circulating
leukocytes and increasing concentrations of cytokines and
chemokines (11).

Several recent prospective studies observed an inverse asso-
ciation between a higher intake of anthocyanins and risk of
a range of chronic diseases including type 2 diabetes, Parkinson
disease, myocardial infarction, and cancer (1, 2, 4–8). The
limited data from previous population-based studies focused on
individual biomarkers of inflammation and provided preliminary
evidence to suggest that a higher anthocyanin intake is associ-
ated with lower pro-inflammatory cytokine levels [such as C-
reactive protein (CRP)7] (16) and that flavanone and flavone
intakes are inversely associated with IL-18 concentrations,
whereas a higher flavonol intake is associated with reduced
circulating concentrations of soluble vascular cell adhesion
molecules (17). Although there remains no consensus on what
biomarkers best represent low-grade chronic inflammation or
differentiate between acute and chronic inflammation (or the
various phases of the inflammatory response) (11), because of
the limited specificity of any individual marker, the assessment
of a wider range of biomarkers of inflammation might help
elucidate the underlying mechanisms by which specific dietary
flavonoids reduce risk of age-related chronic disease. Combi-
nations or clusters of multiple biomarkers may be most in-
formative, but to our knowledge, no previous population-based
studies have derived an overall inflammation signature and ex-
amined associations with flavonoid intake.

Therefore, we derived an overall inflammation score (IS) and
integrated markers that were functionally related to examine
associations with flavonoid intake. It was hypothesized, on the
basis of the available experimental and epidemiologic data, that
higher intakes of anthocyanins, flavonols, and flavan-3-ols would
be inversely associated with systemic markers of inflammation.

METHODS

Study design and population

The selection of study participants from the FraminghamHeart
Study Offspring cohort was described in detail previously (5).
Briefly, participants were recruited in 1971, and the cohort un-
derwent a repeat examination approximately every 3–4 y. For
the current cross-sectional study, we used data derived from
the seventh study examination, which spanned 3 y (1998–2001).
Participants were excluded from the current study if they did not
have valid dietary intake information (n = 509) or were missing
data on inflammatory biomarkers (n = 655; excluding TNF-a
and isoprostanes, which were measured on a subset of the co-
hort). Of the 3539 members of the cohort who participated in the
seventh study examination, data on 2375 men and women were
available for analysis.

The study was conducted according to the guidelines set forth
in the Declaration of Helsinki, and all procedures involving
human participants were approved by the Boston University

Medical Center Institutional Review Board, and the current
ancillary study was approved by the Tufts Medical Center In-
stitutional Review Board.

Measurements

Assessment of flavonoid intakes

Dietary intakes were assessed by using a validated semi-
quantitative food-frequency questionnaire (FFQ) at the seventh
examination (5). Dietary information was judged as unreliable
and excluded from study if reported energy intakes were,600 or
.4000 kcal/d for women and .4200 kcal/d for men or if .12
food items were left blank.

A database for the assessment of habitual intake of all fla-
vonoid classes was used as previously described (18). Briefly,
intakes of individual compounds were calculated as the sum of
the consumption frequency of each foodmultiplied by the content
of the specific flavonoid for the specified portion size. We derived
intakes of classes commonly consumed in the US diet, specifi-
cally anthocyanins (cyanidin, delphinidin, malvidin, pelargoni-
din, petunidin, and peonidin), flavonols (quercetin, kaempferol,
myricetin, and isorhamnetin), flavan-3-ols (catechins and epi-
catechins), flavanones (eriodictyol, hesperetin, and naringenin),
flavones (luteolin and apigenin), and oligomer and polymer
flavonoids (including proanthocyanidins, theaflavins, and the-
arubigins, which were classified as polymer flavonoids for this
article). The validity and reproducibility of FFQs were reported
previously, and correlations between major dietary sources of
flavonoids (fruit, vegetables, tea, and wine) measured by diet
records and an FFQ were 0.70, 0.50, 0.77, and 0.83, respectively
(19, 20), which were correlations similar to those reported for an
FFQ in a recent urinary flavonoid biomarker study (21).

Inflammatory biomarkers

Single measurements of plasma CRP were made by using
a high-sensitivity assay, whereas the following inflammatory
biomarkers were measured in duplicate from fasting blood
samples taken during the seventh examination cycle (1998–2001)
by using commercially available enzyme-linked immunoassay
kits: plasma cluster of differentiation 40 ligand, plasma P-
selectin, plasma osteoprotegerin, plasma TNF-a, plasma TNF
receptor-2 (TNFR-2), serum soluble intercellular adhesion
molecular-1, serum IL-6, serum monocyte chemotactic protein-1,
serum myeloperoxidase, plasma lysosomal phospholipase-A2
(LPL-A2) mass and activity, and urinary isoprostanes indexed to
urinary creatinine. Plasma fibrinogen was measured in duplicate
by using the clot-time method of Clauss (22) with reagents
(Diagnostica Stago).

With the use of this cluster of inflammatory biomarkers, we
developed the following 2 types of scores to represent in-
flammation: a score representative of overall inflammation (the
IS) and scores that were based on markers that are considered to
be functionally interrelated, including available acute phase re-
actants, pro-inflammatory cytokines and receptors, and oxidative
stress markers. This inflammation signature was previously used
to examine associations between plasma pyridoxal-5-phosphate
concentrations and inflammation (23).

Individual biomarker amounts were ranked, standardized as
z scores, and summed to compute the different scores. The
overall IS was the sum of standardized rank values of 12 of the

7Abbreviations used: CRP, C-reactive protein; FFQ, food-frequency ques-

tionnaire; IS, inflammation score; LPL-A2, lysosomal phospholipase-A2;

TNFR-2, TNF receptor-2.
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inflammatory biomarkers, including CRP, fibrinogen, IL-6,
TNFR-2, osteoprotegerin, P-selectin, cluster of differentiation
40 ligand, intercellular adhesion molecular-1, monocyte che-
moattractant peptide-1, myeloperoxidase, and LPL-A2 mass and
activity. The subgroup acute phase reactants included the bio-
markers CRP and fibrinogen. The other subgroups were designated
as cytokines (which included IL-6, TNF-a, TNFR-2, and osteo-
protegerin) and oxidative stress (which included myeloperoxidase,
LPL-A2 and activity, and isoprostanes indexed to creatinine).

Covariates

Additional variables used in our analyses included age, sex, BMI,
prevalent cardiovascular disease (yes or no), prevalent diabetes (yes
or no), current smoker (yes or no), nonsteroidal anti-inflammatory
drug use (yes or no), physical activity (metabolic equivalents),
energy intake (kcal/d), and intakes of saturated and trans fat (g/d),
fiber (g/d), potassium (mg/d), vitamin C (mg/d), and fruit and
vegetables (servings/d). Criteria for the diagnoses of cardiovascular
and type 2 diabetes events have been described elsewhere (24).
BMI was calculated as body weight divided by the square of height
(kg/m2) by using examiner-assessed weight and height. A physical
activity index, which was expressed in metabolic equivalents, was
calculated by averaging the number of hours spent on specific
activities (i.e., sleep, sedentary, slight activity, moderate activity,
and heavy activity) during a typical day with each activity weighted
by the oxygen consumption required to perform the activity (25).

Statistical methods

Our primary aim was to assess associations between flavonoid
classes and the overall IS, and in secondary analyses, we ex-

amined the relative contribution of the different components and
subgroups (acute inflammation, cytokines, and oxidative stress).

General linear models were used to examine associations
between flavonoid intakes and the IS. Flavonoids were presented
as quintile categories of intake. To assess trends across quintile
categories, the median intake of each quintile category was
assigned to individuals with intake in that category, and this
quintile median variable was used as a continuous measure in our
models.

We used the following 2 different models based on the in-
clusion of covariates, each by adding covariates to the previous
model: 1) an age-, sex-, smoking-, and energy-adjusted model
(model 1) and 2) model 1 with additional adjustment for BMI
and nonsteroidal anti-inflammatory drug use, prevalent cardio-
vascular disease or diabetes, and saturated fat and trans fat in-
takes. In secondary analyses, we further adjusted for potassium,
fiber, vitamin C, and fruit and vegetable intakes, both in-
dividually and in combination. Because many of the important
sources of flavonoids also contribute these nutrients to the diet, it
is important to consider them as potential confounders, but we
included these sources in secondary analyses because there was
also the concern of possible overadjustment. Physical activity
was also considered in secondary analyses because of the rela-
tively large number of participants with missing data for this
variable.

To examine the relation between the top food sources of the
specific flavonoids inversely associated with inflammation, we
identified all foods that contributed $10% of the intake of each
flavonoid class and related servings of these foods to the IS. We
classified food intake into 4 categories (,1, 1–4, 5–6, and $7
servings/wk) and applied the same ANCOVA analysis approach

TABLE 1

Age-standardized baseline characteristics of 2375 participants of the Framingham Offspring Study seventh examination according to quintiles of total

flavonoid intake1

Characteristic

Quintile categories of total flavonoid intake

P-trend1 2 3 4 5

Total flavonoid intake,2 mg/d 78 (8.7, 118) 150 (117, 189) 228 (189, 275) 343 (276, 430) 599 (430, 2323)

Female,3 % 53.2 (48.7, 57.6) 53.2 (48.8, 57.7) 47.4 (42.9, 51.8) 54.4 (50, 58.8) 66.8 (62.4, 71.3) ,0.001

Age, y4 60 (59.1, 60.8) 60.5 (59.7, 61.4) 61.2 (60.3, 62) 61.8 (60.9, 62.6) 61.7 (60.9, 62.6) 0.002

NSAID use,3 % 23.3 (19.8, 26.9) 20.1 (16.5, 23.6) 19.8 (16.3, 23.4) 16.4 (12.8, 19.9) 17.8 (14.2, 21.3) 0.03

CVD,3 % 15 (12.1, 17.8) 11.5 (8.6, 14.3) 11.7 (8.8, 14.5) 13.8 (11, 16.6) 10 (7.2, 12.9) 0.09

Diabetic,3 % 12 (9.3, 14.8) 11.3 (8.6, 14.1) 12 (9.3, 14.8) 11.2 (8.5, 14) 7.5 (4.8, 10.3) 0.02

Current smoker,3 % 20.3 (17.3, 23.3) 14.1 (11.1, 17.1) 11.8 (8.8, 14.8) 11.1 (8.1, 14.1) 8.2 (5.2, 11.2) ,0.001

BMI,5 kg/m2 28.4 (28.0, 28.9) 27.9 (27.5, 28.4) 27.4 (27.0, 27.9) 27.7 (27.3, 28.1) 26.9 (26.5, 27.3) ,0.001

Physical activity index5 36.8 (36.2, 37.4) 37.5 (36.9, 38.1) 37.2 (36.6, 37.8) 37.7 (37.1, 38.3) 37.7 (37.1, 38.4) 0.05

Calories,5 kcal/d 1418 (1380, 1457) 1661 (1617, 1707) 1818 (1769, 1869) 1898 (1846, 1950) 1983 (1929, 2038) ,0.001

Fiber (AOAC),5,6 g/d 13.4 (13.0, 13.7) 16.1 (15.7, 16.5) 17.7 (17.2, 18.2) 17.7 (17.3, 18.2) 19.4 (18.9, 19.9) ,0.001

Potassium intake,5,6 mg/d 2498 (2450, 2547) 2768 (2717, 2821) 2974 (2919, 3030) 2964 (2909, 3020) 3247 (3186, 3310) ,0.001

Vitamin C intake,5,6 mg/d 156 (144, 169) 225 (208, 243) 250 (231, 270) 276 (256, 299) 324 (299, 351) ,0.001

Saturated fat,5,6 g/d 21.9 (21.4, 22.5) 20.9 (20.4, 21.5) 19.6 (19.1, 20.1) 19.1 (18.6, 19.5) 18.7 (18.2, 19.2) ,0.001

trans Fat,5,6 g/d 2.65 (2.56, 2.75) 2.45 (2.37, 2.54) 2.24 (2.17, 2.32) 2.14 (2.07, 2.22) 2.12 (2.04, 2.19) ,0.001

1P values for the test of linear trend across quintile categories were based on linear regression models with the median intake of each quintile category

assigned to individuals with intake in that category, and this quintile median variable was used as a continuous measure in regression models. AOAC,

Association of Official Analytical Chemists; CVD, cardiovascular disease; NSAID, nonsteroidal anti-inflammatory drug.
2All values are medians; minimums and maximums in parentheses.
3All values are age- and sex-adjusted (least-squares) percentages; 95% CIs in parentheses.
4All values are age- and sex-adjusted (least-squares) means; 95% CIs in parentheses.
5All values are age- and sex-adjusted (least-squares) geometric means; 95% CIs in parentheses.
6Also adjusted for energy intake.

ANTI-INFLAMMATORY EFFECTS OF FLAVONOID INTAKE 3 of 10



that was described for flavonoids. A test for trend across food-
serving categories was based on assigning the median servings
in each category to individuals in that category and treating that
resulting variable as a continuous variable in regression models.

All analyses were performed with SAS version 9.3 software
(SAS Institute). P , 0.05 was considered statistically significant.

RESULTS

Characteristics of participants (n = 2375) according to quin-
tiles of total flavonoid intake are shown in Table 1. Participants
with higher total flavonoid intakes were older, smoked less, and
had higher habitual intakes of vitamin C, potassium, and fiber.
The flavonoid polymer (proanthocyanidins) subclass, on aver-

age, contributed most to total flavonoid intake (0–1569 mg/d),
whereas anthocyanin intakes ranged from 0 to 365 mg/d, and
flavonol intakes ranged from 1 to 77 mg/d (Table 2).

In a multivariable-adjusted regression analysis, higher an-
thocyanin intake was associated with a 73% lower overall IS
between highest and lowest quintile categories (between quintiles
5 and 1: 21.48; P-trend , 0.001) (Table 3). These results re-
mained essentially unchanged after additional adjustment for
physical activity or intakes of fiber, potassium, or vitamin C
(data not shown). Even the addition of total fruit intake or total
fruit and vegetable intake to the model did not substantially
attenuate the observed inverse association for anthocyanins
[between quintiles 5 and 1: 21.50 (P-trend = 0.001) and 21.45
(P-trend ,0.001), respectively].

TABLE 2

Total flavonoid and class intakes in 2375 participants of the Framingham Offspring Study seventh examination

Quintile categories of flavonoid intake

1 2 3 4 5

n 475 475 475 475 475

Flavonols, mg/d 4.8 (1.2, 6.3)1 7.8 (6.3, 9.4) 10.9 (9.4, 12.8) 15.1 (12.8, 18.4) 25.0 (18.4, 76.6)

Flavones, mg/d 0.41 (0.01, 0.70) 1.06 (0.71, 1.42) 1.95 (1.42, 2.26) 2.63 (2.26, 3.14) 4.12 (3.14, 16.3)

Flavanones, mg/d 4.5 (0.0, 8.5) 15.1 (8.5, 27.3) 37.8 (27.3, 53.9) 59.4 (53.9, 66.1) 87.3 (66.1, 527.8)

Flavan-3-ols, mg/d 6.8 (0.1, 10.6) 14.4 (10.6, 18.7) 23.6 (18.8, 32.1) 43.1 (32.1, 68.0) 86.8 (68.0, 449.0)

Anthocyanins, mg/d 1.8 (0.0, 3.5) 5.1 (3.5, 8.7) 13.1 (8.7, 15.3) 17.9 (15.3, 23.4) 32.0 (23.5, 364.8)

Polymer flavonoids, mg/d 35.4 (0.0, 54.4) 74.0 (54.5, 96.2) 124.8 (96.4, 155.6) 201.7 (155.8, 270.1) 377.5 (270, 1569)

Total flavonoids, mg/d 78.4 (8.7, 117.9) 150.3 (117.9, 188.7) 227.9 (188.8, 275.3) 343.1 (275.6, 429.7) 599.1 (430, 2323)

1Median; minimum and maximum in parentheses (all such values).

TABLE 3

Associations between different flavonoid subclass intakes and a combined inflammation score in 2375 participants of the Framingham Offspring Study1

Inflammation score

Quintile categories of flavonoid intake

P-trend1 2 3 4 5

Flavonols

Model 1 0.88 (0.42, 1.33) 0.50 (0.06, 0.93) 0.05 (20.39, 0.49) 20.40 (20.84, 0.04) 20.72 (21.16, 20.27) ,0.001

Model 2 0.43 (20.03, 0.88) 0.33 (20.11, 0.76) 0.11 (20.33, 0.55) 20.43 (20.87, 0.02) 20.29 (20.75, 0.16) 0.01

Flavones

Model 1 0.87 (0.42, 1.32) 0.04 (20.39, 0.48) 0.12 (20.32, 0.56) 20.25 (20.69, 0.19) 20.46 (20.91, 20.01) ,0.001

Model 2 0.36 (20.10, 0.82) 20.05 (20.48, 0.38) 0.12 (20.32, 0.56) 20.08 (20.52, 0.35) 20.11 (20.57, 0.35) 0.24

Flavanones

Model 1 0.50 (0.06, 0.95) 20.19 (20.63, 0.26) 0.25 (20.19, 0.69) 20.12 (20.56, 0.32) 20.12 (20.58, 0.33) 0.16

Model 2 0.12 (20.33, 0.56) 20.27 (20.70, 0.17) 0.13 (20.31, 0.57) 0.11 (20.33, 0.55) 0.15 (20.31, 0.60) 0.46

Flavan-3-ols

Model 1 1.19 (0.74, 1.64) 20.38 (20.82, 0.06) 20.06 (20.50, 0.38) 20.20 (20.64, 0.24) 20.25 (20.69, 0.20) 0.02

Model 2 0.70 (0.25, 1.15) 20.38 (20.82, 0.05) 0.01 (20.43, 0.44) 20.05 (20.50, 0.39) 20.08 (20.52, 0.37) 0.31

Anthocyanins

Model 1 0.98 (0.54, 1.43) 0.18 (20.25, 0.62) 0.25 (20.19, 0.68) 20.27 (20.72, 0.17) 20.86 (21.30, 20.41) ,0.001

Model 2 0.77 (0.33, 1.22) 0.09 (20.34, 0.52) 0.30 (20.13, 0.74) 20.36 (20.80, 0.09) 20.71 (21.17, 20.25) ,0.001

Polyflavonoids

Model 1 0.63 (0.18, 1.09) 0.30 (20.14, 0.74) 20.18 (20.62, 0.26) 0.02 (20.42, 0.46) 20.48 (20.92, 20.03) 0.002

Model 2 0.29 (20.16, 0.74) 0.17 (20.26, 0.60) 20.13 (20.56, 0.31) 0.01 (20.44, 0.45) 20.14 (20.59, 0.31) 0.24

Total flavonoids

Model 1 0.67 (0.21, 1.12) 0.52 (0.08, 0.96) 20.28 (20.72, 0.16) 20.22 (20.66, 0.22) 20.39 (20.84, 0.06) 0.001

Model 2 0.22 (20.24, 0.67) 0.37 (20.06, 0.81) 20.17 (20.61, 0.26) 20.21 (20.66, 0.23) 20.01 (20.47, 0.44) 0.34

1All values are adjusted (least-squares) mean inflammation scores; 95% CIs in parentheses. Model 1 was adjusted for age, sex, smoking (yes or no), and

energy intake. Model 2 was adjusted as for model 1 and for nonsteroidal anti-inflammatory drug use (yes or no), BMI, cardiovascular disease (yes or no),

diabetes (yes or no), and saturated fat and trans fat intakes. P values for the test of linear trend across quintile categories were based on linear regression

models with the median intake of each quintile category assigned to individuals with intake in that category, and this quintile median variable was used as

a continuous measure in regression models.

4 of 10 CASSIDY ET AL.



TABLE 4

Relative contribution of different components of the inflammation score (subgroups of functionally related biomarker scores (acute phase reactants,

cytokines, and oxidative stress) by quintiles of different flavonoid class intake in participants of the Framingham Offspring Study1

Quintile categories of flavonoid intake

P-trend1 2 3 4 5

Flavonols

Acute inflammation

Model 1 0.15 (0.00, 0.31) 0.06 (20.10, 0.21) 0.00 (20.15, 0.15) 20.05 (20.20, 0.10) 20.25 (20.40, 20.10) ,0.001

Model 2 20.03 (20.19, 0.12) 20.03 (20.18, 0.11) 20.01 (20.16, 0.13) 20.12 (20.27, 0.03) 20.12 (20.27, 0.03) 0.30

Cytokines

Model 1 0.37 (0.14, 0.61) 0.12 (20.11, 0.35) 0.14 (20.10, 0.37) 0.03 (20.21, 0.27) 20.39 (20.63, 20.15) ,0.001

Model 2 0.29 (0.05, 0.53) 0.10 (20.13, 0.33) 0.21 (20.03, 0.44) 0.00 (20.24, 0.25) 20.25 (20.50, 0.00) 0.001

Oxidative stress

Model 1 0.46 (0.26, 0.67) 0.24 (0.05, 0.44) 0.04 (20.16, 0.23) 20.23 (20.42, 20.03) 20.26 (20.46, 20.06) ,0.001

Model 2 0.32 (0.10, 0.53) 0.20 (0.00, 0.40) 0.03 (20.17, 0.24) 20.21 (20.42, 0.00) 20.16 (20.38, 0.05) 0.001

Flavones

Acute inflammation

Model 1 0.22 (0.07, 0.37) 0.02 (20.13, 0.17) 20.03 (20.18, 0.12) 20.10 (20.25, 0.05) 20.19 (20.35, 20.04) ,0.001

Model 2 0.02 (20.13, 0.18) 20.03 (20.17, 0.11) 20.07 (20.21, 0.08) 20.09 (20.24, 0.05) 20.15 (20.30, 0.01) 0.11

Cytokines

Model 1 0.30 (0.06, 0.54) 0.04 (20.19, 0.27) 0.04 (20.20, 0.27) 20.01 (20.25, 0.23) 20.07 (20.31, 0.17) 0.07

Model 2 0.15 (20.09, 0.40) 0.05 (20.18, 0.29) 0.08 (20.16, 0.32) 0.07 (20.17, 0.31) 0.04 (20.21, 0.29) 0.63

Oxidative stress

Model 1 0.36 (0.16, 0.56) 0.05 (20.15, 0.24) 0.03 (20.16, 0.23) 0.04 (20.16, 0.23) 20.21 (20.41, 20.01) 0.001

Model 2 0.18 (20.04, 0.39) 0.00 (20.20, 0.20) 0.02 (20.19, 0.23) 0.09 (20.12, 0.29) 20.06 (20.28, 0.15) 0.26

Flavanones

Acute inflammation

Model 1 0.07 (20.08, 0.22) 20.03 (20.18, 0.12) 20.02 (20.17, 0.13) 20.04 (20.19, 0.11) 20.06 (20.21, 0.10) 0.35

Model 2 20.08 (20.23, 0.07) 20.09 (20.24, 0.06) 20.11 (20.25, 0.04) 0.00 (20.14, 0.15) 20.03 (20.18, 0.12) 0.42

Cytokines

Model 1 0.17 (20.07, 0.40) 0.02 (20.21, 0.25) 0.09 (20.14, 0.32) 20.05 (20.29, 0.19) 0.06 (20.18, 0.31) 0.56

Model 2 0.08 (20.16, 0.31) 0.02 (20.21, 0.26) 0.08 (20.16, 0.31) 0.06 (20.18, 0.30) 0.17 (20.09, 0.42) 0.53

Oxidative stress

Model 1 0.32 (0.12, 0.52) 0.03 (20.17, 0.23) 0.15 (20.04, 0.35) 20.11 (20.30, 0.09) 20.13 (20.33, 0.07) 0.003

Model 2 0.19 (20.02, 0.40) 20.01 (20.22, 0.19) 0.12 (20.08, 0.33) 20.06 (20.27, 0.15) 20.02 (20.23, 0.20) 0.23

Flavan-3-ols

Acute inflammation

Model 1 0.35 (0.19, 0.50) 20.11 (20.26, 0.04) 20.08 (20.23, 0.07) 20.14 (20.29, 0.01) 20.10 (20.26, 0.05) 0.02

Model 2 0.14 (20.01, 0.29) 20.15 (20.29, 0.00) 20.10 (20.25, 0.04) 20.13 (20.28, 0.02) 20.08 (20.23, 0.07) 0.37

Cytokines

Model 1 0.43 (0.19, 0.67) 20.15 (20.38, 0.09) 0.08 (20.15, 0.31) 0.08 (20.16, 0.32) 20.16 (20.39, 0.08) 0.04

Model 2 0.31 (0.07, 0.55) 20.11 (20.34, 0.13) 0.13 (20.10, 0.37) 0.12 (20.13, 0.36) 20.09 (20.34, 0.15) 0.12

Oxidative stress

Model 1 0.52 (0.32, 0.72) 20.05 (20.25, 0.14) 0.04 (20.16, 0.23) 20.09 (20.29, 0.10) 20.16 (20.35, 0.04) 0.001

Model 2 0.37 (0.16, 0.58) 20.07 (20.28, 0.13) 0.07 (20.14, 0.27) 20.03 (20.24, 0.18) 20.14 (20.35, 0.07) 0.02

Anthocyanins

Acute inflammation

Model 1 0.23 (0.08, 0.39) 20.04 (20.19, 0.11) 0.06 (20.09, 0.21) 20.03 (20.18, 0.13) 20.33 (20.48, 20.18) ,0.001

Model 2 0.14 (20.01, 0.28) 20.10 (20.24, 0.04) 0.06 (20.08, 0.20) 20.09 (20.24, 0.05) 20.34 (20.49, 20.19) ,0.001

Cytokines

Model 1 0.29 (0.06, 0.53) 0.15 (20.09, 0.38) 0.07 (20.17, 0.30) 20.05 (20.29, 0.19) 20.17 (20.40, 0.07) 0.006

Model 2 0.27 (0.03, 0.51) 0.13 (20.10, 0.37) 0.14 (20.10, 0.37) 20.05 (20.30, 0.19) 20.13 (20.38, 0.11) 0.02

Oxidative stress

Model 1 0.42 (0.22, 0.62) 0.13 (20.06, 0.33) 0.07 (20.13, 0.26) 20.13 (20.33, 0.07) 20.24 (20.44, 20.04) ,0.001

Model 2 0.31 (0.10, 0.52) 0.10 (20.11, 0.30) 0.04 (20.16, 0.25) 20.14 (20.34, 0.07) 20.13 (20.34, 0.09) 0.004

Polymer flavonoids

Acute inflammation

Model 1 0.19 (0.04, 0.35) 0.04 (20.11, 0.19) 20.12 (20.27, 0.03) 20.02 (20.17, 0.14) 20.19 (20.34, 20.04) 0.003

Model 2 0.06 (20.09, 0.21) 20.05 (20.20, 0.09) 20.15 (20.29, 0.00) 20.07 (20.21, 0.08) 20.11 (20.26, 0.04) 0.30

Cytokines

Model 1 0.26 (0.03, 0.50) 0.18 (20.05, 0.42) 20.01 (20.25, 0.22) 0.09 (20.15, 0.33) 20.25 (20.49, 20.01) 0.003

Model 2 0.19 (20.04, 0.43) 0.19 (20.04, 0.43) 0.03 (20.20, 0.27) 0.08 (20.16, 0.32) 20.14 (20.39, 0.10) 0.04
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A higher flavonol intake was also associated with a 42% lower
overall IS (between quintiles 5 and 1: 20.72, P-trend = 0.01)
(Table 3). Additional adjustment for total fruit intake, total
vegetable intake, vitamin C intake, or physical activity did not
substantially alter the association (data not shown). However,
the addition of fiber or potassium intake attenuated the relation-
ship, and the trend across quintile categories was no longer
significant [e.g., after adjustment for fiber intake, there was
a difference between quintiles 5 and 1 of20.52 (a 33% decrease);
P-trend = 0.06].

When we examined the relative impact of the different clusters
of the IS (acute phase reactants, cytokines, and oxidative stress),
anthocyanin intake was inversely associated with all subgroups,
with a 100% decrease across anthocyanin intake quintile cate-
gories for the acute inflammation (acute phase reactants) score
(P-trend ,0.001), a 75% decrease for the cytokine score (P-
trend = 0.02), and a 52% decrease for the oxidative stress score
(P-trend = 0.004). A higher flavonol intake was related to a re-
duction in both the cytokine score (an 81% decrease; P-trend =
0.001) and the oxidative stress score (a 56% decrease; P-trend =
0.001) (Table 4).

Although intakes of other flavonoid classes were not signifi-
cantly associated with a reduction in overall IS, higher intakes of
flavan-3-ols, their polymers, and total flavonoids were consis-
tently associated with a significant reduction in concentrations of
oxidative stress biomarkers across quintile categories [58% (P-
trend = 0.02), 46% (P-trend = 0.02), and 43% (P-trend = 0.02),
respectively] (Table 4). In addition, flavan-3-ol polymer intakes
were inversely associated with the cytokine score, exhibiting
a 60% decrease across quintile categories (P-trend = 0.04).

To confirm these findings and relate the observations to public
health and dietary recommendations, we conducted food-based
analyses for the main dietary sources (those that contributed
.10% of intake) of anthocyanins (blueberries, strawberries, red
wine, and apples and pears) and flavonols (tea and apples and
pears) (Table 5). Higher intakes of apples and pears, red wine,

and strawberries were associated with a lower overall IS with
across quintile category differences of 21.02 (65% decrease;
P = 0.006), 21.73 (89% decrease; P , 0.001), and 20.44 (27%
decrease; P = 0.02), respectively. Daily red wine consumption
was associated with a decrease in all biomarker subscores,
whereas strawberry intake was associated with a reduction in
acute IS (acute phase reactants) (Table 5). Blueberries and tea
were not associated with the overall IS.

DISCUSSION

To our knowledge, this is the first study to integrate a range
of inflammatory biomarkers into a combined score to examine
associations with flavonoid intake. Because of the limited spec-
ificity of any individual biomarker of inflammation, it has not been
possible to identify a single marker or even a small number of
biomarkers to define inflammation for evaluating the impact of
diet (11). This difficulty highlights the importance of our in-
tegrated approach, whereby we combined multiple inflammatory
factors to identify a pattern or cluster of markers in an IS.

We observed an inverse association between higher intakes of
anthocyanins (median intake in quintile 5: 32 mg/d) and flavonols
(median intake in quintile 5: 25 mg/d) and IS with reductions of
73% and 42%, respectively, when extreme quintiles of intake
were compared. Higher anthocyanin intake was consistently
associated with lower inflammation scores across all subgroups
of the IS, whereas higher flavonol intake was associated with
lower cytokine and oxidative stress biomarker concentrations.

To date, there have been few long-term trials that investigated
the impact of anthocyanin intake on inflammatory biomarkers.
However, Zhu et al. (26) observed a significant decrease in
CRP, soluble vascular cell adhesion molecule-1, and plasma
interleukin-1b concentrations after 6-mo intake of a purified
mixture of anthocyanins (320 mg/d) in hypercholesterolemic
patients. Acute intake of a strawberry beverage (that contained
39 mg anthocyanins) attenuated the 6-h postprandial inflam-
matory response in overweight dyslipidemic participants (27),

TABLE 4 (Continued )

Quintile categories of flavonoid intake

P-trend1 2 3 4 5

Oxidative stress

Model 1 0.35 (0.14, 0.55) 0.19 (20.01, 0.38) 20.02 (20.21, 0.18) 20.07 (20.26, 0.13) 20.20 (20.40, 0.00) ,0.001

Model 2 0.22 (0.01, 0.43) 0.16 (20.05, 0.36) 0.00 (20.20, 0.21) 20.05 (20.26, 0.15) 20.13 (20.35, 0.08) 0.02

Total flavonoids

Acute inflammation

Model 1 0.23 (0.07, 0.38) 0.05 (20.10, 0.20) 20.11 (20.26, 0.04) 20.08 (20.23, 0.07) 20.18 (20.34, 20.03) 0.001

Model 2 0.05 (20.10, 0.19) 20.03 (20.18, 0.11) 20.11 (20.26, 0.03) 20.13 (20.28, 0.01) 20.09 (20.24, 0.06) 0.28

Cytokines

Model 1 0.28 (0.04, 0.51) 0.23 (0.00, 0.46) 20.08 (20.32, 0.15) 0.07 (20.16, 0.31) 20.22 (20.46, 0.02) 0.005

Model 2 0.19 (20.05, 0.43) 0.22 (20.02, 0.45) 20.01 (20.24, 0.23) 0.05 (20.19, 0.29) 20.09 (20.34, 0.15) 0.07

Oxidative stress

Model 1 0.36 (0.16, 0.57) 0.32 (0.13, 0.52) 20.10 (20.29, 0.10) 20.15 (20.35, 0.05) 20.19 (20.39, 0.02) ,0.001

Model 2 0.22 (0.01, 0.43) 0.25 (0.05, 0.46) 20.06 (20.26, 0.14) 20.13 (20.34, 0.08) 20.10 (20.31, 0.11) 0.02

1All values are adjusted (least-squares) mean inflammation scores; 95% CIs in parentheses. Model 1 was adjusted for age, sex, smoking (yes or no), and

energy intake. Model 2 was adjusted as for model 1 and for nonsteroidal anti-inflammatory drug use (yes or no), BMI, cardiovascular disease (yes or no),

diabetes (yes or no), and saturated fat and trans fat intakes. P values for the test of linear trend across quintile categories were based on linear regression

models with the median intake of each quintile category assigned to individuals with intake in that category, and this quintile median variable was used as

a continuous measure in regression models.

6 of 10 CASSIDY ET AL.



TABLE 5

Associations between top food sources of anthocyanins and flavonols (.10% of intake) and a combined inflammation score (and relative contribution of

different components of the score) in 2375 participants of the Framingham Offspring Study1

Food ,1 servings/wk 1–4 servings/wk 5–6 servings/wk $7 servings/wk P-trend

Apple and pears, g/d ,19.7 19.7–78.9 98.6–118.3 $138

Inflammation score

Model 1 0.27 (20.16, 0.71)2 0.21 (20.03, 0.45) 21.08 (22.00, 20.17) 21.02 (21.80, 20.24) 0.001

Model 2 0.28 (20.16, 0.72) 0.15 (20.11, 0.42) 20.74 (21.61, 0.13) 20.74 (21.49, 0.01) 0.006

Acute inflammation subscore

Model 1 20.04 (20.19, 0.11) 0.04 (20.04, 0.12) 20.34 (20.65, 20.02) 20.24 (20.51, 0.02) 0.08

Model 2 20.06 (20.21, 0.08) 20.03 (20.12, 0.06) 20.26 (20.55, 0.03) 20.20 (20.45, 0.05) 0.20

Cytokine subscore

Model 1 0.03 (20.20, 0.26) 0.15 (0.02, 0.27) 20.64 (21.11, 20.17) 20.09 (20.52, 0.34) 0.19

Model 2 0.10 (20.14, 0.34) 0.15 (0.01, 0.29) 20.50 (20.96, 20.04) 20.03 (20.45, 0.39) 0.21

Oxidative stress subscore

Model 1 0.26 (0.06, 0.45) 0.05 (20.06, 0.16) 20.29 (20.70, 0.12) 20.21 (20.55, 0.14) 0.007

Model 2 0.19 (20.01, 0.40) 0.04 (20.08, 0.17) 20.19 (20.60, 0.22) 20.06 (20.41, 0.29) 0.12

Tea, mL/d ,33.9 33.9–135.4 169.3–203.1 $237

Inflammation score

Model 1 0.17 (20.12, 0.46) 0.05 (20.30, 0.40) 0.14 (20.96, 1.24) 20.10 (20.57, 0.38) 0.37

Model 2 0.06 (20.25, 0.37) 0.02 (20.34, 0.38) 0.39 (20.66, 1.43) 0.08 (20.38, 0.55) 0.86

Acute inflammation subscore

Model 1 20.01 (20.11, 0.09) 0.01 (20.11, 0.13) 20.06 (20.44, 0.31) 20.09 (20.25, 0.07) 0.40

Model 2 20.09 (20.19, 0.01) 20.04 (20.16, 0.08) 0.02 (20.33, 0.36) 20.06 (20.21, 0.10) 0.68

Cytokine subscore

Model 1 0.15 (0.00, 0.30) 0.02 (20.16, 0.21) 0.40 (20.19, 1.00) 20.13 (20.39, 0.12) 0.10

Model 2 0.15 (20.01, 0.31) 0.05 (20.15, 0.24) 0.45 (20.13, 1.02) 20.05 (20.30, 0.21) 0.25

Oxidative stress subscore

Model 1 0.17 (0.04, 0.30) 0.00 (20.16, 0.15) 20.16 (20.65, 0.33) 20.08 (20.29, 0.13) 0.04

Model 2 0.14 (0.00, 0.28) 0.00 (20.17, 0.17) 20.11 (20.60, 0.38) 20.08 (20.30, 0.14) 0.08

Red wine, mL/d ,16.9 16.9–67.4 84.3–101.1 $118

Inflammation score

Model 1 0.85 (0.59, 1.11) 20.79 (21.11, 20.46) 21.45 (22.77, 20.13) 21.35 (22.11, 20.59) ,0.001

Model 2 0.69 (0.40, 0.97) 20.70 (21.04, 20.36) 21.27 (22.51, 20.02) 21.04 (21.78, 20.31) ,0.001

Acute inflammation subscore

Model 1 0.12 (0.03, 0.21) 20.14 (20.25, 20.03) 20.29 (20.75, 0.16) 20.45 (20.72, 20.19) ,0.001

Model 2 0.03 (20.06, 0.13) 20.15 (20.27, 20.04) 20.26 (20.67, 0.16) 20.39 (20.64, 20.15) ,0.001

Cytokine subscore

Model 1 0.36 (0.22, 0.49) 20.30 (20.48, 20.12) 20.87 (21.59, 20.15) 20.15 (20.55, 0.25) ,0.001

Model 2 0.34 (0.18, 0.49) 20.26 (20.44, 20.07) 20.79 (21.48, 20.10) 20.05 (20.44, 0.35) ,0.001

Oxidative stress subscore

Model 1 0.24 (0.12, 0.36) 20.15 (20.29, 0.00) 20.14 (20.73, 0.45) 20.34 (20.68, 0.00) ,0.001

Model 2 0.19 (0.05, 0.32) 20.12 (20.28, 0.04) 20.10 (20.69, 0.49) 20.23 (20.57, 0.12) 0.003

Strawberries, g/d ,10.7 10.7–42.9 53.6–64.3 $75

Inflammation score

Model 1 0.36 (0.04, 0.69) 20.07 (20.32, 0.19) 22.11 (23.73, 20.49) 20.31 (22.12, 1.49) 0.01

Model 2 0.33 (20.01, 0.67) 20.08 (20.36, 0.20) 21.86 (23.39, 20.34) 20.11 (21.80, 1.59) 0.02

Acute inflammation subscore

Model 1 0.08 (20.03, 0.19) 20.06 (20.15, 0.02) 20.47 (21.02, 0.08) 20.30 (20.92, 0.32) 0.01

Model 2 0.04 (20.07, 0.15) 20.11 (20.20, 20.01) 20.44 (20.95, 0.07) 20.29 (20.85, 0.28) 0.01

Cytokine subscore

Model 1 0.14 (20.04, 0.31) 0.01 (20.13, 0.15) 20.30 (21.16, 0.55) 0.44 (20.47, 1.36) 0.55

Model 2 0.18 (0.00, 0.36) 0.02 (20.13, 0.18) 20.31 (21.13, 0.51) 0.52 (20.35, 1.40) 0.46

Oxidative stress subscore

Model 1 0.22 (0.08, 0.37) 20.02 (20.14, 0.09) 21.12 (21.84, 20.40) 0.13 (20.67, 0.94) 0.005

Model 2 0.18 (0.02, 0.34) 20.01 (20.15, 0.12) 20.92 (21.63, 20.20) 0.29 (20.51, 1.09) 0.05

Blueberries, g/d ,10.4 10.4–41.7 52.1–62.6 $73

Inflammation score

Model 1 0.32 (0.05, 0.59) 20.23 (20.53, 0.07) 22.40 (24.72, 20.09) 0.99 (21.56, 3.54) 0.02

Model 2 0.22 (20.07, 0.51) 20.16 (20.48, 0.16) 22.28 (24.45, 20.11) 1.37 (21.02, 3.76) 0.10

Acute inflammation subscore

Model 1 0.04 (20.05, 0.13) 20.07 (20.17, 0.03) 20.57 (21.37, 0.22) 20.44 (21.31, 0.43) 0.04

Model 2 20.03 (20.12, 0.07) 20.09 (20.20, 0.01) 20.63 (21.35, 0.09) 20.36 (21.15, 0.44) 0.13
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and a 6-wk intervention with freeze-dried strawberries (equiv-
alent to 500 g fresh strawberries) decreased CRP concentrations
in type 2 diabetic patients (28). In contrast, several other studies
failed to show significant effects on inflammatory biomarkers
(29, 30), including a recent 3-mo dose-response study [feeding
a strawberry beverage (equivalent to 250 and 500 g/d fresh
strawberries) that contained 78 and 155 mg anthocyanins/d) in
which no effect on CRP was observed despite observed bene-
ficial effects on total and LDL cholesterol concentrations in the
high-intake group (31). Some of these observed differences may
be explained by the sample size, study duration, dose, or form
of the intervention (supplement compared with food-based
intervention) and the narrow range of inflammatory biomarkers
that were assessed. Additional long-term studies are needed
that use combinations or clusters of biomarkers of in-
flammation as were used in this study. In this cross-sectional
study, in which habitual intakes of anthocyanins ranged from
24 to 365 mg/d (median intake: 32 mg/d), we observed anti-
inflammatory associations that were based on these relatively
low median habitual intakes but within the range used in 2 of
the trials that observed beneficial effects (26, 27). These effects
are readily achievable by relatively small changes to the ha-
bitual diet; a serving (0.5 cups) of strawberries, raspberries,
blueberries, or red grapes or a 5-oz glass of red wine would
provide w21, 30, 121, 37, and 28 mg of anthocyanins, re-
spectively. In our food-based analyses, the findings were not
driven by one particular food source of anthocyanins but were
observed for several of its main sources; higher intakes of
apples and pears, red wine, and strawberries were associated
with a lower overall IS (Table 5).

Our study suggests that an anti-inflammatory effect may be
one of the key mechanisms involved in explaining reductions in
risk of certain chronic diseases. Our data are supported by
a previous cross-sectional study, which used a single biomarker
approach and observed an inverse association between higher
anthocyanin intake and circulating concentrations of CRP
(20.3-mg/L difference between extreme intake quintile cate-
gories) (16), although in another study, no association was ob-
served (17). Reductions in individual inflammatory biomarkers
were also observed in short-term studies in which anthocyanin-
rich bilberry or strawberry products were fed (27, 32–34).

Our findings are also supported by mechanistic data that
suggested that anthocyanins may modulate the expression of key
inflammatory mediators (35–38). After ingestion, anthocyanins

are extensively metabolized (39), and their degradation products
and colonic metabolites were also shown to suppress pro-
inflammatory cytokine production (40) and exert anti-inflammatory
effects in vitro (41–44).

The flavonol subclass was also inversely associated with the IS
score although the magnitude of association was substantially
less than that observed for anthocyanins. These data may provide
a mechanistic insight to explain the inverse association between
habitual flavonol intake and risk of type 2 diabetes observed in 2
previous prospective studies (5, 7). In addition, in mice, a high-
flavonoid apple, rich in flavonols, altered gut microbiota that
resulted in a decrease in the transcription of a number of in-
flammatory genes (45). Like anthocyanins, metabolic trans-
formation by the microbiota after flavonol ingestion also has
profound effects on the anti-inflammatory activity (46). In our
food-based analyses, apples and pears, which are a major source
of flavonols in the habitual diet, were associated with a significant
reduction in IS. Tea intake was not associated with IS overall but
was associated with a reduction in oxidative stress biomarkers.

We also hypothesized that higher intake of flavan-3-ols would
be associated with an anti-inflammatory effect, but we did not
observe an association in this study. The reported doses of flavan-
3-ols that showed vascular benefits in intervention studies were
#112 mg/d (47), whereas median intake in our population only
started to reach this amount in the top quintile of intake (median:
86.8 mg/d; range: 68.0–449 mg/d), and median intake in the
third quintile category was only 23.6 mg/d. This large differ-
ential in intake may explain the lack of association. Higher
flavan-3-ol intake, together with its polymers, was associated
with a significant reduction in concentrations of oxidative stress
biomarkers (which included myeloperoxidase, LPL-A2 mass,
LPL-A2 activity, and isoprostanes), which suggested that this
may be a major pathway by which these flavonoid classes re-
duce disease risk.

The strengths of our study included the large sample size, de-
tailed data on important risk factors and confounders, compre-
hensive assessment of the range of flavonoid classes present in the
habitual diet, and assessment of multiple inflammatory biomarkers
as a combined inflammation score. Limitations of our study also
warrant discussion. Although we adjusted for a range of con-
founders (including BMI, smoking, and family history), there was
still the possibility of residual or unmeasured confounding from
additional unmeasured factors, and this possibility may have been
greatest when we compared subjects with the highest intakes with

TABLE 5 (Continued )

Food ,1 servings/wk 1–4 servings/wk 5–6 servings/wk $7 servings/wk P-trend

Cytokine subscore

Model 1 0.15 (0.00, 0.29) 20.05 (20.21, 0.11) 20.97 (22.21, 0.27) 0.85 (20.55, 2.25) 0.15

Model 2 0.14 (20.02, 0.29) 0.00 (20.17, 0.17) 20.98 (22.17, 0.20) 0.97 (20.37, 2.30) 0.35

Oxidative stress subscore

Model 1 0.19 (0.07, 0.31) 20.12 (20.25, 0.02) 20.70 (21.73, 0.33) 0.92 (20.22, 2.05) 0.01

Model 2 0.14 (0.01, 0.28) 20.08 (20.23, 0.07) 20.53 (21.55, 0.49) 1.01 (20.11, 2.13) 0.11

1Model 1 was adjusted for age, sex, smoking (yes or no), and energy intake. Model 2 was adjusted as for model 1 and for nonsteroidal anti-inflammatory

drug use (yes or no), BMI, cardiovascular disease (yes or no), diabetes (yes or no), and saturated fat and trans fat intakes. P values for the test of linear trend

across quintile categories were based on linear regression models with the median intake of each quintile category assigned to individuals with intake in that

category, and this quintile median variable was used as a continuous measure in regression models.
2Adjusted (least-squares) mean inflammation score; 95% CI in parentheses (all such values).
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those with the lowest intakes. However, because of our detailed and
updated adjustment for potential confounders, it was unlikely that
these factors would have accounted fully for the observed results.
Of all flavonoid classes assessed, only anthocyanin and flavonol
intakes were associated with the IS, which suggested something
specific about these classes. The flavonoid content of foods varies
depending on growing conditions andmanufacturing processes, but
despite this variation, the data allowed us to rank order intakes and
compare high and low intakes in a large population-based cohort.
To our knowledge, there are no specific biomarkers for anthocyanin
or flavonol intake, and there is limited understanding of flavonoids
degradation and metabolism after ingestion. Our findings might
have been due to other constituents in the foods that contribute most
to this subclass; however, the addition of other confounders, in-
cluding vitamin C and total fruit intakes, to our multivariate model
did not substantially attenuate the associations. However, in
a population-based study like ours, it is impossible to disentangle
the relative influence of all constituents of fruit and vegetables.
Finally, it remains to be seen if the IS or subscores are associated
with chronic disease risk.

In conclusion, by using multiple inflammatory biomarkers
assessed in combination as an IS, we provide evidence to suggest
that an anti-inflammatory effect that is due to intakes of antho-
cyanins and flavonols may contribute to the reduction in risk of
certain chronic diseases. Dose-response intervention studies are
needed to determine the optimal dose and source for reducing
inflammation on the basis of multiple biomarkers of inflammation
and, ultimately, indicators of disease risk.
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