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Abstract. We prove some unconditional cases of the Existential Closedness problem for the
modular j-function. For this, we show that for any finitely generated field we can find a “con-
venient” set of generators. This is done by showing that in any field equipped with functions
replicating the algebraic behaviour of the modular j-function and its derivatives, one can define
a natural closure operator in three equivalent different ways.

1. Introduction

In this paper we study some cases of the Existential Closedness problem (EC) for the modular
j-function. In simple terms, the EC problem asks to find minimal geometric conditions that an
algebraic variety V ⊂ C2n should satisfy to ensure that there exists a point z ∈ Hn such that

(z, j(z)) ∈ V.
The results of [AEK21] and [AK20] inform what the conditions of EC may be (both articles
consider variants of EC for j), and the results of [EH21] show general cases of varieties V ⊂ C2n

for which one can find such z. One should also consider the version of the problem which includes
the derivatives of j: what are minimal geometric conditions on a variety V ⊂ C4n so that there
is z ∈ Hn such that

(z, j(z), j′(z), j′′(z)) ∈ V ?

Furthermore, in both cases one would like to know if it is possible to find such a point so
that it is generic in V with respect to a given finitely generated field. These questions are
natural analogues of the corresponding statement for the complex exponential function (called
the strong exponential closedness conjecture), first considered by Zilber in his work on pseudo-
exponentiation ([Zil04]), and further studied in [BK18, DFT18, Man16, Mar06].

In our paper, we study the EC problem in the case when V is a plane curve. This question was
already considered in [EH21, Theorem 1.2] where it was proven that, if one assumes a modular
version of Schanuel’s conjecture (which is considered out of reach), then for any irreducible plane
curve V which is not a horizontal or a vertical line and any finitely generated field F , V has a

Date: July 2, 2021.
2010 Mathematics Subject Classification. 12H05, 11F03, 03C60.
Key words and phrases. Ax-Schanuel, j-function, functional transcendence, existential closedness, j-fields.
VA and JK were supported by EPSRC grant EP/S017313/1. SE was partially supported by NSF RTG grant

DMS-1646385.
1



2 VAHAGN ASLANYAN, SEBASTIAN ETEROVIĆ, AND JONATHAN KIRBY

point of the form (z, j(z)) which is generic over F . Our main result shows cases in which one can
remove the dependence on the modular Schanuel conjecture to obtain an unconditional result.
For this we use the Ax-Schanuel theorem for j established in [PT16]. The Ax-Schanuel theorem
for j shows (among other things) that the modular version of Schanuel’s conjecture holds when
we consider elements which are “transcendental with respect to the j-function”. More precisely,
there exists a countable algebraically closed subfield C ⊂ C (which is not finitely generated)
consisting of all the complex numbers which are considered to be algebraic with respect to j. We
now state our main result.

Theorem 1.1. Let V ⊂ C2 be an algebraic curve which is neither a horizontal nor a vertical
line. If V is not definable over C, then for any finitely generated field F , there exists z ∈ H such
that (z, j(z)) ∈ V and tr.deg.FF (z, j(z)) ≥ 1, i.e. (z, j(z)) is generic in V over F .

An algebraic description of the elements of C is obtained in §6.1. We will show in Remark
6.21 that, assuming the generalised period conjecture of Grothendieck-André (which implies the
modular version of Schanuel’s conjecture, see §6.3), one can show that π /∈ C. In general, finding
explicit complex numbers which are not in C is likely to be of similar difficulty to proving a
significant part of the generalised period conjecture. However, this does depend on the definition
of being “explicit”. The methods of [JS11] give computable complex numbers which are not
exponentially algebraic, via a diagonalisation argument, and it is likely that a similar argument
would give computable complex numbers which are not in C.

The ideas used in the proof of Theorem 1.1 can also be used to get higher dimensional cases of
EC. In §6.2 we give the following example: let j1(z) := j(z) and for k > 1 set jk+1(z) := j(jk(z)),
then for any positive integer n, for any a /∈ C and for any finitely generated field K there exists
z ∈ H such that jn(z) exists, z = jn(z) + a and

tr.deg.KK(z, j1(z), j2(z), . . . , jn(z)) ≥ n.

The proof of Theorem 1.1 relies on some calculations which we believe are interesting in their
own right, regarding how to find a “convenient” set of generators for a given finitely generated
field (see Theorem 5.1). This set of generators will consist of elements which are not in C.

Furthermore, our methods can be generalised in a straightforward way to the complex expo-
nential function to get an unconditional statement analogous to Theorem 1.1: if E ⊂ C denotes
the countable algebraically closed subfield of exponentially algebraic numbers, and V ⊂ C2 is a
plane curve not definable over E which is neither a horizontal nor a vertical line, then for any
finitely generated field F over which V is defined, there exists z ∈ C such that (z, exp(z)) ∈ V
and tr.deg.FF (z, exp(z)) = 1, see Theorem 5.7 (this gives unconditional cases of the main result
of [Man16], which assumes Schanuel’s conjecture). We remark that similar ideas to the ones used
in the proof of Theorem 5.7 can be found in [BK18, §11].

Note that in Theorem 1.1 we do not deal with varieties defined over C as this allows us to
use functional transcendence results. For varieties defined over C, which is an arithmetic set in
nature, we need arithmetic transcendence statements (such as the modular Schanuel conjecture).
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For example, if V ⊂ C2 is defined by the equation X = Y and we could apply the conclusion of
Theorem 1.1 to V , then we can show that tr. deg.Q Q({z ∈ H : z = j(z)}) is infinite, which is an
unknown transcendence statement.

1.1. The general setting. To prove our main result, we will work in the general setting of
j-fields, which gives a convenient framework in which to define some pregeometries that help
us study the algebraic properties of the complex j-function. A j-field consists of a field K of
characteristic zero endowed with some functions whose behaviour mimics that of the complex j-
function and its derivatives on C. We also distinguish a subset D ⊂ K to be the domain of these
functions. On these fields, one can define a natural notion of algebraicity and transcendence over
the j-function using any of three notions of closure: a closure with respect to field derivations
on K respecting the j-function (denoted jcl), a closure with respect to Khovanskii systems of
polynomial equations involving the j-function (denoted kcl), and a closure with respect to a
predimension function δj arising from a modular Schanuel property (denoted clδj). We will prove
that all these notions define in fact the same closure operator, and so for Theorem 1.1 we will
use C = jcl(∅).

Theorem 1.2. Let (K,D) be a j-field. For every subset A ⊆ K we have that

jcl(A) = kcl(A) = clδj(A).

Moreover, this operator is a pregeometry.

This theorem will be obtained as a combination of Theorems 4.11 and 6.9. The definitions of
these operators are given later on. With this result we will be able to prove the existence of the
convenient set of generators we mentioned earlier required in our proof of Theorem 1.1. We also
remark that it was previously shown in [Ete18] that jcl is a pregeometry.

Previously, an analogous equivalence of closure operators was obtained in [Kir10] for exponen-
tial fields. A first study of j-fields was given in [Ete18], however, it was left as an open question
whether Theorem 1.2 could be achieved. In technical terms, the step that was missing was: show
that if (K0, D0) ↪→ (K,D) is a self-sufficient embedding of j-fields, then any j-derivation on K0

extends to a j-derivation on K. In this paper we show how one can adapt an argument from
[AEK21] to solve this step (see Proposition 4.9).

Structure of the paper.
§2: We review some basic definitions and notation we will use regarding the j function.
§3: We recall the definition of j-fields and some basic properties. We also recall some prop-

erties of j-derivations and define the pregeometry jcl and the dimension dimj.
§4: We define the predimension δj and study self-sufficient embeddings of j-fields. At the end

of this section we prove Proposition 4.9 (extension of j-derivations), we define clδj , and
prove one half of Theorem 1.2: Theorem 4.11.

§5: We prove Theorems 1.1 and 5.1. We also show how to get similar results for the complex
exponential function and prove Theorem 5.7.
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§6: We start by introducing the notion of j-polynomials and their corresponding Khovanskii
systems, we define the closure operator kcl, and prove the other half of Theorem 1.2:
Theorem 6.9. We give some examples where we combine Khovanskii systems with the
results of §5 to get higher dimensional cases of EC. We then give an overview of the
modular version of Schanuel’s conjecture. We finish by showing how this conjecture can
be used along with Theorem 6.9 to obtain (conditionally) convenient sets of generators
like in Theorem 5.1, but this time using elements of C.

Throughout, we will freely use terminology associated with pregeometries, and we refer the reader
to [Mar06, §8.1] or [TZ12, Appendix C].

2. The j-function

We denote by H+ the complex upper-half plane {z ∈ C : Im(z) > 0}. The group GL+
2 (R) of

2× 2 matrices with entries in R and positive determinant acts on H+ via the formula

gz :=
az + b

cz + d
for g =

(
a b
c d

)
∈ GL+

2 (R).

Consider the group GL+
2 (Q) consisting of the elements of GL+

2 (R) with entries in Q. A subgroup
of GL+

2 (Q) is the modular group is SL2(Z). The modular j-function is defined as the unique
holomorphic function j : H+ → C that satisfies

j(gz) = j(z) for every g ∈ SL2(Z) and every z ∈ H+,

and has a Fourier expansion of the form

(2.0.1) j(z) = q−1 + 744 +
∞∑
k=1

akq
k with q := exp(2πiz) and ak ∈ C.

It induces an analytic isomorphism of Riemann surfaces SL2(Z)\H+ ' C. The quotient space Y =
SL2(Z)\H+ is known to be a moduli space for complex tori, or equivalently, elliptic curves over
C. If SL2(Z)z is a point in Y and Ez denotes an elliptic curve in the corresponding isomorphism
class, then j(z) is simply the j-invariant of the curve Ez.

2.1. Notation. Let G := GL2(Q) and let H := H+ ∪ H− be the union of the upper and lower
half-planes. As we detailed above, the j-function is understood as a modular function defined on
H+, but we will extend it to be defined on all of H using Schwarz reflection, so that j : H→ C.
This means that given z ∈ H−, we define j(z) := j(z), where w is the complex conjugate of w.
We have extended the j-function in this way because the condition for an element g ∈ GL2(Q)
to preserve H setwise can be checked only using field operations: namely det(g) 6= 0; whereas
preserving H+ would require us to introduce an order relation in the structure of j-fields.

If F is a field, we will use F to denote an algebraic closure of F . In most cases, we will only
consider the case of F ⊂ C, and so F means the algebraic closure inside of C.
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Tuples of elements will be denoted with boldface letters, that is, if x1, . . . , xm are elements of
a set X, then we write x := (x1, . . . , xm) for the ordered tuple. We will also sometimes use x to
denote the set {x1, . . . , xm}, which should not lead to confusion. If f denotes a function defined
on X, then we write f(x) to mean (f(x1), . . . , f(xm)). Furthermore, we use J to denote the triple
of functions (j, j′, j′′), so that if z1, . . . , zn are elements of H, then:

J(z) := (j(z1), . . . , j(zn), j′(z1), . . . , j
′(zn), j′′(z1), . . . , j

′′(zn)).

2.2. Special points. A point z in H is said to be special if there is a non-scalar matrix g ∈ G
(in other words, g is a non-central element of G) such that z is a fixed point of g. This is
equivalent to saying that z satisfies a non trivial quadratic equation with integer coefficients.
By a theorem of Schneider ([Sch37]) we know that tr.deg.Q(z, j(z)) = 0 if and only if z is
special. The special points of H are exactly those points for which the corresponding elliptic curve
(more precisely, any representative in the corresponding isomorphism class of elliptic curves) has
complex multiplication. For this reason, special points are also known as CM points in the
literature. Σ ⊂ H will denote the set of all special points.

2.3. Modular polynomials. Let {ΦN(X, Y )}∞N=1 ⊆ Z[X, Y ] denote the family of modular poly-
nomials associated to j (see [Lan02, Chapter 5, Section 2] for the definition and main properties
of this family). We recall that ΦN(X, Y ) is irreducible in C[X, Y ], Φ1(X, Y ) = X − Y , and for
N ≥ 2, ΦN(X, Y ) is symmetric of total degree ≥ 2N . Also, the action of G on H can be traced
by using modular polynomials in the following way: for every g in G we define red(g) as the
unique matrix of the form rg with r ∈ Q, r > 0 such that the entries of rg are all integers and
relatively prime. Then, for every z1, z2 in H the following statements are equivalent:
(M1): ΦN(j(z1), j(z2)) = 0,
(M2): gz1 = z2 for some g in G with det (red(g)) = N .

2.4. Ax-Schanuel for the j-function. The j-function satisfies an order 3 algebraic differen-
tial equation over Q, and none of lower order (i.e. its differential rank over C is 3). Namely,
Ψ(j, j′, j′′, j′′′) = 0 where

Ψ(y0, y1, y2, y3) =
y3
y1
− 3

2

(
y2
y1

)2

+
y20 − 1968y0 + 2654208

2y20(y0 − 1728)2
· y21.

It is well known that any function of the form j(gz) with g ∈ SL2(C) satisfies the differential
equation Ψ(y, y′, y′′, y′′′) = 0 and all solutions (not necessarily defined on H+) are of that form
(see, for example, [FS18, Lemma 4.2] or [Asl18, Lemma 4.1]).

Observe that if z ∈ H is such that j′(z) 6= 0 and j(z) 6= 0, 1728, then we can write j′′′(z) =
η(j(z), j′(z), j′′(z)), where:

η(y0, y1, y2) :=
3

2
· y

2
2

y1
− y20 − 1968y0 + 2654208

2y20(y0 − 1728)2
· y31.
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Definition. Let K be a field of charactersitic zero. We say that two elements x, y ∈ K are
modularly independent1 if for every modular polynomial ΦN(X, Y ) we have that ΦN(x, y) 6= 0.

We now recall the statement of the Ax-Schanuel theorem for the j function. The version we
will use is stated in terms of differential fields. Regarding notation, we should clarify that the
symbols ji, j′i, j′′i , j′′′i are supposed to represent abstract elements of the differential field, and it is
not a priori the case that j′i is the derivative of ji, etc. For abstract differential fields we will not
use the symbol ′ to denote derivatives.

Theorem 2.1 (Ax-Schanuel for j, [PT16, Theorem 1.3]). Let (K; +, ·, ∂1, . . . , ∂m, 0, 1) be a differ-
ential field, where ∂1, . . . , ∂m are commuting derivations, let C = kermk=1 ∂k, and let zi, ji, j′i, j′′i , j′′′i ∈
K×, i = 1, . . . , n, be such that for all i ∈ {1, . . . , n} and all k ∈ {1, . . . ,m}:

Ψ (ji, j
′
i, j
′′
i , j
′′′
i ) = 0 ∧ ji /∈ C ∧ ∂kji = j′i∂kzi ∧ ∂kj′i = j′′i ∂kzi ∧ ∂kj′′i = j′′′i ∂kzi.

If the ji’s are pairwise modularly independent then

(2.1.1) tr. deg.C C (z, j, j′, j′′) ≥ 3n+ rank(∂kzi)i,k.

3. Review of j-Fields

The definition of j-fields and some of their basic properties were laid out in [Ete18]. For the
convenience of the reader, we recall them here.

Given a fieldK of characteristic zero, there is a natural action of GL2(Q) on P1(K) = K∪{∞},
given by:

gx =
ax+ b

cx+ d
,

where g ∈ GL2(Q) is represented by g =

(
a b
c d

)
. Whenever we say that GL2(Q) acts on K, it

will be in this manner. Throughout, let G = GL2(Q).

Definition. Let K be a field of characteristic 0. Given a subset A of K we define the G-closure
of A, denoted Gcl(A), as the set of x ∈ K such that there exist a ∈ A and g ∈ G satisfying
x = ga (which, save for the exclusion of the point at infinity, is the union of the G-orbits of points
in A).2

It is straightforward to check that Gcl is a pregeometry. Given A,B ⊆ K let dimG(A|B) be the
dimension defined by the pregeometry Gcl, that is, dimG(A|B) is the number of distinct orbits
of elements in A that do not contain elements of B. If B = ∅ then we write simply dimG(A).

Definition. A j-field3 is a structure 〈K;D, j, j′, j′′, j′′′〉, where:
• K = 〈K; +, ·, 0, 1〉 is a field of characteristic zero,

1Note that this notion of independence defines a pregeometry of trivial type on K.
2In [Ete18] this was called “geodesic closure”, and was denoted as gcl. We have opted to maintain the notation

used in [EH21].
3This definition of j-fields is slightly simpler than the one presented in [Ete18], but it defines the same structures.
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• D is a subset of K,
• j, j′, j′′, j′′′ : D → K are functions,

that satisfies:
(a) D is closed under the action of G.
(b) For every z ∈ D,

(j(z) 6= 0 ∧ j(z) 6= 1728 ∧ j′(z) 6= 0) =⇒ Ψ(j(z), j′(z), j′′(z), j′′′(z)) = 0.

(c) The axiom scheme: for every z1, z2 ∈ D, if z1 = gz2, then ΦN(j(z1), j(z2)) = 0, where
N = det(red(g)). We also include here the expressions that can be obtained by differentiating
modular relations up to 3-times. This means the following: choosing g and N as before, we
have that for every z ∈ H, ΦN(j(z), j(gz)) = 0. If we interpret this expression in C and
derive it with respect to z, then we get:

(3.0.1) ΦN1(j(z), j(gz))j′(z) + ΦN2(j(z), j(gz))j′(gz)
ad− bc

(cz + d)2
= 0,

where ΦN1 and ΦN2 are the derivatives of ΦN(X, Y ) with respect to the variables X and Y
respectively. So, for each g ∈ G, we also include the axiom that says: if z1 = gz2, then:

ΦN1(j(z1), j(z2))j
′(z1) + ΦN2(j(z1), j(z2))j

′(z2)
ad− bc

(cα(z1) + d)2
= 0.

Deriving equation (3.0.1) again with respect to z, we get another equation, this time involving
j′′(z) and j′′(gz), that we restate as a first-order axiom as we just did with equation (3.0.1).
Deriving (3.0.1) twice with respect to z, we get an equation involving j′′′(z) and j′′′(gz),
which we likewise restate as an axiom.

(d) The axiom scheme (one statement for each N ∈ N): for all z1, z2 ∈ D,

ΦN(j(z1), j(z2)) = 0 =⇒
∨

g∈G,det(red(g))=N

(gz2 = z1).

This axiom is a converse to part of axiom (c).
(e) The statement: let A ⊆ G be the set of non-scalar matrices. Then for every z ∈ D,

(j(z) = 0 ∨ j(z) = 1728 ∨ j′(z) = 0) =⇒
∨
g∈A

(gz = z).

Note that the values chosen are the same as those used in axiom (b), and correspond to the
points z where the expression Ψ(j(z), j′(z), j′′(z), j′′′(z)) is not defined.

If the function j : D → K happens to be surjective (like in the case of j : H→ C), then we say
that the j-field is full.

Note that as D is closed under the action of G, we get that D∩Q = ∅ because for every x ∈ Q
there is g ∈ G such that gx =∞.
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Axioms (c) and (d) ensure that the equivalence between (M1) and (M2) (see §2.3) holds on
every j-field. In particular, as the first modular polynomial is Φ1(X, Y ) = X − Y , then axiom
(c) implies that in every j-field, j is invariant under SL2(Z).

Axioms (a), (b), (c) are first-order expressible in the language LJ := {0, 1,+, ·, D, j, j′, j′′, j′′′}.
Axioms (d) and (e) on the other hand, are not, as they require a countably infinite disjunction of
statements (they are Lω1,ω-expressible though). The first-order axioms (a), (b) and (c) do not give
a complete axiomatisation of the first-order theory of the LJ -structure 〈C,H, j, j′, j′′, j′′′〉. The
presence of j′′′ is superfluous (due to the differential equation Ψ(j, j′j,′′ , j′′′) = 0 being satisfied);
we have chosen to include it just for expository reasons. We have not stated what the values of
j′′(z) and j′′′(z) are when j(z) = 0, j(z) = 1728 or j′(z) = 0. This is because the actual values
that these functions take for such z will not be relevant.

Notation. We normally denote j-fields simply as (K,D).

Definition. Let (K,D) be a j-field. A point z ∈ D will be called special if there exists a positive
integer N > 1 such that ΦN(j(z), j(z)) = 0. Let ΣD denote the set of special points in D.

Lemma 3.1. Let (K,D) be a j-field. Then z ∈ ΣD if and only if there exists a non-scalar g ∈ G
such that gz = z.

Proof. We use the equivalence between (M1) and (M2) (ensured by axioms (c) and (d) in the
definition of j-fields). If z is special, then there exists an integer N > 1 such that ΦN(j(z), j(z)) =
0, which means that there exists g ∈ G with N = det(red(g) such that gz = z. By the definition
of red(g), we deduce that g cannot be scalar.

Now suppose there exists a non-scalar g ∈ G such that gz = z. Let N = det(red(g)), if N > 1,
then we are done. If instead N = 1, then it is a simple exercise to find h ∈ G such that hz = z
and det(red(h)) > 1. �

Definition. A morphism of j-fields σ : (K1, D1) → (K2, D2) is a field morphism σ : K1 → K2

such that σ(D1) ⊂ D2 and for every f ∈ {j, j′, j′′, j′′′} and every z ∈ D1 we have σ(f(z)) =
f(σ(z)). Note that field morphisms respect the action of the group G on K, so we also have
σ(gz) = gσ(z) for every g ∈ G and z ∈ D1.

A j-subfield of (K,D) is a j-field (K0, D0) such that K0 ⊂ K and the inclusion map id :
(K0, D0)→ (K,D) is a morphism of j-fields.

Definition. If (Ki, Di)i∈I is a family of j-subfields of (K,D), then we define their intersection
as ⋂

i∈I

(Ki, Di) :=

(⋂
i∈I

Ki,
⋂
i∈I

Di

)
,

so that it is again a j-subfield of (K,D).
If (A,DA) and (B,DB) are j-subfield of (K,D), we define their union to be:

(A,DA) ∪ (B,DB) := (AB,DA ∪DB),
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where AB denotes the subfield of K generated by A∪B. In this way, (A,DA)∪ (B,DB) is again
a j-subfield of (K,D).

Definition. Given a subset X ⊂ K we can define the j-subfield generated by X, which we denote
as 〈X〉j, as the intersection of all j-subfields (K ′, D′) of (K,D) such thatX ⊆ K ′ andX∩D ⊆ D′.

More explicitly, 〈X〉j is the j-field (A,DA), where DA = Gcl(X ∩D) and A is the subfield of
K generated by X ∪ J(DA).

If (K ′, D′) is a j-subfield of (K,D), then we define the j-subfield generated by X over (K ′, D′),
to be 〈X〉j ∪ (K ′, D′).

A j-subfield of (K,D) will be called finitely generated if it can be generated by a finite set.
Given a j-subfield (K ′, D′), we say that the j-subfield (K1, D1) of (K,D) is finitely generated
over (K ′, D′) if there exists a finite set X ⊂ K such that (K1, D1) = 〈X|(K ′, D′)〉j.

Any field F of characteristic 0 can be made into a j-field trivially by setting D = ∅ and then
having the maps j, j′, j′′, j′′′ be the empty map. To prevent trivial situations like this, we have
chosen to define 〈X〉j in a way that maximises the domain.

Definition. We will say that a j-field (K,D) is graph-generated by J if K is generated as a field
by the set D ∪ J(D).

3.1. j-derivations.

Definition. Let K be a field of characteristic 0 and let M be a K-vector space. A map ∂ : K →
M is a called a derivation if it satisfies the following two conditions:

(1) ∂(a+ b) = ∂(a) + ∂(b) for every a, b ∈ K.
(2) ∂(ab) = a∂(b) + b∂(a) for every a, b ∈ K.

Given a subset X ⊆ K, let Der(K/X;M) denote the set of derivations ∂ : K → M such that
X ⊆ ker ∂. When M = K we simplify the notation to be Der(K/X) := Der(K/X;K). Define
Ω(K/X) as the K-vector space generated by formal symbols of the form dr, where r ∈ K,
quotiented by the relations given by the axioms of derivations plus that for every x ∈ X, dx = 0.
Denote by d : K → Ω(K/X) the map r 7→ dr. The map d is called the universal derivation on
X.

Remark 3.2. It is well-known that for any ∂ ∈ Der(K/X) there exists a K-linear map ∂∗ giving
a commutative diagram:

K Ω(K/X)

K

∂

d

∂∗

which allows us to identify Der(K/X) with the dual of Ω(K/X).
If ∂ is a derivation on K and u is algebraic over K, then there is a unique way of extending

∂ to K(u) (recall we assume char(K) = 0). On the other hand, if t is transcendental over K,
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then we can extend ∂ to K(t) by choosing any value in K(t) for ∂(t). For this reason, if F is a
subfield of K, then

dim Ω(K/F ) = dim Der(K/F ) = tr.deg.FK.

Definition. Let (K,D) be a j-field and let M be a K-vector space. A derivation ∂ : K → M
is called a j-derivation if it satisfies: ∂(j(z)) = j′(z)∂(z), ∂(j′(z)) = j′′(z)∂(z), ∂(j′′(z)) =
j′′′(z)∂(z), for every z ∈ D.

Let X be a subset of K. We define jDer(K/X;M) as the set of j-derivations ∂ : K → M
satisfying X ⊆ ker ∂. For convenience we write jDer(K/X) := jDer(K/X;K). Note that all
these spaces are K-vector spaces.

Let Ξ(K/X) be the vector space obtained from Ω(K/X) by taking the quotient with the
subspace generated by the axioms for j-derivations. This induces a map dj : K → Ξ(K/X)
which we call the universal j-derivation.

Definition. Let (K,D) be a j-field, let X ⊆ K, and a ∈ K. We say that a belongs to the
j-closure of X, denoted a ∈ jcl(X), if for every ∂ ∈ jDer(K/X) we have that ∂(a) = 0. That is:

jcl(X) =
⋂

∂∈jDer(K/X)

ker ∂.

Combining the results of [Ete18, Lemmas 5.5, 5.6 and 5.7] we know that jcl is a pregeometry.
Let dimj denote the dimension defined by jcl.

The following proposition is a consequence of Ax-Schanuel for j (Theorem 2.1).

Proposition 3.3 (see [Ete18, Proposition 6.2]). Let (K,D) be a j-field. Let z1, . . . , zn ∈ D and
let F ⊆ K be jcl-closed. Then:

tr.deg.FF (z, J(z)) ≥ 3 dimG(z|F ) + dimj(z|F ).

We introduce a new piece of notation: we will sometimes use j(t) with t = 0, 1, 2, 3 to denote
the functions j, j′, j′′, and j′′′ respectively.

Proposition 3.4. Let (K,D) be a j-field, let F ⊆ K be jcl-closed, and let z ∈ D.

(a) If z ∈ F , then {j(z), j′(z), j′′(z)} ⊆ F
(b) If j(t)(z) ∈ F for some t ∈ {0, 1, 2}, then z ∈ F .

Proof. By Proposition 3.3 we know that

tr.deg.FF (z, J(z)) ≥ 3 dimG(z|F ) + dimj(z|F ).

As F is jcl-closed, then the number on the right hand side of the inequality is either 0 or 4,
depending on whether z ∈ F or not. This completes the proof. �
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4. Finitely Generated j-subfields

Let (K,D) be a j-field and let (C,DC) := (jcl(∅), D ∩ jcl(∅)). Let Kj denote the collection of
j-subfields of (K,D) which are finitely generated over (C,DC). Throughout this section we fix a
j-field (K,D) and the corresponding collection Kj.

We begin by defining a predimension function δj, and then we define two standard objects
known as “self-sufficient extensions” and “self-sufficient closure”. We have not included all the
proofs as they are mostly just repeating arguments that are already detailed in [Asl18] and [Kir09]
with appropriate name-changing; instead we give specific references in each case.

4.1. Predimension.

Definition. Suppose (A,DA) and (B,DB) are j-subfields of (K,D) such that (B,DB) is finitely
generated over (A,DA). In this case we define the j-predimension:

δj((B,DB)|(A,DA)) := tr.deg.AB − 3 dimG(DB|DA).

More generally, given a subset X ⊂ B we define δj(X|(A,DA)) := δj(〈X|(A,DA)〉j |(A,DA)).
When (B,DB) ∈ Kj, we also define δj((B,DB)) := δj((B,DB)|(C,DC)).

In particular, if z is a tuple from D and (A,DA) is a j-subfield of (K,D), then

δj(z|(A,DA)) = tr.deg.AA(z, J(z))− 3 dimG(z|DA).

We remark that δj is well-defined because, by definition, if (B,DB) is finitely generated over
(A,DA), then tr.deg.AB and dimG(DB|DA) are both finite.

Lemma 4.1. The predimension δj is submodular, that is, for any (A,DA), (B,DB) in Kj we
have:

δj((A,DA) ∪ (B,DB)) + δj((A,DA) ∩ (B,DB)) ≤ δj((A,DA)) + δj((B,DB)).

Proof. On one hand it is easy to see that:

dimG(DA ∪DB|DC) + dimG(DA ∩DB|DC) = dimG(DA|DC) + dimG(DB|DC).

Similarly, it is a general property of field extensions that:

tr.deg.C(AB) + tr.deg.C(A ∩B) ≤ tr.deg.CA+ tr.deg.CB,

where AB denotes the subfield of K generated by A ∪B. �

The main result of this section (Theorem 4.11) gives a characterisation of dimj in terms of δj.
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4.2. Self-sufficient extensions. We preserve the notation (K,D), (C,DC), and Kj from the
beginning of the section.

Definition. An embedding of j-fields f : (K1, D1) ↪→ (K2, D2) is called self-sufficient (also
known as strong) if for every tuple z of D2 we have that δj(z|(K1, D1)) ≥ 0. We denote this
property as (K1, D1) C (K2, D2). We also say that (K2, D2) is a self-sufficient extension of
(K1, D1).

Example 4.2. (a) The identity id : (K,D)→ (K,D) is a strong embedding.
(b) Let z be a tuple of elements from D. By Proposition 3.3 we get that:

δj(z|(C,DC)) ≥ dimj(z|DC) ≥ 0.

Therefore, the inclusion map (C,DC) ↪→ (K,D) is self-sufficient, or in symbols: (C,DC) C
(K,D).

Lemma 4.3. Let (K1, D1) be a j-subfield of (K,D) which contains (C,DC). Then (K1, D1) C
(K,D) if and only if for every (A,DA) ∈ Kj we have δj((K1, D1) ∩ (A,DA)) ≤ δj((A,DA)).

Proof. Repeat proof of [Asl18, Lemma 2.9] �

Lemma 4.4. Let (K1, D1), (K2, D2), (K3, D3) ∈ Kj. If (K1, D1) C (K2, D2) and (K2, D2) C
(K3, D3), then (K1, D1) C (K3, D3) (composition of self-sufficient embeddings of j-fields is self-
sufficient).

Proof. Let z be a tuple of D3. Observe that

dimG(z|D1) = dimG(z|D2) + dimG(z ∩D2|D1)

tr.deg.K1
K1(z, J(z)) = tr.deg.K2

K2(z, J(z)) + tr.deg.K1
K1(K2 ∩K1(z, J(z))).

Let z′ be the tuple of elements in z which are in D2. Then the above equations show that:

δj(z|(K1, D1)) = δj(z|(K2, D2)) + δj(z
′|(K1, D1)) ≥ 0.

�

Definition. Let λ be an ordinal. A λ-chain of self-sufficient j-extensions consists of a pair of
families {(Kθ, Dθ)θ<λ, (fθ1,θ2)θ1≤θ2<λ} satisfying the following conditions:
(a) For each θ < λ, (Kθ, Dθ) is a j-field.
(b) For each θ1 ≤ θ2 < λ the map fθ1,θ2 : (Kθ1 , Dθ1)→ (Kθ2 , Dθ2) is a self-sufficient embedding.
(c) For all θ1 ≤ θ2 ≤ θ3 < λ we have that fθ2,θ3 ◦ fθ1,θ2 = fθ1,θ3 .
(d) For each θ < λ, fθ,θ is the identity on (Kθ, Dθ).

Lemma 4.5. Let λ be an ordinal, let {(Kθ, Dθ)θ<λ, (fθ1,θ2)θ1≤θ2<λ} be a λ-chain of self-sufficient
j-extensions, and let (K,D) be the union of the chain.
(a) Then (Kθ, Dθ)C (K,D) for each θ < λ.
(b) Suppose (S,DS) is a j-field and that (Kθ, Dθ)C(S,DS) for each θ < λ. Then (K,D)C(S,DS).
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Proof. Clear by finiteness arguments. �

Proposition 4.6 (cf. [Kir10, Proposition 5.6]). Suppose (A,DA) C (B,DB) is a self-sufficient
inclusion of j-fields, both of which are graph-generated by J . Then there is an ordinal λ and
a (λ + 1)-chain {(Kθ, Dθ)θ≤λ, (fθ1,θ2)θ1≤θ2<λ} of self-sufficient j-extensions such that for all 0 ≤
θ1 ≤ θ2 ≤ λ we have:
(a) (A,DA) = (K0, D0) and (B,DB) = (Kλ, Dλ),
(b) Kθ1 is graph-generated by J ,
(c) For limit θ2, (Kθ2 , Dθ2) =

⋃
θ1<θ2

(Kθ1 , Dθ1),
(d) dimG(Dθ1+1|Dθ1) and tr.deg.(Kθ1+1|Kθ1) are finite,
(e) (Kθ1 , Dθ1)C (Kθ2 , Dθ2).

Proof. The proof is the same as that of [Kir10, Proposition 5.6] with the appropriate name-
changing. �

4.3. Self-sufficient closure. We now present a standard construction called the self-sufficient
closure and show a few of its properties. For reference, see [Asl18, §2.1] and [Kir09, §2.4]. We
maintain the notation used at the beginning of §4.

Lemma 4.7. Let {(Ki, Di)}i be a collection of j-subfields of (K,D) all of which contain (C,DC),
and such that (Ki, Di)C (K,D) for all i ∈ I. Then⋂

i∈I

(Ki, Di)C (K,D).

Proof. Repeat the proof of [Kir09, Lemma 2.12]. �

Definition. If X is a subset of K, then the self-sufficient closure of X is the intersections of
all j-subfields (A,DA) of (K,D) containing 〈X〉j such that (A,DA) C (K,D). We denote the
self-sufficient closure of X by dXe.

Lemma 4.8. Let (A,DA) ∈ Kj. Then:
(a) d(A,DA)e ∈ Kj.
(b) d(A,DA)eC (K,D).
(c) δj (d(A,DA)e) = min {δj(B,DB) : (A,DA) ⊂ (B,DB) ∈ Kj}.

Proof. For parts (a) and (c) repeat the arguments in [Asl18, Lemma 2.14]. Part (b) follows
immediately from Lemma 4.7. �

4.4. Extending j-derivations. In this section we prove Theorem 4.11. For this, we first need
to show that j-derivations can be extended in self-sufficient extensions; this is Proposition 4.9.

We point out that the proof of Proposition 4.9 crucially differs from its exponential counterpart
([Kir10, Theorem 6.3]) in the proof of Claim 4.10. The proof of [Kir10, Theorem 6.3] uses
intermediate results of Ax’s proof of [Ax71, Theorem 3] (the Ax-Schanuel theorem), and as Ax’s
proof is done with differential algebra, these intermediate steps are still valid in exponential fields.
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The proof of Ax-Schanuel for j on the other hand ([PT16]) is done with o-minimality, and general
j-fields have no o-minimal structure.

Instead, for proving Proposition 4.9, we will adapt an argument we presented in [AEK21,
Theorem 3.5] as part of our solution of the differential version of EC for j, which just uses the
statement of the Ax-Schanuel theorem. Furthermore, our method is rather general and can be
expected to work for other functions for which there is a corresponding Ax-Schanuel theorem.
For example, one can easily adapt our proof of Claim 4.10 to give a new proof of [Kir10, Theorem
6.3].

Proposition 4.9. Suppose (A,DA) C (B,DB) is a self-sufficient extension of j-fields and that
A is graph-generated by J . Then every j-derivation on (A,DA) extends to a j-derivation on
(B,DB).

Proof. The proof is obtained from the proof of [AEK21, Theorem 3.5] after some appropriate
reinterpretations. We give the full prof here as this is the main step in all of our main results.

Let K ′ be the subfield of B generated by DB ∪J(DB), then (K ′, DB) is a j-subfield of (B,DB)
which is graph-generated by J . Every j-derivation on K ′ can be extended to B by standard
results of derivations, as this extension need only respect field operations. So we will assume that
(B,DB) is graph-generated by J . By Proposition 4.6 we can further assume that dimG(DB|DA)
and tr.deg.AB are finite. Let ∂0 be a j-derivation on (A,DA). If ∂0 = 0, then the result is trivial,
so we assume that ∂0 6= 0. Let C0 = ker ∂ ⊆ A.

Consider the space:

Der(B|∂0) := {∂ ∈ Der(B|C0) : ∂|A = λ∂0 for some λ ∈ B} .

For every ∂ ∈ Der(B|∂0) there is a unique λ∂ ∈ B such that ∂|A = λ∂∂0. The function ϕ : ∂ 7→ λ∂
gives a linear map ϕ : Der(B|∂0) → B. This map is surjective, since for every λ ∈ B the map
λ∂0 : A→ B can be extended to a derivation of B. Moreover, ker(ϕ) = Der(B|A), hence

dim Der(B|∂0) = dim Der(B|A) + 1 = tr.deg.AB + 1.

Consider the sequence of inclusions

Der(B|A) ↪→ Der(B|∂0) ↪→ Der(B|C0).

We then get a sequence of surjections

Ω(B|C0)� Ω(B|∂0)� Ω(B|A),

where Ω(B|∂0) is defined as the dual of Der(B|∂0).
Let z1, . . . , zn be a Gcl-basis for DB over DA. As (A,DA)C (B,DB) we have that:

tr.deg.AB = tr.deg.AA(z, J(z)) ≥ dimG(z|DA) = 3n.

Let ` ≥ 0 be an integer such that dim Ω(B|A) = 3n+ `. For i ∈ {1, . . . , n} define:

βi := d(j(zi))− j′(zi)d(zi), β′i := d(j′(zi))− j′′(zi)d(zi), β′′i := d(j′′(zi))− j′′′(zi)d(zi),
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where d : B → Ω(B|C0) is the universal derivation. Let Λ(B|C0) be the B-linear subspace of
Ω(B|C0) generated by {βi, β′i, β′′i }

n
i=1, and let Λ(B|∂0) ⊆ Ω(B|∂0) and Λ(B|A) ⊆ Ω(B|A) be the

images of Λ(B|C0) under the surjections above.

Claim 4.10. The forms βi, β′i, β′′i , i = 1, . . . , n are B-linearly independent in Ω(B|A), that is,
dim Λ(B|A) = 3n.

Proof. We proceed by contradiction, so assume dim Λ(B|A) < 3n. Consider the annihilator
Ann(Λ(B|A)) ⊆ Der(B|A), and observe that

(4.10.1) Ann(Λ(B|A)) = jDer(B|A).

Clearly,
r := dim Ann(Λ(B|A)) = dim Ω(B|A)− dim Λ(B|A) > `.

It is easy to see that Ann(Λ(B|A)) is closed under the Lie bracket, hence we can choose a
commuting basis of derivations ∂1, . . . , ∂r ∈ Ann(Λ(B|A)) (see [Kol85, Chapter 0, §5, Proposition
6] or [Sin07, Lemma 2.2]). Let L :=

⋂r
i=1 ker ∂i; thus A ⊆ L ( B. Also, by (4.10.1), L is the

intersection of kernels of j-derivations on B, and so L is jcl-closed.
Let vi := (zi, j(zi), j

′(zi), j
′′(zi)). By Proposition 3.4, either every coordinate of vi is in L, or

none of them are. Since r > 0, we may assume that for some t ≥ 1 no coordinate of v1, . . . ,vt is
in L, and all coordinates of vt+1, . . . ,vn are in L. Let

u := (v1, . . . ,vt), w := (vt+1, . . . ,vn).

As explained in the proof of the Claim of [AEK21, Theorem 3.5], rk(∂izk)1≤i≤r,1≤k≤t = r. By
the Ax-Schanuel theorem (Theorem 2.1) we get:

tr.deg.LL(u) ≥ 3t+ rk(∂izk)1≤i≤r,1≤k≤t = 3t+ r.

Further, using that (A,DA)C (B,DB) we get

tr.deg.AL ≥ tr.deg.AA(w) ≥ 3 dimG(zt+1, . . . , zn|DA) = 3(n− t).
Combining these two inequalities we get

tr.deg.AB = tr.deg.LB + tr.deg.AL ≥ 3t+ r + 3(n− t) = 3n+ r > 3n+ `,

which is a contradiction. �

By Claim 4.10 the dimension of Λ(B|∂0) is also 3n. Therefore,

dim Ann(Λ(B|∂0)) = dim Ω(B|∂0)− dim Λ(B|∂0) = 3n+ `+ 1− 3n = `+ 1

and
dim Ann Λ(B|A) = dim Ω(B|A)− dim Λ(B|A) = `.

Choose a derivation ∂ ∈ Ann Λ(B|∂0) \ Ann Λ(B|A). Then ∂|A = λ∂ · ∂0 for some λ∂ ∈ B. On
the other hand, ∂ /∈ Ann(Λ(B|A)), therefore ∂|A 6= 0 and λ∂ 6= 0. Replacing ∂ by λ−1∂ · ∂ we may
assume that λ∂ = 1 and ∂ is a j-derivation on B which extends ∂0. �
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The next result describes dimj in terms of δj. As is explained in [Asl18, §2.1] and [Kir09, §2.7],
one can use the predimension δj to build a natural pregeometry and dimension on K.

Definition. Given a finite set X ⊂ K we define dimδj(X) := δj (dXe), or equivalently

dimδj(X) = min {δj(X ∪ Y |(C,DC)) : Y is a finite subset of K} .

For X as above and any subset A ⊂ K, we define:

dimδj(X|A) := min
{

dimδj(X ∪ Y )− dimδj(Y )|Y is a finite subset of A
}
.

Now, given any subset B ⊂ K, we define:

clδj(B) :=
{
x ∈ K : dimδj(x|B) = 0

}
.

It follows easily from [Asl18, §2.1] or [Kir09, Proposition 2.25] that clδj is a pregeometry on
K whose corresponding dimension is dimδj . Among other things, Theorem 4.11 says that in fact
dimδj agrees with dimj, and so clδj agrees with jcl.

Theorem 4.11. Let (K,D) be a j-field. For any tuple x of elements in K, we have that

dimj(x) = min {δj(x ∪ y) : y is a tuple from K} .

Proof. Choose y such that r := δj(x ∪ y) is minimal (we can do this by Proposition 3.3). Let
(K0, D0) = 〈x ∪ y|(C,DC)〉j. Let z be a Gcl-basis for D0 over DC . With the notation of the
proof of Proposition 4.9, by the observation in (4.10.1) we have jDer(K0|C) = Ann(Λ(K0|C)),
but by Claim 4.10, Ann(Λ(K0|C)) has codimension dimG(z|DC) in Der(K0|C). So:

dim jDer(K0|C) = tr.deg.CK0 − dimG(z|DC) = δj(x ∪ y) = r.

By the minimality of r we get that, for every tuple w in D,

δj(w|(K0, D0)) = δj(x ∪w ∪ y)− δj(x ∪ y) ≥ 0,

so (K0, D0) C (K,D). By Proposition 4.9, j-derivations on K0 extend to K, which means that
dimj(x) ≥ r. By Proposition 3.3 we conclude then that dimj(x) = r. �

5. Convenient Generators

In [Ete18, Theorem 5.17] it is shown that there exist many non-trivial j-derivations ∂ : C→ C.
Let C = jcl(∅) ⊂ C. By the results of [Ete18, §5], C is a countable algebraically closed subfield
of C, and if we set DC = H∩C, then (C,DC) is a full j-subfield of (C,H).

Theorem 5.1. Let F be a subfield of C such that tr.deg.CF is finite. Then there exist t1, . . . , tm ∈
H \DC such that:

(A1): F ⊆ C (t, J (t)), and
(A2): tr.deg.CC (t, J (t)) = 3 dimG (t|C) + dimj (t|C).
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Proof. Let T be a transcendence basis for F over C. If T is empty, then we are done as F ⊂ C.
Otherwise, observe that F is contained in a finite extension of C(T ). Let (K,D) be the self-
sufficient closure of 〈j−1(T )|(C,DC)〉j in (C,H). Let t be a Gcl-basis for D over DC . Then we
have that

tr.deg.CC(t, J(t)) ≤ tr.deg.CK.

Let L be the relative algebraic closure of C(t, J(t)) in K and consider the j-field (L,D). Then
δj((L,D)) ≤ δj((K,D)). By Lemma 4.8 we know that (K,D) minimizes the predimension δj,
so δj((L,D)) = δj((K,D)), and as dimG(D|DC) = dimG(t), we conclude that tr.deg.CL =
tr.deg.CK. So in fact L = K. This verifies condition (A1).

By Theorem 4.11 and Lemma 4.8 we get that

dimj(t) = dimj(K|C) = dimj(K) = δj((K,D)),

which verifies (A2). �

In the proof of Theorem 5.1, the elements t1, . . . , tm ∈ H \ DC come from the self-sufficient
closure of F , in which case the following three results are immediate by Lemma 4.8. But on its
own, condition (A2) still allows us to get a version of Proposition 3.3 even if the field is not jcl
closed.

Lemma 5.2. Suppose t1, . . . , tm ∈ H \DC satisfy condition (A2). Then for any z1, . . . , zn ∈ H
we have:

tr.deg.C(t,J(t))C(z, t, J(z), J(t)) ≥ 3 dimG(z|C ∪ t) + dimj(z|C ∪ t).

Proof. The inequality is obtained by first using Proposition 3.3 to get:

tr.deg.CC(z, t, J(z), J(t)) ≥ 3 dimG(z ∪ t|C) + dimj(z ∪ t|C)

and now using the addition formula (see [TZ12, C.1.8]) and (A2). �

Corollary 5.3. Suppose t1, . . . , tm ∈ H\DC satisfy condition (A2). Let (A,DA) be the j-subfield
of (C,H) generated by DC ∪ t. Then (A,DA)C (C,H).

Proof. Given a tuple z of H, Lemma 5.2 implies that: δj(z|(A,DA)) ≥ dimj(z|C ∪ t) ≥ 0. �

We can also get a version of Lemma 5.2 without derivatives.

Corollary 5.4. Suppose t1, . . . , tm ∈ H \DC satisfy condition (A2). Then for any z1, . . . , zn ∈ H
we have:

tr.deg.C(t,J(t))C(z, t, j(z), J(t)) ≥ dimG(z|C ∪ t) + dimj(z|C ∪ t).

5.1. Proof of Theorem 1.1. We recall that [EH21, Theorem 1.2] shows that if one assumes the
modular version of Schanuel’s conjecture (see §6.3), then in every plane irreducible curve V ⊂ C2

which is not a horizontal or vertical line, there exists a generic point which is of the form (z, j(z))
for some z ∈ H. Theorem 1.1 gives unconditional cases of [EH21, Theorem 1.2].
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Proof of Theorem 1.1. By [EH21, Theorem 1.1] we know that there exist infinitely many z ∈ H
such that (z, j(z)) ∈ V . In particular, the set S := {(z, j(z)) ∈ V : z ∈ H} is Zariski dense in V .

Let F ⊂ C be a finitely generated field over which V is defined. By Theorem 5.1 we know that
there exist t1, . . . , tm ∈ H \DC such that by Corollary 5.4 we have

tr.deg.FF (z, j(z)) ≥ dimG(z|C ∪ t) + dimj(z|C ∪ t)

for every z ∈ H.
Now, by [EH21, Proposition 7.13] there can only be finitely many elements (z, j(z)) ∈ S such

that z ∈ Gcl(t). Furthermore, as S is Zariski dense in V and V is not defined over C, then by
Proposition 3.4 we have that there are only finitely many elements in S with coordinates in C.
Therefore there exists z ∈ H such that z /∈ DC ∪ t and (z, j(z)) ∈ V . Therefore, by Corollary 5.4

1 ≤ dimG(z|C ∪ t) + dimj(z|C ∪ t) ≤ tr.deg.FF (z, j(z)) ≤ dimV = 1.

�

What happens if V is defined over C? As the next lemma shows, in that case any point
(z, j(z)) ∈ V will have coordinates in C, and so Lemma 5.2 can only provide trivial inequalities.
We will show in §6.4 that if one assumes a modular version of Schanuel’s conjecture, then we can
get results like Theorem 5.1 for subfield of C.

Lemma 5.5. Let F be a subfield of C and let p(X, Y ) ∈ F [X, Y ] be irreducible in C[X, Y ].
Suppose that z ∈ H is such that p(z, j(z)) = 0 and tr.deg.FF (z, j(z)) = 1. Then z, j(z) ∈ jcl(F ).

Proof. Since p(z, j(z)) = 0, then tr.deg.FF (z, j(z), j′(z), j′′(z)) is at most 3. On the other hand,
by Proposition 3.3 we have that tr.deg.jcl(F )jcl(F )(z, j(z), j′(z), j′′(z)) is either 0 or 4, so it must
by 0. �

5.2. The exponential case. We can adapt the ideas we have presented in this section to obtain
unconditional results for the complex exponential function exp regarding the strong exponential
closedness conjecture. An exponential derivation on C is a field derivation ∂ : C→ C satisfying
that ∂(exp(z)) = exp(z)∂(z) for every z ∈ C. The fact that exponential derivations define a
pregeometry ecl on every exponential field and the fact that it agrees with the pregeometry
coming from a corresponding predimension, is given by the main results of [Kir10] (the Ax-
Schanuel theorem for the exponential function is given in [Ax71]). Let E = ecl(∅), let dime

denote the dimension coming from ecl, and given A,B ⊂ C, let lin.dimQ(A|B) denote the linear
dimension of the Q-vector space generated by A ∪ B modulo the subvector space generated by
B. Repeating the proof of Theorem 5.1, we get the corresponding result on the existence of
convenient generators (necessary results regarding self-sufficient closures in exponential fields can
be found in [Kir09]).

Theorem 5.6. Let F be a subfield of C such that tr.deg.EF is finite. Then there exist t1, . . . , tm ∈
C such that:
(E1): F ⊆ E (t, exp (t)),
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(E2): tr.deg.EE (t, exp (t)) = lin.dimQ (t|E) + dime (t|E).

Proceeding just as we did in the proof of Theorem 1.1 we get:

Theorem 5.7. Let V ⊂ C2 be an algebraic curve which is neither a horizontal nor a vertical
line. If V is not definable over E, then for any finitely generated field F over which V is defined,
there exists z ∈ C such that (z, exp(z)) ∈ V and tr.deg.FF (z, exp(z)) = 1.

Proof sketch. By Theorem 5.6, we know that F is contained in a field of the form E (t, exp (t))
satisfying conditions (E1) and (E2). From [Man16, Theorem 1.3] we get that there are only
finitely many vectors c ∈ Q` such that (c · t, exp(c · t)) ∈ V . On the other hand, V has a Zariski
dense set of points of the form (z, exp(z)) (this is obtained by using Hadamard’s factorisation
theorem, as explained in [Mar06]). �

6. j-polynomials

In this section we show that, using our result on extension of j-derivations (Proposition 4.9),
we can give yet another characterisation of jcl, this time in terms of systems of equations called
Khovanskii systems. More precisely, we will show that given a ∈ K and A ⊆ K, then a ∈ jcl(A) if
and only if a satisfies a certain system of equations with coefficients coming from A (see Theorem
6.9). This characterisation will then be used to show Theorem 6.18, which says that, under
a modular version of Schanuel’s conjecture, we can find convenient sets of generators for some
fields, in analogy with Theorem 5.1.

6.1. Khovanskii systems. Khovanskii systems on j-fields are a straightforward analogue of
[Kir10, §3 and §4]. The results are restated here in terms of j-fields; the proofs are mostly the
same as in [Kir10] with appropriate substitutions.

Definition. Given a ring R (commutative and unital), we define the ring R[X]J of j-polynomials
on the variables X = (X1, . . . , Xn) as the ring

R[X]J := R[X, j(X), j′(X), j′′(X)] = R[X, J(X)].

Note that the elements of this ring are formal expressions, but when we work in a j-field (K,D)
and consider the ring K[X]J , we will want to evaluate these expressions at some tuple a of K.
This can only be done if the appropriate coordinates of a are in D.

Given i ∈ {1, . . . , n}, we define the operator ∂
∂Xi

: R[X]J → R[X]J [j′′′(X)] as expected:4

(a) For every k ∈ {1, . . . , n} we have

∂Xk

∂Xi

=

{
0 if k 6= i
1 if k = i

.

4From the differential equation Ψ(j, j′, j′′, j′′′) = 0, one sees that the ring R[X]J [j′′′(X)] is a subring of the
fraction field of R[X]J .
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(b) For all a, b ∈ R and all f1, f2 ∈ R[X]J :
∂(af1(X) + bf2(X))

∂Xi

= a
∂f1(X)

∂Xi

+ b
∂f2(X)

∂Xi

.

(c) For all f1, f2 ∈ R[X]J :
∂ (f1(X)f2(X))

∂Xi

= f2(X)
∂f1(X)

∂Xi

+ f1(X)
∂f2(X)

∂Xi

.

(d) For every k ∈ {1, . . . , n} we have

∂j(t) (Xk)

∂Xi

=

{
0 if k 6= i

j(t+1) (Xi) if k = i
,

where t = 0, 1, 2.

Definition. Let (K,D) be a j-field. Given a subset B ⊂ K, let RB denote the subring of K
generated by B. A Khovanskii system of j-polynomials over B (in the variables X1, . . . , Xn)
consists of a set of j-polynomials f1, . . . , fn ∈ RB[X1, . . . , Xn]J (for some n ∈ N), the system of
equations:

fi(X1, . . . , Xn) = 0, for i = 1, . . . , n,

and the inequation

det

[
∂fi(X)

∂Xk

]
i,k=1,...,n

6= 0.

Definition. Let (K,D) be a j-field and let B ⊂ K be any subset. We say that a ∈ K belongs
to the k-closure of B (written a ∈ kcl(B)) if for some n ∈ N there exist a1, . . . , an ∈ K, with
a1 = a, and j-polynomials f1, . . . , fn ∈ RB[X1, . . . , Xn]J , such that a satisfies the Khovanskii
system determined by f1, . . . , fn.

The main result of this section (Theorem 6.9) is that kcl and jcl are actually the same operator.

Remark 6.1. Perhaps some readers may have noticed that in our definition of the ring R[X]J

we have not included any expressions that include iterations of the functions j, j′ and j′′. For
example, consider the equation: j(j′(X2) + 4) = 1. Even if this is not an equation that can
be written with elements of R[X]J , we can however find a system of equations with elements of
R[X]J that will have the same solutions:

j(X1) = 1

j′(X2) + 4 = X1

X2
3 = X2.

The following lemma is straightforward (cf. [Kir10, Lemma 3.3]).

Lemma 6.2. For any A,B ⊆ K, the operator kcl satisfies:
(a) A ⊆ kcl(A).
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(b) A ⊆ B =⇒ kcl(A) ⊆ kcl(B).
(c) kcl(kcl(A)) = kcl(A).
(d) kcl has finite character.

Remark 6.3. Let (K,D) be a full j-field, and suppose a1, . . . , an ∈ K form a solution of some
Khovanskii system of j-polynomials. Then we can assume that a1, . . . , an ∈ D. Indeed, if a2 /∈ D
say, then as (K,D) is full there exists b2 ∈ D such that j(b2) = a2. So, if f(X) is a j-polynomial
such that f(a) = 0, the system

f(X1, Y,X3, . . . , Xn) = 0
j(X2) = Y

is a system of j-polynomials which vanishes on (a1, b2, a3, . . . , an).

Remark 6.4. Note that if a ∈ K is algebraic over a subset A, then a ∈ kcl(A). Indeed, the
minimal polynomial of a with coefficients in RA (the ring generated by A) satisfies the conditions
of a Khovanskii system. Therefore, kcl(A) is a relatively algebraically closed subfield of K.

It will be convenient to also point out that in the case of full j-fields we could have defined
j-polynomials in a different way, without changing the resulting kcl operator. We could have said
that a j-polynomial over R is any element of the ring

R
[
{gX, J(gX)}g∈G

]
,

where we treat the expressions gXi and J(gXi) as abstract symbols until we decide to evaluate
them at some point. Of course, we then need to redefine the operators ∂

∂Xi
, but this can still be

done in the natural way. The point now is that when working over a j-field (K,D), for every
a ∈ D and every g ∈ G we have that ga is algebraic over Q(a) and the coordinates of J(ga) are
algebraic over Q(a, J(a)). For this reason (using Remark 6.3), defining kcl in the way we did or
using this other definition, would not affect the operator.

Recall that (Remark 3.2), given a j-field (K,D), for any subset A ⊂ K we have a universal
derivation d : K → Ω(K/A), and a universal j-derivation dj : K → Ξ(K/A) which vanishes on
A, where dj is just the composition of d and the quotient map Ω(K/A) → Ξ(K/A). The space
Ξ(K/A) satisfies the universal property that for any ∂ ∈ jDer(K/A,M) there exists a K-linear
map ∂∗ giving a commutative diagram:

K Ξ(K/A)

M

∂

d

∂∗

which allows us to identify jDer(K/A) with the dual of Ξ(K/X), and so we get dim Ξ(K/F ) =
dim jDer(K/F ). The next lemma gives a more concrete description of Ξ(K/A).
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Lemma 6.5. Let (K,D) be a j-field and let A ⊂ K. Let M be the K-vector space generated by
the symbols {mr : r ∈ K} subject to the relations:

(6.5.1)
n∑
i=1

∂f

∂Xi

(r)mri = 0

for each f ∈ RA[X]J and every tuple r from K such that f(r) = 0. Then there exists an
isomorphism of K-vector spaces s : M → Ξ(K/A) satisfying mr 7→ djr for every r ∈ K.

Proof. Straightforward adaptation of [Kir10, Lemma 4.6]. �

Proposition 6.6. Let (K,D) be a j-field and A ⊂ K. Then kcl(A) ⊆ jcl(A).

Proof. Straightforward adaptation of [Kir10, Proposition 4.7]. �

Lemma 6.7. Let (K,D) be a j-field and let (F,DF ) be a j-subfield. Suppose that z1, . . . , zn ∈ D
form a Gcl-basis for D over DF , and that K is graph-generated by j. Let M be the K-vector
space generated by the symbols mz1, . . . ,mzn subject to the relations:

(6.7.1)
n∑
i=1

∂f

∂Xi

(z)mzi = 0

for each f ∈ F [X]J satisfying f(z) = 0. Then there exists an isomorphism of K-vector spaces
s : M → Ξ(K/F ) satisfying mzi 7→ djzi for all i ∈ {1, . . . , n}.

Proof. Straightforward adaptation of [Kir10, Lemma 4.8]. �

For the following lemma, let AalgK denote the relative algebraic closure of the field generated
by A in K, that is for A ⊂ K, AalgK consists of all the elements of K which are algebraic over
the field generated by A.

Lemma 6.8. Let (K,D) be a j-field and let A ⊆ K be a subfield. Let A1 = A∩Q(D∪J(D))algK

and A2 = A \ A1. Then
jcl(A) = (jcl(A1) ∪ A2)

algK .

Proof. Notice that j-derivations behave just like normal field derivations when applied to elements
outside of the graph of J , so any element of jcl(A) which is not in jcl(A1) must be algebraic over
jcl(A1) ∪ A2. �

In the proof of the following theorem, we will relativise the closure operators kcl and jcl to
j-subfields. So, if (F,DF ) is a j-subfield of (K,D) and A is a subset of F , we will use the notation
jclF (A) := jcl(A) ∩ F and kclF (A) := kcl(A) ∩ F .

Theorem 6.9. Let (K,D) be a j-field and let A ⊆ K. Then jcl(A) = kcl(A).
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Proof. By Proposition 6.6 we already have that kcl(A) ⊆ jcl(A), so now we focus on proving the
reverse inclusion.

Let a ∈ jcl(A). First we make some reductions. Because both jcl(A) and kcl(A) are relatively
algebraically closed in K, we can assume that a is not algebraic over Q, and so in particular, we
assume that a /∈ Σ. Furthermore, by the finite character of jcl, we may also assume that A is
finite. Finally, by Lemma 6.8 we can assume that K is graph-generated by J , and so it suffices
to prove the theorem when A ⊂ D and a ∈ D.

Let (F,DF ) be a finitely generated j-subfield of (K,D) which is graph-generated by J , and
such that A ⊆ DF , a ∈ DF and a ∈ jclF (A) (for example (F,DF ) can be the self-sufficient closure
of A ∪ {a}, see also [Ete18, Lemma 5.6]). Furthermore, we choose (F,DF ) so that dimG(DF |A)
is minimal with these properties. Combined, these statements will imply that F = jclF (A). We
explain this in the following paragraph.

Let L = jclF (A) and DL = DF ∩L, this way (L,DL) is a j-subfield of (F,DF ). If F 6= L, then
by the minimality of F we have that a /∈ jclL(A). Therefore there is a j-derivation ∂ ∈ jDer(L|A)
which does not extend to F . By Proposition 4.9 we conclude that (F,DF ) is not a strong extension
of (L,DL). However, this contradicts Proposition 3.3 because, as L is jclF -closed in F , for every
tuple z in DF , we have that δj(z|DL) ≥ 0. In conclusion, F = L.

Now let a = z1, . . . , zn be a Gcl-basis for DF over DL. By Lemma 6.7, Ξ(F/A) is generated by
the elements djz1, . . . , djzn subject to the relations

n∑
i=1

∂f

∂Xi

(z)djzi = 0,

for each f ∈ F [X]J satisfying f(z) = 0 in F . As F = jclF (A), then Ξ(F/A) = 0. This means that
we can choose f1, . . . , fn ∈ F [X]J such that fi(z) = 0 for every i ∈ {1, . . . , n}, and the matrix
J =

(
∂ft
∂Xs

(z)
)
is non-singular. Therefore a ∈ kclF (A). As kclF (A) ⊆ kcl(A), we are done. �

Combined with Theorem 4.11, we have now proven Theorem 1.2. In particular, Theorem 6.9
proves that kcl is a pregeometry.

6.2. Higher dimensional examples of EC. Let C = jcl(∅) and choose a ∈ C \ C. Given a
positive integer n, let V ⊂ C2n be the algebraic variety defined by the equations:

V =


X1 = Yn + a
X2 = Y1
X3 = Y2

...
Xn = Yn−1

 .

Proposition 6.10. For every finitely generated field K, there exists a point (z, j(z)) ∈ V such
that tr.deg.KK(z, J(z)) ≥ n.
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Proof. By [EH21, Theorem 1.1], we know that V has a Zariski dense set of points of the form
(z, j(z)). Let us define inductively the functions jn by: j1(z) := j(z) and jk+1(z) := jk(j(z)) for
every k > 1 (cf [EH21, §2]). Then every solution (z, j(z)) ∈ V satisfies that z1 = jn(z1) + a. Fur-
thermore, as j(H∩C) = C, then by Proposition 3.4 we must have that z, j1(z), j2(z), . . . , jn(z) /∈
C, as otherwise we would contradict that a /∈ C.

By Theorem 5.1, there exist t1, . . . , tm ∈ H \C such that conditions (gJ f1) and (gJ f2) are
satisfied with respect to K. By Corollary 5.4 we get that for every (z, j(z)) ∈ V :

tr.deg.KK(z, j(z)) ≥ dimG(z|C ∪ t) + dimj(z|C ∪ t).

Using that the points of the form (z, j(z)) are Zariski dense in V and [EH21, Proposition 7.13],
we get that V has a Zariski dense set of points of the form (z, j(z)) such that z1, . . . , zn /∈ C∪G·t.
For these solutions we then have that dimG(z|C ∪ t) = dimG(z).

So now suppose that (z, j(z)) ∈ V and dimG(z|C ∪ t) = dimG(z). Suppose that for some
1 ≤ i < k ≤ n we have that there exists g ∈ G such that zi = gzk. Then the tuple (z1, . . . , zn, a)
is a solution of the following Khovanskii system (recall Remark 6.4):

X1 = j(Xn) +Xn+1

X2 = j(X1)
X3 = j(X2)

...
Xn = j(Xn−1)
Xi = gXk

.

However, as this system is defined over Q, then by Proposition 6.6 that would mean that a ∈ C,
which is a contradiction. Therefore we must have that dimG(z|C ∪ t) = n. �

6.3. Modular Schanuel conjecture. The classical statement of Schanuel’s conjecture for the
complex exponential function is the following:

Conjecture 6.11 (Schanuel’s conjecture, [Lan66, p. 30–31]). If x1, . . . , xn ∈ C are Q-linearly
independent, then

tr.deg.Q (x1, . . . , xn, exp(x1), . . . , exp(xn)) ≥ n.

As shown in [Ber02, 1.3 Corollaire], Schanuel’s conjecture follows from the the generalised period
conjecture of Grothendieck-André (see [And04, §23.4.4] and [Ber02] for statements). Using the
results of [Ber02], one can also specialise the generalised period conjecture to get a statement
about the j-function. This can be done in different ways, which we now illustrate.

First, we recall that [Ber02] proves that another consequence of the generalised period conjec-
ture is the following Conjecture 6.12. The notation of the statement requires some explanation
(see [Dia00] for terminology around elliptic curves).

Let E1, . . . , En be elliptic curves, pairwise non-isogenous. For E`, let ω1` and ω2` be its periods,
let η1` and η2` be its quasi-periods, let τ` = ω1`

ω2`
∈ H+ (so that j (τ`) is the j-invariant of E`), let

q` = exp(2πiτ`), and let k` = End (E`)⊗Z Q.
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Conjecture 6.12 ([Ber02, 1.4 Remarque: Conjecture modulaire]).

tr.deg.QQ (2πi, {q`, j (τ`) , ω1`, ω2`, η1`, η2`}n`=1) ≥ rank 〈q`〉n`=1 + 4
n∑
`=1

(dimQ k`)
−1 − n+ 1,

where dimQ k` is the dimension of k` as a Q-vector space (i.e. it is the degree of the extension
k`/Q, and so it is either 2 or 1, depending on whether E` is CM or not, respectively), and
rank 〈q`〉n`=1 denotes the rank of the abelian multiplicative group generated by q1, . . . , qn.

One can use the results conveniently compiled in [Dia00] to show that, for every τ ∈ H+

satisfying j′(τ) 6= 0, the following two fields have the same algebraic closure in C (we recall that
η1ω2 − η2ω1 = 2πi):

Q (2πi, exp(2πiτ), j(τ), ω1, ω2, η1, η2) and Q (2πi, exp(2πiτ), τ, j(τ), j′(τ), j′′(τ)) .

Therefore, we can deduce the following statement from Conjecture 6.12.

Conjecture 6.13 (Modular Schanuel conjecture with derivatives and special points). Let z1, . . . , zn ∈
H+ be Gcl-independent and suppose that j′(zi) 6= 0, for i = 1, . . . , n. Let m1 = dimG (z|Σ), and
let m2 = n−m1. Then:

tr.deg.QQ (z, j(z), j′(z), j′′(z)) ≥ 3m1 +m2.

This conjecture, along with the equivalence between (M1) and (M2), imply the following weaker
statement, where we remove the presence of special points (see also [Pil15, Conjecture 8.3]).

Conjecture 6.14 (Modular Schanuel conjecture with derivatives: MSCD). Let z1, . . . , zn ∈ H+.
Then:

tr.deg.QQ (z, j(z), j′(z), j′′(z)) ≥ 3 dimG(z|Σ).

Remark 6.15. Saying that the j-field (C,H) satisfies MSCD is equivalent to saying that (S,Σ)C
(C,H), where (S,Σ) is the j-subfield of C generated by the set Σ of special points.

We can further remove the presence of derivatives and get a simpler statement (see also [Pil15,
Conjecture 8.4]).

Conjecture 6.16 (Modular Schanuel conjecture: MSC). Let z1, . . . , zn ∈ H+. Then:

tr.deg.QQ (z, j (z)) ≥ dimG(z|Σ).

6.4. Conditional results. In this section we will use Theorem 6.9 to show that MSCD implies
some analogous results to the ones in §5, but this time for subfields of C = jcl(∅). We begin with
an example showing how to get a version of Theorem 5.1.

Example 6.17. Let t ∈ C be transcendental over Q. By Theorem 6.9 we know that t ∈ kcl(∅),
which means that there exist t = t1, . . . , tn ∈ C and f1, . . . , fn ∈ Z[X1, . . . , Xn]J satisfying a
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Khovanskii system. Furthermore, as explained in Remark 6.4, it is actually more convenient to
choose our j-polynomials f1, . . . , fn to be elements of the ring:

Q
[
{gX, J(gX)}g∈G

]
.

As the j-field (C,H) is full, we can assume that t1, . . . , tn ∈ H (see Remark 6.3). Choose the
system with n minimal. As t is a non-singular solution of the Khovanskii system, MSCD implies
that:

3 dimG(t|Σ) ≤ tr.deg.QQ(t, J(t)) ≤ 3n.

By the minimality of n, we also get that the coordinates of t are Gcl-independent. Furthermore,
any special point is in Q ∩ H, so, again by minimality of n, we may assume that no coordinate
of t is special. Thus, MSCD implies:

tr.deg.QQ(t, J(t)) = 3n.

Theorem 6.18. Let F be a subfield of C such that tr.deg.QF is finite. Then MSCD implies that
there exist t1, . . . , tm ∈ H such that:
(B1): F ⊆ Q (t, J (t)),
(B2): tr.deg.QQ (t, J (t)) = 3 dimG (t|Σ).

Proof. If F ⊂ Q, then the result is trivial. So suppose F has positive transcendence degree
over Q and let T be a transcendence basis for F such that T ⊂ H. The idea now is to do
something very similar to the construction in Example 6.17. By Theorem 6.9 we know that for
every t ∈ T , t ∈ kcl(∅), and so by extending Example 6.17, there exist t1, . . . , tn ∈ DC such
that T ⊂ {t1, . . . , tn} and t1, . . . , tn are the solution of a Khovanskii system of j-polynomials. By
choosing n minimal, we can assume that the set {t1, . . . , tn} is Gcl-independent (the elements of
T are clearly Gcl-independent) and that no element is a special point. Therefore

tr.deg.QQ(t, J(t)) = 3n.

�

Recall that
∀z ∈ H

(
z ∈ Σ ⇐⇒ tr.deg.QQ(z, j(z)) = 0

)
.

Combined with the equivalence between (M1) and (M2), this implies that without loss of gener-
ality we can assume that in the statement of Theorem 6.18 the tuple t is Gcl-independent and
none of its coordinates is special. In other words, we can assume that:
(B3): dimG (t|Σ) = m.

Lemma 6.19. Suppose t1, . . . , tm ∈ H satisfy (B2). Then MSCD implies that for any z1, . . . , zn ∈
H we have:

tr.deg.Q(t,J(t))Q(z, t, J(z), J(t)) ≥ 3 dimG(z|Σ ∪ t).
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Proof. The inequality is obtained by first using MSCD to get:

tr.deg.QQ(z, t, J(z), J(t)) ≥ 3 dimG(z ∪ t|Σ)

and now using the addition formula and (B2). �

Just like with MSC, we can remove the presence of derivatives from Lemma 6.19 to get:

Corollary 6.20. Suppose t1, . . . , tm ∈ H satisfy (B2). Then MSCD implies that for any z1, . . . , zn ∈
H we have:

tr.deg.Q(t,J(t))Q(z, t, j(z), J(t)) ≥ dimG(z|Σ ∪ t).

Remark 6.21. Assuming Conjecture 6.12, we can show that π is not in C. For suppose that
π ∈ C. Then by Theorem 6.18 (which can be used as Conjecture 6.12 implies MSCD) we get
that there exist t1, . . . , tn ∈ H such that π is in the algebraic closure of Q(t, J(t)) and conditions
(B2) and (B3) are satisfied. In the inequality of Conjecture 6.12 we can eliminate the presence
of the q` on the left-hand side if we also eliminate the rank of 〈q`〉 on the right-hand side, which
gives us that

tr.deg.QQ(2πi, t, J(t)) ≥ 3n+ 1,

(recall that condition (B3) ensures that no ti is special and that the elliptic curves associated to
t1, . . . , tn are non CM and pairwise non-isogenous). This implies then that

tr.deg.Q(t,J(t))Q(2πi, t, J(t)) ≥ 1,

thus showing that π is transcendental over Q(t, J(t)), which is a contradiction.
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