
SOME REMARKS ON ATYPICAL INTERSECTIONS

VAHAGN ASLANYAN

Abstract. In this paper we show how some known weak forms of
the Zilber–Pink conjecture can be strengthened by combining them
with the Mordell–Lang conjecture or its variants. We illustrate
this idea by proving some theorems on atypical intersections in
the semiabelian and modular settings. Given a “finitely generated”
set Γ with a certain structure, we consider Γ-special subvarieties—
weakly special subvarieties containing a point of Γ—and show that
every variety V contains only finitely many maximal Γ-atypical
subvarieties, i.e. atypical intersections of V with Γ-special varieties
the weakly special closures of which are Γ-special.

1. Introduction

1.1. The Zilber–Pink conjecture. The Zilber–Pink conjecture is a
statement about atypical intersections of an algebraic variety with some
(countable) collection of special varieties. An intersection is atypical
or unlikely if its dimension is larger than expected. The Zilber–Pink
conjecture states, roughly, that atypical intersections of a variety with
special varieties are governed by finitely many special varieties (precise
definitions and statements will be given shortly).

The conjecture for algebraic tori and, more generally, for semiabelian
varieties was first posed by Zilber in his work on Schanuel’s conjecture
and the model theory of complex exponentiation [Zil02]. He showed,
in particular, that it implies the Mordell–Lang conjecture. Bombieri,
Masser and Zannier [BMZ07] gave an equivalent formulation indepen-
dently. Pink [Pin05b, Pin05a] proposed (again independently) a more
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general conjecture for mixed Shimura varieties which also implies the
André–Oort conjecture.

Let us start with a rigorous definition of atypical intersections. Let V
and W be subvarieties of some variety S. A non-empty component X
of the intersection V ∩W is atypical in S if dimX > dimV + dimW −
dimS, and typical if dimX = dimV + dimW − dimS. Note that if S
is smooth then a non-strict inequality always holds.

Now let us describe special varieties. For a semiabelian variety S
(defined over C) its special subvarieties are torsion cosets of semia-
belian subvarieties of S, and arbitrary cosets are called weakly special
subvarieties. Note that special subvarieties are precisely the irreducible
components of algebraic subgroups of S. In the modular setting, the
special subvarieties of Y (1)n (where the modular curve Y (1) is iden-
tified with the affine line C) are irreducible components of algebraic
varieties defined by modular equations, that is, equations of the form
ΦN(xi, xk) = 0 for some 1 ≤ i ≤ k ≤ n where ΦN(X, Y ) is a modular
polynomial (see [Lan73]). If we also allow equations of the form xi = ci
for constants ci ∈ C then we get weakly special subvarieties.

Now let S be a semiabelian variety or Y (1)n, and let S be a special
subvariety of S. For a subvariety V ⊆ S an atypical subvariety of V
in S is an atypical (in S) component X of an intersection V ∩T where
T ⊆ S is special. When we do not specify S then we mean S = S, i.e.
an atypical subvariety of V is an atypical subvariety of V in S.

Now we are ready to formulate the Zilber–Pink conjecture for S.
There are many equivalent forms of the conjecture; we consider two of
them (see [Zil02, BMZ07, Pin05b, HP16]).

Conjecture 1.1 (Zilber–Pink for S: Formulation 1). Let S be a semi-
abelian variety or Y (1)n and V ⊆ S be an algebraic subvariety. Then
V contains only finitely many maximal atypical subvarieties.

Conjecture 1.2 (Zilber–Pink for S: Formulation 2). Let S be a semi-
abelian variety or Y (1)n and V ⊆ S be an algebraic subvariety. Then
there is a finite collection Σ of proper special subvarieties of S such
that every atypical subvariety X of V is contained in some T ∈ Σ.

Although the Zilber–Pink conjecture is wide open, many special cases
and weak versions have been proven in the past two decades. The
reader is referred to [Zan12, Pil14, HP16, Tsi18, DR18, Asl18] for var-
ious results and recent developments around this conjecture. We now
formulate two well known weak Zilber–Pink theorems which play a key
role in this paper.
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Theorem 1.3 (Weak Zilber–Pink for semiabelian varieties, [Zil02,
Kir09, BMZ07]). Let S be a semiabelian variety and V be an alge-
braic subvariety of S. Then atypical components of intersections of
V with cosets of algebraic subgroups of S are contained in cosets of
finitely many algebraic subgroups.

Theorem 1.4 (Weak Modular Zilber–Pink, [PT16, Asl18]). Every al-
gebraic subvariety V ⊆ Y (1)n contains only finitely many maximal
strongly atypical subvarieties, that is, atypical subvarieties with no con-
stant coordinate.

1.2. Γ-special varieties and the Mordell–Lang conjecture.

Definition 1.5.
• A subset of a semiabelian variety is said to be a structure of finite
rank if it is a subgroup of finite rank, that is, dimQ(Γ⊗Q) is finite.
• For a set Ξ ⊆ C we denote by Ξ the union of all Hecke orbits of points
of Ξ, that is, Ξ = {η ∈ C : ΦN(ξ, η) = 0 for some N ∈ N, ξ ∈ Ξ}.
A subset Γ ⊆ Y (1)n(C) is called a structure of finite rank if there is
a set Ξ ⊆ C containing only finitely many non-special points such
that Γ =

(
Ξ
)n
.

Definition 1.6. LetS be a semiabelian variety or Y (1)n and let Γ ⊆ S
be a structure of finite rank.
• For an irreducible subvarietyX ⊆ S, the weakly special closure ofX,
denoted 〈X〉ws, is the smallest weakly special subvariety containing
X. Similarly, 〈X〉 denotes the special closure of X, i.e. the smallest
special subvariety containing X.
• A weakly special subvariety of S is called Γ-special if it contains a
point of Γ.
• Given varieties V ⊆ S ⊆ S, with S special, a (weakly) atypical sub-
variety of V in S is an atypical component (in S) of an intersection
of V with a (weakly) special subvariety of S.
• A weakly atypical subvariety X ⊆ V is Γ-atypical if 〈X〉ws is Γ-
special.

In terms of Γ-special varieties the Mordell–Lang conjecture can be
stated as follows.

Theorem 1.7 (Mordell–Lang for S). Let S be a semiabelian variety
or Y (1)n and let Γ ⊆ S be a structure of finite rank. Then every
algebraic variety V ⊆ S contains only finitely many maximal Γ-special
subvarieties.
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For semiabelian varieties this was proven in a series of papers by Falt-
ings, Vojta, McQuillan and many others (see [McQ95]). Its modular
analogue was established by Pila (see [Pil14, Theorem 6.6]) generalising
an earlier result of Habegger and Pila from [HP12].

1.3. Main results and key ideas of the proofs. In this paper we
demonstrate how the aforementioned weak Zilber–Pink type theorems
can be combined with Mordell–Lang to generalise the former and thus
establish new variants of the Zilber–Pink conjecture. We prove some
precise results (stated below) in the semiabelian and modular settings
to illustrate this idea. Moreover, we believe our methods can be ex-
tended to work in the more general context of Shimura varieties. Nev-
ertheless, we choose to work with semiabelian varieties and products
of modular curves to keep the paper short and simple.

Our main results can be combined into the following theorem.

Theorem 1.8. Let S be a semiabelian variety or Y (1)n, let Γ ⊆ S be
a structure of finite rank and let S ⊆ S be a Γ-special subvariety. Then
every subvariety V ⊆ S contains only finitely many maximal Γ-atypical
subvarieties in S.

This theorem generalises Theorems 1.3 and 1.4. Observe that the lat-
ter states that V contains finitely many maximal atypical subvarieties
with no constant coordinates, and Theorem 1.8 for Y (1)n shows that
we can also deal with atypical subvarieties with constant coordinates
provided that we limit those constants to a small set. In particular, V
contains only finitely many maximal atypical subvarieties all constant
coordinates of which are special. In terms of optimal varieties (see Sec-
tion 5) this is equivalent to the statement that V contains only finitely
many optimal subvarieties whose weakly special closures are special.
This statement generalises [HP16, Corollary 9.11].

Note that Pila and Scanlon have recently proven some differential al-
gebraic Zilber–Pink theorems where they work over a differential field
(K;D) and consider atypical intersections possibly with constant co-
ordinates which are not constant in the differential algebraic sense, i.e.
they allow equations xi = ci where ci ∈ K with Dci 6= 0. In particular,
ci cannot be algebraic (over Q) since algebraic numbers are constant
in any differential field. See Scanlon’s slides [Sca18] for details.

Let us outline the strategy of the proof of Theorem 1.8 assuming for
simplicity that S = S is a semiabelian variety. Given a subvariety V
and an algebraic subgroup T of S, we show that a generic coset of T
intersects V typically (or does not intersect it at all). This is consistent
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with the intuitive idea that “generic” varieties intersect typically. Thus,
the set of all cosets U for which V ∩U is atypical in S is a constructible
subset CT of the quotient S/T of lower dimension. If we restrict to
Γ-atypical subvarieties then we can use the Mordell–Lang conjecture to
deduce that CT ∩Γ′ is contained in the union of finitely many Γ′-special
subvarieties of CT where Γ′ is the image of Γ in S/T under the natural
projection. On the other hand, by Theorem 1.3 we need to consider
only finitely many subgroups T which yields the desired result. We also
show how the uniform version of Theorem 1.8 can be deduced from the
uniform versions of weak Zilber–Pink and Mordell–Lang.

Note that our arguments are quite general and should go through in
other settings too provided there is an Ax–Schanuel theorem (which
is the key ingredient in the proofs of Theorems 1.3 and 1.4) and some
analogue of the Mordell–Lang or André–Oort conjectures. Further-
more, Daw and Ren showed in [DR18] that the Zilber–Pink conjecture
for Shimura varieties can be reduced to a conjecture on finiteness of
optimal points. It seems their methods can be adapted to reduce The-
orem 1.8 (at least for Y (1)n) to a similar point counting problem which
would follow from Mordell–Lang, and that will then give another proof
of that theorem. Daw has shown in a private communication to me
that this can indeed be done when Γ is the set of special points. See
Section 5 for more details.

2. Γ-atypical subvarieties in semiabelian varieties

In this section S denotes a semiabelian variety, written additively.
However, algebraic tori are written multiplicatively since they are sub-
groups of a multiplicative group Gn

m.
The following simple fact (and its obvious analogue in the modular

setting) will be used repeatedly in the paper.

Lemma 2.1. Let V ⊆ S be a subvariety. If X is a weakly atypical sub-
variety of V in S then X is an atypical component of the intersection
V ∩ 〈X〉ws in S.

Proof. Assume T ⊆ S is weakly special such that X is an atypical
component of V ∩ T in S. Then 〈X〉ws ⊆ T and so

dimX > dimV + dimT − dimS ≥ dimV + dim〈X〉ws − dimS.

Now if Y ⊆ V ∩ 〈X〉ws is a component containing X then Y ⊆ V ∩ T .
Since X is an irreducible component of V ∩ T , so is Y and in fact
X = Y . �
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The analogous statement for atypical subvarieties and special clo-
sures holds too.

Let T ⊆ S be an algebraic subgroup and V ⊆ S be an irreducible
algebraic subvariety. We show that generic cosets of T intersect V
typically. First, note that the quotient S/T is (definably isomorphic
to) an algebraic group and the natural projection π : S → S/T is a
morphism of algebraic groups.1 Moreover, S/T is connected and hence
irreducible.

Lemma 2.2. Let T and V be as above. The set

C := CT := CT,V := {u ∈ S/T : V ∩ π−1(u) is atypical in S}

is constructible and not Zariski dense in S/T .

Note that by definition, atypicality of an intersection implies that it
is non-empty, hence if V ∩ π−1(u) = ∅ then u /∈ C.

Proof. Let θ := π|V : V → S/T be the restriction of of π to V . Observe
that for every u ∈ S/T we have dimπ−1(u) = dimT , for π−1(u) is a
coset of T . Hence

C = {u ∈ S/T : dim θ−1(u) > dimV + dimT − dimS}

which is constructible since θ is a morphism of varieties and dimV +
dimT − dimS is a fixed number independent of u.

Now assume C is Zariski dense in S/T . Pick a generic point w ∈
S/T . Then w ∈ C, and so V ∩ π−1(w) 6= ∅, hence w ∈ π(V ). This
means θ is a dominant map as its image contains a generic point of
S/T . Therefore, by the fibre dimension theorem ([Sha13, Theorem
1.25]), dim θ−1(w) = dimV − dimS/T = dimV + dimT − dimS.
Hence w /∈ C, which is a contradiction. �

The following is the central theorem of this section which implies
some related results.

Theorem 2.3. Let S be a semiabelian variety and let Γ ⊆ S be a
subgroup of finite rank. Then for every subvariety V ⊆ S there is a
finite collection Σ of proper Γ-special subvarieties of S such that any
Γ-atypical subvariety of V (in S) is contained in some T ∈ Σ.

1Note that this follows from elimination of imaginaries in algebraically closed
fields and the fact that constructible groups are definably isomorphic to algebraic
groups. See [Mar02, Chapter 7].



SOME REMARKS ON ATYPICAL INTERSECTIONS 7

Proof. It is easy to see that an atypical subvariety of V in S is also an
atypical subvariety of an irreducible component of V . Hence we may
assume V is irreducible.

Let Σ0 be the finite collection of algebraic subgroups of S given by
[Kir09, Theorem 4.6] (which is a stronger version of Theorem 1.3) for
V . Let further X be a Γ-atypical subvariety of V . Then 〈X〉ws is
Γ-special and X is an atypical component of V ∩ 〈X〉ws.

By [Kir09, Theorem 4.6], there is b ∈ S and T ∈ Σ0 such that
X ⊆ b+T . Hence 〈X〉ws ⊆ b+T and so b+T = γ+T for some γ ∈ Γ.
Further, we also have

dimV + dim〈X〉ws − dimS < dimX =

dim(V ∩ (γ + T )) + dim(〈X〉ws ∩ (γ + T ))− dim(γ + T ) =

dim(V ∩ (γ + T )) + dim〈X〉ws − dim(γ + T ).

Thus, V and γ+T intersect atypically in S. Hence πT (γ) ∈ CT where
CT is defined as in Lemma 2.2 and πT : S → S/T is the natural
projection.

Now we apply the Mordell–Lang theorem to the Zariski closure CZcl
T

of CT and the finite rank group πT (Γ) ⊆ S/T . We get a finite collection
∆T of maximal πT (Γ)-special subvarieties of CZcl

T . This means that
πT (γ) ∈ A for some A ∈ ∆T . Hence X ⊆ γ + T ⊆ π−1

T (A) ( S and
so X is contained in an irreducible component of π−1

T (A) which is a
proper Γ-special subvariety of S. Thus, we may choose Σ to be the
finite collection of Γ-special irreducible components of all cosets π−1

T (A)
for T ∈ Σ0 and A ∈ ∆T . �

Theorem 2.4. Let S be a semiabelian variety, let Γ ⊆ S be a subgroup
of finite rank, and let S ⊆ S be a Γ-special subvariety. Then for
every subvariety V ⊆ S, there is a finite collection Σ of proper Γ-
special subvarieties of S such that any Γ-atypical subvariety of V in S
is contained in some T ∈ Σ.
Proof. (cf. [Kir09, Theorem 4.6]) Let S = γ + S0 where S0 is a semi-
abelian subvariety of S. If X is an atypical component of V ∩ T in
S, where T ⊆ S is Γ-special, then X − γ is an atypical component of
(V − γ) ∩ (T − γ) in S0. Set Γ0 := Γ ∩ S0. Then T − γ ⊆ S0 is
Γ0-special and X − γ is Γ0-atypical. Let Σ0 be the finite set of Γ0-
special subvarieties of S0 given by Theorem 2.3. Then we can choose
Σ = {γ + T ′ : T ′ ∈ Σ0}. �

Remark 2.5. (Proof of Theorem 1.8 for semiabelian varieties)
Let S, Γ, S and V be as above, and let Σ be the finite collection of



8 VAHAGN ASLANYAN

proper Γ-special subvarieties of S obtained by Theorem 2.4. Assume
X ⊆ V is a maximal Γ-atypical subvariety in S. Then X ⊆ T for
some T ∈ Σ, hence there is a component Y of V ∩ T with X ⊆ Y . If
Y is an atypical component of V ∩ T in S then X = Y . So assume
dimY = dimV + dimT − dimS. On the other hand, 〈X〉ws ⊆ T is
Γ-special and X is an atypical component of V ∩〈X〉ws in S. We claim
that X is an atypical component of Y ∩〈X〉ws in T . To this end observe
that

dimY + dim〈X〉ws − dimT = dimV + dim〈X〉ws − dimS < dimX.

Since dimT < dimS, we can proceed by induction on dimS.

3. Γ-atypical subvarieties in Y (1)n

In this section we work in a product of modular curves S = Y (1)n

and identify it with Cn. We introduce a piece of notation before pro-
ceeding.

Notation. Let n be a positive integer.
• We write (n) for (1, . . . , n). The notation i = (i1, . . . , im) ⊆ (n)
means that 1 ≤ i1 < . . . < im ≤ n, and k = (k1, . . . , kn−m) = (n) \ i
is the unique tuple k ⊆ (n) such that {1, . . . , n} = {i1, . . . , im} ∪
{k1, . . . , kn−m}.
• For i = (i1, . . . , im) ⊆ (n) we define pri : Cn → Cm to be the
projection map onto the i-coordinates.
• For c ∈ Cm, i = (i1, . . . , im) ⊆ (n) and Y ⊆ Cn set Yi,c := Y ∩

pr−1
i (c) ⊆ Cn.

Lemma 3.1. Let S ⊆ Y (1)n(C) be a weakly special variety and let
V ⊆ S be an irreducible algebraic subvariety. Fix i = (i1, . . . , ik) ⊆ (n)
and set T := pri S. Then

C := Ci := Ci,V := {c ∈ T : V ∩ Si,c is atypical in S}
is constructible in T and dimC < dimT .

Proof. Let θ := pri |V : V → T be the restriction of pri to V . It
is easy to see that dimSi,c = dimS − dimT for any c ∈ T . Hence
C = {c ∈ T : dim θ−1(c) > dimV − dimT} is constructible.

Suppose C is dense in T . Then C contains a generic point b of T .
Clearly, b ∈ θ(V ) which means θ is dominant. Since V is irreducible,
by the fibre dimension theorem we have dim θ−1(b) = dimV − dimT.
Therefore b /∈ C. This contradiction shows that C cannot be Zariski
dense in T . �
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Definition 3.2 (cf. [HP16, Definition 3.8]). For a weakly special vari-
ety S the largest number N for which ΦN occurs in the definition of S
is called the complexity of S and is denoted by ∆(S).

Remark 3.3. For a positive integer N there are only finitely many
strongly special varieties of complexity at most N .

Proposition 3.4. Given an algebraic subvariety V of a weakly special
variety S in Cn, there is a positive integer N such that for every weakly
atypical subvariety X of V there is a proper weakly special subvariety
T of S with ∆(T ) ≤ N such that X ⊆ T and V ∩ T is atypical in S.

Proof. If X is strongly atypical then it is contained in one of the finitely
many special subvarieties of S given by Theorem 1.4. Assume X has
some constant coordinates, namely, xil = cl for l = 1, . . . ,m. Let i :=
(i1, . . . , im), c := (c1, . . . , cm). Observe that if a constant coordinate
is related by a modular equation to another coordinate on X, then
the latter must also be constant on X for it is irreducible. Therefore,
there is no modular relation between an i-coordinate and an (n) \ i-
coordinate on S. In particular, Si,c is irreducible and hence weakly
special. If V ∩ Si,c is atypical in S, and hence Si,c ( S, then we can
choose T = Si,c. So assume it is a typical intersection, i.e.

dim(V ∩ Si,c) = dimV + dimSi,c − dimS.

Let k := (n)\i and define S ′ := prk S and V ′ := prk Vi,c, X
′ := prkXi,c.

Then S ′ = prk Si,c. Moreover, S ′ and X ′ do not have any constant
coordinates and S ′ is strongly special. If P := 〈X〉ws is the weakly
special closure of X then X is an atypical component of V ∩ P in
S, and P = Pi,c. Now if P ′ := prk P then we claim that X ′ is an
atypical component of V ′ ∩ P ′ in S ′. To this end notice that dimX ′ =
dimX, dimV ′ = dimVi,c = dim(V ∩ Si,c), dimP ′ = dimP, dimS ′ =
dimSi,c. Therefore

dimX ′ = dimX > dimV + dimP − dimS =

(dimV ′ − dimS ′ + dimS) + dimP ′ − dimS = dimV ′ + dimP ′ − dimS ′.

Since X ′ does not have constant coordinates, we conclude that it is a
strongly atypical subvariety of V ′ in S ′. On the other hand, V ′ is a
member of a parametric family of varieties depending only on V , hence
by [Asl18, Theorem 5.2] (which is the uniform version of Theorem
1.4) there is a natural number N , depending only on V and S and
independent of c, and a special subvariety T ′ ⊆ S ′ with ∆(T ′) ≤ N
such that X ′ ⊆ T ′ and V ′∩T ′ is atypical in S ′. Let T := pr−1

k (T ′)∩Si,c.
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Then T ( S is weakly special, ∆(T ) ≤ N , X ⊆ T and V ∩T is atypical
in S, for

dim(V ∩ T ) = dim(Vi,c ∩ Ti,c) = dim(V ′ ∩ T ′) >
dimV ′ + dimT ′ − dimS ′ = dimV + dimT − dimS.

This finishes the proof. �

Now we can state and prove the main result of this section.

Theorem 3.5. Let Γ ⊆ Y (1)n(C) be a structure of finite rank and let
S be a Γ-special variety. Then for every subvariety V ⊆ S there is a
finite collection Σ of proper Γ-special subvarieties of S such that any
Γ-atypical subvariety of V is contained in some T ∈ Σ.

Proof. As in the proof of Theorem 2.3, we may assume V is irreducible.
Let X ⊆ V be Γ-atypical. Then its weakly special closure 〈X〉ws is

Γ-special. By Proposition 3.4 there is a weakly special T ( S with
∆(T ) ≤ N and X ⊆ T where N depends only on V and S. Moreover,
V ∩T is atypical in S. Since 〈X〉ws ⊆ T and 〈X〉ws contains a Γ-special
point, so does T and hence it is Γ-special. Assume that xil = γl, l =
1, . . . ,m, are the constant coordinates of T which are not constant on
S. Set i := (i1, . . . , im), k := (n) \ i and T̃ := pr−1

k (prk T ), i.e. T̃ is the
special subvariety of S defined by the equations of T apart from the
equations xil = γl. If T̃ ( S then T̃ is a proper Γ-special subvariety
of S containing X and T̃ belongs to a finite collection Θ of Γ-special
subvarieties depending only on V and S since ∆(T̃ ) ≤ N .

Now assume T̃ = S. Then T = Si,γ where γ = (γ1, . . . , γm) ∈
pri Γ, and V ∩ Si,γ is atypical in S. Let Ci ⊆ pri S be defined as in
Lemma 3.1. Then γ ∈ Ci. Let Ξi be the finite collection of maximal
pri Γ-special subvarieties of CZcl

i given by modular Mordell–Lang. Then
there is Q ∈ Ξi with γ ∈ Q. Thus, we can choose Σ to be the finite
collection of all Γ-special irreducible components of all varieties from
Θ ∪ {S ∩ pr−1

i Q : Q ∈ Ξi, i ⊆ (n)}. �

Remark 3.6. We can deduce Theorem 1.8 for Y (1)n from Theorem 3.5
as in Remark 2.5.

4. Uniform versions

In this section we establish uniform versions of Theorems 2.4 and
3.5 using uniform versions of Theorems 1.3, 1.4, and 1.7. In order to
combine the statements in the semiabelian and modular settings into
one theorem, we introduce a piece of notation.
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Definition 4.1. Given two weakly special varieties S, T ⊆ Y (1)n(C)
and a set Γ ⊆ Y (1)n(C), we say that T is a Γ-translate of S if for some
i ⊆ (n) and for some γ ∈ pri Γ we have T = S ∩ pr−1

i (γ).

Now we can state the uniform Mordell–Lang theorem, which can be
deduced from Theorem 1.7 by automatic uniformity.

Theorem 4.2. Let S be a semiabelian variety or Y (1)n, and let Γ ⊆ S
be a structure of finite rank. Given a parametric family (Vq)q∈Q of
algebraic subvarieties of S, there are a finite collection Σ of special
subvarieties of S and an integer m, such that for every q ∈ Q the
variety Vq contains at most m maximal Γ-special subvarieties, each of
which is a Γ-translate of a variety from Σ.

Proof. For the semiabelian case see [Hru01, Corollary 3.5.9] and [Sca04,
Theorem 4.7]. For Y (1)n the theorem follows from Theorem 1.7 and
[Sca04, Theorem 2.4], since Γ-special points are Zariski dense in Γ-
special subvarieties. �

The following is a uniform version of our main theorems.

Theorem 4.3. Let S be a semiabelian variety or Y (1)n, let Γ ⊆ S
be a structure of finite rank, and let S ⊆ S be a Γ-special subvariety.
Given a parametric family (Vq)q∈Q of algebraic subvarieties of S, there
are a finite collection Σ of special subvarieties of S and an integer
m, such that for any q ∈ Q there is a finite subset ∆(q) ⊆ Γ, with
|∆(q)| ≤ m, such that any Γ-atypical subvariety of Vq is contained in a
∆(q)-translate T of some special variety from Σ and T ( S.

Proof. We assume S is a semiabelian variety. The case of Y (1)n is
completely analogous.

The proofs of Theorems 2.3 and 2.4 can be generalised to work in
this setting. In particular, we may assume S = S. Note that for
a parametric family (Vq)q∈Q, there is a parametric family consisting of
all irreducible components of Vq for all q,2 hence we may assume each Vq
is irreducible. Further, let T be one of the finitely many semiabelian
subvarieties of S given by [Kir09, Theorem 4.6]. Then the varieties
CT,Vq defined as in Lemma 2.2 form a parametric family and we apply
Theorem 4.2 to that family and proceed as in the proof of Theorem
2.3. �

2By the results of [vdDS84] the number of irreducible components of varieties in
a parametric family is bounded, hence they form a parametric family as well.
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5. Optimal varieties

The Zilber–Pink conjecture is often formulated in terms of optimal
subvarieties. Let S be a semiabelian variety or Y (1)n.

Definition 5.1 ([Pin05b, HP16]).
• For a subvariety X ⊆ S the defect of X is the number δ(X) :=

dim〈X〉 − dimX.
• Let V be a subvariety of S. A subvariety X ⊆ V is optimal (in V )
if for every subvariety Y ⊆ V with X ( Y we have δ(Y ) > δ(X).

Observe that maximal atypical subvarieties are optimal, and optimal
subvarieties are atypical but not necessarily maximal atypical.

Conjecture 5.2 ([HP16]). Let V be a subvariety of S. Then V con-
tains only finitely many optimal subvarieties.

By [HP16, Lemma 2.7] this is equivalent to the Zilber–Pink conjec-
ture. By analogy with optimal varieties, we want to define Γ-optimal
varieties for a structure Γ ⊆ S of finite rank. For simplicity we focus
on Y (1)n.

Definition 5.3. Let X be a subvariety of Y (1)n.
• The Γ-special closure of X, denoted 〈X〉Γ, is the smallest Γ-special
subvariety of Y (1)n containing X.
• The Γ-defect of X is the number δΓ(X) := dim〈X〉Γ − dimX.

Remark 5.4. It is easy to verify that irreducible components of a non-
empty intersection of Γ-special varieties are Γ-special, hence the Γ-
special closure is well defined.

Definition 5.5. Let V be a subvariety of Y (1)n and X be a subvariety
of V . Then X is called Γ-optimal (in V ) if whenever X ( Y ⊆ V , we
have δΓ(X) < δΓ(Y ).

Theorem 5.6. Let V ⊆ Y (1)n be a subvariety. Then V contains only
finitely many Γ-optimal subvarieties whose weakly special closure is Γ-
special.

Proof. The obvious adaptation of the proof of [HP16, Lemma 2.7] works
in this setting. �

In the case of semiabelian varieties, and even algebraic tori, the ir-
reducible components of an intersection of Γ-special subvarieties may
not be Γ-special, hence we cannot define a Γ-special closure as above.
Indeed, consider the two dimensional torus G2

m(C) = (C×)2. Let Γ1
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be the torsion subgroup of Gm(C), and let Γ2 be the division closure
of a cyclic subgroup of Gm(C) generated by a transcendental element
γ ∈ C. Let also Γ := Γ1 × Γ2 ⊆ G2

m(C). Consider two Γ-special sub-
varieties S : y1y2 = γ and T : y2

1y2 = γ2. Then S ∩ T = {(γ, 1)} which
does not contain a point of Γ, for γ is not a torsion point.

However, in some cases the Γ-special closure is well-defined, and then
the analogue of Theorem 5.6 clearly holds. For instance, when Γ ⊆ S is
the torsion subgroup of a semiabelian varietyS, then Γ-special varieties
coincide with special varieties and the Γ-special closure of an irreducible
variety is equal to its special closure and is well-defined. In this case,
the analogue of Theorem 5.6 states that for every variety V ⊆ S there
are only finitely many optimal subvarieties of V whose weakly special
closures are special (and one can use the Manin–Mumford conjecture
instead of the Mordell–Lang conjecture to prove this). In the case of
abelian varieties this is Corollary 9.11 of [HP16].

Let us give one more example when the Γ-special closure is well-
defined. If S = Gn

m is an n-dimensional torus, and Γ = Γn0 where
Γ0 ⊆ Gm is the division closure of a finitely generated subgroup (this
is a direct analogue of a structure of finite rank in Y (1)n), then it is
easy to verify that Γ-special varieties are closed under taking irreducible
components of intersections. Hence, the analogue of Theorem 5.6 holds
in this case too.

As mentioned in the introduction, our methods are quite general
and we expect them to extend to the setting of (pure) Shimura va-
rieties, and the analogue of Theorem 5.6 should follow from an ap-
propriate Ax–Schanuel statement (which was proven for pure Shimura
varieties in [MPT19]) and a Mordell–Lang conjecture (see, for exam-
ple, [DR18, HP16] for a discussion of the Zilber–Pink conjecture for
Shimura varieties and the appropriate definitions in that setting). Fur-
ther, in [DR18] Daw and Ren proved that the Zilber–Pink conjecture
for Shimura varieties can be reduced to a point counting conjecture
stating that every variety contains only finitely many optimal points.
It seems their methods can be applied to prove an analogue of Theorem
5.6 for Shimura varieties.

I discussed these ideas with Christopher Daw, and he showed in
particular that the argument of [DR18, Theorem 8.3] can be adapted
to prove that if every variety contains only finitely many points which
are special and optimal, then every variety contains only finitely many
optimal subvarieties whose weakly special closures are special. On the
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other hand, finiteness of special optimal points follows from the André–
Oort conjecture for such points are maximal special. Thus, the André–
Oort conjecture for Shimura varieties implies that a subvariety of a
Shimura variety contains only finitely many optimal subvarieties the
weakly special closures of which are special. Since the André–Oort
conjecture is proven for Ag (see [Tsi18]), this gives an unconditional
result in that case. This method should probably extend to Γ-special
and Γ-optimal varieties which will then give a new proof for Theorem
5.6, and hence for Theorem 1.8 too. Nevertheless, we do not consider
these questions in this paper.

Acknowledgements. I would like to thank Christopher Daw and Se-
bastian Eterović for useful discussions and comments. I am also grate-
ful to the referees for valuable comments that helped me improve the
presentation of the paper.
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