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Abstract

Cognitive architectures tasked with swiftly and adaptively processing biologically important 

events are likely to classify these on two central axes: motivational salience, i.e. those 

events’ importance and unexpectedness, and motivational value, the utility they hold, 

relative to that expected. Because of its temporal precision, electroencephalography 

provides an opportunity to resolve processes associated with these two axes. A focus of 

attention for the last two decades has been the feedback related negativity (FRN), a 

frontocentral component occurring 240–340 ms after valenced events that are not fully 

predicted. Both motivational salience and value are present in such events and competing 

Page 1 of 32 Cerebral Cortex



2

claims have been made for which of these is encoded by the FRN. The present study 

suggests that motivational value, in the form of a reward prediction error, is the primary 

determinant of the FRN in active contexts, while in both passive and active contexts, a 

weaker and earlier overlapping motivational salience component may be present.

Keywords: ERP, FRN, RewP, motivational salience, reward prediction error,

Introduction

Adaptive behaviour in an intelligent organism requires neural processes capable of 

extracting the full gamut of information associated with motivationally relevant events in 

the environment. Some of these processes will be associated with online monitoring of 

unfolding events, for example whether immediate goals have been achieved, awareness of 

whether the motivating context is one of threat or opportunity, and orientation to 

unexpected events. Other processes will be concerned with adjusting longer term 

expectations about the future profitability of the environment, and of particular actions 

pursued within it. A challenge for cognitive neuroscientists is to isolate the neural signatures 

associated with these functionally distinct processes.

Foremost of concerns for any motivated organism is valence, i.e., has something 

good or bad happened? Valence may be determined by the biologically specified appetitive 

or aversive properties of primary reinforcers (food is good, and pain is bad) or, with 

sufficient exposure, by secondary reinforcers that precede these primary reinforcers. 

However, valence can also consist in whether an event is better or worse than expected 
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from prior experience with the situation at hand, that is, it can consist in positive or negative 

reward prediction error. Reward prediction errors (RPEs) represent a powerful 

computational means for learning appropriate actions in response to motivational cues. The 

sign of the RPE (positive or negative) respectively strengthens or weakens the propensity for 

future selection of an action, and its magnitude determines the degree of strengthening or 

weakening. By these means, RPEs can produce very effective machine learning (Sutton and 

Barto 1998), and they represent a computationally parsimonious mechanism for learning. 

They can be recruited for any class of motivating event and are unaffected by whether these 

events are appetitive or aversive, since the RPE merely reflects the difference in obtained 

and expected value, and not the value of the event itself. Their importance for learning in 

humans and other animals is demonstrated by blocking: the finding that learners fail to 

learn stimulus-response contingencies when the following outcomes do not produce 

prediction error (Kamin 1968).  Midbrain dopamine neurons have been shown to encode 

reward prediction errors (Schultz, et al. 1997).

The ubiquity of RPE computation, and the generalisability of a single computational 

process over the full range of motivational events, raises the prospect that the brain might 

host one or more general purpose RPE encoders recruited in any motivated learning 

situation. Demonstrating the presence (or indeed absence) of such encoders would improve 

our understanding of the computational architecture underlying motivated behaviour. In 

identifying such an encoder, temporal precision is at a premium, since even a fully modular 

RPE encoder would likely be swiftly relaying computational input and output to non–RPE 

systems. For this reason, electrophysiology represents an appropriate technique for the 

isolation of RPEs. 
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One candidate for such an encoding lies in the interval associated with the feedback 

related negativity, or FRN (Holroyd and Coles 2002; Miltner, et al. 1997), sometimes known 

as the reward positivity, or RewP (Proudfit 2015). This electrophysiological component is 

elicited by valenced feedback, occurs at a latency of 240 to 340 ms post-feedback and shows 

a frontocentral scalp distribution. Since it is typically observed in designs with dichotomous 

good vs. bad feedback it is most often operationalised as the voltage difference between a 

positive reward prediction error (+RPE, i.e. better than expected outcome) and a negative 

reward prediction error (–RPE, i.e. worse than expected outcome). The waveform for +RPEs 

typically shows a relative voltage positivity and this, by convention, is subtracted from the 

waveform for –RPEs to produce a negative-going difference wave, the FRN. The amplitude 

of the FRN is greater when RPEs are large (Sambrook and Goslin 2015), suggesting it may 

encode RPE size in addition to sign, thus fully coding for RPE utility in the manner of an 

axiomatic RPE encoder (Caplin and Dean 2008). This is supported by studies manipulating 

RPE utility as a continuous variable (Cavanagh 2015; Gu, et al. 2020; Sambrook and Goslin 

2014; Sambrook and Goslin 2016). When the generation of prediction errors (and 

consequent learning) is prevented in a blocking procedure, the FRN is attenuated, 

suggesting it may play an obligatory role in the transmission of RPEs (Luque, et al. 2012).

Other studies have claimed that activity in the temporospatial interval of the FRN is 

better interpreted as a response to motivational salience rather than the motivational value 

embodied by RPE sign. Motivational salience consists in an outcome’s ability to elicit 

attention due to its motivational relevance (Schultz 2016) and is high for both appetitive and 

aversive events, and low for neutral events (Berridge and Robinson 1998; Bromberg-Martin, 

et al. 2010). In a counterpart to demonstrations of RPE-encoding dopamine neurons, 

Matsumoto and Hikosaka (2009) showed other dopamine neurons appeared to code for 
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motivational salience, insofar as they were excited by the delivery of intrinsically motivating 

stimuli (juice, air puff) regardless of whether these were appetitive or aversive. These 

neurons were also responsive to cues predicting the imminent onset of these stimuli. 

Furthermore, while RPE-encoding neurons showed a reduction in firing when appetitive 

events were unexpectedly omitted (thus carrying the –RPE portion of the signal in the 

appetitive domain), this second class of dopamine neuron was unresponsive to omission, 

further suggesting a motivational salience encoding that treated omission as a neutral 

outcome, even when this was unexpected. A large number of fMRI studies have attempted 

to identify structures on the mesolimbic and mesocortical pathways that might receive 

either the RPE (e.g. Fujiwara, et al. 2009, O’Doherty, et al. 2003) or motivational salience 

signal (e.g. Jensen, et al. 2007, Metereau and Dreher, 2013). 

A motivational salience encoder would appear to be highly adaptive in terms of 

orientation and attention, and we might expect its effects to be seen at some point in the 

feedback-locked ERP waveform. Four studies (Hird, et al. 2018; Soder and Potts 2018; Soder, 

et al. 2020; Talmi, et al. 2013) have made the case that the FRN comprises a motivational 

salience signal, and have done so by means of a particularly strong methodology: the use of 

a primary aversive reinforcer (e.g. shock, noise burst or bitter taste). This contrasts with the 

widespread use of monetary loss as a reinforcer. While monetary loss serves to represent –

RPEs, and negative feedback generally, it is a problematic choice for specifically eliciting a 

motivational salience component. Money, through a process of robust association, does 

appear to be an intrinsically motivating stimulus for humans (Zaghloul, et al. 2009), but it 

can only be an appetitive, not aversive stimulus. Furthermore, as noted above, motivational 

salience consists in the occurrence of motivating stimuli, not their omission, and the extent 

to which losses can be classed as occurrences is unclear.  
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The studies cited above manipulated RPEs independently in appetitive and aversive 

domains and reversed the polarity of the FRN in the aversive domain. This reversal occurred 

because the voltage positivity associated with rewards in the appetitive domain was, in 

these studies, shown for punishments in the aversive domain, and so differencing of bad 

and good outcomes produced a positive, rather than negative-going FRN. This is 

parsimoniously explained by the FRN simply coding motivational salience, i.e. the delivery 

rather than omission of a motivating, valenced stimulus, but with no encoding of its actual 

valence. 

In stark contrast, two other studies using pain as a primary aversive reinforcer 

(Heydari and Holroyd 2015; Mulligan and Hajcak 2018) found domain to have no effect on 

the polarity of the FRN, supporting the RPE account. Notably, all four studies supporting the 

motivational salience account employed tasks in which participants merely passively 

experienced rewards and punishments, while the two studies supporting RPE encoding 

employed active, instrumental designs. Since RPEs are understood to be computational 

terms in instrumental learning, we should be unsurprised to find much reduced RPE 

encoding, or indeed its absence, in passive tasks. This is a ubiquitous finding at least in the 

appetitive domain (Hassall, et al. 2019; Philiastides, et al. 2010; Sambrook and Goslin 2015; 

Walsh and Anderson 2012). Additionally, the four passive studies reported somewhat earlier 

and smaller FRN peaks in both appetitive and aversive conditions, raising the possibility that 

the component observed was revealed by attenuation or removal of a larger, partially 

overlapping RPE encoder, present in active tasks due to its obligatory role in instrumental 

learning. A motivational salience encoder would fit this profile and, serving a general role in 

orientation and attention rather than instrumental learning, we would expect it to be 

present in both passive and active contexts.
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The interval occupied by the FRN lies from 240 to 340 ms post feedback according to 

a meta-analysis of fifty-five studies (Sambrook and Goslin 2015). If this interval is occupied 

by an RPE encoder, most strongly elicited in active tasks, but the earlier part of this interval 

is also occupied by a motivational salience encoder, equally active in both passive and active 

tasks, a specific set of effects on the waveform is predicted. During active tasks in the 

appetitive domain, RPE encoding and motivational salience effects should sum in the early 

portion of the interval, while in the aversive domain they will cancel. This should manifest in 

a greater latency for the FRN in the aversive domain than in the appetitive, with the true 

latency of the underlying neural generator assumed to lie in between. In passive tasks, 

where there is only one component, appetitive and aversive FRNs, now reflecting only 

motivational salience, should show the same latency, should be earlier than both active task 

FRNs and should be reversed for the aversive FRN. This is indeed the picture presented by a 

simple condition-wise averaging of waveforms in the six studies cited earlier, as shown in 

Figure 1. 

Because both the latency and amplitude of ERP components is subject to a host of 

incidental factors, peculiar to procedures that vary over experiments and laboratories, our 

aim in this study was to manipulate agency (i.e. active vs. passive) and domain (appetitive 

vs. aversive) within a single experiment to establish whether an active context instated a 

coding of motivational value in the FRN interval. 

Our primary aim was thus a resolution of motivational salience vs. value accounts by 

manipulation of agency. As a secondary aim, we wished to further characterise the active-

context FRN, or any other observed active-context motivational value signal in terms of its 

capacity to carry a continuous measure of RPE utility, in a fashion consistent with an 
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axiomatic RPE encoder (Caplin and Dean 2008) and with that frequently used in 

reinforcement learning algorithms (Sutton and Barto 1998).

Materials and Methods

Participants

Sixty-four students of the University of East Anglia participated for course credit and an 

opportunity to win money. All participants were under 29 years, had no history of 

neurological damage or other significant health problems, and were not on medication at 

the time of the experiment. Eight participants were excluded for excessive EEG artefacts 

(see EEG analysis section) and 11 for failure to meet the learning criterion: a significantly 

greater selection of the optimal key in active conditions under a Chi squared goodness of fit 

test (α = .05). This left a final sample of forty-five participants (31 female). The study was 

approved by the ethics committee of the School of Psychology at the University of East 

Anglia and the experiment was undertaken with the understanding and written consent of 

each participant.

Experimental Design

Three factors were orthogonally manipulated. Domain consisted in whether appetitive 

(money) or aversive (noise) outcomes were at stake, RPE sign consisted in +RPEs (money 

delivery, noise omission) vs. –RPEs (noise delivery, money omission) and agency consisted in 

active vs. passive role in the task. 

The FRN was operationalised by a difference wave of voltages for –RPE and +RPE 

outcomes, thereby reducing the design to a manipulation of domain and agency. RPE utility 
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encoding was expressed in terms of Pearson’s r, calculated by a correlation of voltage with 

RPE utility over trials. RPE utility, a signed value between -1 and +1, was derived from a 

computational model of participants’ choices (see below). This value was correlated, across 

trials, with the observed voltage at each electrode / sample to produce plots representing 

the strength of RPE utility encoding.

 Separate correlations were performed for +RPEs and –RPEs to avoid incorporating 

the effect of the FRN, that is, the dichotomous discrimination of a +RPE from a –RPE. Since 

RPE utility was inferred from participant choice, only active conditions were used in this 

analysis, producing a 2 x 2 design, comprised of domain and RPE sign. Interpretation of the 

results is based on both the significance and sign of r. If this is same-signed and significant 

for both +RPEs and –RPEs, a bivalent encoder of RPE utility is indicated, capable of ordering 

RPEs from much worse than expected to much better than expected on a single bivalent 

scale. If r is significant for either +RPEs or –RPEs, a univalent encoder is indicated, 

discriminating the utility for one sign of prediction error but not the other. If r is opposite-

signed and significant for both +RPEs and –RPEs, a (continuous) encoding of motivational 

salience is indicated. In all cases, domain should have no effect. 

Procedure

To standardise the aversiveness of white noise, participants were fitted with headphones, 

and listened to eleven 700 ms bursts of white noise of ascending volumes between 50dB 

and 70dB. On a second presentation, they rated the aversiveness of each of these on a 

visual analogue scale, and for the remainder of the experiment the volume used was that 

corresponding to the highest volume which the participant described as unpleasant but 

tolerable for the experiment.
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In the main experiment, participants undertook five consecutive blocks of sixty trials 

each in four conditions: active appetitive, active aversive, passive appetitive, passive 

aversive. Condition ordering was counterbalanced over participants. On each trial, 

participants observed the presentation of a simple geometric symbol that denoted, with 

100% accuracy, the delivery or omission of a reward or punishment. In aversive conditions 

this symbol was followed by either a 700 ms burst of noise or silence, in appetitive 

conditions by a 700 ms audio clip of a cash-till (indicating a £0.02 win each time this was 

incurred) or silence. All successful trials in the appetitive conditions incurred payment, 

following the recommendation of Schmidt, et al. (2019).

 In active conditions only, participants began each trial by choosing between two 

keys, one of which was predetermined to give the better symbol (i.e. denoting money 

delivery or noise omission) 60% of the time, while the other gave it 40% of the time. In 

passive blocks, the better symbol was presented 55% of the time, a figure selected in an 

attempt to produce comparable ratios of good to bad symbols in active vs. passive 

conditions, an outcome which was approximately achieved (53.3% in active). Figure 2 

depicts one trial.

Before the first block of each condition, participants were shown a pair of symbols 

and instructed which indicated delivery and which indicated omission of the reward or 

punishment at hand for that condition. The mapping of symbols to outcome or delivery 

remained constant over all five blocks, with separate pairs of symbols used for each 

condition in counterbalanced form. In active conditions, participants were told that one key 

would deliver the better symbol more often, that they could infer this key by trial and error 

and that it would be randomly reset at the start of each block. Participants were told to 
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attend to symbols in both active and passive conditions. In order to encourage attention to 

symbols, particularly in passive blocks, after 5% of trials, participants were required to 

indicate which symbol they had been shown and were fined £.10 for failing to correctly 

respond within 5s.

EEG recording

EEG data were collected from 61 Ag/AgCl active electrodes (actiCAP, Brain Products, 

Gilching, Germany) mounted on an elastic cap and arranged in a standard International 10–

20 montage referenced to the left mastoid. Vertical eye movement was monitored by a 

right suborbital electrode, and horizontal eye movement was monitored using an electrode 

on the right external canthus. Electrode impedances were kept below 20 kΩ. EEGs were 

amplified using a BrainAmp amplifier (Brain Products), continuously sampled at 1000 Hz.

EEG analysis

EEG data were down-sampled to 500 Hz, filtered with notch filters at 60 Hz and 50 Hz, 

followed by a .1 Hz high pass filter and 30 Hz low pass filter. Segments were time-locked to 

300 ms before the onset of the feedback symbol to 700 ms afterwards, and were baseline-

corrected using the interval -200 to 0 ms. Eye movement artefacts were removed using a 

criterion of a voltage change exceeding 75 μv per 200 ms in eye electrodes in the interval -

300 to 700 ms. Other non-specific artefacts in the interval -200 to 700 ms were removed 

using a criterion of any electrode showing either a voltage change exceeding 50 μv per ms, a 

voltage value exceeding 100 μv relative to baseline, or activity across the epoch below 12 

μv. Segments were re-referenced to the average of left and right mastoid activity and 

baselined once again. After exclusion of participants showing fewer than 30 trials in any of 
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the four conditions, 73.47% of trials were retained and the average number of trials per 

condition was: active appetitive, 95.86 (SD = 29.07); active aversive, 98.71 (SD = 25.76); 

passive appetitive, 93.77 (SD = 28.06); passive aversive, 93.61 (SD = 25.53). Electrodes which 

malfunctioned in the course of an experiment were substituted using topographic 

interpolation (Perrin, et al. 1989).

Statistical Analyses

Since the FRN’s latency was predicted to vary over conditions, and because components 

overlapping the FRN were of interest, a predetermined window of analysis was not used, 

and instead the full waveform was analysed. Control for multiple comparisons was achieved 

with the method of Maris and Oostenveld (2007), implemented in a custom script written in 

the proprietary code of Brain Vision Analyzer. One sample t-tests (test value = 0) were 

performed in each condition on subject average voltages at each sample of the waveform 

and, where these were significant, agglomerated over temporally or spatially adjacent 

samples to produce a cluster-t statistic. The significance of this was established by 

comparison to a distribution of cluster-t values under the null hypothesis obtained by 

switching data (subject average) and test value (zero) at each sample in the cluster with a 

50% probability. Twenty thousand iterations, performed on data down-sampled to 100 Hz 

were used. Significance was indicated by the proportion of this null distribution with values 

higher than the observed cluster-t value. To remove transient activity unlikely to reflect 

genuine components, only clusters covering a minimum of 25 samples were assessed, and 

clusters were discarded if their cluster-t value failed to meet an alpha threshold of 0.025, 

Bonferonni-corrected by the number of clusters found in the initial agglomeration process. 

Having thus identified clusters of activity, condition effects were established by performing 
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analysis of variance at the site where the FRN was maximal (Fz), on mean voltage over the 

interval determined as significant by cluster randomisation above. The same process was 

used to establish clusters of RPE utility encoding activity, with r rather than difference wave 

voltage serving as the test data.

Computational Modelling of RPE utility

While some studies of the FRN build a continuous measure of utility directly into their 

design (e.g. Pedroni, et al. 2011), the great majority present trials which, at the moment of 

feedback, provide one of a simple pair of categorical outcomes. This was true of the six key 

studies cited earlier, so retaining this design feature was paramount for a valid comparison. 

While simple dichotomous feedback cannot reveal information about the coding of 

prediction error size, it can reveal an encoding of RPE sign, which is sufficient to address the 

motivational salience vs. value debate, the primary aim of this experiment. The secondary 

aim of the experiment, identifying neural correlates of continuous RPE utility, did require a 

manipulation of RPE size, and this was addressed by incorporating a second step: the 

estimate of trial-by-trial RPEs based on a computational model of reinforcement learning. Q 

learning (Sutton and Barto 1998) was selected on the basis of its parsimony and wide usage. 

While this is one of a class of model-free learning algorithms with somewhat different 

assumptions, in a direct comparison of parameter estimates derived from three such 

models, Q learning, SARSA and Actor-Critic, Walsh and Anderson (2011) showed parameter 

estimates to be very similar over models, and consequently there to be no significant effect 

of which model was used on the amplitude of FRNs built from RPE estimates generated by 

the model. The purpose of fitting was not to best characterise participants’ learning but 
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simply to generate regressors for an analysis of RPE utility encoding that were unavailable 

from the dichotomous feedback design chosen.

In the model, participants choose one of two actions, a1 or a2, at the opening state s 

(the prompt to press a key) on each trial, t. The value of each action is denoted by Q. The 

value for Q is updated at the end of each trial based on the prediction error, δ, adjusted by 

the learning rate, α. 

Q(st, ai,t)new = Q(st, ai,t)+ α.δ

The prediction error is given by the difference of Q and r, the reward obtained

δt = rt - Q(st, ai,t)

Q could take values between 0 and 1 (initialised at 0.5), r could take values 0 or 1 and δ 

could take values between -1 and 1. The learning rate, α, was fitted on a participant-wise 

basis using maximum likelihood estimation from observed choices. This necessitated the 

incorporation of a choice rule. A standard softmax rule was used, incorporating the inverse 

temperature parameter β (also fitted) to derive the probability, P, of each action

P(ai,t) =  exp[β.Q(st, ai,t)] / Σa' exp[β.Q(st, ai,t)]

Each participant was fitted individually using the L-BFGS-B method (Byrd, et al. 1995) of the 

optim function in R (R Core Team, 2020). In order to increase the stability of the neural 
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regressors, and following Daw (2011), α and β were set as a constant over participants 

based on their fitted median, and the model was re-run to establish trial by trial RPEs. 

Fits were compared to those obtained from a model in which participants held a 

fixed preference for one of the two keys, modelled as a single free parameter, and a null 

model with no free parameters, in which participants chose randomly. Fitting code for Q 

learning  was based on that described in Sambrook, et al. (2018), documented in full as part 

of the of the catlearn package (Wills, et al, 2018) and is available at: 

https://github.com/thomasdsambrook/Q

Results

Behavioural results

In the active task, participants chose the correct key 68% of the time, with all participants 

showing a significant preference for this key under individual Chi squared goodness of fit 

tests against a conventional α = .05. At the group level, preference for the correct key was 

unaffected by domain (paired t(44) = .99, p = .33). Participants’ responsiveness to feedback 

was further established by the model fit being superior to that of the alternative models. 

Median raw log likelihoods with interquartile ranges were: Q learning -282.74 (-312.25 to -

253.85); fixed side preference -392.22 (-414.85 to -384.91); null -415.89 (no range). The fit 

remained superior after converting each model’s raw log likelihoods to a Bayesian 

Information Criterion in order to compensate for the two free parameters in the Q learning 

model (aggregate level Bayes Factors: Q learning vs. key preference 9,566, Q learning vs. 

null 10,173). On an individual basis, the Bayes Factor for the Q learning model was superior 

in all but four cases when compared to the fixed preference model, and in all cases when 
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compared to the null. The learning rate α was fitted with a median value of 0.50 and an 

interquartile range of 0.26 to 0.80, the inverse temperature β was fitted with a median 

value of 3.79 with an interquartile range of 2.41 to 5.95.

FRN 

Figure 3A shows simple waves for the eight conditions, all of which display the P2-N2-P3 

complex that is typical in the feedback-locked ERP. In Figure 3B, waveforms for bad and 

good outcomes are differenced to produce FRNs by condition. Monte Carlo cluster 

randomisation of the FRN revealed a significant frontocentral cluster of activity for the 

active appetitive condition between 210 and 270 ms (Monte Carlo p =. 001950), for the 

active aversive condition between 270 and 320 ms (Monte Carlo p = 0.00095) and the 

passive appetitive condition between 220 and 260 ms (Monte Carlo p = .00140). 

Importantly, and as predicted by our primary hypothesis, the FRN for the active aversive 

condition was negative going and same-signed as the active appetitive condition. 

Mean voltages at Fz in the Monte Carlo determined intervals of significance (and for 

passive aversive from 220 to 260 ms) were entered into a 2 x 2 domain x agency analysis of 

variance. This revealed no significant effect of domain, but an effect of agency (F = 4.66, p = 

.036, σ2= .096) and a significant interaction (F = 5.47, p = .024, σ2= .11). The effect of agency 

was present for the aversive domain (t(44) = 3.21, p = .003) but not appetitive (t(44) < 1). 

This is the expected pattern if an encoding of RPE sign, present only in active conditions, is 

removed in passive conditions to reveal a weaker motivational salience component, 

oppositely signed in the aversive domain but same-signed in the appetitive. The effect was 

not sufficiently strong to produce an FRN with a significant (i.e. one-sample t-test vs. 

baseline) reversed polarity in the passive aversive condition. Nevertheless, a simple effects 
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contrast of passive appetitive and passive aversive FRNs at Fz in the interval 220 and 260 ms 

revealed a significant difference (t(44) = 2.58, p = .013) as predicted by a motivational 

salience encoding.

RPE utility encoding 

Monte Carlo cluster randomisation of Pearson r values, derived from the correlation of RPE 

utility and voltage, revealed a single cluster of activity for each condition. Large, overlapping 

centroparietal clusters encoded appetitive +RPE utility (300–690 ms, peak P3, Monte Carlo p 

< .00005) and aversive +RPE utility (350–620 ms, peak P2, Monte Carlo p = 0.00018), with 

increasing RPE utility associated with voltage positivity. Smaller, spatiotemporally distinct 

clusters encoded appetitive –RPE utility (130–190 ms, peak FC1, Monte Carlo p = .00015, 

with decreasing RPE utility associated with positive voltage) and aversive –RPE utility (400–

510 ms, peak C1, Monte Carlo p = 0.0008, with decreasing utility associated with positive 

voltage). As such, no encoder of motivational salience, active in both domains could be 

shown, while an RPE utility encoder, restricted to +RPEs was indicated by the conjunction of 

the +RPE clusters, in an interval extending from 370–570 ms, maximal at P2.

Discussion

There has been ongoing debate as to whether activity in the FRN interval codes for 

motivational value or motivational salience. This study found that, in active conditions, the 

FRN was same-signed for both appetitive and aversive stimuli, suggesting the FRN encodes 

motivational value, in the form of a reward prediction error, during instrumental learning. 

Previous studies showing a reversal of FRN polarity in the aversive domain may have failed 
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to elicit this RPE encoder as a consequence of employing a passive design, and so revealed 

an earlier overlapping motivational salience encoder. Consistent with our hypotheses, the 

active aversive FRN was delayed, and the negativity of the passive aversive FRN was greater 

reduced than that of the passive appetitive FRN. Nevertheless, no significant reverse-signed 

passive aversive FRN was seen. This may be attributable to cancelling due to the presence of 

a weak RPE-encoding component elicited even in passive tasks, something that has been 

frequently observed in the literature (Walsh and Anderson 2012). This would act to cancel 

the motivational salience encoding in the aversive domain and augment it in the appetitive 

domain, the pattern observed in the data. Such an effect should of course be present in the 

four other passive designs featuring in Figure 1 and yet these studies do report aversive 

reverse-signed and significant FRNs. As such, this aspect of our account merits further 

investigation, possibly with designs manipulating the availability of prediction errors (e.g. 

using blocking), or task instructions asking participants to attend to either motivational 

salience or value (Gu, et al. 2020).

Overall, the common polarity of the active-context FRN over appetitive and aversive 

domains is supportive of the possibility of a single, instrumental learning signal that is blind 

to the actual value of the stimuli at hand (noise, money, etc). The FRN was spatially similar 

for the two domains and the latency differences were potentially attributable to component 

overlap as described earlier. Future studies applying source localisation will further assess 

the evidence for such a common encoding of RPEs over appetitive and aversive domains.

As a secondary aim, the study explored coding of continuous RPE utility. It found 

evidence that, in a later interval, RPE utility was coded in a continuous rather than simply 

dichotomous fashion, as shown by a positive correlation between +RPE size and voltage, 

regardless of domain, Notably, the size of +RPEs in the aversive domain was strongly 
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represented, despite this “outcome” constituting an omission. Since orientation and 

avoidance responses would be inappropriate to omitted events, a learning signal is strongly 

implicated. The presence of +RPE encoding but not –RPE encoding (also found in Sambrook 

and Goslin, 2016 for both monetary gains and losses) is notable, and echoes claims made 

elsewhere that feedback locked ERPs constitute a response to better than, rather than 

worse than, expected outcomes (Foti et al., 2011b, Holroyd et al., 2008, Proudfit, 2015, 

though see Gu et al., 2020 where –RPE utility is encoded). Notably, encoding of continuous 

RPE utility did not occur in the interval associated with the FRN however, suggesting the 

possibility of separate processes for categorical and continuous measures of prediction 

error, evidence for which has been presented elsewhere (Fouragnan, et al. 2015; 

Philiastides, et al. 2010).

This study was designed in order to assess the relative evidence for two competing 

hypotheses of activity in the FRN interval: whether this represents motivational value or 

motivational salience. While we argue that motivational value underlies the dominant 

response in active contexts, we would not claim that encoding in this interval is restricted 

simply to this property. Clearly, the existence of an overlapping motivational salience 

encoder is central to our interpretation of the data. A component responding to passive 

RPEs is also implicated by this study and such a component has prior plausibility. The 

learning of stimulus-outcome associations in passive contexts is adaptive for learning about 

environmental contingencies that may serve future action. Animals will approach stimuli 

that have previously undergone positive Pavlovian reinforcement, for example (Brown and 

Jenkins 1968). Representations of stimulus value would likely be maintained by RPEs just as 

would action values in an instrumental context, and this is suggested by single cell studies, 

many of which employ passive learning contexts (Niv and Schoenbaum 2008). Whether 
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scalp activity associated with active and passive RPEs is based on the same or different 

generators is yet to be resolved. The greater scalp amplitude following RPEs in active tasks 

may simply reflect general arousal effects (Yeung, et al. 2005). Alternatively, it may indicate 

the activation of distinct generators, differentially conducted through to the scalp. In 

Holroyd and Coles’ 2002 model, the FRN is generated specifically when an RPE coincides 

with activation of motor controllers in the anterior cingulate cortex, i.e. in active tasks. This 

model is supported by the observation that the FRN is largely eliminated when a delay 

between action and outcome is introduced (Weinberg, et al. 2012). If the FRN is dependent 

on such an eligibility trace, this would imply a highly modular signal in an actor-critic 

architecture assigned to learning action values only. fMRI studies have shown the dorsal 

striatum to activate specifically in active contexts, while the ventral striatum responds to 

both active and passive (Balleine, et al. 2007; O'Doherty, et al. 2004). While source analysis 

of the FRN has produced conflicting results, the dorsal striatum has been cited as a source of 

the FRN using joint EEG/fMRI (Carlson, et al. 2011) and PCA informed source localization 

(Foti et al., 2011b, Foti et al., 2011a, though see Cohen et al., 2011). If so, an alternative 

source or sources will need to be found for passive RPEs and this must await source 

localization applied specifically to passive tasks.

Another encoding claimed to lie in the feedback-locked waveform is unsigned 

prediction error (Hauser, et al. 2014). Sometimes referred to as “simple surprise”, this 

constitutes another form of salience that is distinct from motivational salience due to its 

having a V-shaped relationship with RPE utility within each domain, treating unexpected 

omissions and deliveries as equally salient. Gu, et al. (2020) were able to reverse the polarity 

of the FRN for monetary losses by task instructions that stressed predictive accuracy 

(unsigned prediction error), and then reinstate the normal polarity when instructing 
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participants to focus on reward (RPE). A further property that may be encoded is domain. 

While we have made the case for motivational value encoding in the FRN being at last 

partially domain-independent, a component coding for domain is likely, since the generation 

of adaptive behaviour requires that +RPEs in aversive environments not be confused as 

desirable events in any absolute sense (Boureau and Dayan 2011).

In short, even very ambitious multifactorial designs will struggle to unconfound all 

the computational terms present in feedback processing. The inevitability of component 

overlap compounds this problem when using the ERP method, and there are likely to be a 

host of non-learning processes involved with orientation and cognitive control that affect 

the latency and amplitude of observed ERP components, and which will be variably elicited 

across studies, depending on the stimuli and design employed. As stated earlier, there are 

strong grounds for supposing that both motivational value and salience are computed by 

the brain. It is largely an empirical question when and where these occur on the scalp, and 

our aim in the current study has not been to afford either a greater theoretical weight, but 

to resolve their contribution to the feedback-locked ERP waveform, and in particular, the 

FRN, a much-studied component. The present study shows that RPE sign, domain and actor 

agency are critical determinants of the FRN, and that when they are experimentally 

controlled, an encoding of motivational value is revealed.
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Figure Captions

Figure 1. Average FRNs from six studies manipulating domain x agency. Weighted averages 

are shown, based on experiments’ sample size. In designs manipulating RPE size as well as 

sign, the largest available RPE sizes were used. See Sambrook and Goslin (2015) for a 

description of the averaging technique.

Figure 2. One trial of the experiment. A) 1000 ms in passive condition or until keypress (max 

1000 ms) in active conditions B) 600–700 ms fixation C) 1000 ms truth cue D) 700 ms noise, 

cash-till sound or silence.

Figure 3. RPE encoding in the feedback-locked waveform. (A) shows simple waveforms by 

domain, agency and RPE sign. (B) shows FRNs (dashed lines) by domain and agency, 

obtained by differencing +RPE and –RPE simple waveforms in (A). Bold lines indicate 

significance under a t-test (see right hand axis) in intervals retained after cluster 

randomisation. (C) shows the correlation, r, of voltage and RPE utility (dashed lines), and 

significant intervals after cluster randomisation (bold lines). Scalp maps in (D) show the time 

course of the principal effects: FRNs in active conditions and RPE utility encoding for +RPEs.
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Figure 1. Average FRNs from six studies manipulating domain x agency. Weighted averages are shown, 
based on experiments’ sample size. In designs manipulating RPE size as well as sign, the largest available 

RPE sizes were used. See Sambrook and Goslin (2015) for a description of the averaging technique. 
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Figure 2. One trial of the experiment. A) 1000 ms in passive condition or until keypress (max 1000 ms) in 
active conditions B) 600–700 ms fixation C) 1000 ms truth cue D) 700 ms noise, cash-till sound or silence. 
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Figure 3. RPE encoding in the feedback-locked waveform. (A) shows simple waveforms by domain, agency 
and RPE sign. (B) shows FRNs (dashed lines) by domain and agency, obtained by differencing +RPE and –

RPE simple waveforms in (A). Bold lines indicate significance under a t-test (see right hand axis) in intervals 
retained after cluster randomisation. (C) shows the correlation, r, of voltage and RPE utility (dashed lines), 
and significant intervals after cluster randomisation (bold lines). Scalp maps in (D) show the time course of 

the principal effects: FRNs in active conditions and RPE utility encoding for +RPEs. 
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