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Summary

The conventional Q statistic, using estimated inverse-variance (IV) weights, under-
lies a variety of problems in random-effects meta-analysis. In previous work on
standardized mean difference and log-odds-ratio, we found superior performance
with an estimator of the overall effect whose weights use only group-level sample
sizes. The Q statistic with those weights has the form proposed by DerSimonian
and Kacker. The distribution of this Q and the Q with IV weights must generally
be approximated. We investigate approximations for those distributions, as a basis
for testing and estimating the between-study variance (�2). A simulation study, with
mean difference as the effect measure, provides a framework for assessing accu-
racy of the approximations, level and power of the tests, and bias in estimating �2.
Two examples illustrate estimation of �2 and the overall mean difference. Use of Q
with sample-size-based weights and its exact distribution (available for mean dif-
ference and evaluated by Farebrother’s algorithm) provides precise levels even for
very small and unbalanced sample sizes. The corresponding estimator of �2 is almost
unbiased for 10 or more small studies.This performance compares favorably with
the extremely liberal behavior of the standard tests of heterogeneity and the largely
biased estimators based on inverse-variance weights.
KEYWORDS:
inverse-variance weights, effective sample size weights, random effects, mean difference, exact distribu-
tion

1 INTRODUCTION

In meta-analysis, many shortcomings in assessing heterogeneity and estimating an overall effect arise from using weights based
on estimated variances without accounting for sampling variation. Our studies of methods for random-effects meta-analysis of
standardizedmean difference1 and log-odds-ratio2 included an estimator of the overall effect that combines the studies’ estimates
with weights based only on their groups’ sample sizes. That estimator, SSW, outperformed estimators that use (estimated)
inverse-variance-based (IV) weights. Those weights use estimates of the between-study variance (�2) derived from the popular
Q statistic discussed by Cochran3, which uses inverse-variance weights and which we refer to as QIV . Thus, parallel to SSW,
we investigate an alternative, QSW , in which the studies’ weights are their effective sample sizes. This QSW is an instance of
the generalized Q statistic QF introduced by DerSimonian and Kacker4, in which the weights are fixed positive constants.
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We consider the following random-effects model (REM): For Study i (i = 1,… , K), with sample size ni = niT + niC , the
estimate of the effect is �̂i ∼ G(�i, v2i ), where the effect-measure-specific distribution G has mean �i and variance v2i , and
�i ∼ N(�, �2). Thus, the �̂i are unbiased estimators of the true conditional effects �i, and the v2i = Var(�̂i|�i) are the true
conditional variances.
The general Q statistic is a weighted sum of squared deviations of the estimated effects �̂i from their weighted mean �̄w =

∑

wi�̂i∕
∑

wi:
Q =

∑

wi(�̂i − �̄w)2. (1)
In Cochran3 wi is the reciprocal of the estimated variance of �̂i, resulting inQIV . In meta-analysis thosewi come from the fixed-
effect model. In what follows, we discuss approximations to the distribution ofQF and estimation of �2 when thewi are arbitrary
positive constants. Because it is most tractable, but still instructive, we focus on a single measure of effect, the mean difference
(MD). In this favorable situation, the cumulative distribution function ofQF can be evaluated by the algorithm of Farebrother5.
We also consider approximations that match the first two or the first three moments of QF . In simulations and examples, we
concentrate on QSW . For comparison we also include some of the popular inverse-variance-based methods of estimating �2,
approximating the distribution of QIV , and testing for the presence of heterogeneity. A simulation study provides a framework
for assessing accuracy of the approximations, level and power of the tests based on QSW and QIV , and bias in estimating �2.

2 EXPECTED VALUE OF QF AND ESTIMATION OF �2

DefineW =
∑

wi, qi = wi∕W , and Θi = �̂i − �. In this notation, and expanding �̄w, Equation (1) can be written as

Q = W

[

∑

qi(1 − qi)Θ2i −
∑

i≠j
qiqjΘiΘj

]

. (2)

Under the above REM, and assuming that the wi are arbitrary fixed constants, it is straightforward to obtain the first moment of
QF as

E(QF ) = W
∑

qi(1 − qi)Var(Θi) = W
∑

qi(1 − qi)(E(v2i ) + �2). (3)
This expression is similar to Equation (4) in DerSimonian andKacker4. Rearranging the terms gives themoment-based estimator
of �2

�̂2M = max(QF∕W −
∑

qi(1 − qi)Ê(v2i )
∑

qi(1 − qi)
, 0

)

. (4)
This equation is similar to Equation (6) inDerSimonian and Kacker4; they use the within-study (i.e., conditional) estimate s2iinstead of Ê(v2i ), an important distinction because v2i is a random variable whose distribution depends on that of �i.

3 APPROXIMATIONS TO THE DISTRIBUTION OF QF

For approximations to the distribution ofQF , we draw on results for quadratic forms, which generalize the sums of squares that
arise in analysis of variance. The Q statistic, Equation (2), can be expressed as a quadratic form in the random variables Θi.
Appendix A.1 gives the details and discusses approaches for evaluating and approximating distributions of quadratic forms in
normal variables. Conveniently, the variablesΘi for the mean difference (MD) are normal.
Two approaches are most suitable, especially for obtaining upper-tail probabilities, P (QF > x). One matches moments of

QF , either the first two or the first three moments; Appendix A.2 gives the details. The other uses an algorithm developed by
Farebrother5.

4 SIMULATION STUDY FOR MEAN DIFFERENCE

For MD as the effect measure, we use simulation of the distribution of Q with constant effective-sample-size weights (SW)
ñi = niCniT ∕(niC + niT ) to study three approximations: the Farebrother approximation (F SW), implemented in the R package
CompQuadForm6; the two-moment Welch-Satterthwaite approximation (M2 SW); and the three-moment chi-square approxi-
mation (M3 SW) by Solomon and Stephens7. Details of these two moment-based approximations are given in Appendix A.2.
We also study the bias of the moment estimator �̂2M in Equation (4), denoted by SDL, for this choice of constant weights.
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For comparison, we also simulate Q with IV weights, and study three approximations to its distribution: the standard chi-
square approximation, the approximation based on the Welch test to the null distribution of Q+IV , and the “exact" distribution
of Biggerstaff and Jackson8 (BJ) when �2 > 0. To compare the bias of SDL with that of estimators of �2 that use the IV weights,
we also consider DerSimonian and Laird9 (DL), Mandel and Paule10 (MP), REML, and a corrected DL estimator1 (CDL),
which uses an improved non-null first moment of QIV . Table 1 lists abbreviations for all methods used in our simulations.
We varied five parameters: the number of studies K , the total (average) sample size of each study n (or n̄), the proportion of

observations in the Control arm f , the between-study variance �2, and the within-study variance �2T (keeping �2C = 1). We set
the overall true MD � = 0 because the estimators of �2 do not involve � and the estimators of � are equivariant.
We generate the within-study sample variances s2ij (j = T , C) from chi-square distributions �2ij�2nij−1∕(nij − 1) and the

estimated mean differences yi from a normal distribution with mean 0 and variance �2iT ∕niT + �2iC∕niC + �2. We obtain the
estimated within-study variances as v̂2i = s2iT ∕niT + s2iC∕niC . As would be required in practice, all approximations use these v̂2i ,even though the �2iT ∕niT + �2iC∕niC are available in the simulation.
All simulations use the same numbers of studies K = 5, 10, 30 and, for each combination of parameters, the same vector

of total sample sizes n = (n1,… , nK ) and the same proportions of observations in the Control arm fi = .5, .75 for all i. The
sample sizes in the Treatment and Control arms are niT = ⌈(1 − fi)ni⌉ and niC = ni − niT , i = 1,… , K . The values of f reflect
two situations for the two arms of each study: approximately equal (1:1) and quite unbalanced (1:3).
We study equal and unequal study sizes. For equal study sizes ni is as small as 20, and for unequal study sizes average sample

size n̄ is as small as 13 (individual ni are as small as 4), in order to examine how the methods perform for the extremely small
sample sizes that arise in some areas of application. In choosing unequal study sizes, we follow a suggestion of Sánchez-Meca
and Marín-Martínez11. Table 2 gives the details.

TABLE 1 Abbreviations

Weights IV Inverse-variance weights wi = 1∕v2iF arbitrary constant weights
SSW effective sample size weights n̄ = nCnT ∕n

Approximations F SW Farebrother approximation
to distribution M2 SW two-moment approximation
of QSW M3 SW three-moment approximation
and QIV BJ Bigggerstaff and Jackson 8
Estimators DL DerSimonian-Laird 9
of �2 CDL Corrected DerSimonian-Laird 1

SDL new moment estimator based on QSWREML restricted maximum-likelihood estimator
MP Mandel-Paule 10

TABLE 2 Data patterns in the simulations

Parameter Equal study sizes Unequal study sizes
K (number of studies) 5, 10, 30 5, 10, 30
n or n̄ (average size of individual study 20, 40, 100, 250 13 (4, 6, 7, 8, 40),
— total of the two arms) 15 (6, 8, 9, 10, 42),
For K = 10 and K = 30, the same set 30 (12, 16, 18, 20, 84),
of unequal study sizes is used twice or 60 (24, 32, 36, 40, 168)
six times, respectively.
f (proportion in the control arm) 1/2, 3/4 1/2, 3/4
� 0 0
�2C , �

2
T (within-study variances) (1,1), (1,2) (1,1), (1,2)

�2 (variance of random effects) 0(0.1)1 0(0.1)1
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We use a total of 10,000 replications for each combination of parameters. Thus, the simulation standard error for an empirical
p-value p̂ under the null is roughly √

1∕(12 ∗ 10, 000) = 0.0029. The simulations were programmed in R version 3.6.2 using
the University of East Anglia 140-computer-node High Performance Computing (HPC) Cluster, providing a total of 2560 CPU
cores, including parallel processing and large memory resources. For each configuration, we divided the 10,000 replications
into 10 parallel sets of 1000.

5 RESULTS

For each configuration of parameters in the simulation study and for each approximation, we calculated, for each generated
value ofQ, the probability of a largerQ: p̃ = 1− F̂ (Q) (F̂ denotes the distribution function of the approximation). We recorded
empirical p-values p̂ = #(p̃ < p)∕10000 at p = .001, .0025, .005, .01, .025, .05, .1, .25, .5 and the complementary values .75, . . . ,
.999. The values of �2 included both null (�2 = 0) and non-null (�2 > 0) values (Table 2). The approximations to the non-null
distribution ofQwere based on the value of �2 used in the simulation. These data provide the basis for P–P plots (versus the true
null distribution) for three approximations to the distribution of Q with effective-sample-size weights (F SW, M2 SW, and M3
SW) and two approximations to the distribution of Q with IV weights (chi-square/BJ and Welch) and for estimating their null
levels, non-null empirical tail areas, and (roughly) their power. We also estimate the bias of five point estimators of �2 (SDL,
DL, REML, MP, and CDL). In the Figures 1-5, we tried to present configurations that illustrate the differences in methods very
clearly. The full results are presented, graphically, in Appendix B of Kulinskaya et al.12.
In some instancesM3 SW produced anomalous results or no results at all (because numerical problems kept us from obtaining

estimates of its parameters).

5.1 P–P plots
To compare an approximation for a distribution function ofQ against the theoretical distribution function, with no heterogeneity
(�2 = 0), we use probability–probability (P–P) plots13. Evaluating two distribution functions, F1 and F2, at x yields p1 = F1(x)
and p2 = F2(x). One varies x, either continuously or at selected values, and plots the points (p1(x), p2(x)) to produce the usual
P–P plot of F2 versus F1. If F2 = F1, the points lie on the line from (0, 0) to (1, 1). If smaller x are more likely under F2, the
points will lie above the line, and conversely. (Working with upper tail areas reverses these interpretations.) If F2 is similar to
F1, the points will lie close to the line, and departures will show areas of difference. To make these more visible, we flatten the
plot by subtracting the line; that is, we plot p2 − p1 versus p1.
The simulations offer a shortcut that does not require evaluating the true distribution function ofQ (which is unknown for IV

weights). If F is the distribution of the random variable X, F (X) has the uniform distribution on [0, 1], and so does 1 − F (X).
Thus, for the values of p listed above, we plot p̂ − p versus p.
Our P–P plots (illustrated by Figure 1) show no differences between the M3 and M2 approximations for Q with constant

weights. Very minor differences between the Farebrother and the moment approximations are visible, mainly at very small
sample sizes. Other comparisons show three distinct patterns.
The chi-square approximation has strikingly higher empirical tail areas than the true distribution of Q with IV weights over

the whole domain. This pattern is especially noticeable for K = 30 and small unequal sample sizes, though it persists for equal
sample sizes as large as 100. It indicates that the approximating chi-square distribution produces values that are systematically
too large,
The Welch test provides a much better fit that is especially good for balanced sample sizes, equal variances, and small K .

When sample sizes are small and vary among studies or are unbalanced between arms, however, its fit is worse. It produces
values ofQ that are systematically too small whenK = 5; produces more small values and, to a lesser extent, more large values
when K = 10; and produces more large values and, to a lesser extent, more small values when K = 30.
The three approximations toQ with constant weights provide reasonably good fits, which appear to be similar to the fit of the

Welch test to Q with IV weights.
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5.2 Empirical levels when �2 = 0
To better visualize the quality of the approximations as the basis for a test for heterogeneity at the .05 level, we plot their empirical
levels under the null �2 = 0 versus sample size. Figure 2 presents typical results for a range of sample sizes at the .05 level.
For equal variances, the empirical levels depend on the sample size. The chi-square test is very liberal up to n = 100, especially

for unbalanced arms, and the problem becomes worse as K increases. The Welch test is considerably better than the chi-square
test, but is still noticeably liberal when the arms are unbalanced. Tests based on Q with constant weights are generally less
liberal, though they may have level up to .07 for n = 20, for unbalanced arms and small K . The M3 approximation breaks
down and results in very liberal levels for unequal sample sizes and unbalanced arms and large K . The Farebrother and M2
approximations perform better for larger K , and overall are the best choice. They also hold the level well at smaller nominal
levels. The Welch test is rather unstable for very low levels such as � = .001 (which corresponds, in our simulations, to just 10
occurrences in 10,000 replications), but improves from � = .005.

5.3 Empirical levels when �2 > 0
To understand how the approximations behave as �2 increases, we plot the empirical p-values (p̂) vs �2 for the nominal levels
.05 and .01 (Figure 3). For unequal sample sizes, the Farebrother and the 3-moment approximations differ slightly at the .01
level, but those differences disappear at the .05 level and for equal sample sizes. When K = 30, M3 sometimes fails; and when
it does not, it breaks down for small and large values of �2. The 2-moment approximation is almost indistinguishable from the
Farebrother approximation.
Overall, the Farebrother approximation performs superbly across all �2 values. This is as it should be, as it is practically an

exact distribution in the case of MD. The M2 approximation is reasonably good at the .05 level. The BJ approximation is much
too liberal, especially at smaller values of �2 and for larger K . It is considerably more liberal for very small sample sizes such
as n̄ = 13; but it improves when sample sizes increase, and it is reasonable by n = 100 or n̄ = 60.
For larger values of n and n̄ (not shown in Figure 3), the traces approach � as n or n̄ increases (they are farther away from �

when n̄ < 30).

5.4 Power of tests for heterogeneity
“Power" is a reasonable term as a heading, but not as an accurate description for most of the results. Although discussions of
simulation results in meta-analysis do not always do this, comparisons of power among tests that are intended to have a specified
level (i.e., rate of Type I error) are not valid unless the tests’ estimated levels are equal or nearly so. This complication is evident
in Figure 4, which depicts the power of tests of heterogeneity at the .05 level for n = 20 and equal and unequal sample sizes.
The chi-square test appears to be more powerful, and the Welch test slightly less powerful, than the tests based on Q with

constant weights. These differences are much smaller when n = 40 (not shown) and disappear when n is larger. But even for
n = 20, these appearances are misleading. For n = 20, Figure 2 shows that for balanced arms, the level of the chi-square test is
.08 for K = 5, .1 for K = 10, and considerably higher than .1 for K = 30. For unbalanced arms, the level of the chi-square test
substantially exceeds .1 for allK . This behavior is a consequence of using an incorrect null distribution. Thus, our results do not
show that the chi-square test has higher power, and its power may actually be lower. It is not clear how to modify the chi-square
test so that it has the correct level in a broad range of situations.
The Welch test has levels similar to those of the tests based on Q with constant weights when K = 5 or 10. But for K = 30

and f = .75, its level is approximately .09. This may mean that it does have somewhat lower power.
When n = 40, the traces rise more steeply, and when n̄ < 30, they spread out and rise less steeply. When n ≥ 100 (or n̄ ≥ 60

for unequal sample sizes), visible differences among the traces for the tests disappear. Given higher levels of the chi-square test,
this means that its power is the same or even lower than that of the tests based on Q with constant weights.

5.5 Bias in estimation of �2

Here we compare the SDL estimator of �2 with the well-known estimators DL, MP, and REML and the recently suggested CDL.
Figure 5 depicts the biases of the five estimators for small sample sizes.
All five estimators have positive bias at �2 = 0, because of truncation at zero. The bias across all values of �2 is quite

substantial, and it increases for unequal variances and/or sample sizes. Among the standard estimators, DL has the most bias
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and MP the least. SDL and CDL generally have similar bias, considerably less than the standard estimators. The relation of
their bias to K when n̄ = 13 is interesting, but atypical. As K increases, the trace for SDL flattens toward 0, demonstrating no
bias at all for larger values of �2, whereas the trace for CDL rises toward the other three. The traces flatten and approach 0 as n̄
increases to 15 and 30. When n ≥ 100 or n̄ ≥ 60, the differences among the five estimators of �2 are quite small.

6 EXAMPLES

6.1 Exercise training in people with heart failure
The systematic review of Rees et al.14 studied results of short-term trials of exercise training in peoplewithmild tomoderate heart
failure. Exercise capacity was assessed by the maximal oxygen uptake, VO2max; an increase from baseline to follow-up indicates
improvement with exercise. However, for the pooled analysis, the authors reversed the sign of the mean change in VO2max for
both the intervention and control groups, so the beneficial effect is negative. We consider the results from Comparison 2.1.7, for
the K = 15 studies with mean age above 55 years. Figure 6 shows the data and forest plot. The sample sizes in these trials are
rather small, varying from 7 to 48 per arm; the average sample size is 18.4 in the treatment arm and 17.6 in the control arm. The
trials are mostly balanced, with only one trial having a 2:1 allocation ratio, and they have similar variances in the two arms.
The review used a DL-based analysis and found significant heterogeneity (p = .03), I2 = 45.73%, �̂2 = 0.79, and a significant

effect of exercise, with a mean difference in VO2max of −1.77 (−2.50, −1.03).
Table 3 brings together meta-analyses of these data by seven methods. When testing heterogeneity, the standard chi-square

test gives p-value .027, and the Welch test gives .030, indicating significant heterogeneity. These differ substantially from the p-
values for QSW with constant weights, where all three approximations give .43 or .44. This agrees with our simulation results,
illustrating how liberal the standard heterogeneity tests can be in the case of small sample sizes and medium to large K .
Comparing the estimated �2 values, the DL method provides an estimate of 0.791. CDL is very similar at 0.783, the REML

estimate is lower at 0.652, and the MP estimate is considerably lower at 0.255. Unsurprisingly, the SDL estimate is very close
to zero, at 0.009. Because the standard estimators are all positively biased in this setting, we consider the SDL estimate to be
the closest to the true value of �2.
These differences in the estimated heterogeneity variance have no substantial impact on the estimated overall effect of exer-

cise on VO2max. Table 3 includes IV estimates of Δ with 95% confidence intervals. Because of IV weighting, the smaller �2
values result in stronger effects of exercise. SDL results in the most pronounced effect, −2.14 (−2.20, −1.68). However, we do
not recommend IV weights for pooling effects, and instead advocate effective-sample-size-based methods1. These weights are
denoted by SSW in Table 3, and the corresponding confidence intervals are based on tK−1 critical values. Ironically, for these
data the result, −1.78 (−2.37, −1.18), is very close to the original estimate reported in Rees et al.14.
The differences between SDL and other estimators of �2 are rather striking. However, they have a simple explanation. The

largest study, by Bellardinelli et al. (1999), the first on the forest plot in Figure 6, is a low outlier with Δ̂1 = −3.20, and its
inverse-variance weight, when �2 = 0, is 39.3%. This study is the major contributor to the high value of QIV = 25.79 and the
only reason for the seemingly high heterogeneity. The SSW weight of this study is less than half as large, at 17.5%, and the test
based on QSW does not find heterogeneity in the data. Setting this study aside decreases theQIV statistic to 7.41 on 14 d.f.; the
p-values for all Q tests are very similar, at .88 for all IV tests and at .87 for the tests based on QF ; and all estimators of �2 agree
on �̂2 = 0.

6.2 Drugs for prevention of exercise-induced asthma
The systematic review of Spooner et al.15 compared several types of drugs for prevention of exercise-induced asthma attacks in
asthma sufferers. We consider Comparison 6.2.2, which compared inhaling a single dose of mast cell stabilizer (MCS) prior to
strenuous exercise with a single dose of short-acting beta-agonists (SABA). The measure of effect was the maximum percentage
decrease in pulmonary function (PFT). This meta-analysis pooled results from seven high-quality clinical trials involving a total
of 187 patients. Figure 7 shows the data and forest plot. The sample sizes in these perfectly balanced trials vary from 8 to 20 per
arm; the average sample size is 13.4 in each arm; the variances mostly differ in the two arms, but without any clear pattern. The
review used a DL-based analysis and found that heterogeneity was not significant, �̂2DL = 0.65 and I2 = 2.14%, and that SABAprovided significantly lower PFT, Δ̂ = 6.32 (2.47,10.18).
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Method �̂2 Δ̂ Lower Upper
SDL SSW t 0.0088 −1.7761 −2.3703 −1.1820
SDL IV 0.0088 −2.1404 −2.6024 −1.6785
DL IV 0.7907 −1.7656 −2.4968 −1.0345
REML IV 0.6524 −1.7784 −2.4779 −1.0790
MP IV 0.2554 −1.8696 −2.4550 −1.2842
CDL SSW t 0.7826 −1.7761 −2.6039 −0.9484
CDL IV 0.7826 −1.7663 −2.4957 −1.0369

TABLE 3Meta-analyses of the Rees (2004) data on exercise-related changes in VO2max in people with mild to moderate heart
failure.

Method �̂2 Δ̂ Lower Upper
SDL SSW t 0.0000 9.3002 3.1817 15.4187
SDL IV 0.0000 6.1874 2.4232 9.9516
DL IV 0.6684 6.3223 2.4673 10.1774
REML IV 9.8200 7.3904 2.6364 12.1444
MP IV 0.3386 6.2574 2.4464 10.0684
CDL SSW t 0.6576 9.3002 3.1332 15.4672
CDL IV 0.6576 6.3203 2.4666 10.1740

TABLE 4 Meta-analyses of the Spooner et al. (2003) data on drugs for prevention of exercise-induced asthma attacks.

Table 4 shows the results of meta-analyses of these data by seven methods. Heterogeneity is not significant by any method:
the p-values are .409 for the chi-square and Welch tests and .799 to .812 for all three approximations to the distribution ofQSW .
However, the estimated values of �2 vary widely: 0 for SDL, 0.34 for MP, 0.66 and 0.67 for CDL and DL, and 9.82 for REML.
These results agree with the positive biases in estimation of �2 at zero in our simulation results, though the result for REML is
quite aberrant. Its value is not so extreme, at 5.72, but the maximum-likelihood estimator of �2 behaves similarly. The presence
of a study with a noticeably lower Δ̂i whose estimated variance is substantially lower strains the assumption thatΔi ∼ N(Δ, �2).
These differences in the estimated values of �2 are reflected in the width of confidence intervals for the pooled effect, but even

more so, in thewidth of prediction intervals16. As SDL is zero, the prediction interval is not different from the confidence interval,
MP IV has a 95% prediction interval of (1.04, 11.47), DL IV a somewhat wider prediction interval of (0.85, 11.80), and REML
IV a much wider interval of (−2.80, 17.58). Thus, REML IV analysis does not find SABA drugs to be more beneficial than
MCS. This conclusion does not change if REML IV is used in combination with the Harting-Knapp-Sidik-Johnson variance17,18,
as recommended in Partlett and Riley19, resulting in a slightly tighter prediction interval of (−2.09, 16.87).
In the forest plot (Figure 7), the study by Vazquez 1984 has a considerably lower mean than the other studies; and, because

of its lower variance, its weight varies from 33.3% in the REML IV analysis to 45.5% in the DL IV analysis, in comparison to
13% in SSW. As a result, all the IV-weighted methods yield substantially lower estimates of the pooled effect (6.19 to 7.39) than
SSW (9.30). Once more, for these data, the sample-size-based weights provide more robust and more sensible inference than
the IV-weighted methods.

7 DISCUSSION

As away of avoiding the shortcomings associated with the customaryQ, which uses inverse-variance weights based on estimated
variances, we are involved in studying a version ofQ in which the weights are fixed constants. Such weights simplify derivation
of higher moments of Q and facilitate approximation of its distribution.
In a simulation study we compared the properties of the test for heterogeneity for MD based on aQ statistic that uses constant

sample-size-based weights,QSW , with its IV-weights-based counterparts. FromQSW we also derived an estimator (SDL) of the
heterogeneity variance �2; the simulation yielded estimates of its bias and comparisons with the bias of several other estimators.
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A large number of small studies is the worst-case scenario for the statistical properties of meta-analysis1. This situation may
not be very widespread in medical meta-analyses, but it is very common in the social sciences and in ecology20,21. Thus, our
simulations included additional small sample sizes.
Overall, the proposed test for heterogeneity for MD, combined with its exact distribution as obtained by the Farebrother

algorithm5 or, alternatively, with the two-moment approximation, provides very precise control of the significance level, even
when sample sizes are small and unbalanced, in contrast to the extremely liberal behavior of the standard tests, especially for a
large number of studies. (These results suggest that the null distribution of QIV is more difficult to approximate than the null
distribution of QF .) Similarly, the proposed SDL estimator is almost unbiased for K ≥ 10, even in the case of extremely small
sample sizes, and we recommend its exclusive use in practice.
Further, because it uses an incorrect null distribution for QIV , the chi-square test generally has level much greater than .05,

so our simulations could give only substantially inflated estimates of its power. An important conclusion of our work is that the
power of the popularQ test is even lower than generally believed. As another consequence of the incorrect null distribution, we
avoid I2 and related measures of heterogeneity.
Our meta-analyses of the data from Rees et al.14 demonstrated just how liberal the standard tests for heterogeneity are. How-

ever, the substantial differences among the estimates of �2 produced only modest differences among the estimates and confidence
intervals for the overall effect. On the other hand, the example illustrated how easily a single discrepant study could distort the
IV-weighted estimates of �2.
In a second example none of the methods found significant heterogeneity. The SDL estimate was �̂2 = 0, whereas the IV-

weighted methods produced substantial positive estimates, consistent with the biases that we found in our simulations. In this
instance the SSW estimate of the overall effect was noticeably higher than the IV-weighted estimates.
It is enlightening to observe that, for the non-null distribution of QIV , the approximation of Biggerstaff and Jackson8 (using

Farebrother’s algorithm) is no better than the standard chi-square approximation to the null distribution. The problem here
evidently lies with the IV weights.
We found that, even though bothmoment approximations performedwell overall, the three-moment approximation sometimes

fails, and it breaks down in the case of very small and unbalanced sample sizes and a large number of studies. Therefore, for
MD we recommend the Farebrother5 approximation to the distribution of Q with constant weights.
In further work we intend to develop tests for heterogeneity in other effect measures based on Q with constant weights. Even

though we derived general expressions for moments ofQ, application of these expressions to such effect measures as SMD and
the log-odds-ratio involves a lot of tedious algebra. The moment approximations are less precise than the exact distribution or
the approximation by Farebrother5 for the case of normal variables in the quadratic form, but they are much faster and may be
a better option when the distribution is only asymptotically normal.

HIGHLIGHTS

What is already known?
• The conventionalQ statistic in meta-analysis underlies the usual test for heterogeneity, but that test produces p-values that

are too high for small to medium sample sizes.
• The use of inverse-variance weights based on estimated variances makes it very difficult to approximate the distribution

of Q, which varies depending on an effect measure.
• Related moment-based estimators of the heterogeneity variance (�2), such as the DerSimonian-Laird estimator, have

considerable bias.
What is new?
• We introduce a new Q statistic with constant weights based on studies’ effective sample sizes. Its null distribution is

calculated exactly by the Farebrother algorithm; alternatively, a two-moment approximation can be used. Both provide
very precise control of the significance level, even when sample sizes are small and unbalanced.

• The new Q statistic yields a new estimator of the heterogeneity variance. This estimator, SDL, is almost unbiased for 10
or more studies, even with extremely small sample sizes.
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Potential impact for RSM readers outside the authors’ field
• The usual chi-square test of heterogeneity generally has level much greater than .05, and its power is even lower than

generally believed, because it uses an incorrect null distribution for Q.
• Our new Q statistic, with constant weights, results in a very precise test, and the related new estimate of �2 is almost

unbiased. We recommend its exclusive use in practice.
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FIGURE 1 P–P plots of the Farebrother, M2, and M3 approximations to the distribution of Q with sample-size-based weights,
and of the chi-square andWelch approximations to the distribution ofQwith IV-based weights. First row: unequal sample sizes,
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2
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FIGURE 2 Empirical levels of approximations to the distribution of Q with IV or sample-size-based weights at nominal .05
level vs sample size n. In all plots, �2 = 0 and �2C = �2T = 1. Top two rows: equal sample sizes, f = .5 and f = .75. Bottom two
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FIGURE 3 Empirical p-values of approximations to the distribution of Q with IV or sample-size-based weights at the nominal
.01 and .05 levels vs between-study variance �2. In all plots, �2C = 1 and �2T = 2. Top two rows: equal sample sizes n = 20,
f = .5 and f = .75. Bottom two rows: unequal sample sizes, f = .5 and f = .75. First and third rows: .01. Second and fourth
rows: .05.
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FIGURE 4 Power of tests of heterogeneity at .05 level for equal (n = 20) and unequal (n̄ = 30) sample sizes. In all plots,
�2C = �2T = 1. Top two rows: equal sample sizes, f = .5 and f = .75. Bottom two rows: unequal sample sizes, f = .5 and
f = .75.



16 Kulinskaya ET AL

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

n = 13 , K = 5 , f = 0.5 , σT
2 = 1

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

n = 13 , K = 10 , f = 0.5 , σT
2 = 1

SDL
DL
REML
MP
CDL

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

n = 13 , K = 30 , f = 0.5 , σT
2 = 1

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
08

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

n = 20 , K = 5 , f = 0.5 , σT
2 = 1

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
08

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

n = 20 , K = 10 , f = 0.5 , σT
2 = 1

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
08

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

n = 20 , K = 30 , f = 0.5 , σT
2 = 1

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
07

−
0.

04
−

0.
01

0.
02

0.
05

0.
08

0.
11

0.
14

0.
17

0.
20

n = 20 , K = 5 , f = 0.75 , σT
2 = 2

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
07

−
0.

04
−

0.
01

0.
02

0.
05

0.
08

0.
11

0.
14

0.
17

0.
20

n = 20 , K = 10 , f = 0.75 , σT
2 = 2

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
07

−
0.

04
−

0.
01

0.
02

0.
05

0.
08

0.
11

0.
14

0.
17

0.
20

n = 20 , K = 30 , f = 0.75 , σT
2 = 2

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
07

−
0.

04
−

0.
01

0.
02

0.
05

0.
08

0.
11

0.
14

0.
17

0.
20

n = 40 , K = 5 , f = 0.75 , σT
2 = 2

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
07

−
0.

04
−

0.
01

0.
02

0.
05

0.
08

0.
11

0.
14

0.
17

0.
20

n = 40 , K = 10 , f = 0.75 , σT
2 = 2

τ2

B
ia

s 
of

 τ
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

10
−

0.
07

−
0.

04
−

0.
01

0.
02

0.
05

0.
08

0.
11

0.
14

0.
17

0.
20

n = 40 , K = 30 , f = 0.75 , σT
2 = 2

FIGURE 5 Bias in estimation of between-study variance �2 by five methods: SDL, DL, REML, MP, and CDL. First row:
unequal sample sizes, n̄ = 13, �2C = �2T = 1, f = .5; second and subsequent rows: equal sample sizes, �2C = 1. Second row:
n = 20, �2T = 1, f = .5; third row: n = 20, �2T = 1, f = .75; fourth row: n = 40, �2T = 2, f = .75. (The scale on the vertical
axis varies among the rows.)
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FIGURE 6 Data and forest plot for Rees (2004) meta-analysis on exercise-related changes in VO2max

FIGURE 7 Data and forest plot for Spooner et al.(2003) meta-analysis on drugs for prevention of exercise-induced asthma
attacks
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Appendix
This appendix assembles the more-technical information related to evaluating and approximating the distribution of Q.

Section A.1 discusses approaches, in the broader context of quadratic forms in normal random variables. Section A.2 explains
the form of the two-moment and three-moment approximations. Then Section A.3 presents derivations for the variance and third
moment ofQ. The resulting expressions involve the first six unconditional moments ofΘi. Section A.4 develops those moments
for a general effect measure, and Section A.5 applies and simplifies them for the mean difference.

A.1 APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL
VARIABLES

TheQ statistic, Equation (2), is a quadratic form in the random variablesΘi. We can writeQ = ΘTAΘ for a symmetric matrixA
of rankK−1with the elements aij = qi�ij−qiqj , 1 ≤ i, j ≤ K , where �ij is theKronecker delta. In this sectionwe assume constant
weights unless stated otherwise. Unconditionally, the Θi are centered at 0, but they are not, in general, normally distributed.
However, for large sample sizes ni, their distributions are approximately normal. Normality holds exactly for the mean difference
(MD). In this case the exact distribution of the quadratic form is that of a weighted sum of central chi-square variables. but the
cumulative distribution function of Q needs to be evaluated numerically. Therefore, we consider suitable approximations.
Quadratic forms in normal variables have an extensive literature. When the vector Θ has the multivariate normal distribution

N(�,Σ), the exact distribution of Q is ∑m
r=1 �r�

2
ℎr
(�2r ), where the �r are the eigenvalues of AΣ, the ℎr are their multiplicities,

and the �2r are the non-centrality parameters for the independent chi-square variables �2ℎr(�2r ) with ℎr degrees of freedom. (The
�r are linear combinations of �1,… , �K . )
Interest typically centers on the upper-tail probabilities P (Q > x). Moment-based approximations match a particular distri-

bution, often a gamma distribution or, equivalently, a scaled chi-square distribution, to several moments of Q. These methods
include the well-known Welch-Satterthwaite approximation, which uses c�2p and matches the first two moments22,23. Imhof24
investigated an approximation to the distribution of a quadratic form in noncentral normal variables by matching a central chi-
square distribution to threemoments (including the skewness). The approximation has the formQ ∼ (�2ℎ′−ℎ

′)(2ℎ′)−
1
2
√Var(Q)+

E(Q). Pearson25 first suggested this approach to approximate a noncentral chi-square distribution. Liu et al.26 proposed a four-
moment noncentral chi-square approximation. To approximate the probability that a standardized Q exceeds t∗, they use the
probability that a standardized noncentral chi-square exceeds t∗, equating the skewness of the two distributions and matching
the kurtosis as closely as possible.
Yuan and Bentler27 studied, by simulation, the Type I errors of a Q test with the critical values based on the Welch-

Satterthwaite approximation. They concluded that this approximation is satisfactory when the eigenvalues do not have too large
a coefficient of variation, preferably less than 1. For larger CV, the Type I errors may be larger than nominal.
For the general case of a noncentral quadratic form, the distribution ofQ can be approximated by the distribution of cU r, where

the distribution of U can depend on one or two parameters. The choice of c, r, and the parameters of U then permits matching
the necessary moments. Solomon and Stephens7 consider three moment-based approximations: a four-moment approximation
by a Type III Pearson curve and two three-moment approximations, one with U ∼ N(�, �2) and the other with U ∼ �2p .They recommend the latter as fitting better in the lower tail, partly because it necessarily starts at zero, whereas the other
approximations do not. This approximation matches the constants c, r, and p to the first three moments of Q. For c(�2p )r themoments about 0 are �′k = ck2krΓ(kr + p∕2)∕Γ(p∕2).Other, more-complicated methods include relying on numerical inversion of the characteristic function24; this can be made
very accurate, with bounds on accuracy. The algorithm of Sheil and O’Muircheartaigh28, improved by Farebrother5, represents
the value of the c.d.f. for a noncentral quadratic form by an infinite sum of central chi-square probabilities. Kuonen29 proposes a
saddlepoint approximation, and Zghoul30 and Ha and Provost31 consider approximations by Hermite and Laguerre polynomials.
The first two methods are nearly exact and perform better than Pearson’s three-moment approximation by a central chi-square
distribution or, in the noncentral case, the four-moment approximation by a Type III Pearson curve24,6. Bodenham and Adams32
and Chen and Lumley33 discuss the behavior of various approximations when K is large.
We are aware of only one paper34 on the asymptotic (K → ∞) distribution of quadratic forms in non-normal iid random

variables with finite sixth moment. This distribution can be approximated by that of a second-order polynomial in normal
variables.
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In meta-analysis, approximations to the distribution ofQ have usually been sought only for theQIV version with non-constant
inverse-variance weights. Typically, the chi-square distribution with K − 1 degrees of freedom is used indiscriminately as the
null distribution of QIV . For MD, Kulinskaya et al.35 introduced an improved two-moment approximation to this version of Q
based on the Welch36 test in the heteroscedastic ANOVA. The distribution of this Welch test for MD is approximated under
the null by a rescaled F distribution, and under alternatives by a shifted chi-square distribution. Kulinskaya and coauthors also
explored improved moment-based approximations for some other effect measures37,38,39, using two-moment approximations
with a scaled chi-square distribution to the null distribution ofQIV . Biggerstaff and Jackson8 used the Farebrother approximation
to the distribution of a quadratic form in normal variables as the “exact" distribution ofQIV . This is not correct when the weights
are the reciprocals of estimated variances, but with constant weights it is correct for MD. When �2 = 0, the Biggerstaff and
Jackson approximation to the distribution of QIV is the �2K−1 distribution.

A.2 TWO- AND THREE-MOMENT APPROXIMATIONS TO THE DISTRIBUTION OF Q

The two- and three-moment approximations to the distribution of Q use the distribution of a transformed chi-square random
variable c(�2p )r. The parameters c, r, and p are found by matching the first two or three moments.
The kth moment about zero for c(�2p )r is

�′k =
ck2krΓ(kr + p∕2)

Γ(p∕2)
.

A.2.1 Two-moment approximation
The two-moment approximation by23 and22 sets r = 1, so Q ∼ c(�2p ). Matching the first moment �′1 to E(Q), we obtain

2cΓ(1 + p∕2)
Γ(p∕2)

= E[Q].

Since Γ(n + 1) = nΓ(n), the above equation reduces to
cp = E[Q]. (A.1)

For the second moment �′2,
4c2Γ(2 + p∕2)

Γ(p∕2)
= E[Q2],

which reduces to
c2p(p + 2) = E[Q2]. (A.2)

Solving for c in equation (A.1) and substituting the result into (A.2) yield

c = E[Q]∕p, p = 2
[

E[Q2]
E[Q]2

− 1
]−1

.

A.2.2 Three-moment approximation
For the three-moment approximations we have Q ∼ c(�2p )

r. Similar to the two-moment case, we set k = 1, 2, 3 to obtain the
following system of equations

(�′1) ∶
2rcΓ(r + p∕2)

Γ(p∕2)
= E[Q];

(�′2) ∶
22rc2Γ(2r + p∕2)

Γ(p∕2)
= E[Q2];

(�′3) ∶
23rc3Γ(3r + p∕2)

Γ(p∕2)
= E[Q3].

Dividing �′2 by �′1, we obtain the following expression for c:

c =
E[Q2]Γ(r + p∕2)
2rE[Q]Γ(2r + p∕2)

.
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To eliminate c, define A = �′2∕(�′1)2 and B = �′3∕(�′1)3. Then we have the following two nonlinear equations:

A =
Γ(2r + p∕2)Γ(p∕2)

Γ2(r + p∕2)
, B =

Γ(3r + p∕2)Γ2(p∕2)
Γ3(r + p∕2)

.

We solve this system for p and r by using the function ‘multiroot’ in the R package rootSolve40 with the starting values r = 1
and c and p from the two-moment approximation.

A.3 VARIANCE AND THIRD MOMENT OF Q

For approximations based on the first two or three moments, we need the second and the third moments of Q under the REM
introduced in Section 1.
We distinguish between the conditional distribution ofQ (given the �i) and the unconditional distribution, and the respective

moments of Θi. For instance, the conditional second moment of Θi is M c
2i = v2i , and the unconditional second moment is

M2i = E(Θ2i ) = Var(�̂i) = E(v2i ) + �2. Similarly,M4i = E(Θ4i ) is the fourth (unconditional) central moment of �̂i. These two
moments are required to calculate the variance of Q, given by

W −2Var(Q) =∑

i
q2i (1 − qi)

2(M4i −M2
2i) + 2

∑

i≠j
q2i q

2
jM2iM2j . (A.3)

Section A.3.1 gives the details. When the weights are not related to the effect, these expressions for the mean and variance ofQ
are the same as in Kulinskaya et al.37.
For (known) inverse-variance weights wi = v−2i , and assuming that each �̂i is normally distributed and �2 = 0, so that

M2i = v2i andM4i = 3v4i , the first moment ofQ isK−1, and the variance is 2(K−1), as it should be for a chi-square distribution
with K − 1 degrees of freedom.
In general, the unconditional momentsM2i andM4i depend on the effect measure (through its second and fourth conditional

moments) and on the REM that defines the unconditional moments. Section A.4 gives the details.
In the null distribution �2 = 0, and the unconditional moments of Q coincide with its conditional moments.
The derivation for the unconditional third moment of Q

W −3E(Q3) = E{[∑ qi(1 − qi)Θ2i −
∑∑

i≠j
qiqjΘiΘj]3}

parallels that for the second moment, starting from Equation (2). Section A.3.2 gives the details of the derivation.
Importantly,M3i = E(Θ3i ) andM6i = E(Θ6i ), the third and the sixth unconditional central moments of �̂i, are required for this

calculation, in addition to the second and the fourth central moments used in calculating the second moment of Q.
Unconditional central moments of �̂i are linear combinations of expected values of conditional moments, their cross-products,

and powers of �2. SectionA.4 provides the requisite expressions for the first six unconditional central moments for a general effect
measure. Calculations of unconditional moments are much simpler for the mean difference (MD), as we show in Section A.5.

A.3.1 Calculation of the second moment of Q
The second moment of Q (timesW −2) is

W −2E(Q2) = E
[

∑

qi(1 − qi)Θ2i
]2

−2E
(

[

∑

qk(1 − qk)Θ2k
]

[

∑

i≠j
qiqjΘiΘj

])

+E
[

∑

i≠j
qiqjΘiΘj

]2

= A − 2B + C.
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The first term,

A = E
(

∑

i,j
qi(1 − qi)qj(1 − qj)Θ2iΘ

2
j

)

= E
(

∑

i
q2i (1 − qi)

2Θ4i

)

+ E
(

∑

i≠j
qi(1 − qi)qj(1 − qj)Θ2iΘ

2
j

)

=
∑

i
q2i (1 − qi)

2(M4i −M2
2i) +

[

∑

qi(1 − qi)M2i

]2
,

whereM2i = E(Θ2i ) = Var(Θi) = E(v2i ) + �2 is the variance, andM4i = E(Θ4i ) is the fourth central moment of �̂i.
The second term, B = 0 because its terms E(Θ2kΘiΘj), with i ≠ j, always include a first-order moment of Θi for some i.
In the third term, C = E[∑i≠j

∑

k≠l qiqjqkqlΘiΘjΘkΘl], the only nonzero terms have i = k and j = l or i = l and j = k, so
C = 2

∑

i≠j q2i q
2
jM2iM2j .

To obtainW −2 times the variance ofQ, we subtract the square of its mean, given by Equation (3), which is exactly the second
term of A:

W −2Var(Q) =∑

i
q2i (1 − qi)

2(M4i −M2
2i) + 2

∑

i≠j
q2i q

2
jM2iM2j .

A.3.2 Calculation of the third moment of Q
For the derivation of the third moment of Q, we record selected steps. We have

W −3E(Q3) = E{[∑ qi(1 − qi)Θ2i −
∑∑

i≠j
qiqjΘiΘj]3}

= E{[∑ qi(1 − qi)Θ2i ]
3}

−3E{[∑ qi(1 − qi)Θ2i ]
2[
∑∑

i≠j
qiqjΘiΘj]}

+3E{[∑ qi(1 − qi)Θ2i ][
∑∑

i≠j
qiqjΘiΘj]2}

−E{[∑∑

i≠j
qiqjΘiΘj]3}

= A − 3B + 3C −D

The terms A, B, C , and D are obtained below.
A = E[∑i

∑

j
∑

k qi(1 − qi)qj(1 − qj)qk(1 − qk)Θ2iΘ
2
jΘ

2
k]

=
∑

q3i (1 − qi)
3M6i

+3
∑∑

i≠j q2i (1 − qi)
2qj(1 − qj)M4iM2j

+
∑∑∑

i≠j≠k qi(1 − qi)qj(1 − qj)qk(1 − qk)M2iM2jM2k
=
∑

q3i (1 − qi)
3M6i

+3{[
∑

i q2i (1 − qi)
2M4i][

∑

j qj(1 − qj)M2j] −
∑

q3i (1 − qi)
3M4iM2i}

+{[
∑

i qi(1 − qi)M2i]3 − 3[
∑

i q2i (1 − qi)
2M2

2i][
∑

j qj(1 − qj)M2j] + 2
∑

i q
3
i (1 − qi)

3M3
2i}

=
∑

q3i (1 − qi)
3[M6i − 3M4iM2i + 2M3

2i]
+3[

∑

j qj(1 − qj)M2j][
∑

i q2i (1 − qi)
2(M4i −M2

2i]
+[
∑

i qi(1 − qi)M2i]3
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B = E{[∑
i

∑

j
qi(1 − qi)qj(1 − qj)Θ2iΘ

2
j ][

∑∑

i≠j
qiqjΘiΘj]}

= E{[∑
i
q2i (1 − qi)

2Θ4i +
∑∑

i≠j
qi(1 − qi)qj(1 − qj)Θ2iΘ

2
j ][

∑∑

i≠j
qiqjΘiΘj]}

= E{2∑∑

i≠j
q3i (1 − qi)

2qjΘ5iΘj +
∑∑∑

i≠j≠k
q2i (1 − qi)

2qjqkΘ4iΘjΘk

+
∑∑

i≠j

∑∑

l≠k
qi(1 − qi)qj(1 − qj)qkqlΘ2iΘ

2
jΘkΘl}

= 2
∑∑

i≠j
q3i (1 − qi)

2qjE(Θ5i )E(Θj) +
∑∑∑

i≠j≠k
q2i (1 − qi)

2qjqkE(Θ4i )E(Θj)E(Θk)

+
∑∑

i≠j

∑∑

l≠k
qi(1 − qi)qj(1 − qj)qkqlE(Θ2iΘ2jΘkΘl)

The first two summations are zero because E(Θj) = 0. In the third summation, however, some terms have (for example) i = k
and j = l, yielding E(Θ3i )E(Θ3j ). It is straightforward, but somewhat tedious, to identify those terms, The result is

B = 2
∑∑

i≠j
q2i (1 − qi)q

2
j (1 − qj)M3iM3j

.
C = E{[∑

i
qi(1 − qi)Θ2i ][

∑∑

k≠j

∑∑

m≠l
qjqkqlqmΘjΘkΘlΘm]}

=
∑

i

∑∑

k≠j

∑∑

m≠l
qi(1 − qi)qjqkqlqmE(Θ2iΘjΘkΘlΘm)

As in B, this summation contains some terms that do not vanish. Identifying those yields
C = 4

∑∑

i≠j
q3i (1 − qi)q

2
jM4iM2j

+2
∑∑∑

i≠j≠k
qi(1 − qi)q2j q

2
kM2iM2jM2k

D = E[∑∑

i≠j

∑∑

k≠l

∑∑

m≠n
qiqjqkqlqmqnΘiΘjΘkΘlΘmΘn]

As above, removing the terms that vanish leaves
D = 4

∑∑

i≠j
q3i q

3
jM3iM3j

+8
∑∑∑

i≠j≠k
q2i q

2
j q
2
kM2iM2jM2k.

Finally, assembling the four parts (with some simplification) yields
W −3E(Q3) =

∑

i q
3
i (1 − qi)

3(M6i − 3M4iM2i + 2M3
2i)

+3[
∑

j qj(1 − qj)M2j][
∑

i q2i (1 − qi)
2(M4i −M2

2i)]
+[
∑

i qi(1 − qi)M2i]3

−6
∑∑

i≠j q2i (1 − qi)q
2
j (1 − qj)M3iM3j

+12
∑∑

i≠j q
3
i (1 − qi)q

2
jM4iM2j

+6
∑∑∑

i≠j≠k qi(1 − qi)q2j q
2
kM2iM2jM2k

−4
∑∑

i≠j q
3
i q
3
jM3iM3j

−8
∑∑∑

i≠j≠k q2i q
2
j q
2
kM2iM2jM2k.
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A.4 UNCONDITIONAL MOMENTS OF Θ

The unconditional moments of Θi for �i ∼ N(�, �2) are given by

Mri = E[(�̂i − �)r] =
r
∑

j=0

(

r
j

)

E[(�̂i − �i)j(�i − �)r−j] =
r
∑

j=0

(

r
j

)

E[M c
ji(�i − �)

r−j], (A.4)

for conditional central momentsM c
ji = E[(�̂i − �i)j|�i] withM c

0i = 1 andM c
2i = v

2
i . For unbiased estimators �̂i,

M1i =M c
1i = 0,

M2i = E(v2i ) + �2,
M3i = E(M c

3i) + 3E(v2i (�i − �)),
M4i = E(M c

4i) + 4E(M c
3i(�i − �)) + 6E(v2i (�i − �)2) + 3�4,

M5i = E(M c
5i) + 5E(M c

4i(�i − �)) + 10E(M c
3i(�i − �)

2) + 10E(v2i (�i − �)3),
M6i = E(M c

6i) + 6E(M c
5i(�i − �)) + 15E(M c

4i(�i − �)
2) + 20E(M c

3i(�i − �)
3) + 15E(v2i (�i − �)4) + 15�6.

A.5 UNCONDITIONAL CENTRAL MOMENTS OF �̂ FOR MEAN DIFFERENCE

Assume that each of K studies consists of two groups whose data are normally distributed with sample sizes niC and niT and
means �iC and �iT = �iC +Δi, and possibly different variances �2iC and �2iT . Then the mean difference Δi in Study i is estimated
by

Δ̂i = X̄iT − X̄iC , (A.5)
and its (conditional) variance v2i = �2iT ∕niT +�2iC∕niC . The conditional distribution of Δ̂i isN(Δi, v2i ), so its odd central moments
are zero, and its even moments areM c

i,2r = [(2r)!∕(2
rr!)]v2ri . As the conditional moments do not involve Δi, it is easy to write

out the unconditional moments:
M2i = v2i + �

2,
M4i = 3v4i + 6v

2
i �
2 + 3�4,

M6i = 15v6i + 15 ∗ 3v
4
i �
2 + 15v2i ∗ 3�

4 + 15�6. The first three moments of Q can be calculated by substituting these moments
into Equations (3), (A.3), and the expression for the third moment.
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