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Abstract

We investigate systems of equations and the first-order theory of one-relator monoids.
We describe a family F of one-relator monoids of the form xA | w “ 1y where for each
monoid M in F , the longstanding open problem of decidability of word equations with
length constraints reduces to the Diophantine problem (i.e. decidability of systems of
equations) inM . We achieve this result by finding an interpretation inM of a free monoid,
using only systems of equations together with length relations. It follows that each monoid
in F has undecidable positive AE-theory, hence in particular it has undecidable first-order
theory. The family F includes many one-relator monoids with torsion xA | wn “ 1y
(n ą 1). In contrast, all one-relator groups with torsion are hyperbolic, and all hyperbolic
groups are known to have decidable Diophantine problem. We further describe a different
class of one-relator monoids with decidable Diophantine problem.

1 Introduction
Two important longstanding open algorithmic problems in algebra are the decidability of the
conjugacy problem for one-relator groups, and of the word problem for one-relator monoids.
Each of these problems is a special case of the much more general and open question of whether
the Diophantine problem (decidability of systems of equations) is decidable in one-relator
groups, or in one-relator monoids. A positive answer to any of these would give a positive
resolution to one (or both) of the open questions about the word and conjugacy problems
mentioned above. On the other hand, if the Diophantine problem turns out to be undecidable
for one-relator monoids or one-relator groups, then this would give a natural undecidable
decision problem for these classes, which could lead to further undecidability results for these
classes that would then have the potential to shed new light on fundamental questions like
the word and conjugacy problems.
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The Diophantine problem for one-relator groups has recently received attention in the
literature, with positive results obtained for solvable Baumslag-Solitar groups BSp1, nq “
xa, b | a´1ba “ bny (n P Z); see [38] (in the same paper the authors also solve the problem for
wreath products of the form A o Z, where A is a finitely generated abelian group). The aim
of this paper is to initiate the study of Diophantine problems (and related model-theoretic
questions) for one-relator monoids. We shall obtain both positive and negative (undecidability)
results, and will also establish a close connection between these problems and the problem
of solving word equations with length constraints, which is a longstanding open problem in
computer science.

Our main result describes a family of one-relator monoids F such that for any M P F it
is possible to reduce decidability of word equations with length constraints —a longstanding
open problem in computer science— to the Diophantine problem in M . We further prove
decidability of the Diophantine problem for a certain class of one-relator monoids. As a
corollary we obtain undecidability of the positive AE-theory (hence of the first-order theory)
of any one-relator monoid belonging to F . To the best of our knowledge, this provides the
first examples of one-relator monoids with undecidable positive AE-theory (with coefficients),
excluding the free monoid. Other examples of one-relator monoids with undecidable first-order
theory with coefficients can be found in [37, Theorem 1].

Equations in monoids and groups have been widely studied during the past decades, being
of interest in several areas, ranging from computer science to group and model theory. For a
detailed account of the history, motivation and key results in this area we refer the reader
to the survey articles [21, 35, 40, 61]. By the Diophantine problem we mean the algorithmic
problem of determining if any given system of equations has a solution or not. Two classical
results due to Makanin show that the Diophantine problem is decidable in any free monoid
[47] and in any free group [48]. Based on Makanin’s algorithm, Razborov [58] provided a
powerful description of the sets of solutions to systems of equations in free groups via what
were later called Makanin-Razaborov diagrams. This played a key part in the solution to the
Tarski problems [39, 63] regarding groups elementary equivalent to a free group.

In subsequent years new decidability algorithms and descriptions of solutions have appeared:
in [56] Plandowski describes a polynomial space algorithm for deciding word equations based
on a compression technique. In [33] Jeż shows that word equations can be solved in non-
deterministic linear space, and in [15] it is proved that the solution set of a word equation
is an EDT0L language (in particular, it is an indexed language), furthermore this set can
be computed in polynomial space [22]. More recently, in [65] Sela presents the first in a
sequence of papers devoted to investigating the structure of sets of solutions to systems of
equations over a free semigroup via a Makanin—Razborov diagram analogue. Diophantine
problems have been extensively considered also in different classes of groups and monoids, see
e.g. [14, 19, 20, 22, 23, 28, 43, 43, 62]. For us the most relevant result in this direction is the
decidability of the Diophantine problem in hyperbolic groups [16, 60].

A variation relevant to the present paper is the problem of word equations with length
constraints (in short, WELCs). This consist of a (system of) word equation(s) together with
finitely many linear inequalities involving the length of solutions (see Subsection 2.1 for a
formal definition). The problem of determining whether WELCs are decidable has been
open for decades now and is of major interest in computer science. Some partial cases and
variations have been successfully studied in [13, 17, 26, 42]. As hinted at in [17], extending
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word equations with constraints that involve some type of length relation or letter-counting
seems to always lead to undecidability. Indeed, many problems closely related to WELCs are
undecidable, as shown in some of the previous references.

WELCs are of interest in industry where they are applied for program verification, code
debugging, security analysis, document spanning, etc. A WELC is a particular instance
of a so-called Satisfibility Modulo Theory (SMT) problem, which, roughly speaking, is a
satisfiability problem for a first order sentence that combines different types of formulas from
different languages (such as the language of monoids, which allows to write word equations,
and the language of Presburger arithmetic, which allows to write linear integer equations
and inequalities). In practice, such problems are usually tackled by so-called SMT solvers,
which are programs that rely on different heuristics for solving certain types of SMT problems
(different SMT solvers support different possible languages and fragments of a theory). Usually,
SMT solvers are desgined to be fast and usable in real life, which in turn means that often
they are not complete i.e. it is not guaranteed that the solver will be able to correctly solve
a given input. We refer to [8, 18] for further information on general SMT solvers and their
applications. There exists a variety of fast SMT solvers which can handle in particular word
equations with rational constraints and length constraints [1, 6, 7, 10, 25, 66, 68] (we stress
again that these programs are not complete, i.e. they cannot successfully solve any input
problem).

A further point of interest is that WELCs are reducible to the problem of solving systems
of integer-coefficient polynomial equations in Z [52]. Thus a proof of undecidability of WELCs
would provide a new solution to Hilbert’s 10th Problem, which states that equations in the
ring Z are undecidable [51].

We would like to emphasize how the Diophantine problem generalizes and contains many
well-known and studied algorithmic problems. Notably, and as already mentioned, both the
word problem and the conjugacy problem are particular cases of the Diophantine problem
(see [3, 4, 53, 54, 55, 69, 70] for definitions and results regarding the conjugacy problem in
monoids). Moreover, the left and right divisibility problems in monoids, as well as decidability
of Green’s orders ďR and ďL are particular instances of the Diophantine problem. Thus
proving that the latter is decidable in some specific group or monoid implies that any of
the previously mentioned problems are decidable. Conversely, undecidability of any of the
mentioned problems implies undecidability of the Diophantine problem. In a similar vein,
systems of equations are particular instances of positive AE-formulas, which in turn are
first-order formulas. Hence similar considerations hold for the problem of decidability of the
positive AE-theory, or of the first-order theory, of a monoid or group.

There are several natural classes of one-relator monoids for which the word problem has
been shown to be decidable. Specifically, Adjan [2] showed that all one-relator monoids defined
by presentations of the form xA | w “ 1y have decidable word problem. Monoid presentations
where all of the relations are of the form w “ 1 are commonly called special presentations.
Adjan solved the word problem for special one-relator monoids by showing that the group of
units of such a monoid is a one-relator group, and then reducing the word problem of such a
monoid to the word problem of its group of units. Then decidability of the word problem for
the special one-relator monoid follows from Magnus’s theorem. Similarly, in [69] Zhang proves
that the conjugacy problem is decidable in the monoid xA | w “ 1y provided it is decidable in
the group of units of the monoid. Other results where an algorithmic problem in a monoid is
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reduced to the group of units can be found in [46, 70]. These results immediately suggest the
following question: Can the Diophantine problem of a special one-relator monoid be reduced
to the Diophantine problem in its group of units? Notice that by Proposition 3.32, a positive
answer to this question would imply that the Diophantine problem is decidable in all special
one-relator monoids with torsion. Note that it follows from the main result of [41] that a
one-relator monoid of the form xA | u “ 1y has torsion (that is, has a non-identity element of
finite order) if and only if u “ wk for some k ě 2. Moreover, as we will prove in this paper, a
positive answer to this question would imply decidability of WELCs (see Corollary C).

A modern approach to finite special monoid presentations using techniques from the theory
of string rewriting systems is given by Zhang in [70]. Zhang’s methods will play an important
role in the results we prove in this paper for special one-relator monoids.

We shall now explain the main results of the paper in more detail. Before doing so, we
first need to give some background notions.

Given any one-relator monoid presentation of the form xA | r “ 1y, defining a monoid
M , there is a unique decomposition of the word r ” r1r2 . . . rk such that each ri belongs to
A` “ A˚zt1u, each of the words ri represents an invertible element of M , and no proper
non-empty prefix of ri is invertible, for all 1 ď i ď k. The words ri p1 ď i ď kq in this
decomposition are called the minimal invertible pieces of r. Adjan [2] gives an algorithm for
computing this decomposition for any one-relator special monoid. Minimal invertible pieces
are a key concept for relating a special monoid with its group of units. The key idea used in
Adjan’s algorithm for computing the minimal invertible pieces is the following fact:

(:) If α, β, γ P A˚ are words such that αβ and βγ both represent invertible elements of the
monoid M then all of the words α, β and γ also represent invertible elements of M .

This is because αβ being invertible implies β is left invertible, while βγ being invertible
implies β is right invertible, hence β is invertible, from which it then quickly also follows that
α and γ are also invertible. We say that the words αβ and βγ overlap in the word β. Adjan’s
algorithm begins with the defining relator word r from the presentation xA | r “ 1y which
clearly represents an invertible element of M (since r “ 1 in M) and first considers overlaps
that r has with itself. If there are overlaps then applying (:) this gives rise to new shorter
words that we know are invertible, and then the process is repeated with these words and
is iterated until no further overlaps are discovered. We refer the reader to [41, Section 1]
for a detailed description of the this overlap algorithm. We will not need full details of the
algorithm here, but we will use the key fact (:) above about overlaps when giving examples
to which our main results apply. Let us illustrate this now with an example.

Example 1.1. Let M be the one-relator monoid xa, b | abcdcdabab “ 1y. Since ab is both
a prefix and a suffix of the defining relator word abcdcdabab, applying the fact (:) above
about overlaps with αβ ” abcdcdabab ” βγ where β ” ab it it follows that the words β ” ab,
γ ” cdcdabab, and α ” abcdcdab are all invertible. Then overlapping the invertible word ab
with the invertible word abcdcdab it follows from (:) that cdcdab and abcdcd are both invertible.
Then overlapping the invertible words cdcdab and abcdcd we deduce that cd is invertible. This
shows that this monoid presentation can be written as xa, b | pabqpcdqpcdqpabqpabq “ 1y where
the parentheses indicate a decomposition of the defining relator into invertible pieces ab and cd.
Moreover, since ab and cd do not overlap with themselves, or each other, the Adjan algorithm
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will not compute any smaller invertible pieces and hence this is the decomposition of the
relator into minimal invertible pieces. In particular tab, cdu is the set of minimal invertible
pieces of the relator in this example.

For all the concrete examples of one-relator monoids that we give in this paper, the
decomposition of the defining relator into minimal invertible pieces can be computed by
repeated application of (:) in exactly the same manner as in Example 1.1. In each case, we
shall refer to this as the decomposition into minimal invertible pieces computed by the Adjan
overlap algorithm.

Given a set S and a tuple of nonnegative integers ~λ “ pλs | s P Sq, by | ¨ |~λ we denote the
~λ-weighted word-length in S˚ defined as

|w|~λ “def
ÿ

sPS

λs|w|s, pw P S˚q,

where |w|s denotes the number of occurrences of the letter s in w. By L~λ we denote the
~λ-length relation defined as L~λpw, uq if and only if |w|~λ ď |u|~λ. Note that if λs “ 1 for all
s P S then | ¨ |~λ and L~λ are just the standard word length and the standard length relation,
which we denote simply as | ¨ | and L, respectively. Hence Lpu, vq holds if and only if |u| ď |v|,
for any two words u, v P S˚. The tuple pS˚, ¨, 1,“, L~λq refers to the free monoid S˚ equipped
with the relation L~λ. This is the natural structure on which to write systems of word equations
with (~λ-weighted) length constraints. See Subsection 2.1 for further details.

The main tool we use for reducing one problem to another is that of interpretability by
systems of equations or by positive existential formulas (Definition 2.3). This is nothing more
than the usual notion of interpretability [31, 50] restricting all formulas to be systems of
equations or disjunctions of systems of equations, respectively.

Among other results, in this paper we prove the following.
Theorem A (Theorems 3.23 and 3.26). Let M be the one-relator monoid xA | r “ 1y. Write
r ” r1r2 . . . rk such that ri P A` for all i “ 1, . . . , k, each of the words ri represents an
invertible element of M , and no proper non-empty prefix of ri is invertible, for all 1 ď i ď k.
Set ∆ “ tri | 1 ď i ď ku, so ∆ is the set of minimal invertible pieces of the relator r. Suppose
that:
(C1) no word from ∆ is a proper subword of any other word from ∆, and

(C2) there exist distinct words γ, δ P ∆ with a common first letter a.
Then there exists a free monoid D of finite rank n ě 2 and a tuple of positive integer
weights ~λ “ pλ1, . . . , λnq such that the free monoid with weighted length relation pS, ¨, 1, L~λq is
interpretable in M by systems of equations. Consequently, the problem of solving systems of
word equations with weighted length constraints is reducible to the problem of solving systems
of equations in M .

If additionally to (C1) and (C2) we have:
(C3) no word in ∆ starts with a2,
then the above result holds with L~λ being the standard length relation L, i.e. Lpu, vq if and only
if |u| ď |v|, for u, v P D. Consequently, in this case, the problem of solving systems of word
equations with length constraints is reducible to the problem of solving systems of equations in
M .
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Example 1.2. We now give several examples to which Theorem A applies. For each of these
examples the decomposition into minimal invertible pieces can be computed using Adjan
overlap algorithm in the same way as in Example 1.1.

Some examples of monoids satisfying conditions (C1), (C2) and (C3) are xa, b, c |
pabqpacqpabq “ 1y and xa, b, c | ppabqpacqpabqqn “ 1y for n ě 1, where we indicate the minimal
invertible pieces with parentheses. In all these examples the set of minimal invertible pieces
is ∆ “ tab, acu. Indeed, considering overlaps of the defining relator word ppabqpacqpabqqn
with itself implies that pabqpacqpabq is invertible, and then overlapping this word with itself
we deduce that ab and ac are both invertible. Since this pair of words do not overlap with
themselves, or each other, it follows that these are the minimal invertible pieces. This set of
words ∆ “ tab, acu clearly satisfies conditions (C1), (C2) and (C3).

In the two-generated case we have examples satisfying all of (C1), (C2) and (C3) such
as xa, b | pababbqpabaabbqpababbq “ 1y and xa, b | ppabanbn`1qpaban`1bn`1qpabanbn`1qqm “ 1y,
for all n,m ě 1, where again we identify the decomposition into minimal invertible pieces
using parentheses. For this second family of examples, by overlapping the relator word with
itself we deduce that pabanbn`1qpaban`1bn`1qpabanbn`1q is invertible and hence overlapping
this word with itself we deduce that each of abanbn`1 and aban`1bn`1 is an invertible word.
Since this pair of words do not overlap with themselves or with each other, it follows that the
set of minimal invertible pieces for this example is ∆ “ tabanbn`1, aban`1bn`1u. It is then
straightforward to verify that this set of words satisfies conditions (C1), (C2) and (C3).

Dropping (C3) there are simpler two-generated examples which satisfy both (C1) and (C2)
e.g. xa, b | ppaabqpabbqpaabqqn “ 1y (n ě 1) with set of minimal invertible pieces taab, abbu.
As seen in these examples, the family of one-relator monoids satisfying conditions (C1), (C2),
and (C3) includes many one-relator monoids with torsion xA | wn “ 1y, n ą 1, which by
Proposition 3.32 have hyperbolic group of units and hyperbolic undirected Cayley graph.
We stress again that one-relator groups with torsion are hyperbolic and thus have decidable
Diophantine problem [16, 60].

In another direction we prove the following result, which can be used to obtain many
examples of special one-relator monoids with decidable Diophantine problem, as described in
Section 4.

Theorem B (Theorem 3.1). Let M “ xA | w “ 1y and suppose that every letter in w is
invertible in M . Let G “ xB |w “ 1y where B Ď A is the set of letters that appear in w. Then
G is a one-relator group, and if the Diophantine problem is decidable in G then it is decidable
in M .

Comparing Theorem B with Theorem A, in both results we decompose the defining relator
r ” r1r2 . . . rk into words ri that are invertible in M . Theorem B is the case where all the
words ri have size one, i.e. they are single letters, in which case the theorem shows a reduction
of the Diophantine problem of M to its group of units.

In Section 4 we provide some examples of monoids satisfying the hypotheses of Theorem
B, as well as a list of questions and open problems.

An immediate consequence of Theorem A is the following

Corollary C. If word equations with length constraints are undecidable, then so is the
Diophantine problem in any one-relator monoid of the form xA | w “ 1y satisfying conditions
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(C1), (C2) and (C3). On the other hand, proving that the Diophantine problem is decidable in
some of these monoids would imply that word equations with length constraints are decidable.

In particular, if the Diophantine problem is decidable for all one-relator monoids with
torsion xA | wn “ 1y, with n ą 1, then this would imply that word equations with length
constraints are decidable.

In addition to the Diophantine problem, we also obtain results about the decidability
of the first-order theory, and more precisely of the positive AE-theory, of some one-relator
monoids. The first-order theory with coefficients of a free nonabelian semigroup was shown
to be undecidable by Quine [57] (all free structures in this paragraph are implicitly assumed
to be nonabelian). Quine’s result was strengthened in [24, 49] by proving that the positive
AE-theory with coefficients of a free semigroup is undecidable. This contrasts with the
aforementioned decidability result of Makanin for systems of equations, and also with the
fact that the first-order theory of free groups is decidable as part of the solution to Tarski
problems [39]. A consequence of Theorem A is the following

Theorem D (Theorem 3.25). Let M be a monoid with presentation xA | w “ 1y for some set
A and some word w P A˚ satisfying the conditions (C1) and (C2) of Theorem A. Then the
positive AE-theory with coefficients of M is undecidable. In particular, the first-order theory
with coefficients of M is undecidable.

The paper is organized as follows: in Section 2.1 we provide all the necessary background
regarding equations, first-order theory, and tools for obtaining reductions of one algorithmic
problem to another. Section 3 contains the main results of the paper. Section 3 finishes with a
small subsection where we obtain results regarding the hyperbolicity of the group of units and
of the Cayley graph of some one-relator monoids. Finally, in Section 4 we present examples
and applications of our results, and we provide a list of open questions.

2 Preliminaries
In this section we provide the necessary background definitions and results from model and
semigroup theory that will be needed in this article. In Subsections 2.1 and 2.2 we shall
state the model-theoretic definitions for general structures, although throughout the paper
these will be used only on monoids, or on monoids with some extra function or relation such
as a length relation. Further background on model theory can be found in [31, 50]. See [5]
for notions of computational and complexity theory, [32] for semigroup and monoid theory
background, and [45] for notions in combinatorial group theory.

2.1 Equations, first-order theory, and other problems

We follow Sections 1.1. and 1.3 from [31]. We fix X and A to denote a finite set of variables
and a finite set of constants, respectively.

We describe structures by tuples S “ pU, f1, f2, . . . , r1, r2, . . . , c1, c2, . . . q, where U is the
domain of the structure, the fi are function symbols, the ri are relation symbols, and the ci
are constant symbols. The equality relation “ is always assumed to be one of the relations
of S and is usually omitted from the list r1, . . . The tuple pf1, f2, . . . , r1, r2, . . . , c1, c2, . . . q
is the language (or signature) of S. We make the convention that this tuple is implicitly
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enlarged with as many elements from U as needed. These extra elements are called coefficients
(or parameters). Sometimes we identify the whole structure with its domain. For example,
we denote the free monoid generated by A simply by A˚, omitting any reference to the
concatenation operation ¨ or the identity element 1 or the equality relation “.

An equation in a structure S with language L is an atomic formula in the language L
with coefficients. Recall that an atomic formula is one that makes no use of quantifiers,
conjunctions, disjunctions, or negations. Thus an equation in S is a formula constructed
using only variables, constant elements from U (because we allow the use of coefficients by
convention), functions fi, and a single relation ri. For example if S is a monoid generated by A
then an equation in S is a formal expression of the form w1pX,Aq “ w2pX,Aq, where w1pX,Aq
and w2pX,Aq are words in pAYXq˚. A solution to such equation is a map f : X Ñ S such
that w1pfpXq, Aq “ w2pfpXq, Aq is true in S. By wipfpXq, Aq we refer to the word obtained
from wi after replacing each variable x P X by the word fpxq. A system of equations in S is a
conjunction of equations in S. Alternatively one can define equations as formulas of the form
Dx1 . . . Dxnφpx1, . . . , xnq where φ is an atomic formula as above on variables x1, . . . , xn, with
the relation in φ being equality. We use these two formulations interchangeably.

Equations in a free monoid A˚ receive the special name of word equations. One can consider
equations in more complicated structures, such as the structure pA˚, ¨, 1,“, Lq obtained from
the free monoid A˚ (which we identify with the tuple pA˚, ¨, 1,“q) by adding the length
relation L defined by the rule Lpu, vq if and only if |u| ď |v|, for all u, v P A˚, where | ¨ | denotes
length of words and 1 is the identity element. A system of equations in pA˚, ¨, 1,“, Lq is called
a system of word equations with length constraints. This is a system of word equations Σ
together with a finite conjunction C of formal expressions of the form Lpw1, w2q, each called a
length constraint, where w1, w2 P pX YAq

˚. A map f : X Ñ A˚ is a solution to such system if
it is a solution to Σ and |w1pfpXq, Aq| ď |w2pfpXq, Aq| for each length constraint Lpw1, w2q
appearing in C.

Alternatively to the length constraint one can consider the more general notion of weighted
length constraint, which we define now. Let ~k “ pka | a P Aq be a tuple of natural numbers,
one for each constant a P A. Then by | ¨ |~k we denote the map | ¨ |~k : A˚ Ñ N defined by

|h|~k “
ÿ

aPA

ksnapaq,

where naphq is the number of times that the letter s appears in h. We call | ¨ |~k the ~k-weighted
length function of A˚. We further let L~k denote the relation in A˚ defined by the rule L~kph, gq
if and only if |h|~k ď |g|~k, and call L~k the ~k-weighted length relation in A˚. Note that if ~k
consists solely of 1’s then | ¨ |~k is the usual length of words | ¨ | and L~k is the length relation L.

The Diophantine problem in a structure S, denoted DpSq, refers to the algorithmic problem
of determining if a given system of equations in S (with coefficients belonging to a fixed
computable set) has a solution. One says that DpSq is decidable if there exists an algorithm
(i.e. a Turing machine [5]) that performs such task.

Given two algorithmic problems P1 and P2, we say that P1 is reducible to P2 if there exists
an algorithm that solves P1 using an oracle for the problem P2 (i.e. a black-box algorithm
that ‘magically’ solves P2 —see Definition 3.4 in [5]). Thus in this case if P1 is unsolvable
then so is P2: indeed, if P2 was solvable then replacing the oracle in the definition above by
an algorithm that solves P2 would yield an algorithm that solves P1, a contradiction. As
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an example, DpZq is undecidable for Z the ring of integers (this is the answer to Hilbert’s
10th problem [51]), and hence DpMq is undecidable for any structure M such that DpZq is
reducible to DpMq.

Let L be some language. A positive AE-sentence in L is a first-order sentence of the form

@x1 . . .@xnDy1 . . . Dymψpx1, . . . , xn, y1, . . . , ymq

where ψ is a quantifier-free formula without negations on the language L. The positive
AE-theory of a structure S is the set of all positive AE-sentences in the language of S that
are true in S. Analogously to the Diophantine problem, the positive AE-theory of S is said to
be decidable if there exists and algorithm that, given a positive AE-sentence, decides whether
or not it holds in S.

One can generalize the notions in the paragraph above by replacing positive AE-sentences
by any family of first-order sentences Φ. In particular, if Φ is the set of all first-order sentences
then one speaks of the first-order theory, or the elementary theory, of a structure. It is
important to note that if the first-order theory is decidable then so is the Diophantine problem,
the positive AE-theory, the positive universal theory (identity checking), etc.

2.2 Reductions and interpretability

In this subsection we introduce the notion of interpretability with respect to some class of
formulas. This is a powerful tool which, in particular, implies reducibility of the decision
problem for such class of formulas. It is nothing else than the classical model-theoretical
notion of interpretability [31, 50], with the modification that formulas are required to be of
some specific form (such as systems of equations). We follow Section 1.3 of [50] (alternatively,
see Sections 2.1 and 5.3 of [31]).

Definition 2.1. Let M be a structure, n a natural number, and Φ a set of formulas in
the language of M . A subset S Ď Mn is called definable in M by formulas in Φ (in short,
Φ-definable) if there exists a formula

ΣSpx1, . . . , xn, y1, . . . , ykq P Φ,

with free variables px1, . . . , xn, y1, . . . , ykq “ p~x, ~yq, such that for any ~m P Mn, one has that
~m P S if and only if there exists ~y0 PM

k such that ΣSp~m,y0q is true in M . In this case ΣS is
said to define S in M .

We will make use of the following two classes of formulas Φ:

1. Systems of equations. In this case we replace the prefix Φ´ by e-, speaking of e-
definability.

2. Disjunctions of systems of equations. In this case we speak of PE-definability. See below
for an explanation of this terminology.

Remark 2.2. It is well known that any disjunction of systems of equations is equivalent to a
positive existential sentence with coefficients (hence the name PE-definability), i.e. formulas
that can be constructed using only existential quantifiers, conjunctions, disjunctions, variables,
and coefficents from the structure.
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For example, the set of all elements that commute with a given element m PM is defined
by the equation xm “ mx. Likewise, the set of all elements of M that are squares is defined
by the equation x “ y2. The set of all elements that commute with m or are a square is
defined by the PE-formula pxm “ mxq _ px “ y2q.

Observe that, by definition, e-interpretability and PE-interpretability allow the use of any
coefficients in the domain of the structures at hand.

Definition 2.3. Let A and M be two structures and let Φ be a family of formulas in the
language of M. Let further A and M be the domains of A and of M, respectively. Then A
is called interpretable in M by formulas Φ (in short, Φ-interpretable) if there exists n P N, a
subset S ĎMn and a bijective1 map, called interpreting map, φ : S Ñ A, such that:

1. S is Φ-definable in M.

2. For every function f “ fpx1, . . . , xnq in the language of A, the preimage by φ of the graph
of f , i.e. the set tps1, . . . , sk, sk`1q P S

k`1 | φpsk`1q “ fpφps1q, . . . , φpskqqu Ď Mnpk`1q,
is Φ-definable in M.

3. Similarly, for every relation r of A (including the equality relation “), the preimage by
φ of the graph of r is Φ-definable in M.

Similarly as before, if Φ consists of all systems of equations in the language of M then we
speak of e-interpretability, and if Φ consists of all disjunctions of systems of equations we speak
of PE-interpretability. Note that a PE-interpretation is, in particular, an e-interpretation.

The next two results are fundamental and they constitute the main reason we use inter-
pretability in this paper. These are standard results whose proofs follow immediately from the
Reduction Theorem 5.3.2 in [31] and Remark 3 after it (alternatively, see Lemma 2.7 of [27]).

Proposition 2.4 (Interpretability is transitive). Interpretability is a transitive relation. That
is, given three structures M1,M2, and M3, if M1 is e- or PE-interpretable in M2 and M2 is
e or PE-interpretable in M3, then M1 is e- or PE-interpretable in M3, respectively.

Proposition 2.5 (Reduction of problems). Let M1 and M2 be two structures on languages
L1 and L2, respectively. Assume M1 is e-interpretable or PE-interpretable in M2. Then the
Diophantine problem in M1 is reducible to the Diophantine problem in M2. As a consequence,
if the second problem is decidable, then so is the first.

Similarly, the problem of deciding if any given first-order formula in the language L1 holds
in M1 is reducible to the problem of deciding if any given formula in the language L2 holds in
M2. Consequently, if the first-order theory of M2 is decidable then so is the first-order theory
of M1. The same statement holds when replacing first-order theory by positive AE-theory.

2.3 Monoid presentations and rewriting systems

Let A be a non-empty alphabet. In this paper we will use ” to denote graphical equality, that
is, for two words w1, w2 P A

˚, the expression w1 ” w2 means w1 and w2 are equal as word in
1The most general formulation of interpretability uses onto maps instead of bijective maps. Since only

bijective maps appear in the interpretations of this paper, we have chosen to use this more restricted version
of interpretability. This is similar to the approach followed in Section 1.3 of [50]. For the definition of
interpretability with onto maps see Section 5.4 of [31] or Section 1.3 of [50].

10



A˚. A rewriting system R over A is a subset of A˚ˆA˚. We call xA |Ry a monoid presentation.
This monoid presentation is said to be finite if both A and R are finite, and infinite otherwise.
The elements of R are called rewrite rules of the rewriting system, and they are called the
defining relations of the presentation. A rewrite rule pu, vq P R is often written as u “ v when
writing the presentation xA |Ry. For u, v P A˚ we write uÑR v if there are words α, β P A˚
and a rewrite rule pl, rq in R such that u ” αlβ and v ” αrβ. Let Ñ˚

R denote the reflexive
transitive closure of ÑR, and let Ø˚

R denote the reflexive transitive symmetric closure of ÑR.
The monoid defined by the presentation xA | Ry is the set A˚{ Ø˚

R of equivalence classes of the
equivalence relation Ø˚

R with multiplication defined by pw1{ Ø
˚
Rq ¨ pw2{ Ø

˚
Rq “ w1w2{ Ø

˚
R

for all w1, w2 P A
˚. When the set of rewrite rules is clear from context, we shall omit the

subscript R and simply write Ñ, Ñ˚ and Ø˚. A word u is called reduced if no rewrite rule
can be applied to it, that is, there is no word v with uÑ v. A rewriting system R is called
Noetherian if there is no infinite chain of words ui P A˚ with ui Ñ ui`1 for all i ě 1. The
rewriting system system is called confluent if whenever uÑ˚ u1 and uÑ˚ u2 there is a word
v P A˚ such that u1 Ñ

˚ v and u2 Ñ
˚ v. A complete rewriting system is one that is both

Noetherian and confluent. If R is a complete rewriting system then each Ø˚-class contains a
unique reduced word. It follows that if R is a complete rewriting system over an alphabet
A then the set of reduced words of this system provides a set normal forms (that is, unique
representatives) for the elements of the monoid M defined by the presentation xA | Ry. In
this situation we call xA | Ry a complete presentation defining the monoid M . We say that
a word is reduced with respect the complete presentation xA |Ry if it is a reduced word with
respect to the complete rewriting system R. If in addition either A or R is infinite then this
is called an infinite complete presentation.

3 One-relator monoids
Our interest in this section is in the Diophantine problem for one-relator monoids with
presentation xA | w “ 1y. Throughout this section M will denote the one-relator monoid
defined by the one-relator presentation xA | w “ 1y. We shall see how this problem relates to
other known difficult decidability problems. Before exploring those links we first observe one
situation where the Diophantine problem is decidable.

Theorem 3.1. Let M “ xA |w “ 1y and suppose that every letter in w is invertible in M . Let
G “ xB | w “ 1y where B Ď A is the set of letters that appear in w. Then G is a one-relator
group, and if the Diophantine problem is decidable in G then it is decidable in M .

Proof. The monoid M is isomorphic to the moniod free product G ˚ C˚ where C “ AzB.
Both G and C˚ satisfy Assumption 17 from [20] (a cancellativity condition which satisfied by
any group and any free monoid) and Assumption 18 from [20] (decidability of the Diophantine
problem). Hence applying [20, Theorem 19] (taking Cσ to be just tUσ, Vσu) we obtain that
the Diophantine problem of M is decidable.

Example 3.2. As an easy example of an application of the previous theorem, we see that
the Diophantine problem is decidable in the monoid M “ xa, b, c, d | aba “ 1y. Indeed, the
monoid G “ xa, b | aba “ 1y is the infinite cyclic group. To see this, since apbaq “ 1 it follows
that a is right invertible in the monoid with right inverse ba, and since pabqa “ 1 it follows
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that a is left invertible with left inverse ab. Hence a is invertible in the monoid G with
inverse ab “ ba (because ab “ abpabaq “ pabaqba “ ba). Letting a´1 denote the inverse of a
in this monoid we have b “ a´2. Hence G is the infinite cyclic group generated by a. The
argument above shows that each letter that appears in aba is invertible in M , and the group
G “ xa, b | aba “ 1y has decidable Diophantine problem (since all free groups do). Hence the
hypotheses of Theorem 3.1 are satisfied and we conclude that the Diophantine problem is
decidable in the monoid M .

Some more complicated examples to which Theorem 3.1 applies will be discussed in
Section 4.

The following lemma will be key later when studying systems of equations in some
one-relator monoids (Section 3). A definition of weighted length relation can be found in
Subsection 2.1.

Lemma 3.3. Let M be a monoid, let C “ xc0y be an infinite one-generated submonoid of
M , and let D be a free rank-n submonoid of M freely generated by a set td1, . . . , dnu Ď M .
Assume that both monoids C and D are e-interpretable in M with interpreting map the identity
map. Assume also that for each i “ 1, . . . , n there exists ki P N such that ckidi “ 1. Then
the free monoid with weighted length relation pD, ¨, 1,“, L~kq is e-interpretable in M , where
~k “ pk1, . . . , knq, and ¨ is the usual concatenation operation.

Proof. Since the free monoid D is e-interpretable in M , it suffices to show that so is the
relation L~k. Let ΣCpx, ~yq and ΣDpz, ~wq be two systems of equations e-interpreting C and D
in M , so that an element h PM belongs to C (respectively D) if and only if ΣCph, ~yq (resp.
ΣDph, ~wq) has a solution ~y0 (resp. ~w0) in M . Take arbitrary elements c P C and d P D. Then
c “ ct0 for some t P N, and d “ di1 . . . dir for some dij . Now,

cd “

$

’

’

’

’

&

’

’

’

’

%

c
t´|d|~k
0 if t ą |d|~k,

1 if t “ |d|~k,
di``1 . . . d`r if t ă |d|~k, and cd P D,
cs0di``1 . . . d`r if t ă |d|~k, and cd R D,

(1)

where in the last two cases ` is the minimum number such that |di1 . . . di``1 |~k ą t (we have
` ă r), and in the last case s is some number such that 0 ă s ă ki``1 . It follows that if
t ě |d|~k then cd P C. The other implication is true as well: if we had cd P C and t ă |d|~k then
cd “ cs0di``1 . . . d`r “ cr0 for some r, s ě 0 and some 0 ă ` ă r. Let d1 “ di``1 . . . d`r and let
p “ |d1|~k. Note that s ă p. Then 1 “ cp0d

1 “ cp´s0 cs0d
1 “ cp´s`r0 , contradicting the assumption

that xc0y is infinite.
We have proved that cd P C if and only if |c| “ t ě |d|~k. Due to the e-definability of C, this

in turn occurs if and only if ΣCpcd, ~yq has a solution ~y0. Moreover, the second case of (1) and
the infiniteness of xc0y indicate that t “ |d|~k if and only if cd “ 1. Hence given two elements
d1, d2 P D we have that |d1|~k ď |d2|~k if and only if there exists an element c P C such that
cd2 “ 1 (this ensures |c| “ |d2|~k) and ΣCpcd1, ~yq has a solution ~y0 (this ensures |d1|~k ď |c|).
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Overall, |d1|~k ď |d2|~k if and only if the following system of equations has a solution x0, ~y0, ~z0:
$

’

&

’

%

ΣCpx, ~yq,

ΣCpxd1, ~zq,

xd2 “ 1
(2)

It follows that the ~k-weighted length relation L~k is e-interpretable in M .

Example 3.4. The above result can be applied to the monoid with presentation

xa, b1, . . . , bn | ab1 “ 1, ab2 “ 1, . . . , abn “ 1y, (3)

for any n ą 1, thus we recover the reduction from Example 21 in [20].

Let ∆ “ tαi pi P Iqu Ď A` be the set of minimal invertible pieces of the defining relator
w. So the word w uniquely decomposes as

w ” αi1αi2 . . . αik

where each αij P ∆, and each of these words is invertible in M and has no proper non-empty
prefix which is invertible in M . As mentioned in the introduction, we call the αij the minimal
invertible pieces of w. In [2] Adjan gives an algorithm for computing the minimal invertible
pieces of the defining relator of a one-relator special monoid. In particular, every letter
appearing in the relator represents an invertible element of the monoid if and only if all the
minimal invertible pieces have size one, and this can be decided using Adjan’s algorithm.
Hence Adjan’s algorithm can be used to test whether the hypothesis of Theorem 3.1 above
are satisfied. This algorithm was discussed in Section 1, see Example 1.1 and the paragraph
preceding it. As mentioned there, a good description of Adjan’s algorithm can be found in
[41, Section 1].

Since each piece αi is minimal invertible, none of them is a prefix of another piece αj ,
and so ∆ is a prefix code. Hence the submonoid of A˚ generated by ∆ is free. We shall
denote it ∆˚. Let B “ tbi | i P Iu be an alphabet in bijective correspondence with ∆. Let
φ : ∆˚ Ñ B˚ be the unique homomorphism extending αi ÞÑ bi for i P I. It follows from
Adjan’s results [2] that the group of units G of M is isomorphic to the monoid defined by the
monoid presentation

xB | φpwq “ 1y “ xB | bi1bi2 . . . bik “ 1y.

Theorem 3.5 ([70], Proposition 3.2). The infinite monoid presentation

xA | u “ v : u, v P ∆˚, v ăsh u & φpuq “G φpvqy (4)

is an infinite complete presentation defining the monoid M .

In the above theorem ďsh denotes shortlex ordering, and φpuq “G φpvq means that φpuq
and φpvq both represent the same element in the group of units G. For the rest of this section,
when we say a word w is reduced we mean that it is reduced with respect to the above infinite
complete presentation (4). Our aim is to show that for a wide class of special one-relator
monoids, if we could solve equations for those monoids then that would imply a solution
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to equation solving with length constraints in free monoids —which is a longstanding open
problem; see [13, 17, 26, 42]. Of course, not every special one-relator monoid encodes equation
solving with length constraints since, for instance, we have seen above that equations can be
solved over the bicyclic monoid. So we will need some conditions on the monoid. We give
conditions in terms of certain combinatorial properties on the set of minimal invertible pieces
∆. We suppose that the following conditions are satisfied:

(C1) No word from ∆ is a proper subword of any other word from ∆.

(C2) There exist distinct words γ, δ P ∆ with a common initial letter a P A.

These conditions are easily satisfied and can be used to construct a wide variety of examples
as we shall see in the next section. Note, for instance, if all the words from ∆ have the same
length, then condition (C1) will be satisfied. In particular there are one-relator monoids with
torsion whose minimal invertible pieces satisfy these properties. A concrete example is given
by the family monoids

xa, b, c | ppabqpacqpabqqk “ 1y,

for k ą 1 where, as we already proved in Example 1.2 above, the set of minimal invertible
pieces is tab, acu. This gives many examples of special one-relator monoids with hyperbolic
undirected Cayley graphs which satisfy the conditions (C1)-(C2). Applications to examples
like this will be discussed below.

For the rest of this section let M be the one-relator monoid defined by the monoid
presentation

xA | r “ 1y

where we suppose that conditions (C1)-(C2) are satisfied, and we let a be a common
initial letter of two distinct words from ∆

Throughout the rest of the section we denote the projection of a word w P A˚ onto M by
rws, so rws is the element of M represented by the word w.

We now give a series of important technical lemmas. We begin with the following
observation:

Remark 3.6. The letter a us not invertible in M . Indeed, there are two distinct words
δ, γ P ∆ having a as their first letter. Since δ and γ are subwords of w which are invertible in
M , and they minimal with this property, if a was invertible then we would have a “ γ “ δ.
This would contradict the fact that γ and δ are distinct words. Hence, a cannot be invertible.

Lemma 3.7. Suppose that (C1) and (C2) are both satisfied, and let a be a common initial
letter of two distinct words from ∆. Then for every reduced word w P A˚, and every positive
integer i ą 0, if aiw “ 1 then w has no prefix in ∆.

Proof. Since aiw “ 1 it follows that aiw is not reduced and since w is assumed to be reduced
it follows that we can write

aiw ” ajα1 . . . αtw
2

where 0 ď j ă i, w2 is a suffix of w, α1 . . . αk is the left hand side of a rewrite rule from
(4), and each αi P ∆. Since a is not invertible and w is reduced, we have α1 ” akw1 where
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k “ i ´ j ą 0, and w1 is a non-empty prefix of w. Suppose, seeking a contradiction, that
w ” βw2 with β P ∆. Note that since w1 is a suffix of α1, where α1 is invertible, it follows that
w1 is left invertible. Now, if w1 were a prefix of β it would follow that w1 is also right invertible
and hence invertible. But then since α1 and w1 are both invertible it would follow that ak is
invertible and hence a is invertible, which is a contradiction by Remark 3.6. Therefore we
must have that β is a prefix of w1, but then β P ∆ is a proper subword of α1 ” akw1 P ∆, and
this contradicts (C1). This completes the proof of the lemma.

Lemma 3.8 ([70], Lemma 3.1 and Lemma 3.6). If u1, u2 P ∆˚ then ru1s “ ru2s in M if and
only if rφpu1qs “ rφpu2qs in the one-relator group G.

Lemma 3.9. Let δ and γ be two distinct words in ∆. Then rδs ‰ rγs in M .

Proof. Since the words δ and γ are distinct it follows that φpδq and φpγq are distinct letters
of B. This implies that |B| ě 2. If |B| ě 3 then it follows from Magnus’ Freiheitssatz
[45, Theorem 5.1] that φpδq and φpγq represent distinct elements of the group G and hence
rδs ‰ rγs in M , by the previous Lemma 3.8.

Now suppose that |B| “ 2. Set c “ φpδq and d “ φpγq. If c “ d in G then cd´1 “ 1
in G. Since |B| “ 2 and c “ d it follows that the group G has torsion, and hence by [45,
Theorem 5.2] the defining relator in the presentation of G must be a proper power. Then it
follows from Newman’s spelling theorem [45, Theorem 5.5] that cd´1 contains a subword of
the defining relator (which uses no inverse of c or d), or the inverse of such a subword, with
length at least 2. This is clearly impossible and thus completes the proof.

Lemma 3.10 ([70], Lemma 3.3). Let u P A˚ be reduced. If rus is invertible then u P ∆˚.

We are interested in right inverses of powers of the element a. These elements clearly form
a submonoid of M . The following result shows that the set of reduced words representing
elements in this submonoid themselves form a submonoid of the free monoid A˚.

Lemma 3.11. Let i, j P N. Let u, v P A˚ be reduced words such that aiu “ 1 and ajv “ 1.
Then uv is a reduced word such that ai`juv “ 1.

Proof. We just need to prove that uv is a reduced word. By Lemma 3.7 the word v does not
have any prefix in ∆. If uv were reducible then it would follow that there is a non-empty suffix
u1 of u, and a non-empty prefix v1 of v, such that u1v1 P ∆. But then u1 is left invertible,
since u is left invertible, and right invertible, since u1v1 is right invertible. This contradicts
u1v1 P ∆.

Let F be the set of all reduced words β such that aiβ “ 1 for some i P N with i ą 0,
together with the empty word 1.

Remark 3.12. Note that by definition all the words in F Ď A˚ are reduced words with
respect to the complete presentation forM defined in Theorem 3.5. It follows from Lemma 3.11
that for any words w1, w2 from the set F the concatenation of these two words w1w2 is again
a word in the set F and hence in particular w1w2 is again a reduced word (since all the words
in F are reduced words). Therefore, F is a submonoid of the free monoid A˚, and all of the
words in F are reduced words with respect to the complete presentation for M .
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We shall now prove that F is a free submonoid of A˚. For this it will be useful to recall
some standard results about submonoids of free monoids. Recall from [44, Subsection 1.2]
that given a submonoid P of A˚ there is a unique set B that generates P and is minimal with
respect to set-theoretic inclusion; it is the set

pP zt1uqzpP zt1uq2.

The following nice characterisation of free subsemigroups of free semigroups, from Lothaire,
will be useful for us; see [44, Proposition 1.2.3].

Lemma 3.13. A submonoid P of A˚ is free if and only if for any word w P A˚, one has
w P P whenever there exist p, q P P such that

pw,wq P P.

Lemma 3.14. F is a free submonoid of A˚.

Proof. Suppose that w P A˚ is such that there exist p, q P F such that pw,wq P F . By Lemma
3.13, we need to show that w P F . Since w is a subword of a reduced word (for example,
pw), it is reduced. By assumption there are i, j ě 1 such that aip “ 1 and ajpw “ 1. If
i “ j then w “ 1 and since w is reduced it is the empty word and this belongs to F . If i ă j
then aj´iw “ 1 and so w P F . Otherwise, if i ą j then it would follow that w “ ak for some
k ą 0. But then ajpw “ 1 implies ajpak “ 1. This last equality implies that a is invertible,
contradicting (C2) and the definition of ∆. In all cases w P F so this completes the proof of
the lemma.

Lemma 3.15. Let w P A˚ be arbitrary. Write w ” w1w2 where w1 is the longest prefix of
w which is invertible. Suppose that w1 may be obtained from w by a single application of a
relation from the presentation. Write w1 ” w11w

1
2 where w11 is the longest invertible prefix of

w1. Then w1 “ w11 in M . This implies that for any pair of words u, v, if u “ v in M then
the longest invertible prefix of u is equal to 1 in M if and only if the longest invertible prefix
of v is equal to 1 in M .

Proof. We consider where the relation is applied to the word w ” w1w2. If the relation is
applied within either w1 or w2 the result is immediate, so suppose otherwise. Let δ1 . . . δm P ∆˚
be the subword of w to which the relation is being applied. If there is a non-empty suffix u1
of w1, and a non-empty prefix u2 of w2 such that u1u2 ” δr for some r, then since u1 is left
invertible since it is a suffix of w1, and u1 is right invertible since it is a prefix of δr, it would
follow that u1 is invertible, which would contradict the fact that δr has no proper prefix which
is invertible. So we must have w1 ” αδ1 . . . δr, and w2 ” δr`1 . . . δmβ, but then w1δ1 . . . δm is
a prefix of w which is invertible and is longer than w1, contradicting the definition of w1.

Let m P N be the maximum value m such that there is a minimal invertible piece α P ∆
such that am is a prefix of α. We define a finite set of words X in the following way. For each
1 ď j ď m and for every piece ajβ P ∆ (where β might begin with a) let η be the reduced
word representing the inverse of ajβ and add the word βη to the set X.

Lemma 3.16. Every word in the set X is reduced.
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Proof. Let ajβ P ∆ and let η be a reduced word representing the inverse of ajβ. We claim that
βη is a reduced word as a consequence of assumption (C1). Indeed, suppose for a contradiction
that βη is not reduced. It follows from Lemma 3.10 that η P ∆˚. Then there is a rewrite
rule from (4) which can be applied to the word βη. Let λ be the left hand side of such a
rule noting that λ P ∆`. Since β and η are both reduced words we can write λ ” β2η1 where
β2 and η1 are both non-empty, with β ” β1β2 and η ” η1η2. Let α1 P ∆ be the prefix of λ
which belongs to ∆. Let α2 P ∆ be the prefix of η which belongs to ∆. Since α1 cannot be a
subword of β since by (C1) it is not a subword of ajβ P ∆ it follows that α1 ” α11α

2
1 where α21

is a non-empty prefix of η. But since η is invertible this would imply that α21 is invertible and
thus α11 is invertible, contradicting the fact that α1 P ∆ is a minimal invertible piece. This is
a contradiction, and we conclude that βη is indeed a reduced word.

Thus X is a finite set of reduced words, each of which is the right inverse of some aj with
1 ď j ď m. Note also that X is a finite subset of the free monoid F .

Lemma 3.17. Let i P N and w P A˚ be a reduced word such that aiw “ 1 in M . Then there
is an integer 0 ă j ď i, with j ď m, and a non-empty prefix w1 of w such that w1 P X and
ajw1 “ 1 in M . Moreover, with the same value of j, there is a decomposition

aiw ” akajw1w2

where k ` j “ i, w ” w1w2 and ajw1 P ∆. In particular, if no word in ∆ begins with a2 then
w can be written as w ” w1w2 . . . wi such that awl “ 1 for all 1 ď l ď i.

Proof. Let i P N and w P A˚ be a reduced word such that aiw “ 1 in M . Since aiw is not
reduced it follows that the left hand side λ of one of the relations from (4) arises as a subword
of aiw. In particular λ is a non-empty word with λ P ∆˚. Since a is not invertible, no word
from ∆ is a subword of ai, and since w is reduced, λ is not a subword of w. It follows that
there is a prefix λ1 of λ such that, λ1 ” ajw1 P ∆ with j ą 0 and where w1 is a non-empty
prefix of w. Thus we have the decomposition

aiw ” akajw1w2

where k ` j “ i, w ” w1w2 and ajw1 P ∆.
If k “ 0 then i “ j and aiw ” ajw “ 1. So we can write ajw ” pajw1qpw2q and since

pajw1qpw2q “ 1 it follows that in M we have w ” βη where β ” w1, η ” w2, where η is equal
to the inverse of ajβ in M (note ajβ is invertible because it belongs to ∆). Thus in this case
the reduced word w belongs to the set X, as required.

Now suppose that k ą 0. Consider the longest invertible prefix of the word ajw. It is
certainly non-empty since ajw1 is invertible. Set v ” redpajwq. Then we have akv “ 1 with
k ą 0 and v a reduced word. It follows from Lemma 3.7 that v cannot begin with a word from
∆. Hence v has no invertible prefix. Now by the last part of Lemma 3.15, since v “ ajw in M ,
it follows that the longest invertible prefix p of ajw is equal to 1 in M . So now we can write

aiw ” akajw1w2

where k ` j “ i, w ” w1w2 and p ” ajw1 “ 1 in M , and ajw1 has prefix ajw1 P ∆. It then
follows that in M we have w1 “ βη where β ” w1 and η is equal to the inverse of ajw1 in M .
Also, w1 is a reduced word because w is reduced. It follows that w1 P X, as required. This
completes the proof of the lemma.
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Lemma 3.18. X is a finite generating set for the monoid F .

Proof. Let i P N and w P A˚ be a reduced word such that aiw “ 1 in M . It follows from
Lemma 3.17 that there is an integer 0 ă j ď i, with j ď m, and a non-empty prefix w1 of w
such that w1 P X and ajw1 “ 1 in M . The lemma now follows by induction.

Let B be the unique subset of F that generates F and is minimal with respect to set-
theoretic inclusion, that is B is equal to the set

pF zt1uqzpF zt1uq2.

Since X Ď F is a finite generating set for F it follows that B Ď X.

Lemma 3.19. The basis B has size at least two. Thus the submonoid F of A˚ is a free
monoid of rank at least two.

Proof. By assumption (C2) there are distinct words γ, δ P ∆ with common initial letter a P A.
Write γ ” aγ1 and δ ” aδ1. Note that either γ1 or δ1 can begin with the letter a. By Lemma 3.9
the words γ and δ represent different elements of the monoid M . This in turn implies that
rγ1s ‰ rδ1s. Let paγ1q´1 be a reduced word representing the inverse of aγ1 inM , and let paδ1q´1

be a reduced word representing the inverse of aδ1 in M . In particular paγ1q´1, paδ1q´1 P ∆˚.
Then by definition we have γ2 ” γ1paγ1q´1 P X and δ2 ” δ1paδ1q´1 P X, and both of these
words are reduced words. Suppose, seeking a contradiction, that F is a free monoid of rank 1.
It follows that there is a word ν P A` such that each of γ2 and δ2 is, in A`, equal to some
power of the word ν. But this would imply that γ1 is a prefix of δ1, or vice versa. Suppose
without loss of generality γ1 is a proper prefix of δ1. Then aγ1 is a proper prefix of aδ1. But
this contradicts condition (C1) since both of these words belong to ∆. This completes the
proof of the lemma.

The free submonoid F of the free monoid A˚ defined above may also naturally be viewed
as a free submonoid of the monoid M . This is because, as explained in Remark 3.12, all the
words in F are reduced words and the concatenation of any two words from F is again a
reduced word. In particular, since distinct reduced words represent distinct elements of M ,
the map r¨s : A˚ ÑM defined by w ÞÑ rws induces an embedding r¨s : F ãÑM . Thus we have
identified a free submonoid of M of rank at least two, namely the image rF s of F under this
embedding.

Lemma 3.20. Let w P A˚ be a word. If aiw “ 1 and ajw “ 1 then i “ j.

Proof. Seeking a contradiction suppose that aiw “ ajw “ 1 with j ă i. Then ai´j “
ai´jajw “ aiw “ 1. But this contradicts the fact that a is not invertible.

Define a mapping ω : F Ñ Zě1 where w ÞÑ i if and only if aiw “ 1. This is a well-defined
mapping by the previous lemma. Also, it is easy to see that ω is a homomorphism to pZ,`q.
The mapping ω assigns a weight to every element of the free monoid F . Abusing the notation,
we also use ω to denote the map ω : rF s Ñ Zě1 defined by ωprwsq “ ωpwq. This is well
defined by the comments preceding Lemma 3.20.

The following result is now an immediate consequence of the previous results proved in
this section.
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Lemma 3.21. Let w P A˚ be a non-empty reduced word with w P F , and suppose that aiw “ 1
with i ě 1. Then the word w can be written uniquely as

w ” w1w2 . . . wk

where wj P B for all 1 ď j ď k, and

ωpw1q ` ωpw2q ` . . .` ωpwkq “ i.

In the special case that ∆ contains no word beginning with a2 then ωpwjq “ 1 for all 1 ď j ď k,
i.e. the statement above holds with k “ i.

Note that in particular condition (C1) is satisfied if all the pieces have the same length.
We note that Adjan [2] gives an algorithm for computing the set ∆ by analysing overlaps of
the relator with itself.

The following lemma will allow us to express membership in tau˚ in terms of equations.

Lemma 3.22. Let u P A˚ be reduced. Then u P tau˚ if and only if ruas “ raus in M .

Proof. Clearly if u P tau˚ then ruas “ raus in M .
For the converse, suppose that u P A˚ is such that ruas “ raus in M . Since a is right

invertible and a is not invertible, it follows that for all δ P ∆ the last letter of δ is not equal
to a. (Note this is true for all δ P ∆ including those δ in ∆ where δ does not begin with the
letter a.)

Seeking a contradiction, suppose that u R tau˚ and write u ” u1a
y where u1 P A

` and
the last letter of u1 is not equal to a, and y ě 0. Consider redpuaq “ redpu1a

y`1q. Since
for every rewrite rule α “ β from (4) neither α nor β ends in the letter a, it follows that
redpuaq ” w1a

y`1 where w1 does not end in the letter a.
In contrast, consider redpauq “ redpau1a

yq. Reasoning in the same way as in the previous
paragraph redpauq ” w2a

y where w2 does not end in the letter a (note it may start with the
letter a). In particular this implies that redpuaq ı redpauq which implies ruas ‰ raus. This
contradicts our original assumption, and completes the proof of the lemma.

The main result we shall prove in this section is the following.

Theorem 3.23. Let M “ xA | r “ 1y and let ∆ Ď A˚ be the set of minimal invertible pieces
of r. Suppose that:

(C1) no word from ∆ is a proper subword of any other word from ∆, and

(C2) there exist distinct words γ, δ P ∆ with a common first letter.

Then there exists a free submonoid D of M of finite rank n ě 2 and a tuple of weights ~λ “
pλ1, . . . , λnq such that the free monoid with weighted length relation pD, ¨, 1, L~λq is interpretable
in M by systems of equations and one coefficient.

Proof. Let F be the free monoid from our previous arguments (see Remark 3.12), and consider
the embedding rF s of F inM via the map rs : A˚ ÑM (see the discussion above Lemma 3.20).
Let ~ω be the tuple pωpw1q, . . . , ωpwnqq where w1, . . . , wn freely generate F and ω : F Ñ Zě1
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is the homomorphism defined after Lemma 3.20, so that aωpwiqwi “ 1 for all i (by Lemma
3.21). Recall that ω also then defines a map ω : rF s Ñ Zě1.

We claim that a generates an infinite submonoid of M . Indeed, if it did not, we would
have ak “ ak`` for some k, ` ě 0. Since a is right invertible (due to condition (C2)), this
implies that a` “ 1, from where it follows that a is invertible, a contradiction. This proves
the claim.

By Lemma 3.22 the submonoid xay is interpretable in M by the equation ax “ xa (Lemma
3.22). Since rF s “ tx PM | atx “ 1 for some t P Nzt0uu, it follows that rF s is e-interpretable
in M by the system of two equations ay “ ya, yx “ 1.

The following two results follow immediately from the above Theorem 3.23 and from
Proposition 2.5 regarding reducibility of decision problems.

Corollary 3.24. Let M be a monoid satisfying the hypothesis of Theorem 3.23. Then there
exists a free monoid with a weighted length relation pD, ¨, 1, L~ωq such that the Diophantine
problem in pD, ¨, 1, L~ωq is reducible to the Diophantine problem in M . In particular, if the
latter is decidable, then systems of word equations with ~ω-weighted length constraints are
decidable as well.

Theorem 3.25. Any one-relator monoid of the form xA | w “ 1y satisfying conditions (C1)
and (C2) has undecidable positive AE-theory with coefficient. In particular, its first-order
theory with coefficients is undecidable.

Proof. It is an immediate consequence of Theorem 3.23, of the fact that the AE-theory with
coefficients of free monoids is undecidable [24, 49] and of reducibility of theories (Proposition
2.5).

If we add to Theorem 3.23 the extra condition that no word in ∆ starts with a2, then the
same result holds with all weights being 1, i.e. ~λ “ p1, . . . , 1q. In this case L~λ is the standard
length relation L:

Theorem 3.26. Let M “ xA | r “ 1y and let ∆ Ď A˚ be the set of minimal invertible pieces
of r. Suppose that:

(C1) no word from ∆ is a proper subword of any other word from ∆,

(C2) there exist distinct words γ, δ P ∆ with a common first letter, say a,

(C3) no word in ∆ starts with a2.

Then there exists a free monoid D of finite rank n ě 2 such that the free monoid with length
relation pD, ¨, 1,“, Lq is interpretable in M by systems of equations.

Proof. The proof works in the same way as in Theorem 3.23, with the addition that the last
part of Lemma 3.21 now ensures that ωpwiq “ 1 for all i “ 1, . . . , n. Then ~ω “ p1, . . . , 1q
and pD, ¨, 1, L~ωq “ pD, ¨, 1,“, Lq, where pD, ¨, 1, L~ωq is the free monoid with weighted length
relation given by Theorem 3.23. Hence pD, ¨, 1,“, Lq is interpretable in M by systems of
equations and one coefficient.

We obtain an analogue of Corollary 3.24

20



Corollary 3.27. Let M be a monoid satisfying the hypothesis of Theorem 3.26. Then there
exists a free monoid with (non-weighted) length relation pD, ¨, 1,“, Lq such that the Diophantine
problem in pD, ¨, 1,“, Lq is reducible to the Diophantine problem in M . In particular, if the
latter is decidable, then systems of word equations with length constraints are decidable as
well.

We further prove that the monoids from Theorems 3.23 and 3.26 naturally embed the
monoids from Example 3.4.

Theorem 3.28. Let M “ xA | r “ 1y and let ∆ Ď A˚ be the set of minimal invertible pieces
of r. Suppose conditions (C1), (C2), (C3) are satisfied, i.e.:

(C1) no word from ∆ is a proper subword of any other word from ∆,

(C2) there exist distinct words γ, δ P ∆ with a common first letter, say a,

(C3) no word in ∆ starts with a2.

Let
Σa “ tw P A

˚ : w is reduced and raws “ 1 u.

Then

(i) Σa is a finite set with |Σa| ě 2;

(ii) the submonoid of M generated by Σa is free with basis Σa.

Let Σa “ tγ1, . . . , γqu. Then the submonoid of M generated by trasu Y rΣas is naturally
isomorphic to the monoid defined by the presentation

xa, d1, d2, . . . , dq | ad1 “ 1, . . . , adq “ 1y.

Proof. We claim that Σa is equal to the set X “ tβpajβq´1 | ajβ P ∆u defined above; see
Lemma 3.18. It is immediate from the definition of X that X Ď Σa. For the converse, let
γ P Σa. This means that γ is a reduced word and raγs “ 1 in M . By Lemma 3.17 we can
write aγ ” aγ1γ2 with γ1 P X and aγ1 “ 1 in M . Then γ2 “ paγ1qγ2 “ aγ “ 1 in M . Since γ
is a reduced word it follows that γ2 ” ε and thus γ ” γ1 P X. This completes the proof that
X “ Σa.

Since X “ Σa, part (i) now follows from Lemmas 3.18 and 3.19.
To prove part (ii) it will suffice to prove that Σa “ B, where B is the unique basis of the

free monoid generated by Σa “ X. To prove this it will suffice to prove that no γ P Σa can be
written as a product of other γ from Σa. Suppose that

γ “ γ1γ2 . . . γm

where γi P Σa for all 1 ď i ď m. Then

1 “ aγ “ aγ1γ2 . . . γm “ γ2 . . . γm

By Lemma 3.11, γ2 . . . γm is a reduced word and hence it follows that it must equal the empty
word. Hence m “ 1 and γ ” γ1 since they are both reduced words and they are equal in M .
This completes the proof that Σa “ B, and hence completes the proof of (ii).
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For the last part, let w P ptau Y Σaq
˚ “ ta, γ1, . . . , γqu

˚. Since aγi “ 1 for all i, this word
is equal in M to a word w1 where w1 has the form w1 ” w1a

j , where w1 P tγ1, . . . , γqu
˚. We

claim that in fact redpwq ” w1a
j . Indeed, since none of the words appearing in the rewrite

rules in (4) ends in a (because otherwise together with condition (C2) this would imply that
a is invertible) to show that w1a

j is reduced it suffices to prove that w1 is reduced, and
this was proved in Lemma 3.11. Therefore, each element of the submonoid of M generated
by trasu Y rΣas may be uniquely written in the form αaj for some j ě 0 and some word
α P tγ1, . . . , γqu

˚. Now consider the monoid N defined by the presentation

xa, d1, d2, . . . , dq | ad1 “ 1, . . . , adq “ 1y

This is a finite complete presentation, and the reduced words are precisely those of the form
βaj where j ě 0 and β P td1, . . . , dqu

˚.
Let φ : ta, d1, . . . , dqu

˚ Ñ A˚ be the homomorphism induced by the map a ÞÑ a, and di ÞÑ
γi for 1 ď i ď q. Since each relation in the presentation for xa, d1, . . . , dqy is preserved by this
homomorphism it follows that φ induces a homomorphism φ : xa, d1, . . . , dqy ÑM . Moreover,
this homomorphism maps xa, d1, . . . , dqy bijectively to the submonoid of M generated by
trasu Y rΣas since it clearly defines a bijection between the normal forms described above.
This completes the proof of the theorem.

Remark 3.29. We follow the notation of the previous Theorem 3.28. In the proof of Theorem
3.23 we showed that both xay and xΣay are e-interpretable in M . It is natural to ask whether
the submonoid xa,Σay, which by Theorem 3.28 is isomorphic to the monoid from Example 3.4,
is itself e-interpretable in M . The answer to this question is not clear and we leave it open.

3.1 One-relator monoids with hyperbolic undirected Cayley graph and
hyperbolic group of units

In this subsection we prove some sufficient conditions for one-relator monoids to have hyperbolic
undirected Cayley graph and to have hyperbolic group of units. These are of interest to the
paper given our question in the introduction regarding the reducibility of the Diophantine
problem in a special one-relator monoid to the same problem in its group of units: since the
Diophantine problem in hyperbolic groups is decidable [16, 64], such a reduction would imply
the decidability of the Diophantine problem in the one-relator monoid.

Before presenting the main result of this section we first define what we mean by the
undirected Cayley graph of a monoid, and what it means for this graph to be hyperbolic. For
more background on the theory of hyperbolic metric spaces and hyperbolic groups we refer
the reader to [12].

Let pX, dq be a metric space. For x, y P X a geodesic path from x to y is a map f : r0, ls Ñ X
from the closed interval r0, ls Ď R to X such that fp0q “ x, fplq “ y and dpfpaq, fpbqq “ |a´b|
for all a, b P r0, ls. Note in particular this implies that dpx, yq “ l. The image α of the map f
is called a geodesic segment with endpoints x and y. A geodesic metric space is one in which
there exist geodesic segments between all pairs of points. Note that in general there can be
more than one geodesic segment between a given pair of points. A geodesic triangle Ω in X is
a union of three geodesic segments from x to y, y to z and z to x, where x, y, z P X. These
three geodesic segments are called the sides of the geodesic triangle Ω.
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Definition 3.30. Let X be a geodesic metric space and let Ω be a geodesic triangle in X
with sides α, β and γ. The triangle Ω is called δ-slim if for every point a on α the distance
from a to β Y γ is less than δ, and similarly every point b on β is within distance δ of αY γ,
and every point c on γ is within distance δ of αY β. If every geodesic triangle in X is δ-slim
then we say that the geodesic metric space X is δ-hyperbolic. If X is δ-hyperbolic for some
δ ą 0 then we say X is hyperbolic.

Let M be a monoid generated by a set A. Then by the undirected Cayley graph ΓpM,Aq
of M with respect to the generating set A we mean the graph with vertex set M and where
there is an undirected edge connecting m P M to n P M if and only if ma “ n or na “ m
for some a P A. Note that here we have opted to work with the right Cayley graph, but the
results we prove in this subsection are also true working with the left Cayley graph instead.
The graph ΓpM,Aq is a metric space with the usual distance metric on graphs where for
a, b P M we define dpa, bq to be the shortest length of a path in ΓpM,Aq from a to b. This
is not a geodesic metric space, but can be made into one in a natural way by making each
edge isometric to the unit interval r0, 1s and extending the metric to the points of these edges
in the obvious way. This is called the geometric realisation of the Cayley graph. We say
that the undirected Cayley graph of a monoid M is hyperbolic if the geometric realisation of
ΓpM,Aq is a hyperbolic metric space. If M is a finitely generated monoid, it may be shown
that this property is independent of the choice of finite generating set for M , so it makes
sense to talk about a finitely generated monoid having a hyperbolic undirected Cayley graph,
without reference to any specific finite generating set.

Proposition 3.31. Let M “ xA | w “ 1y. Let G be the group of units of M . If G is a
hyperbolic group then the undirected Cayley graph of M is hyperbolic.

Proof. As usual, let ∆ be the set of minimal invertible pieces of the relator w (see the
discussion above Theorem 3.5 for further details). Let I be the set of all non-empty prefixes
of the words from ∆, that is

I “ tx P A` | xy P ∆ for some y P A˚u.

Let Y “ trus : u P Iu. Then, by Zhang [70, Lemma 3.3], Y is a finite generating set for
the submonoid of right units R of M . Note that R is the R-class of the identity element of
M , where R is Green’s R-relation on M defined by saying mRn if and only if mM “ nM .
Clearly ∆ is a subset of I. Let G be the underlying undirected graph of the right Cayley
graph of the monoid R, with respect to the generating set Y . So G has vertex set R and edges
trus, ruxsu where u P A˚, x P I and trus, ruxsu is a subset of R. Note that G is a connected
infinite graph and its vertices have bounded degree since R is a right cancellative monoid. We
use S to denote the undirected Schützenberger graph of the R-class R. So S also has vertex
set R but has edges trus, ruasu where u P A˚, a P A and trus, ruasu is a subset of R.

We claim that the identity map on R defines a quasi-isometry between the graph G and
the graph S.

To prove this claim, let dS and dG denote the distances in each of these graphs. Consider
an arbitrary edge trus, ruxsu in the graph G. Let D be the maximum length of a word in ∆.
Then dSprus, ruxsq ď D. For the converse, let trus, ruasu be an arbitrary edge in the graph
S. We claim that dGprus, ruasq ď 2. We may assume without loss of generality that u is a
reduced word. There are now two cases to consider.
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First suppose that ua is a reduced word. It then follows from [70, Lemma 3.3] that ua P I˚
(i.e. is a graphical product of words from I). Note that ua may admit several different
decompositions in I˚. Write ua “ u1γ where γ P I and u1 P I˚. If |γ| “ 1 then a “ γ P I
and so dGprus, ruasq “ 1. Now suppose that |γ| ą 1. Write γ “ γ1a with γ1 P I. Then we
have u “ u1γ1 and both tru1s, ru1γ1su and tru1s, ru1γsu are edges in the graph G. It follows that
dGprus, ruasq “ dGpru

1γ1s, ru1γsq ď 2.
Now suppose that ua is not a reduced word. Since u is reduced, it follows that we can

write ua “ u1γ where γ P ∆ is a non-empty word. Then arguing as in the previous paragraph,
either |γ| “ 1 and dGprus, ruasq “ 1, or else |γ| ą 1 and dGprus, ruasq ď 2. This completes
the proof of the claim that the identity mapping on R induces a quasi-isometry between the
graph G and the graph S.

It follows from [70, Theorem 4.5] that the submonoid of right units R of M is isomorphic
to a monoid free product T ˚G where T is a free monoid of finite rank, and G is the group of
units of the monoid M . Since the Cayley graph of a free monoid is a tree, it then follows that
the undirected Cayley graph G of R – T ˚G is hyperbolic. Since S is quasi-isometric to G we
conclude that the undirected Schützenberger graph of the R-class of the identity element is
hyperbolic.

It follows from the results in [30, Section 3] that (i) the Schützenberger graphs of any pair
of R-classes of M are isomorphic to each other, and (ii) for every R-class R1 of M there is at
most one edge tm,mau in the Cayley graph of M such that m PM , a P A, with ma P R1 but
m R R1, and (iii) the quotient graph with vertex set the R-classes of M and edges all edges
tm,nu from the Cayley graph of M such that pm,nq R R is a rooted tree.

Combining these observations we see that the Cayley graph of M has the structure of a
“regular tree of copies of” the hyperbolic graph S. From this it then quickly follows (e.g. by
applying [29, Theorem 5.4]) that the undirected Cayley graph of M is hyperbolic.

In fact, using a similar argument, it may be shown that Proposition 3.31 holds more
generally for any finitely presented monoid M defined by a presentation of the form

xA | w1 “ 1, . . . , wk “ 1y.

Proposition 3.32. Let M “ xA | wk “ 1y pk ě 2q. Then the group of units of M is a
one-relator group with torsion. It follows that the group of units of M is a hyperbolic group,
and the undirected Cayley graph of M is a hyperbolic metric space.

Proof. It follows from results of Adjan [2] that the group of units G of M is a one-relator
group with torsion (see [30, Section 3] for a proof of this). By the Newman Spelling Theorem
[45, Theorem 5.5] we have that G is a hyperbolic group. This and Proposition 3.31 imply
that the undirected Cayley graph of M is hyperbolic.

4 Applications, examples and open problems
In this section we list some examples, and classes of examples, of monoids to which the main
results of this paper apply. We shall also collect together a selection of open problems, and
possible future research directions, which naturally arise from our results. As part of this
we will identify the simplest examples of one-relator monoids for which we do not yet know
whether or not the Diophantine problem is decidable. In general, we do not know if there is
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an example of a one-relator monoid of the form xA | r “ 1y with undecidable Diophantine
problem.

Let us begin by recording some examples of one-relator monoids of the form xA | r “ 1y
where we have shown that the Diophantine problem is decidable. Consider, in particular the
case of 2-generated one-relator monoids xa, b | r “ 1y. Let M denote the monoid defined by
this presentation. Very often questions about one-relator monoids can be reduced to just
considering the 2-generator case e.g. this is the case for the word problem.

By Makanin [47] the Diophantine problem is decidable for the free monoid xa, b | y, while
in [20, Example 21] it is proved that it is decidable for the bicyclic monoid xa, b | ab “ 1y. Now
consider the general case xa, b | r “ 1y and let r “ r1r2 . . . rk be the decomposition of r into
minimal invertible pieces as described in Section 3 and in Example 1.1 and the paragraph
preceding it. If r P tau˚ or r P tbu˚ then the monoid is a free product of a free monoid of rank
one and a finite cyclic group, and thus the Diophantine problem is decidable by [20]. Now
suppose that both the letters a and b appear in the defining relator r. There are then two
cases to consider. If there are minimal invertible pieces ri and rj such that the first letter of
ri equals the last letter of rj , then applying the Adjan overlap algorithm it follows that both
a and b both represent invertible elements of M and hence M is a group. In this case, M is
the group defined by the same one-relator group presentation, and hence M is a so-called
positive one-relator group. Such groups have been studied e.g. by Baumslag [9] and Wise [67].
This motivates the question of whether the Diophantine problem is decidable for positive
one-relator groups. Up to symmetry the case that remains is when all the invertible pieces
ri p1 ď i ď kq begin with the letter a and end with the letter b. This case then divides into
two subcases, either (i) all of the pieces ri are equal to each other as words, or (ii) there is
some pair of minimal invertible pieces ri and rj with ri ı rj . Note that subcase (i) includes
in particular the case where there is a single invertible piece. This is precisely the case where
the relator r is self-overlap free meaning that no proper non-empty prefix is equal to a proper
non-empty suffix of r. This in turn is equivalent to saying that the group of units of the
monoid is the trivial group. Also note that many of the examples in (ii) will satisfy the
conditions (C1) and (C2) (and (C3)) from Section 3, and thus the main theorems of that
section, Theorem 3.23 and Theorem 3.26, will apply to them. Some examples of these are
listed in the introduction after Theorem A.

A similar division into cases can also be done for one-relator monoids xA | r “ 1y with
more than two generators. For instance, as we already saw in Example 3.2, the monoid
xa, b, c, d | aba “ 1y has decidable Diophantine problem by Theorem 3.1 above, since all the
letters in the relator are invertible, and the group of units is the infinite cyclic group which
has decidable Diophantine problem. Similarly the monoid xa, b, c, d, e, f | abcddcbbaa “ 1y has
decidable Diophantine problem, again applying Theorem 3.1. Indeed, applying the Adjan
overlap algorithm we deduce that all the letters a, b, c and d appearing in the defining relator
are invertible, and the group of units of this monoid is defined by the group presentation

Gpxa, b, c, d | abcddcbbaa “ 1y.

To apply Theorem 3.1 we need to show that this group has decidable Diophantine problem.
To show this, note that this group can be written

Gpxa, b, c, d | cddc “ b´1a´1a´1a´1b´1b´1y.
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The words cddc and b´1a´1a´1a´1b´1b´1 are non-primitive since the words cddc and bbaaab
are not Christoffel words (see e.g. [59]), and neither are any of the conjugates of these words,
since the first word have the same number of cs and ds, and similarly for the second word. It
is known, see [11, 34, 36], that a cyclically pinched one-relator group defined by a presentation
GpxA|u “ vy, where u and v are non-primitive words written over disjoint sets of letters, and
it is not the case that both u and v are proper powers, is hyperbolic. Hence the group of
units of xa, b, c, d, e, f | abcdcbba “ 1y is a hyperbolic group and thus by Theorem 3.1 above
this monoid has decidable Diophantine problem. Many other examples similar to this can
be written down. This gives a reasonably rich source of examples of one-relator monoids
xA | r “ 1y which have solvable Diophantine problem as a consequence of the fact that their
groups of units are hyperbolic. We do not know in general whether having a hyperbolic group
of units is enough to imply that a one-relator monoid of the form xA | r “ 1y has solvable
Diophantine problem. As explained in the introduction, this was one of the original motivating
questions for the work done in this paper. By Proposition 3.32 and Theorem 3.26, a positive
answer to this questions implies decidability of word equations with length constraints.

In light of this discussion, it is sensible to identify the simplest examples of one-relator
monoids of the form xA | r “ 1y for which we neither know that the Diophantine problem is
decidable, but we also do not know of a reduction theorem (like the theorems from Section 3
above) of a known difficult open problem. Thus we ask whether either of the monoids
xb, c | b2c “ 1y or xa, b, c | abc “ 1y has decidable Diophantine problem? Initial investigations
indicate that this might relate to solving word equations with a variation on the notion of
twisting, in the sense of [22]. More generally we ask the following
Question 4.1. If the word w P A˚ has no self overlaps, i.e. there is no non-empty word which
is both a proper prefix of w and a proper suffix of w, then is the Diophantine problem for the
one-relator monoid xA | w “ 1y decidable?

Note that the condition that w has no self overlaps is equivalent to saying the group
of units of this monoid is trivial (this follows from the discussion immediately before the
statement of Theorem 3.5).

The corresponding class of monoids with torsion are also not covered by any of the
theorems in this paper. Thus we ask whether xb, c | bcbc “ 1y has decidable Diophantine
problem? More generally, of course, we can ask whether the Diophantine problem is decidable
for monoids xA | wn “ 1y where w has no self overlaps.

Finally, we restate some natural questions which have arisen in this work. As already
mentioned above, if any of these problems has a positive answer, then as a corollary this
would give a positive solution to the open problem of solving word equations with length
constraints.
Question 4.2. Is the Diophantine problem decidable for one-relator monoids of the form
xA | wn “ 1y where n ą 1?
Question 4.3. Let M be the monoid defined by xA | w “ 1y and let G be the group of units
of M . If the Diophantine problem is decidable in G, then does it follow that it is decidable in
M?

It follows from the results in the present paper that the positive AE-theory is in general
undecidable in the classes of monoids from Questions 4.1 through Question 4.3 (due to
Theorem 3.25, Proposition 3.32, and Remark 3.4).
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