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Abstract

I propose a novel structural setting to investigate the dynamics of information
processing on equity prices and the exchange rate for cross-listed stocks. Using high-
frequency data on Brazilian cross-listed firms, I disentangle the effects on firm value
of the exchange rate from the other determinants of a firm’s cash flow. In general, the
results suggest that the U.S. is faster than the home market and that there is a net
positive relationship between the value of the domestic currency and the firm’s value.
This result is linked to the likely partially segmented market characteristic of the home
market. Robustness checks confirm the results.

JEL classification: G15, G12, G14, G32, C32, F31

Keywords: price discovery, high-frequency data, structural VEC, exchange rate

Acknowledgements: I am grateful to the Editor (Gideon Saar) and an anonymous ref-

eree for their valuable comments and suggestions. I am also indebted to Gustavo Fruet Dias,

Marcelo Fernandes, Angelo Ranaldo, Carsten Tanggaard, Neil Pearson, Tim Bollerslev, Erik

Hjalmarsson, and George Tauchen for valuable comments as well as the seminar participants at

Sandbjerg Conference (Denmark), The Arne Ryde Workshop (Lund), Oxmetrics Conference,

First International Workshop in Financial Econometrics (Natal, Brazil), Brazilian Economet-

ric Society Meeting, Duke Financial Econometrics Lunch Group, Queen Mary Econometrics

Reading Group, CREATES, Bank of England, Stockholm Business School, and University of

St. Andrews. The computational analysis in this paper was carried out on the High Per-

formance Computing Cluster supported by the Research and Specialist Computing Support

service at the University of East Anglia.

∗Norwich Business School, University of East Anglia, NR4 7TJ, Norwich, United Kingdom. E-mail:
C.Scherrer@uea.ac.uk. Tel:+44 (0)1603 59 7956; and Creates, Denmark.

1



1 Introduction

Cross-listed foreign firms have become more popular among investors. In the United

States, 130 billion shares of American depositary receipts (ADRs) were traded in 2011, up

from 38 billion shares in 2005, an astonishing increase of 240%. Raising capital through

depositary receipts has also increased (178% from 2013 to 2014) primarily through initial

public offerings.1 Non-arbitrage among markets implies that ADR prices adjusted by the

exchange rate should not deviate from their analogous shares traded on the home market

for too long. In turn, the geographical price discovery of both equity and the exchange rate

has become of great interest (e.g., Eun and Sabherwal 2003, for instance).

In this paper, I methodologically expand the standard price discovery measures to a

structural framework. The two most prominent measures of price discovery are the informa-

tion share (IS) of Hasbrouck (1995) and the component share (CS), as based on the work

of Gonzalo and Granger (1995). These methodologies and their numerous variations have

been broadly applied to different markets [Eun and Sabherwal (2003) with Toronto and

U.S. exchanges], assets [Fernandes and Scherrer (2018) with common and preferred stocks]

and financial instruments [Chakravarty et al. (2004) for stocks and options]. However, the

methodologies above are static measures that do not allow for an analysis of the speed and

dynamics of market adjustment or for a distinction between informational and frictional inno-

vations (Lehmann, 2002; and Yan and Zivot, 2010). Specifically, as emphasized by Lehmann

(2002), to measure price discovery, one would be interested in examining the effects of the

uncorrelated shocks that drive efficient prices.

Yan and Zivot (2010) move in the direction of a structural methodology by introducing

a dynamic measure of price discovery. They adopt a modification of Gonzalo and Ng (2001)

and introduce a structural measure of price discovery in the context of one efficient price

(one common factor). In a multivariate context of two or more efficient prices, such as the

exchange rate and firm value, the literature has yet to provide a strategy to identify the

1Market Fragmentation: Does it Really Matter?, transaction services, Citi.
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impact of the orthogonal shocks on each efficient price. I propose a strategy that allows

for the identification of the structural shocks (informational innovations) that drive efficient

prices. Differently from Yan and Zivot (2010), this strategy lifts zero restrictions from the

correlation between the two efficient prices. Instead, it imposes a normalization restriction on

the variances of the permanent and transitory innovations. This strategy exactly identifies

the structural parameter matrices and impulse response functions for structural innovations

in that it is possible to quantify how permanent innovations are impounded on prices and

exchange rate instantaneously and over time. Finally, a structural price discovery model

helps to illustrate the understanding of such a method.

I use a two-year dataset of cross-listed firms from B3 (the Brazilian stock exchange),

NYSE, and NYSE Arca (ARCA) and investigate how information processing takes place

once accounting for the exchange rate. The results show that the U.S. market impounds

information on fundamental values of equities more quickly than the Brazilian market and

that U.S. prices adjust instantaneously to changes in the exchange rate. Insights into the

size of and liquidity dominance in U.S. stock markets when compared to emerging markets

may be derived from this evidence. There is a substantial difference in the initial impact of a

latent price shock (the home market captures on average 45% of the total effect and 56% of

the foreign market) and the total impact realized, meaning that investors are assimilating and

processing the new information in a dynamic fashion. Moreover, most information processing

takes place in the first minute. The results also suggest a net positive relationship between

the value of the domestic currency and the firm’s value that may be linked to the emerging

market nature of Brazil, the high correlation between its currency and its equity market,

and its likely partially segmented market characteristic.

The use of Brazilian firms is of interest because these firms show significant activity in the

cross-listing equity market. In fact, some Brazilian firms are among the top ten most liquid

ADR programs in terms of volume and value movers, showing a 20% increase in investor

positions from 2008 to 2010. A number of companies have even more intense trading activity
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in the U.S. market than in the Brazilian market. Brazilian and U.S. data have the additional

advantage of offering large overlapping trading hours, which allows much more information

to be gathered compared to the overlap of European and U.S. markets.

The remainder of the paper proceeds as follows. In Section 2, I introduce the price

process for cross-listed stocks. In Section 3, I present the estimation procedure and discuss

the identification strategy. In Section 4, I present the primary data features, discuss the

empirical results, and describe the robustness exercises. Concluding remarks are given in

Section 5. The technical results are in Appendix A and in Appendix B I discuss a Monte

Carlo study that addresses the performance of the estimation methodology.

2 A simple price discovery model for cross-listed firms

Cross-listing has become a popular way of raising equity capital at a lower cost while

boosting liquidity. For instance, on the NYSE, 498 foreign companies from 46 different

countries were listed on June 30, 2016. Therefore, geographical price discovery has attracted

ample interest.

When a firm cross-lists its shares in a foreign market, prices in the home and foreign

markets should not drift apart because they reflect the value of the same security. Because

shares are traded in different currencies, two fundamental values link these prices: the firm’s

fundamental value (the efficient price) and the fundamental link between the two currencies

(the efficient exchange rate). Although the prices of the same asset traded at different

venues should not drift apart, they may not be equal to the efficient prices at every point in

time because markets may process information differently. Liquidity issues and asymmetric

information cause transaction prices to adjust to the efficient prices at various speeds (e.g.,

Harris et al., 1995; Hasbrouck, 1993; and de Jong and Schotman, 2010).

The most natural class of structural time series models for market microstructure and

price discovery in fragmented markets is the partial adjustment model (e.g., Amihud and
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Mendelson, 1987; Hasbrouck and Ho, 1987; and Yan and Zivot, 2010). To formally address

how cross-listed stock prices adjust to their efficient price and exchange rate, I extend the

partial price adjustment model to accommodate the efficient exchange rate and its interac-

tions with the observed share prices. Essentially, the model now includes the observed prices

as a function of the fundamental value of the asset, the efficient exchange rate, their lagged

values, and transitory terms. This structural setting allows the analysis of how transaction

prices in different markets are affected by changes in the firm’s efficient price and the ex-

change rate over time. As a by-product, the partial adjustment model shows how exchange

rate movements have a permanent impact on the firm’s intrinsic value.

Assume that the firm’s efficient price (mt) and the efficient exchange rate (et) are ex-

pressed in logarithmic terms and modeled as random walk processes. They are latent prices

driven by two uncorrelated innovations: one associated with the firm’s efficient price (ηm
t )

and another with the efficient exchange rate (ηe
t ). In this context, ηm

t summarizes all of the

information affecting the present value of the firm’s future cash flows, except for the one

contained in ηe
t . Accordingly, mt and et are as follows:

mt = mt−1 + ηm

t + ρηe

t , (1)

et = et−1 + ληm

t + ηe

t , (2)

where et is defined in terms of the home currency (home over foreign currency) and ηm
t and

ηe
t are assumed to be serially and mutually uncorrelated with diagonal covariance matrix

diag (ς2
m, ς

2
e ) and E (ηm

t ) = E (ηe
t ) = 0. Notably, the structural innovations ηm

t and ηe
t are

labeled permanent innovations so that ηP
t = (ηm

t , η
e
t )
′.

The novelty of (1) is that it accommodates effects from the exchange rate, as ρ accounts

for the exchange rate effect on firm value. This feature incorporates the exchange rate

effect that is well documented in low-frequency data in a high-frequency structural setting.

Accordingly, the results in Subsection 4.2.2 highly support the exchange rate effect in (1).
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Additionally, in (2) λ is allowed to be different from zero. This is in line with the literature

that suggests that changes in equity prices in emerging countries are not independent from

exchange rate movements (Bekaert et al. 2011).

Let Pt now be a k-dimensional vector containing the observed log prices for the same

asset traded at different markets (home and foreign markets) and the exchange rate. Without

loss of generality, fix k = 4, meaning that Pt =
(
p1,t, wt, p

∗
3,t, p

∗
4,t

)′
consists of the logarithm

of the transaction price on the home market (p1,t), the logarithm of the observed exchange

rate (wt) defined as the home currency over the foreign currency, and the logarithm of

transaction prices in two foreign markets expressed in foreign currency (p∗3,t and p∗4,t).
2 Denote

γi and γ̇i, with i = 1, 2, 3, 4, the partial adjustment coefficients from changes in mt and et,

respectively, and ηT
t the 2 × 1 vector of transitory innovations.3 Specifically, transitory

innovations are assumed to be serially and mutually uncorrelated white noise processes and

reflect the presence of trading frictions. Differently from the permanent innovations ηP
t , ηT

t

does not affect the efficient price and exchange rate. From Gonzalo and Ng (2001), the

defining characteristics of ηP
t and ηT

t are rather different. Specifically, ηP
t has a non-zero

long-run effect on the expected price levels, while ηT
t is defined such that there is no long-run

impact on the observed transaction prices:

lim
h→∞

∂Et(Pt+h/∂ηP ′
t ) 6= 0, and lim

h→∞
∂Et(Pt+h/∂ηT ′

t ) = 0, (3)

where Et denotes the conditional expectation in relation to past information up to time t.

2p∗3,t and p∗4,t entail prices in foreign currencies (the currencies in which they are actually traded), whereas
p3,t and p4,t are expressed in the home currency. The relationship between them is given as p∗i,t = pi,t − wt
with i = 3, 4.

3For identification purposes, the number of structural shocks (permanent and transitory) must be equal
to the number of observed prices.
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It follows that the partial price adjustment model is as follows:

p1,t = p1,t−1 + γ1 (mt − p1,t−1) + γ̇1 (et − wt−1) + b1η
T

t , (4)

wt = wt−1 + γ2 (mt −mt−1) + γ̇2 (et − wt−1) + b2η
T

t , (5)

p∗3,t = p∗3,t−1 + γ3 (mt − p3,t−1) + γ̇3 (et − wt−1) + b3η
T

t , (6)

p∗4,t = p∗4,t−1 + γ4 (mt − p4,t−1) + γ̇4 (et − wt−1) + b4η
T

t , (7)

where b1, b2, b3, and b4 are 1 × 2 parameter vectors. The partial adjustment parameters γ̇i

and γi capture the speed of information processing (price discovery). Solving for ∆Pt allows

expressing market returns as a function of current and lagged values of the permanent and

transitory innovations, thus giving the structural infinite vector moving average (VMA)

representation:

∆Pt = d̆0ηt + d̆1ηt−1 + d̆2ηt−2 + ... =
∞∑
i=0

d̆iηt−i = D̆(L)ηt, (8)

where ∆Pt = (∆p1,t,∆wt,∆p
∗
3,t,∆p

∗
4,t)
′, ηt = (ηP

t , η
T
t )′, and D̆(L) =

(
d̆0 + d̆1L+ d̆2L

2...
)

is an infinite order lag operator with d̆0, d̆1, d̆2, ... denoting the 4 × 4 parameter matrices

and L being the usual lag operator. As advocated by Lehmann (2002), the structural

VMA representation in (8) enables a clear interpretation of price discovery, because the

sources of shocks are identified (i.e., the permanent innovations driving the fundamental

price and exchange rate). Specifically, three price discovery metrics emerge from (8): first,

the instantaneous (initial) impact, d̆0; second, the impulse response analysis showing the

responses of market prices to permanent innovations; third, the long-run impact matrix

D̆(1) that corresponds to the total response of market prices to changes in the permanent

innovations, and enables inference on the exchange rate effects on firm value. Using equations

(1)-(2) and (4)-(7), the solutions for d̆0 and D̆(1) are summarized in Proposition 1.

Proposition 1 Let the partial price adjustment model defined in equations (4)-(7) and the
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efficient prices defined in equations (1)-(2) hold. The initial impact, d̆0, and the long-run

impact, D̆(1), matrices are given by:

d̆0 =



γ1 + γ̇1λ γ̇1 + γ1ρ b1

γ2 + γ̇2λ γ̇2 + γ2ρ b2

γ3 + γ̇3λ γ̇3 + γ3ρ b3

γ4 + γ̇4λ γ̇4 + γ4ρ b4


, D̆(1) =



1 ρ 01×2

λ 1 01×2

1− λ ρ− 1 01×2

1− λ ρ− 1 01×2


. (9)

The proof of Proposition 1 appears in Appendix A.

The first and second columns of d̆0 account for the instantaneous responses to ηm
t and

ηe
t , respectively, and are thus seen as a structural price discovery measure. Furthermore,

d̆0 depends on the partial adjustment coefficients, meaning that the instantaneous response

to shocks on the permanent innovations may be larger or smaller than the long-run impact

matrix D̆ (1), depending on the sign and magnitude of γi and γ̇i with i = 1, 2, 3, 4. Notably,

d̆0 markedly differs from the reduced form based Hasbrouck’s (1995) IS type of measure, as

the former is related to the uncorrelated innovations, while the latter is constructed using

market innovations, which tend to be highly contemporaneously correlated even at high

frequencies (Dias et al. 2020).

The total effect of innovations in ηt to observed prices is given by D̆ (1). Specifically,

the first column collects the long-run effect of an innovation in ηm
t , while the second column

identifies the total exchange rate effect on firm value (i.e., the total response to a shock

in ηe
t ). It follows that the partial price adjustment model implies that innovations to the

efficient exchange rate have a total effect on the home and foreign prices equal to ρ and

(ρ − 1), respectively; hence, ρ accounts for the net effect on firm value. Note that D̆ (1) is

solely a combination of parameters from (1) and (2). This follows because the transitory

innovations are assumed to have no long-term effect on observed prices, which implies that

parameters loading on these transitory innovations, γi and γ̇i with i = 1, 2, 3, 4, should also

have no long-term effect on prices.
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3 Econometric framework

This section shows how to estimate instantaneous and total effects in a structural setting,

such that indirect inference can be performed to uncover the values of ρ and λ.

3.1 Price discovery measures in reduced and structural forms

Consider the market setting where a single asset trades in the home and foreign markets

and the exchange rate. Let Pt be a k × 1 vector collecting market prices and the exchange

rate. Prices at different markets should not drift apart much, oscillating around the (latent)

efficient price, as they refer to the same asset. In econometric terms, Pt is integrated of order

one, I (1), and the price changes ∆Pt are integrated of order zero, I (0). Furthermore, the

prices of cross-listed assets are expected to cointegrate. Because Pt consists of market prices

and the observed exchange rate, there are k − 2 cointegrating relationships, with log prices

sharing the asset’s efficient price and the efficient exchange rate as their common stochastic

trends. The dynamics of the first differences of Pt can be represented by the vector error

correction (VEC) models:

∆Pt = αβ′Pt−1 +

p∑
`=1

Γ`∆Pt−` + ut, (10)

where α is a k× r error correction matrix; β is a k× r cointegrating matrix; r is the number

of cointegrating vectors; Γ` with ` = 1, 2, ..., p are the k×k autoregressive matrix coefficients;

and ut is a zero-mean white noise process with a k × k non-diagonal covariance matrix Ω.

The VEC model in (10) has a reduced-form VMA representation as follows:

∆Pt = ut + ψ1ut−1 + ψ2ut−2 + ... =
∞∑
j=0

ψjεt−j = Ψ(L)ut, (11)

where Ψ(L) = (Ik + Ψ1L+ Ψ2L
2, ...) is an infinite order lag polynomial and Ψj with j =

1, 2, .... are non-linear functions of α, β, and Γ`, with ` = 1, 2, ..., p in (10).
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Reduced-form measures of price discovery, namely, any variant of Hasbrouck’s (1995) IS

and the CS measures (e.g., Booth et al., 1999; and de Jong, 2002) are based on the estimates

of the common row of Ψ(1) and the covariance matrix of the market innovations Ω.4 However,

as pointed out by Yan and Zivot (2010), inference on the price discovery mechanism should

be gauged from the innovations on the efficient prices, rather than market innovations, as

the latter are contaminated by frictional information that ultimately confounds the price

discovery analysis.

A natural way of addressing the abovementioned issues is to write a VMA in its structural

form, i.e., as a function of orthogonalized permanent and transitory innovations that satisfy

the conditions expressed in (3). Gonzalo and Ng (2001) show that because Pt is I(1), there

must exist k − r innovations that have permanent effects on the levels of Pt. It then follows

that ∆Pt admits the following structural VMA:

∆Pt = d0ηt+d1ηt−1 +d2ηt−2 + ... =
∞∑
i=0

diηt−i = D(L)ηt =

D(L)11 D(L)12

D(L)21 D(L)22


ηP

t

ηT
t

 , (12)

where ηt = (ηP ′
t , η

T ′
t )′ is a k×1 vector, ηP

t is a (k−r)×1 vector denoting the permanent innova-

tions, ηT
t is a r×1 vector collecting the transitory innovations, D(L) = (d0 + d1L+ d2L

2 + ...)

is an infinite order lag operator, and D(L)11, D(L)12, D(L)21 and D(L)22 are blocks of D(L)

with coefficient matrices of dimensions (k − r)× (k − r), (k − r)× r, r× (k − r), and r× r,

respectively. As highlighted by Gonzalo and Ng (2001), the number of structural shocks

must equal the number of variables in the system, so that D(L) is invertible. The difference

in the economic interpretation between (11) and (12) is the same as the well-known case

4More precisely, Hasbrouck’s (1995) IS measure for market m is defined as ISm =
(

[ψ′Q](m)

)2
/ψ′Ωψ

with m = 1, .., k, where ψ is the common row of Ψ(1), and Q is any factorization (usually the Cholesky
decomposition) of Ω, such that QQ′ = Ω, [ψ′Q](m) is the mth element of the row matrix [ψ′Q]. Variants

of the IS measure that cover the setting of cross-listed stocks are presented in Grammig et al. (2005) and
Fernandes and Scherrer (2018). The CS measure for market m is defined as CSm = α⊥,(m) with m = 1, .., k,
where α⊥,(m) denotes the m element of α⊥ and α⊥ is the orthogonal complement of the speed-of-adjustment

parameter α, such that α
′

⊥α = 0 and
∑k
m=1 α⊥,(m) = 1.
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of the structural versus reduced-form vector autoregressive models, with the former being

widely used for policy analysis in macroeconomics contexts (see Rubio-Ramı́rez et al. 2010

for a detailed discussion).

In the price discovery context, the structural VMA representation in (12) relates directly

to the solution of the partial price adjustment model in (8). First, because d0 is not an

identity matrix, the first (k − r) columns of d0 account for the instantaneous responses to

permanent shocks on prices and are therefore seen as measures of price discovery. Second, a

dynamic measure of price discovery is obtained by computing the accumulated responses over

n periods to an impulse in ηP
t . It answers how quickly permanent information is impounded

in the different markets and is computed as the first (k − r) columns of
∑n

i=0 di, where n is

arbitrarily fixed. Finally, as a by-product, D(1) =
∑∞

i=0 di gives the total accumulated effects

of impulses into the permanent and transitory innovations. Specifically, the first (k − r)

columns of D(1) reflect the long-run responses to shocks on the permanent innovations,

whereas the remaining r columns are expected to equal zero, because transitory innovations

should have no long-run impact on price levels. In that, the first (k − r) columns are useful

for inference on the structural parameters ρ and λ.

3.2 Identification strategy

The goal in this subsection is to recover ηt, d0, and D(1) from the parameters of the

reduced-form VEC model in (10). Moving from the reduced-form VMA to its structural

counterpart involves a series of identification restrictions that usually require prior knowledge

of the importance of each market, which might be difficult or perhaps questionable. One way

to partly overcome this issue is to consider assumptions regarding permanent and transitory

innovations (Gonzalo and Granger, 1995; and Gonzalo and Ng, 2001), as this strategy does

not require any prior judgement about the market’s importance. To this end, I adopt a

modification of the two-step orthogonalization procedure discussed in Gonzalo and Ng (2001).

The first step consists of identifying “unorthogonalized” permanent and transitory inno-
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vations from the reduced-form VMA representation of the VEC model in (11). Essentially,

the goal is to define a matrix that rotates ut and expresses ∆Pt as function of (k − r) per-

manent and r transitory innovations, rather than the market specific innovations. This step

is based on Gonzalo and Ng’s (2001) Proposition 1 (the P-T decomposition) and rotates ut

so that it can be decomposed into permanent, εPt , and transitory, εTt , innovations. Notably,

these shocks are still in their reduced form, meaning that they are not mutually uncorre-

lated. In turn, there exists a k × k matrix G, such that Gεt = εt = (εP ′
t , ε

T ′
t )′, where G must

be chosen such that εPt has a permanent effect on Pt, whereas the reduced-form transitory

innovations εTt have no long-term effects on the level or first difference of Pt. Gonzalo and

Ng (2001) achieve the P-T decomposition by defining the G matrix as G = (α⊥, β)′, where

α⊥ denotes the k × (k − r) orthogonal complement of α, such that α′⊥α = 0. Choosing

G = (α⊥, β)′ follows directly from the implications of the Granger representation theorem,

as α⊥ and β concern the non-stationary (permanent) and stationary (transitory) directions

of the process, respectively.5 There is, however, a caveat associated with Gonzalo and Ng’s

(2001) choice of matrix G when the number of cointegrating vectors exceeds one. If r > 1, the

way the cointegrating matrix β is normalized (e.g., triangular representation), plays a role,

meaning that G becomes order-variant and, consequently, the subsequent estimates of d0 and

D(1) also become order-variant. To overcome this issue, I adopt Warne’s (1993) alternative

specification of the r × k lower block of matrix G that is used to identify the reduced-form

transitory innovations. Specifically, replace β′ by α′Ω−1 and define G∗ = (α⊥, Ω−1α)
′
. Like-

wise β, α also “knocks out” the long-run effect to identify the transitory innovations in their

reduced form, meaning that the long-run effect of the reduced-form transitory innovations is

zero. The Monte Carlo exercises in the Appendix B show the advantages of using G∗ instead

5The Granger representation theorem decomposes the process Pt into I(1) and I(0) components. It reads

as follows: Pt = β⊥ [α′⊥ (Ik −
∑p
`=1 Γ`)β⊥]

−1
α′⊥
∑t
i=1 ui +B(L)ut +P0, where B(L)ut =

∑∞
i=0Biεt−i is an

I(0) process and P0 contains initial values.
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of G. It then follows that rotating the reduced-form VMA yields:

∆Pt = Ψ(L)ut = Ψ(L)G∗−1G∗ut = Υ(L)εt =

Υ(L)11 Υ(L)12

Υ(L)21 Υ(L)22


εPt

εTt

 , (13)

where Υ(L) = (Υ0 + Υ1L+ Υ2L
2 + ...) is an infinite lag operator with Υ(L) = Ψ(L)G∗−1,

εt = G∗ut, with εt = (εP ′
t , ε

T ′
t )′, and εPt and εTt have dimensions (k − r) × 1 and r × 1,

respectively. As a direct implication of the P-T decomposition in (13), the long-run effect

of an impulse in εTt must be zero, meaning that Υ(1)12 = 0(k−r)×r and Υ(1)22 = 0r×r.
6

Proposition 2 formalizes this result.

Proposition 2 (The P-T decomposition). Let Pt be a k×1 vector of I(1) variables that sat-

isfy a VEC(p) representation as in equation (10) with r cointegrating vectors and a VMA(∞)

representation as in equation (11). Let G∗ =

 α′⊥

α′Ω−1

. Then, Υ(1) =

(
Υ(1)(k−r), Υ(1)r

)
=

(
β⊥ (α′⊥Γ(1)β⊥)−1 , 0k×r

)
, εPt = α′⊥ut, and εTt = α′Ω−1ut, where Υ(1)(k−r) =

Υ(1)11

Υ(1)21


and Υ(1)r =

Υ(1)12

Υ(1)22

 are k × (k − r) and k × r matrices, respectively, and Γ(1) =

Ik −
∑p

`=1 Γ`.

The proof of Proposition 2 is given in Appendix A. Furthermore, it is possible to express

Υ(1)(k−r), the matrix collecting the total effect of an impulse in εPt to market prices, as a

function of the orthogonal complement of the cointegrating matrix β. Denote the k× (k−r)

orthogonal complement of β as β⊥ and note that β⊥ satisfies β′β⊥ = 0r×(k−r). Because

α⊥ and β⊥ are not unique, they remain orthogonal to α and β, respectively, up to any

rotation. It then follows that (α′⊥Γ(1)β⊥)−1 α′⊥ remains orthogonal to α, as (α′⊥Γ(1)β⊥)−1

6It is important to note that, differently from β′Pt, α
′Ω−1Pt is not a stationary process. Proposition 2

shows that the stationarity of α′Ω−1Pt is not needed and setting εTt = α′Ω−1ut yields a useful definition of
the reduced-form transitory shock as it guarantees Υ(1)12 = 0(k−r)×r and Υ(1)22 = 0r×r via Ψ(1)α = 0.
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simply rotates α⊥. In view of the partial price adjustment model discussed in Section 2,

the two natural cointegrating vectors are β1 = (1,−1, 0,−1)′ and β2 = (0, 0, 1,−1)′, with

β = (β1, β2). These cointegrating vectors determine a 4 × 2 orthogonal complement given

by:

β⊥ =



1 0

0 1

1 −1

1 −1


. (14)

This means that an estimate of α⊥ can be obtained from the the first two rows of Ψ(1)′,

which in turn can be easily computed by dynamic simulation, (see, for instance, Hamilton

1994, pp. 318-323). The total-effect matrix reads:

Υ(1) =

Υ(1)11 Υ(1)12

Υ(1)21 Υ(1)22

 =



1 0 0 0

0 1 0 0

1 −1 0 0

1 −1 0 0


. (15)

Implementing the P-T decomposition via the G∗ matrix brings an additional advantage:

it imposes a block structure on the variance of εt, meaning that Cov
(
εP,t, ε

T

′,t

)
= 0 for all

 = 1, .., (k − r) and ′ = 1, .., r. Specifically, the variance of εt is as follows:

Ξ = E (εtε
′
t) = G∗ΩG∗′ =

 Ξ11 0(k−r)×r

0r×(k−r) Ξ22

 , (16)

where Ξ11 = E (εPt ε
P ′
t ) denotes a (k−r)× (k−r) covariance matrix of permanent innovations

in their reduced form and Ξ22 = E (εTt ε
T ′
t ) is the r× r covariance matrix of the reduced-form

transitory innovations. Because Ξ11 and Ξ22 are not diagonal matrices, a second step is

necessary to uncover a structural VMA process as in (12): the P-P and T-T decompositions.

This second step seeks a transformation from εt and Υ(L) to ηt and D(L), respectively. It

14



fundamentally means to define a k×k matrix H, such that D(L) = Υ(L)H and ηt = H−1εt.

As highlighted in the Gonzalo and Ng’s (2001) practical rule, this is essentially tantamount

to solving the following equality:

Ξ = HΣηH
′, (17)

where Ση = E (ηtη
′
t) is the k×k covariance (symmetric) matrix of the structural innovations

and H is a k× k matrix of unknowns. From (17), it is immediate that Ξ renders k(k+ 1)/2

equations to solve for k2 + k(k + 1)/2 unknowns, meaning that is necessary to impose k2

further restrictions to achieve an exact identification. For illustrative purposes, consider the

baseline partial price adjustment model introduced in Section 2 that consists of an asset

traded on the home market, the exchange rate, and the same asset traded on two foreign

markets (i.e., k = 4). In this case, Ξ contains k(k + 1)/2 = 10 equations to solve for

k2 + k(k + 1)/2 = 26 unknowns in HΣηH
′, which implies that k2 = 16 restrictions must be

imposed on H and Ση to achieve an exact identification. Gonzalo and Ng (2001) achieve

this goal by assuming that Ση equals an identity matrix (k(k+ 1)/2 restrictions) and H = F

(k(k − 1)/2 restrictions), where F is the Cholesky decomposition of Ξ, such that Ξ = FF ′.

Again, considering the baseline partial price adjustment model with k = 4, setting Ση = Ik=4

and H = F add k(k+1)/2 = 10 and k(k−1)/2 = 6 restrictions, respectively, which amounts

to the required 16 restrictions. It then follows that Ξ = FIkF
′, meaning that:

∆Pt = Υ(L)FF−1εt =

D(L)11 D(L)12

D(L)21 D(L)22


ηP

t

ηT
t

 , (18)

ηt = F−1εt, D(L) = Υ(L)F , and D(1) = Υ(1)F , with D(1)12 = 0(k−r)×r and D(1)22 = 0r×r.

There is a caveat associated with choosing F as a lower triangular matrix. Apart from

the usual limitation that the ordering of the variables matters, setting F as a lower triangular

matrix also restricts the correlation between the common factors. To see this limitation more

clearly, assume k = 4 and r = 2, i.e., the price system is driven by two stochastic trends
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(common factors). From Proposition 1, the off-diagonal elements of the 2×2 upper left-hand

block of D̆(1) give the structural parameters ρ and λ and hence the correlation between the

common factors. Using the Gonzalo and Ng’s (2001) identification strategy, D(1) = Υ(1)F

reads as follows:

D(1) =



1 0 0 0

0 1 0 0

1 −1 0 0

1 −1 0 0





F(1,1) 0 0 0

F(2,1) F(2,2) 0 0

F(3,1) F(3,2) F(3,3) 0

F(4,1) F(4,2) F(4,3) F(4,4)


=



F(1,1) 0 0 0

F(2,1) F(2,2) 0 0

F(1,1) − F(2,1) −F(2,2) 0 0

F(1,1) − F(2,1) −F(2,2) 0 0


. (19)

It is possible to further rotate F so that the diagonal elements of D(1)11 are equal to ones

and, hence, matches D̆(1) in Proposition 1. Define ΦF as a diagonal matrix containing the

diagonal entries of F . It then follows that ∆Pt = D(L)Φ−1
F ΦFηt, with D̆(1) = D(L)Φ−1

F and

η̆t = ΦFηt.
7 The long-run impact matrix D̆(1) is then:

D̆(1) =



1 0 0 0

ξ21/ξ11 1 0 0

1− ξ21/ξ11 −1 0 0

1− ξ21/ξ11 −1 0 0


, (20)

where ξ21 is the off-diagonal element of Ξ11, i.e., the covariance between the reduced-form

permanent innovations, Cov
(
εP1,t, ε

P
2,t

)
, and ξ11 is the first diagonal element of Ξ11, namely

Var (ε1,t). Finally, if F is a lower triangular matrix, then F(1,2) = 0, which amounts to

a zero restriction on the dynamics between the common factors: D(1)(1,2) = 0 and hence

ρ = 0. Restricting either λ or ρ to zero is an inevitable outcome when applying the Cholesky

decomposition (or any other lower triangular matrix). This result remains true regardless of

7Setting FΦ−1F coincides with the factorization adopted in Yan and Zivot (2010). Specifically, they
factorize Ξ as Ξ = BCB′, where B plays the role of H and it is defined as a lower triangular matrix with
ones in its main diagonal (k(k + 1)/2 restrictions), and Ση = C, where C is a diagonal covariance matrix
with unknown positive entries (k(k− 1)/2 restrictions). As B is a lower triangular matrix, this factorization
imposes the same restrictions to those in Gonzalo and Ng (2001).
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the ordering of variables.

To address this issue, I propose an alternative identification strategy that replaces the

usual Cholesky decomposition with the more flexible spectral decomposition. The use of

the spectral decomposition is not new in the price discovery literature, with Fernandes and

Scherrer (2018) making use of this decomposition to achieve order-invariant IS measures.

However they do not attempt to identify the structural innovations and simply apply the

spectral decomposition directly to Ω. In this paper, the spectral decomposition is used

on Gonzalo and Ng’s (2001) second step; hence its main motivation is to uncover the or-

thogonalized permanent and transitory innovations. Moreover, the spectral decomposition

identifies D(L) and ηt without restricting the correlation between the common factors to

zero, enabling inference on the impact of the exchange rate on firm value.

The spectral decomposition usually places restrictions that are not obvious or of easy

economic interpretation. Fortunately, that is different in the cross-listed price discovery

setting, meaning that these restrictions are neatly and easily traceable. Specifically, this

novel identification procedure lifts zero restrictions from the (k − r)× (k − r) top-left block

of H that relates to the permanent innovations. Considering my price discovery setting, it

places only a cross-element restriction based on the off-diagonal elements and a restriction

on the diagonal elements of this block, while all the remaining restrictions are placed on the

elements of H that concern the transitory innovations.

The identification procedure works as follows. Let S̃ be the spectral decomposition of

Ξ̃ = ΞΘ−1, such that Ξ̃ = S̃S̃ and Θ is a diagonal matrix containing the diagonal entries of

Ξ.8 From the properties of S̃, it follows that one can rewrite Ξ as:9

Ξ = S̃S̃Θ = S̃ΘS̃ ′. (21)

It is evident that the last equality in (21) resembles the elements in (17), meaning that S̃ and

8S̃ is defined as S̃ = V Λ1/2V −1, where Λ is a diagonal matrix with the eigenvalues of Ξ̃ and the columns
of the k × k matrix V are the corresponding eigenvectors.

9The proof of this equality is presented in Appendix A.3.
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Θ play the role of H and Ση, respectively. Because S̃ is an exactly identified factorization of

Ξ̃ and Ξ̃ has the same number of linearly independent equations as Ξ (k(k+1)/2 equations),

it follows that S̃ contains k(k + 1)/2 unknowns and k(k − 1)/2 restrictions.

This first set of restrictions simply impose the desirable property that transitory inno-

vations should have no permanent effect on Pt (i.e., the last r columns of D(1) are equal to

zero). Because Ξ is a block diagonal matrix, Ξ̃ remains block diagonal. It then follows that

the spectral decomposition places r(k − r) zero restrictions on the off-diagonal upper block

of S̃,

S̃ =

 S̃11 0(k−r)×r

S̃21 S̃22

 , (22)

where S̃11 is a (k−r)×(k−r) block associated with the permanent innovations, S̃22 is a r×r

block that relates to the transitory innovations, and S̃21 is a r× (k− r) matrix summarizing

the dynamics between permanent and transitory innovations. Setting S̃12 = 0(k−r)×r also

matches Gonzalo and Ng’s (2001) requirement that H must be lower block triangular.10

It is still necessary to unveil (k − r)(k − r − 1)/2 restrictions on S̃11 and r(r − 1)/2

restrictions on S̃22.11 In the case of two stochastic trends (efficient price and exchange rate),

r = k− 2, meaning that the upper block S̃11 is a 2× 2 matrix and (k− r)(k− r− 1)/2 = 1.

The spectral decomposition sets S̃11 (1,1) = S̃11 (2,2). In turn, the identification strategy put

forward in this section removes a zero restriction from the relationship between permanent

innovations in their reduced form to a normalization assumption on the diagonal elements.

Finally, the remaining r(r − 1)/2 restrictions are placed on the S̃22 block, which are due to

the transitory innovations and hence do not carry significance importance to our analysis, as

the last r columns of D(1) are restricted to be zero (transitory shocks cannot have permanent

effects on Pt). Again, in the case of k = 4 with r = 2, then r(r − 1)/2 = 1, which forces

10See detailed derivation of S̃ in Appendix A.3.
11As noted in Gonzalo and Ng’s (2001) the (k − r)(k − r − 1)/2 restrictions on S̃11 are necessary to

orthogonalize εPt .
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S̃22 (1,1) = S̃22(2,2). In sum, the D(1) = Υ(1)S̃ reads as follows:

D(1) =



1 0 0 0

0 1 0 0

1 −1 0 0

1 −1 0 0





S̃(1,1) S̃(1,2) 0 0

S̃(2,1) S̃(1,1) 0 0

S̃(3,1) S̃(3,2) S̃(3,3) S̃(3,4)

S̃(4,1) S̃(4,2) S̃(4,3) S̃(3,3)


,

D(1) =



S̃(1,1) S̃(1,2) 0 0

S̃(2,1) S̃(1,1) 0 0

S̃(1,1) − S̃(2,1) S̃(1,2) − S̃(1,1) 0 0

S̃(1,1) − S̃(2,1) S̃(1,2) − S̃(1,1) 0 0


. (23)

It is still possible to move one step further and express S̃(2,1) and S̃(1,2) in terms of the

elements of Ξ11 = E (εPt ε
P ′
t ). By manipulating the elements of S̃11 in (A.26) (Appendix A.3),

it follows that:

S̃(2,1) =
ξ21
ξ11

(
2S̃(1,1)

)−1

and S̃(1,2) =
ξ21
ξ22

(
2S̃(1,1)

)−1

, (24)

where ξ21 is the off-diagonal element of Ξ11, i.e., Cov
(
εP1,t, ε

P
2,t

)
; and ξ11 and ξ22 are the diag-

onal elements of Ξ11, i.e., Var
(
εP1,t
)

and Var
(
εP2,t
)
, respectively. In turn, the spectral-based

identification strategy neatly divides the covariance between the reduced-form permanent

innovations over the structural shocks. This can ultimately be seen as a cross-element re-

striction that rules out either S̃(2,1) or S̃(1,2) being equal to zero. In fact, S̃(2,1) = S̃(1,2) = 0

only if ξ21 = 0. Differently, the Cholesky-based identification sets F(1,2) to zero and assigns

the covariance between the reduced-form permanent innovations to only F(2,1) (scaled by the

variance of εP1,t).
12

12I thank the anonymous referee for highlighting this point and pointing out that the restrictions imposed
by the spectral decomposition are reminiscent of an alternative definition of Hasbrouck’s (1995) IS measure
with one permanent component only. This IS variant equally distributes the covariance between the VEC
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The complete two-step identification procedure (the P-T and P-P and T-T decompo-

sitions) that gives the relationship between (11) and (12) can be summarized as follows:

∆Pt = Ψ(L)ut = Ψ(L)G∗−1S̃S̃−1G∗ut = Υ(L)S̃S̃−1εt = D(L)ηt, (25)

where D(L) = Ψ(L)G∗−1S̃, d0 = G∗−1S̃, D(1) = Ψ(1)G∗−1S̃, and ηt = S̃−1εt = S̃−1G∗ut. In

view of Proposition 1, it is possible to directly infer ρ and λ from the estimates of D(1) in

(23). It is straightforward to see that one can further rotate S̃ so that the diagonal elements

of the rotated D(1)11 are equal to ones and, hence, matches D̆(1) in Proposition 1. First,

note from (25) that ∆Pt = D(L)ηt. Define ΦS̃ as a diagonal matrix containing the diagonal

entries of the top-left block S̃11 and ones on the remaining r elements. It then follows that

∆Pt = D(L)Φ−1
S̃

ΦS̃ηt, such that:

D̆(1) = Υ(1)S̃Φ−1
S̃

= D(1)Φ−1
S̃
, (26)

with ρ = D̆(1)(1,2) and λ = D̆(1)(2,1). Finally, using a Monte Carlo simulation, I show that

the identification strategy put forward in this section achieves the best finite sample results

(see the discussion in the Appendix B).

To conclude, the novel identification strategy allows innovations from a given common

factor to have a permanent impact on any other common factor, as opposed to the iden-

tification strategies used in Gonzalo and Ng (2001) and Yan and Zivot (2010), which rule

out this possibility. Furthermore, the estimation method proposed here provides an exact

identification for matrices d0 and D(1).

innovations over the markets. Specifically, for k = 2, it reads as follows:

ISm =
ψ2
mω

2
1 + ψ1ψ2ω12

ψ′Ωψ
,

where ψm and ω2
m denote the mth element of the 1 × 2 vector ψ and the mth diagonal element of Ω,

respectively, ω12 is the off-diagonal element of Ω, and m = 1, 2.
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4 Brazilian cross-listing: exchange rate and price dis-

covery

4.1 Institutional background

B3 - Brasil Bolsa Balcão, formerly BM&FBovespa, is the Brazilian stock exchange and

the leading exchange in Latin America. B3 is one of the world’s largest financial market

infrastructure companies, providing trading services in an exchange and OTC environment.

Brazilian cross-listed companies are traded and listed in B3 and in the U.S. market through

the ADR program. I use a 23-month tick-by-tick dataset of Brazilian blue-chip companies

spanning from December 2007 to November 2009. The dataset consists of transaction prices

recorded at three trading venues, namely, B3, NYSE, and ARCA, and the exchange rate.

Among the Brazilian firms cross-listed in the U.S., I chose those that are very liquid in

the markets considered in this study to avoid losing information during the aggregation

process between a very liquid venue and an illiquid one. Additionally, these firms are from

a variety of industries, so the results are not sector- or industry-specific. The firms are

Ambev (beverage), BR Telecom (telecommunication), Bradesco (finance), Gerdau (steel),

Vale (mining), and Petrobras (oil). Apart from BR Telecom, they are all part of the B3

benchmark market index (IBOVESPA). Preferred shares of Vale and Petrobras are the most

heavily traded shares on the Brazilian exchange, with Gerdau and Bradesco among the top

15.

In view of the price discovery literature, the use of high-frequency data from Brazil

provides two distinct advantages. First, in stark contrast to the European markets, the

trading hours of the U.S. and Brazilian exchanges overlap for six and a half hours during

most of the year. Hence, very little information is left out of the analysis, which considerably

strengthens the price discovery analysis. Second, Brazilian companies are very liquid in the

U.S. market, sometimes exhibiting more trading activity in the U.S. than they do in Brazil.

In fact, some Brazilian firms are among the top 10 most liquid ADR programs and are top
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volume and value movers. Furthermore, there was an increase of 20% in investors’ positions

in ADRs from Brazilian companies from 2008 to 2010 (which includes the sample period).

As of February 2018, the ADRs on Vale and Petrobras are ranked 9th and 15th, respectively,

as the NYSE’s most active stocks.

The use of a high-frequency dataset is crucial to the price discovery analysis because

it provides a timely incorporation of new information in each market (see, for instance,

the discussion in Grammig et al. 2005 and references therein). However, two important

preliminary steps must be implemented when handling a tick-by-tick database. The first step

consists of cleaning the data from entries that do not correspond to plausible market activity.

As a cleaning filter, I deploy the algorithm proposed by Brownlees and Gallo (2006).13 The

second step relates to aggregating the non-synchronous high-frequency price series. The

rise of algorithmic trading, along with the fact that markets operate at fast time frames

(see, among others, O’Hara 2015; and Hasbrouck 2019), I sample at the 5-second frequency

for all stocks but Ambev and BR Telecom, which are fixed to 15- and 30-second sampling

intervals, respectively. This choice is driven by a tradeoff between sampling at a high enough

frequency to estimate the instantaneous effects, d0, and the impulse response functions, but

low enough to have sufficiently many transactions to avoid biasing these estimates due to a

high number of consecutive zero returns. As a robustness check, I also present results for

alternative frequencies: 15-, 30-, 60-, and 120-second sampling intervals.

4.2 Discussion of Results

Currently, many firms list their shares on more than one exchange. Studies on the topic

focus mainly on understanding the effects of cross-listing (see, among others, Stulz 1999;

Doidge et al. 2004; and Doidge 2004). With cross-listing as a typical strategy for compa-

nies, geographical price discovery is of major interest to stock exchanges and firms (Eun

and Sabherwal 2003). Therefore, the main research question encompasses the geographi-

13See Table S.1 in the Online Appendix for the cleaning details.

22



cal price discovery of both stock prices and the exchange rate. Specifically, two important

questions are relevant in this context: What market moves first and, hence, whether the

domestic market is more important than any foreign market, and how fast innovations in

the efficient exchange rate and firm value are impounded in market prices. Additionally, as

a by-product of the flexible identification strategy discussed in the previous section, assess-

ment on the net feedback effect of exchange rate innovations on firm value is possible. It is

important to highlight that the usual reduced-form price discovery measures (the IS and CS

measures) are unable to clearly answer these questions, as both measures are proportional to

the markets’ instantaneous responses to the structural transitory innovations (see detailed

discussion in Yan and Zivot (2010)). In contrast, the structural setting neatly answers all of

these questions, as the identification strategy discussed in Subsection 3.2 successfully isolates

the permanent innovations from the transitory.

The identification of two permanent innovations (the efficient exchange rate and firm

value) requires at least three time series that cointegrate. I consider transaction prices from

four markets, k = 4: the exchange rate (Brazilian reais/U.S. dollars), shares traded on the

Brazilian market (B3), NYSE, and ARCA.14 Shares traded on the B3 are quoted in Brazilian

reais (R$), while shares traded on the NYSE and ARCA are expressed in U.S. dollars (USD).

Prices on the B3, NYSE, and ARCA and the exchange rate (R$/USD) are expected to cointe-

grate, and the results from Johansen’s tests indeed confirm the existence of two cointegrating

vectors, r = 2. The two cointegrating vectors yield two common factors: the efficient ex-

change rate and the efficient price of the firm. In turn, two linear combinations of the price

series should render stationary processes (deviations from the long-run equilibrium), and es-

timates of the cointegrating vector depict the expected pattern: (0, 0, NY SE,−ARCA) and

(B3,−ExRate, 0,−ARCA).15 Setting r = 2, the free parameters of the VEC model are es-

timated individually for each firm using the full-information maximum likelihood (FIML).16

14For Vale, there are three markets.
15The Online Appendix contains the results of the maximum eigenvalue and trace tests. It also contains

the full set of estimates for the cointegrating vectors.
16See Johansen (1988, 1991) and Hamilton (1994). Details on model specifications and diagnostic tests
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Based on the parameter estimates of the reduced-form VEC model, estimates of d0, the

impulse response function
∑n

i=0 di, and D(1) are computed using the identification strategy

discussed in Section 3.2, and their corresponding standard errors are computed using the

parametric bootstrap.

4.2.1 Markets’ importance

Table 1 displays the estimates of the contemporaneous and total responses to an impulse

in the permanent innovation associated with the efficient price, ηm
t . Specifically, Panel A

presents the estimates of the column of d0 that relate to the instantaneous response to ηm
t ,

whereas Panel B reports the estimates of D(1) associated with ηm
t (first column of D(1)).

Overall, there is strong evidence that the instantaneous responses are not only different

across trading venues, but also different from the estimates of D(1). The latter finding

confirms the role played by the partial adjustment parameters γ̇i and γi in the structural

model, as these parameters essentially account for the speed of the price discovery process.

Generally, the NYSE instantaneously assimilates a greater proportion of an innovation in the

efficient price. Considering the highly liquid stocks that are sampled at the 5-second interval,

I find that for a 1% change in the efficient price, the B3 and NYSE respond by absorbing

0.81% and 0.90% of this change within the 5-second interval, respectively (average across

stocks). The size of the bootstrap standard errors confirms the statistical significance of

these estimates. Regarding the less liquid Ambev and BR Telecom firms, the home market

appears to respond to changes in the efficient price more quickly, as B3 instantaneously

assimilates a higher proportion of a price change in the efficient price. Therefore, the results

suggest that the U.S. market is the most important market for the price discovery processes

of highly liquid cross-listed Brazilian firms. A variety of reasons (e.g., the type of platform,

variety in the group of investors, the supply of other assets, and transaction fees) may explain

are in the Online Appendix. In particular, results of the Breusch Godfrey Lagrange multiplier test for the
autocorrelation of the residuals indicates that the model is well specified, as we cannot reject the null of no
serial correlation in all instances.
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the greater importance attributed to the U.S. market, but the main reason is its dominance

as one of the largest and most liquid global markets. In contrast, Grammig et al. (2005)

find the home market to be more important than the U.S. market for German cross-listed

stocks. Eun and Sabherwal (2003) document that U.S. market prices generally adjust more

to the Canadian stock exchange than vice versa, although the U.S. market is also dominant

for many firms in their sample. Brazil’s status as a less-developed country (compared to

Germany and Canada) may contribute to the differences in these results. Pulatkonak and

Sofianos (1999) indeed show that being a developed market reduces the U.S. market share

of cross-listed stocks by 30% when compared to that in emerging markets.

The second price discovery measure consists of evaluating the accumulated impulse re-

sponse functions from impulses to the structural innovations. Accumulated impulse response

functions are used to assess the speed with which markets impound information from the

efficient prices. This price discovery metric stems directly from the structural approach, as

constructing such an analysis using non-orthogonal market innovations would result in im-

pulse response functions that are also functions of transitory innovations. Figure 1 presents

the results for Gerdau (the results for the remaining firms appear in the Online Appendix).

Most information processing takes place in the first minute, although there are minor ad-

justments afterwards. This result is robust across the highly liquid companies, with very

small variations. Specifically, the B3 and NYSE incorporate 79% and 89%, respectively, of a

unit shock in ηm
t within the first 15 seconds. The proportion of information impounded into

market prices increases to 90% and 98% for B3 and NYSE, respectively, at the 45-second

interval. This result suggests that while markets operate at increasing time frames, it still

takes up to a minute for changes in the permanent innovations be fully incorporated into

market prices.

Finally, the upper right panel of Table 1 displays the estimates of D(1) related to the

total effect of the efficient price innovation on transaction prices. The total impact is higher

than the initial shock (average across stocks of 0.07%), reflecting an eventual feedback effect
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between the exchange rate and the efficient price of the firm.

Taking Proposition 1 and equation (26) in Subsection 3.2 into consideration, an estimate

of λ can be directly inferred from rotating D(1): ρ̂ =
[
D̂(1)Φ̂−1

S̃

]
(2,1)

, where D̂(1) denotes

the estimate of D(1) and Φ̂S̃ is a diagonal matrix containing the diagonal entries of D̂(1)11

and ones in the remaining two elements. First, the results suggest that treating λ as a free

parameter is supported by the data, as its estimates are significantly different from zero

across firms. Second, estimates of λ are negative and fairly stable,ranging from -0.07 to

-0.10, suggesting that λ may reflect a systematic component of ηm
t . A negative λ indicates

that positive innovations on ηm
t cause an appreciation in the exchange rate. This finding is

consistent with the idea that upward movements in the Brazilian stock market (coming from

overall good news in the economy) lead to a significant inflow of foreign currency, which

increases the exchange rate. This is also consistent with the Bekaert et al.’s (2011) idea

that emerging markets present a higher degree of market segmentation and investment in

equities that is not independent from local currency movements, mainly because many of

these countries’ economies rely on commodities.

4.2.2 Exchange rate price discovery

The methodology in this paper delivers three measures regarding the exchange rate. The

first one is the instantaneous adjustment of equity prices, given an exchange rate shock.

This is an immediate attempt to keep the link between domestic and foreign prices and the

exchange rate and therefore is a measure of the price discovery of the exchange rate. The

second one captures the speed of adjustment (impulse response function), while the third is

related to the net feedback effect of exchange rate innovations on the intrinsic value of the

firm.

With respect to the price discovery of the exchange rate, as the results in the previous

section show, the U.S. market is the fastest in incorporating news on equity value, so a simi-

lar pattern for the exchange rate can be expected. The results in Panel C of Table 1 display
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higher parameters in absolute value for ARCA and NYSE when compared to B3. Considering

the innovation in the exchange rate (R$/USD), prices at the NYSE usually receive the most

adjustment. Therefore, the results indeed show that U.S. prices adjust instantaneously to a

change in the exchange rate to maintain the equilibrium. I also document an instantaneous

overshooting of the observed exchange rate once an efficient exchange rate innovation occurs.

The observed exchange rate has an average instantaneous impact that is 78% higher than

the shock, and this behavior occurs for all stocks. Intuitively, the overshooting could signal

the existence of herd behaviour during turbulent periods. Indeed, the Brazilian currency de-

preciated 49% over 90 days in mid-July 2008 and early October 2008 and partially recovered

a few months later. Analyzing the accumulated impulse response functions (Figure 1), sim-

ilar to the efficient price case, markets take approximately one minute to incorporate all the

information from the exchange rate. Interestingly, B3 presents a rather different dynamic,

with the accumulated effect starting positive and then turning negative after approximately

30 seconds. It finally reaches 98% of the total effect after one minute from the initial shock.

Regarding NYSE and ARCA, they incorporate 70% and 42% of the total effect from a unit

impulse in ηe
t , respectively, within the first 15 seconds. These proportions increase to 86%

and 51% for NYSE and ARCA, respectively, for a 30-second interval.

Panel D in Table 1 displays the estimates of the second column of matrix D(1), regarding

the total effect of the exchange rate innovation on transaction prices. As a direct implication

from the identification strategy discussed in Subsection 3.2, the elements of D(1) that relate

to the structural parameter ρ in the theoretical model in (1) are now treated as free param-

eters in the structural VEC model. Thus, it becomes possible to assess the exchange rate

effect to the efficient price. All parameters are negative for the Brazilian and U.S. markets

(for the U.S., it is approximately the same value as the Brazilian value plus one unit (all

negative), where −1 is the result of the non-arbitrage adjustment). These results suggest

that a depreciation in the home currency is associated with a significant net decrease in firm

value. For instance, for Gerdau, a 1% innovation in the exchange rate indicates an effect
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of −0.51% on the home asset price and an effect of −1.49% on the foreign market (−1%

from the non-arbitrage adjustment). This finding holds for all companies, regardless of how

liquid their stocks are. In Proposition 1 and equation (26), an estimate of ρ can be directly

inferred from rotating D(1): ρ̂ =
[
D̂(1)Φ̂−1

S̃

]
(1,2)

. These estimates of ρ are highly significant

and range from -0.20 to -0.52.

The absence of a total integrated market may explain such behavior. Bekaert and Har-

vey (1995), for instance, model gradual changes in market integration and find that many

emerging markets present time-varying integration with world equity markets. In the con-

text where countries present a certain degree of market segmentation, local factors may play

a role in equity price determination. Bekaert et al. (2011) quantify market segmentation

by constructing a measure that is the difference between portfolio yields of industries val-

ued locally and globally. As the difference in yields increases, market segmentation also

increases. Interestingly, the authors show that the level of equity market segmentation is

still meaningful for many emerging markets. In particular, Brazil presents an average degree

of segmentation of 5% between 2001 and 2005, above the emerging market average of 4.3%.

Bekaert and Harvey (2017) show that equity returns and the Brazilian currency changes

(USD/R$) correlate at 0.5, which is well above the average for the emerging market sample

they consider (0.3). Considering these factors, the suggestion of a decrease in equity prices

may be a sign that investors require a higher risk premium to invest in the Brazilian equity

market.

4.3 Robustness

Data synchronization and the choice of aggregation frequency are typically a concern

when dealing with multivariate high-frequency price series. My sampling frequency must

account for market liquidity and the presence of microstructure noise. While sampling

at lower frequencies balances out the effect of market microstructure noise, it may also

exclude valuable information from the analysis. In this subsection, I examine the robustness
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of the instantaneous and total effects results presented in subsection 4.2. Therefore, the

first robustness exercise consists of estimating the parameters with alternative frequencies.

Because estimates of D(1) account for the total effect of the structural innovations on the

observed returns, they should be stable across the different intra-day sampling frequencies.

By contrast, the estimates of d0 (instantaneous effects) should reflect changes that occur

within the sampling interval and should thus differ across the different frequencies. However,

because information processing occurs within a couple of minutes, one should expect the

estimates of d0 to approach those estimates of D(1) as the sampling interval increases.

Tables 2 and 3 provide the results for the estimates of d0 and D(1), respectively.

Regarding the estimates of D(1), they are indeed remarkably stable across the different

sampling frequencies, indicating that alternative intra-day sampling frequencies do not play

a significant role when estimating the total effect of the permanent innovations on the market

prices; therefore, these results are robust to alternative intra-day sampling frequencies. As

predicted, the estimates of d0 are not constant across the different sampling frequencies, but

the gap between d0 and D(1) estimates becomes narrower as the sampling intervals increase.

This finding reinforces the dependence of price discovery measures on the sampling frequency

and, in turn, the importance of using high-frequency data for inference on the instantaneous

reaction of markets to permanent innovations. Finally, note that the estimates of d0 at the

alternative sampling frequencies match the accumulated impulse response functions from my

baseline sampling interval.

The last robustness exercise consists of implementing the Cholesky-based identification

strategy discussed in Subsection 3.2. Recall that the Cholesky decomposition sets F(1,2) = 0,

meaning that the long-run effect of an impulse on the first permanent innovation to the first

variable of the k × 1 vector of market prices is restricted to zero. In turn, the estimation

results are now order variant, which implies that the ordering of the variables in the Pt

vector is important. The Cholesky-based approach sets either λ or ρ to zero in (9). Choosing

λ = 0 may be the least stringent restriction between the two alternatives. In order to set
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λ = 0, the ordering of variables in the Pt vector should change to Pt =
(
wt, p1,t, p

∗
3,t, p

∗
4,t

)′
.

Consequently, the two natural cointegrating vectors also need to change, and they now

read β1 = (−1, 1, 0,−1)′ and β2 = (0, 0, 1,−1)′, with β = (β1, β2). In turn, the orthogonal

complement of β and the total-effect matrix D̆(1) obtained with the Cholesky decomposition

read as follows:

β⊥ =



1 0

0 1

−1 1

−1 1


and D̆(1) =



1 0 0 0

F(2,1)/F(1,1) 1 0 0

F(2,1)/F(1,1) − 1 1 0 0

F(2,1)/F(1,1) − 1 1 0 0


, (27)

where F(1,1) and F(2,1) are elements of the Cholesky decomposition of Ξ that is now computed

from prices ordered as Pt =
(
wt, p1,t, p

∗
3,t, p

∗
4,t

)′
.17 Table 4 reports the results for both instan-

taneous and total-effect matrices. Notably, I rearrange the entries in Table 4 so the layout is

comparable to Table 1. Overall, there is a significant difference between instantaneous and

total responses to impulses in the permanent innovations, confirming the role played by the

partial adjustment parameters in the structural model; the U.S. market remains generally

the fastest in incorporating news, but the B3 gains more importance compared to the main

set of results; estimates of the total-effect of an impulse in ηm
t to observed asset prices and

the exchange rate are restricted as in (27), opposite to those results in Table 1; estimates

of ρ are larger in magnitude than the ones obtained with the spectral decomposition, as

they now range from −0.42 to −1.00 compared to −0.20 to −0.52 in the main set of results

displayed in Table 1; and, most importantly, the net positive relationship between the value

of the domestic currency and the firm’s value remains valid.

Finally, it is also informative to decompose the long-run variance of market prices and

the observed exchange rate into components accounted for by innovations in the efficient

17It is important to note that F(1,1) and F(2,1) are not the same numbers as those in (19), as the elements
in Ξ adjust to the changes in the ordering of the variables in Pt. Furthermore, it is noteworthy that β⊥ also
changes to reflect the change in the cointegrating vectors, which stem from the alternative ordering of the
variables in Pt.
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price and efficient exchange rate. For instance, the long-run variance decomposition of share

prices traded on B3 is defined as the long-run variance proportions of B3 accounted for by ηm
t

and ηe
t innovations. Notably, the long-run variance proportions of B3 accounted for by the

transitory innovations must be zero, which implies that long-run variance decompositions

for ηm
t and ηe

t must sum to one. Table 5 displays the long-run variance decomposition of

the market prices and exchange rate system with relative contributions of the permanent

shocks ηm
t and ηe

t . Additionally, the last rows in each of the panels report the estimates of the

standard deviation, denoted by ς, ηm
t , and ηe

t . The upper and lower panels refer to spectral-

and Cholesky-based identification schemes, respectively. First, the standard deviation of ηe
t

is the same under the two identification strategies. Furthermore, the difference between the

estimates of the standard deviation of ηm
t are usually small and not significant. These results

indicate that any significant difference in terms of the long-run variance decomposition of

market prices follows from the estimates of D̆(L). Second, in line with the larger estimates

of ρ obtained from the Cholesky-based identification strategy, it is reassuring to observe that

the proportions of the total variance of market prices that are due to the innovations in the

efficient exchange rate ηe
t are also larger in this identification setting than those from the

spectral-based identification. In that, by restricting λ = 0, the Cholesky-based decomposi-

tion strategy assigns the covariance between the reduced form permanent innovations to ρ,

which ultimately increases the relative importance of ηe
t into the long-run variance of market

prices.

5 Conclusion

I investigate the price discovery of equity and the exchange rate for Brazilian cross-listed

companies. A structural VEC framework is used to disentangle informational from frictional

innovations so that dynamic price discovery measures can be constructed solely as a function

of the innovations on the efficient price and exchange rate. I methodologically propose a novel
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identification strategy that allows correlation among common factors (i.e, the efficient price

and efficient exchange rate).

I show that information processing may take time because there is a significant difference

in what home and foreign markets can assimilate instantaneously and one minute later. I

document that the U.S. market is, in general, the most efficient market for instantaneously

incorporating shocks as compared as to B3, which might be linked to Brazil’s emerging

market position.

Additionally, the results suggest that a depreciation/appreciation of the home currency

is associated with a decrease/increase in firm value. These results are homogenous across

firms and may reflect a certain level of segmentation in the Brazilian equity market. Fu-

ture research should analyze whether these results hold for other emerging countries and/or

segmented equity markets.
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Figure 1: Gerdau: IRF
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The first column displays the cumulative impulse response functions showing the effect in B3, ARCA and NYSE of an innovation on the firms’ efficient price over 180 and 300
seconds (upper and lower graphs, respectively). The second and third columns display cumulative impulse response functions showing the effect of an innovation on the efficient
exchange rate over 180 (upper graphs) and 300 (lower graphs) seconds in B3 (left graph) and in ARCA and NYSE (right graph). The sample period is from December 2007 to
November 2009. The empirical 95% confidence intervals are obtained using the bootstrap standard errors.
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Table 1: Instantaneous and total effects

Panel A - Efficient price: Instantaneous effect Panel B - Efficient price: total effect
Gerdau Petrobras Bradesco Ambev Br Telecom Vale Gerdau Petrobras Bradesco Ambev Br Telecom Vale

B3 0.76
(0.026)

0.86
(0.020)

0.72
(0.025)

1.07
(0.023)

1.25
(0.019)

0.90
(0.027)

0.98
(0.001)

0.98
(0.002)

0.98
(0.001)

0.99
(0.001)

0.99
(0.001)

0.97
(0.001)

ExRate 0.08
(0.005)

0.28
(0.007)

0.15
(0.006)

0.04
(0.007)

0.00
(0.005)

0.18
(0.004)

−0.08
(0.002)

−0.10
(0.004)

−0.09
(0.003)

−0.07
(0.004)

−0.07
(0.004)

−0.10
(0.002)

NYSE 0.89
(0.027)

0.90
(0.016)

0.94
(0.023)

0.59
(0.047)

0.61
(0.034)

0.87
(0.036)

1.06
(0.002)

1.08
(0.002)

1.08
(0.002)

1.07
(0.003)

1.07
(0.003)

1.08
(0.002)

ARCA 0.66
(0.034)

0.65
(0.036)

0.63
(0.037)

0.61
(0.044)

0.68
(0.031)

- 1.06
(0.002)

1.08
(0.002)

1.08
(0.002)

1.07
(0.003)

1.06
(0.003)

-

Panel C - Efficient exchange rate: instantaneous effect Panel D - Efficient exchange rate: total effect
Gerdau Petrobras Bradesco Ambev Br Telecom Vale Gerdau Petrobras Bradesco Ambev Br Telecom Vale

B3 0.19
(0.036)

−0.07
(0.037)

0.25
(0.028)

0.07
(0.018)

−0.11
(0.038)

−0.28
(0.036)

−0.51
(0.017)

−0.46
(0.029)

−0.43
(0.019)

−0.20
(0.012)

−0.34
(0.019)

−0.51
(0.022)

ExRate 2.02
(0.014)

1.79
(0.033)

1.93
(0.023)

1.56
(0.010)

1.40
(0.013)

1.98
(0.018)

0.98
(0.001)

0.98
(0.002)

0.98
(0.001)

0.99
(0.001)

0.99
(0.001)

0.97
(0.001)

NYSE −0.85
(0.051)

−1.33
(0.044)

−0.92
(0.042)

−0.49
(0.046)

−0.22
(0.062)

−0.81
(0.062)

−1.49
(0.017)

−1.43
(0.027)

−1.41
(0.018)

−1.19
(0.011)

−1.33
(0.018)

−1.48
(0.021)

ARCA −0.48
(0.042)

−0.57
(0.042)

−0.71
(0.043)

−0.46
(0.038)

−0.21
(0.052)

- −1.49
(0.017)

−1.43
(0.027)

−1.41
(0.018)

−1.19
(0.011)

−1.33
(0.018)

-

The upper panels report the instantaneous and total effect (Panels A and B, respectively) of an impulse in the efficient price of the underlying security. The lower panels report
the instantaneous and total effect (Panels C and D, respectively) of an impulse in the efficient exchange rate. The instantaneous effects of an impulse in the efficient price of
the underlying security and efficient exchange rate correspond to the first and second columns of the estimates of d0, respectively. The total effects of an impulse in the efficient
price of the underlying security and efficient exchange rate correspond to the first and second columns of the estimates of D(1), respectively. The exchange rate is in R$ per US
dollar. The lag length in the VEC model is determined through Schwarz criterion. Prices are sampled at a 5-second sampling interval for Gerdau (T = 2, 128, 453), Petrobras
(T = 2, 120, 549), Bradesco (T = 2, 128, 463) and Vale (T = 2, 114, 419). Prices are sampled at a 15-second frequency for Ambev (T = 709, 591) and a 30-second frequency for
BR Telecom (T = 353, 300). Vale does not trade at ARCA. The sample period is from December 2007 to November 2009. The bootstrap standard errors are in parentheses.
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Table 2: Instantaneous effect

Panel A - Efficient price
Gerdau Petrobras Bradesco Ambev BR Telecom Vale

15 sec. 30 sec. 15 sec. 30 sec. 15 sec. 30 sec. 30 sec. 60 sec. 60 sec. 120 sec. 15 sec. 30 sec.
B3 0.79

(0.027)
0.87

(0.024)
0.84

(0.017)
0.88

(0.021)
0.78

(0.026)
0.88

(0.022)
1.07

(0.022)
1.09

(0.022)
1.20

(0.020)
1.13

(0.021)
0.84

(0.028)
0.85

(0.026)

ExRate 0.07
(0.006)

0.08
(0.008)

0.21
(0.006)

0.17
(0.006)

0.14
(0.007)

0.11
(0.009)

0.05
(0.010)

0.09
(0.008)

0.02
(0.004)

0.01
(0.006)

0.16
(0.006)

0.14
(0.007)

NYSE 0.92
(0.025)

0.89
(0.023)

0.98
(0.012)

1.03
(0.010)

0.96
(0.022)

0.91
(0.019)

0.61
(0.046)

0.65
(0.043)

0.69
(0.036)

0.76
(0.036)

0.92
(0.029)

1.01
(0.019)

ARCA 0.68
(0.033)

0.67
(0.037)

0.79
(0.025)

0.90
(0.030)

0.74
(0.043)

0.78
(0.029)

0.60
(0.040)

0.63
(0.039)

0.70
(0.032)

0.76
(0.036)

- -

Panel B - Efficient exchange rate
Gerdau Petrobras Bradesco Ambev BR Telecom Vale

15 sec. 30 sec. 15 sec. 30 sec. 15 sec. 30 sec. 30 sec. 60 sec. 60 sec. 120 sec. 15 sec. 30 sec.
B3 0.09

(0.046)
−0.34
(0.049)

−0.12
(0.031)

−0.18
(0.038)

0.16
(0.036)

−0.11
(0.037)

−0.11
(0.030)

−0.18
(0.024)

−0.20
(0.039)

−0.24
(0.049)

−0.32
(0.040)

−0.31
(0.046)

ExRate 1.50
(0.018)

1.26
(0.017)

1.27
(0.023)

1.06
(0.026)

1.43
(0.021)

1.17
(0.020)

1.35
(0.014)

1.18
(0.015)

1.24
(0.013)

1.13
(0.015)

1.46
(0.018)

1.21
(0.022)

NYSE −1.17
(0.062)

−1.47
(0.064)

−1.40
(0.033)

−1.46
(0.036)

−1.27
(0.050)

−1.46
(0.048)

−0.72
(0.060)

−0.96
(0.071)

−0.40
(0.058)

−0.66
(0.077)

−1.18
(0.060)

−1.45
(0.055)

ARCA −0.63
(0.054)

−0.80
(0.072)

−0.85
(0.048)

−1.19
(0.048)

−0.97
(0.058)

−1.23
(0.060)

−0.58
(0.051)

−0.71
(0.069)

−0.29
(0.060)

−0.54
(0.081)

- -

The upper panel reports the instantaneous effect of an impulse in the efficient price of the underlying security, which corresponds to the first column of the estimates of d0. The
lower panel reports the instantaneous effect of an impulse in the efficient exchange rate, which corresponds to the second column of the estimates of d0. Results are reported for
alternative sampling intervals: 15- and 30-second intervals for Gerdau, Petrobras, Bradesco, and Vale; 30- and 60-second intervals for Ambev; and 60- and 120-second intervals
for BR Telecom. Exchange rate is in R$ per U.S. dollars. Lag length in the VEC model is determined through Schwarz criterion. Vale does not trade at ARCA. The bootstrap
standard errors are in parenthesis.
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Table 3: Total effect

Panel A - Efficient price
Gerdau Petrobras Bradesco Ambev BR Telecom vale

15 sec. 30 sec. 15 sec. 30 sec. 15 sec. 30 sec. 30 sec. 60 sec. 60 sec. 120 sec. 15 sec. 30 sec.
B3 0.97

(0.002)
0.97

(0.003)
0.97

(0.002)
0.97

(0.003)
0.98

(0.002)
0.98

(0.002)
0.99

(0.001)
0.99

(0.001)
0.99

(0.001)
0.99

(0.002)
0.97

(0.002)
0.97

(0.002)

ExRate −0.09
(0.003)

−0.09
(0.005)

−0.10
(0.003)

−0.11
(0.004)

−0.10
(0.004)

−0.10
(0.005)

−0.08
(0.006)

−0.09
(0.006)

−0.07
(0.004)

−0.07
(0.005)

−0.11
(0.003)

−0.11
(0.005)

NYSE 1.07
(0.002)

1.07
(0.003)

1.08
(0.002)

1.08
(0.002)

1.08
(0.003)

1.08
(0.003)

1.07
(0.004)

1.08
(0.005)

1.07
(0.003)

1.07
(0.003)

1.08
(0.002)

1.08
(0.003)

ARCA 1.07
(0.002)

1.07
(0.003)

1.08
(0.002)

1.08
(0.002)

1.08
(0.003)

1.08
(0.003)

1.07
(0.004)

1.08
(0.005)

1.07
(0.003)

1.07
(0.003)

- -

Panel B - Efficient exchange rate
Gerdau Petrobras Bradesco Ambev BR Telecom vale

15 sec. 30 sec. 15 sec. 30 sec. 15 sec. 30 sec. 30 sec. 60 sec. 60 sec. 120 sec. 15 sec. 30 sec.
B3 −0.58

(0.028)
−0.60
(0.033)

−0.47
(0.028)

−0.49
(0.032)

−0.45
(0.027)

−0.45
(0.029)

−0.24
(0.020)

−0.24
(0.022)

−0.34
(0.022)

−0.38
(0.027)

−0.54
(0.026)

−0.56
(0.029)

ExRate 0.97
(0.002)

0.97
(0.003)

0.97
(0.002)

0.97
(0.003)

0.98
(0.002)

0.98
(0.002)

0.99
(0.001)

0.99
(0.002)

0.99
(0.001)

0.99
(0.002)

0.97
(0.002)

0.97
(0.002)

NYSE −1.55
(0.027)

−1.57
(0.031)

−1.45
(0.026)

−1.47
(0.030)

−1.43
(0.025)

−1.44
(0.027)

−1.23
(0.019)

−1.23
(0.021)

−1.34
(0.021)

−1.37
(0.026)

−1.52
(0.024)

−1.53
(0.027)

ARCA −1.55
(0.027)

−1.57
(0.031)

−1.45
(0.026)

−1.47
(0.030)

−1.43
(0.025)

−1.43
(0.027)

−1.23
(0.019)

−1.23
(0.021)

−1.34
(0.021)

−1.37
(0.026)

- -

The upper panel reports the total effect of an impulse in the efficient price of the underlying security, which corresponds to the first column of the estimates of D(1). The lower
panel reports the total effect of an impulse in the efficient exchange rate, which corresponds to the second column of the estimates of D(1). Results are reported for alternative
sampling intervals: 15- and 30-second intervals for Gerdau, Petrobras, Bradesco, and Vale; 30- and 60-second intervals for Ambev; and 60- and 120-second intervals for BR
Telecom. Exchange rate is in R$ per US dollars. Lag length in the VEC model is determined through Schwarz criterion. Vale does not trade at ARCA. The bootstrap standard
errors are in parenthesis.
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Table 4: Instantaneous and total effects: Cholesky-based identification, λ = 0

Panel A - Efficient price: Instantaneous effect Panel B - Efficient price: total effect
Gerdau Petrobras Bradesco Ambev Br Telecom Vale Gerdau Petrobras Bradesco Ambev Br Telecom Vale

B3 0.82
(0.026)

0.92
(0.020)

0.79
(0.029)

1.09
(0.021)

1.29
(0.020)

0.95
(0.024)

1.00 1.00 1.00 1.00 1.00 1.00

ExRate 0.25
(0.007)

0.49
(0.008)

0.35
(0.011)

0.16
(0.009)

0.10
(0.006)

0.42
(0.005)

0.00 0.00 0.00 0.00 0.00 0.00

NYSE 0.88
(0.026)

0.82
(0.016)

0.91
(0.027)

0.57
(0.045)

0.61
(0.036)

0.85
(0.031)

1.00 1.00 1.00 1.00 1.00 1.00

ARCA 0.66
(0.033)

0.63
(0.038)

0.60
(0.039)

0.58
(0.045)

0.69
(0.031)

- 1.00 1.00 1.00 1.00 1.00 -

Panel C - Efficient exchange rate: instantaneous effect Panel D - Efficient exchange rate: total effect
Gerdau Petrobras Bradesco Ambev Br Telecom Vale Gerdau Petrobras Bradesco Ambev Br Telecom Vale

B3 −0.20
(0.041)

−0.46
(0.052)

−0.06
(0.032)

−0.16
(0.028)

−0.53
(0.051)

−0.73
(0.044)

−1.00
(0.037)

−0.89
(0.048)

−0.84
(0.039)

−0.42
(0.022)

−0.67
(0.036)

−0.99
(0.041)

ExRate 1.94
(0.020)

1.62
(0.038)

1.83
(0.028)

1.56
(0.015)

1.39
(0.014)

1.83
(0.025)

1.00 1.00 1.00 1.00 1.00 1.00

NYSE −1.29
(0.082)

−1.71
(0.058)

−1.30
(0.066)

−0.64
(0.053)

−0.43
(0.062)

−1.23
(0.078)

−2.00
(0.037)

−1.89
(0.048)

−1.85
(0.039)

−1.42
(0.022)

−1.68
(0.036)

−1.99
(0.041)

ARCA −0.81
(0.064)

−0.85
(0.056)

−0.97
(0.046)

−0.59
(0.054)

−0.44
(0.055)

- −2.00
(0.037)

−1.89
(0.048)

−1.85
(0.039)

−1.42
(0.022)

−1.68
(0.036)

-

The upper panels report the instantaneous and total effect (left- and right-panels, respectively) of an impulse in the efficient price of the underlying security. The lower panels
report the instantaneous and total effect (left- and right-panels, respectively) of an impulse in the efficient exchange rate. The exchange rate is in R$ per US dollar. The lag
length in the VEC model is determined through Schwarz criterion. Identification of the structural shocks is obtained from the Cholesky decomposition as in Subsection 3.2. The
ordering of the variables is changed such that the long-run effect of an impulse in the efficient price to the exchange rate is restricted to zero. Prices are sampled at a 5-second
sampling interval for Gerdau (T = 2, 128, 453), Petrobras (T = 2, 120, 549), Bradesco (T = 2, 128, 463) and Vale (T = 2, 114, 419). Prices are sampled at a 15-second frequency
for Ambev (T = 709, 591) and a 30-second frequency for BR Telecom (T = 353, 300). Vale does not trade on the ARCA exchange. The sample period is from December 2007
to November 2009. The bootstrap standard errors are in parentheses.
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Table 5: Long-run variance decomposition: spectral- and Cholesky-based identification schemes

Spectral-based identification
Panel A - Efficient price Panel B - Efficient exchange rate

Gerdau Petrobras Bradesco Ambev Br Telecom Vale Gerdau Petrobras Bradesco Ambev Br Telecom Vale
B3 0.96

(0.004)
0.95

(0.003)
0.96

(0.005)
0.98

(0.002)
0.98

(0.003)
0.94

(0.004)
0.04

(0.004)
0.05

(0.003)
0.04

(0.005)
0.02

(0.001)
0.02

(0.002)
0.06

(0.004)

ExRate 0.04
(0.004)

0.05
(0.003)

0.04
(0.005)

0.02
(0.001)

0.02
(0.002)

0.06
(0.004)

0.96
(0.004)

0.95
(0.003)

0.96
(0.005)

0.98
(0.001)

0.98
(0.002)

0.94
(0.004)

NYSE 0.77
(0.005)

0.72
(0.005)

0.73
(0.005)

0.69
(0.006)

0.77
(0.008)

0.72
(0.009)

0.23
(0.005)

0.28
(0.005)

0.27
(0.005)

0.31
(0.006)

0.23
(0.008)

0.28
(0.009)

ARCA 0.77
(0.005)

0.72
(0.005)

0.73
(0.005)

0.69
(0.006)

0.77
(0.007)

−
(0.000)

0.23
(0.005)

0.28
(0.005)

0.27
(0.005)

0.31
(0.006)

0.23
(0.008)

−
(0.000)

ς × 103 0.59
(0.027)

0.50
(0.034)

0.50
(0.038)

0.65
(0.014)

1.22
(0.020)

0.52
(0.025)

0.23
(0.013)

0.23
(0.008)

0.23
(0.007)

0.39
(0.007)

0.54
(0.013)

0.23
(0.021)

Cholesky-based identification: λ = 0
Panel C - Efficient price Panel D - Efficient exchange rate

Gerdau Petrobras Bradesco Ambev Br Telecom Vale Gerdau Petrobras Bradesco Ambev Br Telecom Vale
B3 0.85

(0.014)
0.83

(0.011)
0.85

(0.020)
0.94

(0.006)
0.91

(0.010)
0.77

(0.015)
0.15

(0.013)
0.17

(0.011)
0.15

(0.019)
0.06

(0.005)
0.09

(0.009)
0.23

(0.015)

ExRate 0.00
(0.000)

0.00
(0.000)

0.00
(0.000)

0.00
(0.000)

0.00
(0.000)

0.00
(0.000)

1.00
(0.000)

1.00
(0.000)

1.00
(0.000)

1.00
(0.000)

1.00
(0.000)

1.00
(0.000)

NYSE 0.59
(0.013)

0.51
(0.010)

0.54
(0.015)

0.57
(0.006)

0.63
(0.014)

0.48
(0.018)

0.41
(0.014)

0.49
(0.010)

0.46
(0.015)

0.43
(0.006)

0.37
(0.014)

0.52
(0.018)

ARCA 0.59
(0.013)

0.51
(0.010)

0.54
(0.015)

0.57
(0.006)

0.63
(0.014)

−
(0.000)

0.41
(0.013)

0.49
(0.010)

0.46
(0.015)

0.43
(0.006)

0.37
(0.014)

−
(0.000)

ς × 103 0.54
(0.023)

0.45
(0.028)

0.46
(0.026)

0.63
(0.012)

1.16
(0.018)

0.47
(0.017)

0.23
(0.013)

0.23
(0.008)

0.23
(0.007)

0.39
(0.007)

0.54
(0.013)

0.23
(0.021)

The upper and lower panels report long-run variance decomposition of the market prices and observed exchange rate system based on the spectral and Cholesky identification
schemes, respectively, with relative contributions of the permanent shocks ηm

t and ηe
t . Specifically, the upper- and lower-left panels display the proportion of the long-run

variance of B3, exchange rate, NYSE, and ARCA, accounted for by the permanent innovation associated with the efficient price. The upper- and lower-right panels display the
proportion of the long-run forecast error variance of B3, ExRate, NYSE, and ARCA, accounted for by the permanent innovation associated with the efficient exchange rate.
Finally, the last rows (ς × 103) on the left-hand panels account for the standard deviation of ηm

t multiplied by 103, whereas the last rows of the right-hand side panels are the
standard deviation of ηe

t multiplied by 103. The exchange rate is in R$ per US dollar. The lag length in the VEC model is determined through Schwarz criterion. Prices are
sampled at a 5-second sampling interval for Gerdau (T = 2, 128, 453), Petrobras (T = 2, 120, 549), Bradesco (T = 2, 128, 463) and Vale (T = 2, 114, 419). Prices are sampled at
a 15-second frequency for Ambev (T = 709, 591) and a 30-second frequency for BR Telecom (T = 353, 300). Vale does not trade at ARCA. The sample period is from December
2007 to November 2009. The bootstrap standard errors are in parentheses.
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Appendix

A Technical appendix

A.1 Proof of Proposition 1

Start by rewriting the observed exchange rate as a function of the structural parameters

λ, ρ, γ̇i, and γi, with i = 1, 2, 3, 4. To this end, subtract wt−1 from both sides of (5) and

collect the terms, such that:

wt − wt−1 = wt−1 − w1,t−2 + γ̇2 (∆et −∆wt−1) + γ2 (∆mt −∆mt−1) + b2
(
ηT

t − ηT

t−1

)
,

(1− L+ Lγ̇2) ∆wt = γ̇2∆et + γ2 (∆mt − L∆mt) + b2 (ηT

t − LηT

t ) ,

(1− L+ Lγ̇2) ∆wt = γ̇2 (ηe

t + ληm

t ) + γ2 (ηm

t + ρηe

t − L∆mt) + b2 (ηT

t − LηT

t ) . (A.1)

Setting L = 0 in (A.1) gives the instantaneous effect of an impulse in ηt on ∆wt, i.e., the

second row of d̆0. It then reads as follows:

d̆0(2,1) = γ2 + γ̇2λ, d̆0(2,2) = γ̇2 + γ2ρ, and d̆0(2,3) = b2, (A.2)

where d̆0(2,1) , d̆0(2,2) , and d̆0(2,3) denote the first, second, and third elements of the second row

of d̆0, respectively. Next, the total response of ∆wt to an impulse in ηt is obtained by setting

L = 1 in (A.1) and noting that ∆mt = ηm
t + ρηe

t . The elements of the second row of D̆(1)

then read as follows:

D̆(1)(2,1) = λ, D̆(1)(2,2) = 1, and D̆(1)(2,3) = 01×2. (A.3)

It readily follows from setting L = 1 that ∆wt = ∆et, meaning that in the long run, changes

in the efficient exchange rate are fully incorporated into ∆wt.
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Regarding the first row of d̆0 and D̆(1), subtract p1,t−1 from both sides of (4), and collect

the terms, such that:

p1,t − p1,t−1 = p1,t−1 − p1,t−2 + γ1 (mt −mt−1 − p1,t−1 − p1,t−2)

+ γ̇1 (et − et−1 − (wt−1 − wt−2)) + b1
(
ηT

t − ηT

t−1

)
,

∆p1,t −∆p1,t−1 = γ1 (∆mt −∆p1,t−1) + γ̇1 (∆et −∆wt−1) + b1 (ηT

t − LηT

t ) ,

(1− L+ Lγ1) ∆p1,t = γ1∆mt + γ̇1 (∆et − L∆wt) + b1 (ηT

t − LηT

t ) ,

(1− L+ Lγ1) ∆p1,t = γ1 (ηm

t + ρηe

t ) + γ̇1 (ληm

t + ηe

t − L∆wt) + b1 (ηT

t − LηT

t ) . (A.4)

As in the exchange rate case discussed in equations (A.1)-(A.3), the instantaneous and total

effect responses of an impulse in ηt on ∆p1,t are computed by making L = 0 and L = 1,

respectively, and using the result that ∆et = ∆wt when L = 1. In that, the second row of

d0 and D(1) becomes:

d̆0(1,1) = γ1 + γ̇1λ, d̆0(1,2) = γ̇1 + γ1ρ, and d̆0(1,3) = b1, (A.5)

D̆(1)(2,1) = 1, D̆(1)(2,2) = ρ, and D̆(1)(2,3) = 01×2. (A.6)

Similar steps are implemented to obtain the remaining rows of d̆0 and D̆. By subtracting

lagged values of the observed prices in the foreign markets (6) and (7), it then follows that

these prices can be expressed as functions of the permanent and transitory shocks:

(1− L+ Lγ3) ∆p∗3,t = γ3 (ηm

t + ρηe

t − L∆wt) + γ̇3 (ηe

t + ληm

t − L∆wt) + b3 (ηT

t − LηT

t ) , (A.7)

(1− L+ Lγ4) ∆p∗4,t = γ4 (ηm

t + ρηe

t − L∆wt) + γ̇4 (ηe

t + ληm

t − L∆wt) + b4 (ηT

t − LηT

t ) , (A.8)

where ∆p∗3,t = ∆p3,t − ∆wt and ∆p∗4,t = ∆p4,t − ∆wt. Setting L = 0, the third and fourth
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rows of d0 are then:

d̆0(3,1) = γ3 + γ̇3λ, d̆0(3,2) = γ̇3 + γ3ρ, and d̆0(3,3) = b3, (A.9)

d̆0(4,1) = γ4 + γ̇4λ, d̆0(4,2) = γ̇4 + γ4ρ, and d̆0(4,3) = b4. (A.10)

Finally, the last two rows of D(1) follow directly from setting L = 1 in (A.7) and (A.8), and

noting that ∆wt = ∆et holds if L = 1:

D̆(1)(3,1) = 1− λ, D̆(1)(3,2) = ρ− 1, and D̆(1)(3,3) = 01×2, (A.11)

D̆(1)(4,1) = 1− λ, D̆(1)(4,2) = ρ− 1, and D̆(1)(4,3) = 01×2, (A.12)

which concludes the proof. �

A.2 Proof of Proposition 2

Start by manipulating the VMA(∞) representation in (11), such that:

∆Pt = Ψ(L)ut = Ψ(L)G∗−1G∗ut = Ψ(L)G∗−1εt = Υ(L)εt. (A.13)

Note that εt = G∗ut, meaning that εPt = α′⊥ut and εTt = α′Ω−1ut. Next, it suffices to

show that the long-run effect of an impulse in εPt and εPt are nonzero and zero, respectively,

meaning Υ(1)11 6= 0(k−r)×(k−r), Υ(1)21 6= 0r×(k−r), Υ(1)12 = 0(k−r)×r, and Υ(1)22 = 0r×r.

First, partition the inverse of G∗ as:

G∗−1 =
(
G∗+,(k−r), G∗+,r

)
, (A.14)
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where G∗+,(k−r) and G∗+,(r) have dimensions k× (k− r) and k× r, respectively. It then follows

that G∗−1 must satisfy:

G∗G∗−1 =

 α′⊥G
∗
+,(k−r) α′⊥G

∗
+,r

α′Ω−1G∗+,(k−r) α′Ω−1G∗+,r

 = Ik, (A.15)

which implies G∗+,(k−r) = Ωα⊥ (α′⊥Ωα⊥)−1 and G∗+,r = α (α′Ω−1α)
−1

. Recall that Υ(L) =

Ψ(L)G∗−1, which implies that the matrices of long-run effect of an impulse in the reduced-

form permanent and transitory innovations are given by:

Υ(1) = Ψ(1)G∗−1 =
(
Ψ(1)G∗+,(k−r), Ψ(1)G∗+,r

)
=
(

Ψ(1)Ωα⊥ (α′⊥Ωα⊥)
−1
, Ψ(1)α

(
α′Ω−1α

)−1
)
, (A.16)

such that:

Ψ(1)G∗+,(k−r) =

Υ(1)11

Υ(1)21

 = Ψ(1)Ωα⊥ (α′⊥Ωα⊥)
−1

and (A.17)

Ψ(1)G∗+,r =

Υ(1)12

Υ(1)22

 = Ψ(1)α
(
α′Ω−1α

)−1
. (A.18)

Replace Ψ(1) in (A.17) and (A.18) by the Johansen factorization Ψ(1) = β⊥ (α′⊥Γ(1)β⊥)−1 α′⊥

and use the identity α′⊥α = 0. It then follows that:

Υ(1)11

Υ(1)21

 = β⊥ (α′⊥Γ(1)β⊥)
−1 6= 0k×(k−r) and (A.19)

Υ(1)12

Υ(1)22

 = β⊥ (α′⊥Γ(1)β⊥)
−1
α′⊥α

(
α′Ω−1α

)−1
= 0k×r, (A.20)

which finalizes the proof. �
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A.3 Normalization proof: S̃S̃Θ = S̃ΘS̃ ′ = Ξ

As Ξ̃ is block diagonal, the property of block matrix determinants implies that:

Λ =

 Λ11 0(k−r)×r

0r×(k−r) Λ22

 and V =

 V11 0(k−r)×r

0r×(k−r) V22

 , (A.21)

where Λ11 and Λ22 are diagonal matrices containing the eigenvalues of Ξ̃11 and Ξ̃22, respec-

tively, the columns of V11 contain the eigenvectors of Ξ̃11 associated with Λ11, and V22 is the

matrix of eigenvectors of Ξ̃22 associated with Λ22. It then follows that:

Ξ = S̃S̃Θ =

V11λ
1/2
11 V

−1
11 0(k−r)×r

0r×(k−r) V22λ
1/2
22 V

−1
22

Θ =

 S̃11S̃11Θ1 0(k−r)×r

0r×(k−r) S̃22S̃22Θ2

 , (A.22)

where Θ1 and Θ2 are the (k − r) × (k − r) and r × r upper left- and lower right-diagonal

blocks of Θ, respectively. Therefore, it suffices to show that S̃11S̃11Θ1 = S̃11Θ1S̃
′
11 and

S̃22S̃22Θ2 = S̃22Θ2S̃
′
22. Assume the baseline price discovery model, such that k = 4, r = 2,

and Ξ11 and Ξ22 are a 2× 2 matrices. Define Ξ11 and Θ1 as follows:

Ξ11 =

ξ11 ξ21

ξ21 ξ22

 and Θ1 =

ξ11 0

0 ξ22

 . (A.23)

It then follows that Ξ̃ reads as:

Ξ̃11 = Ξ11Θ−1
1 =

 1 ξ21
ξ22

ξ21
ξ11

1

 , (A.24)

with eigenvalues and eigenvectors given by:

Λ11 =


√
ξ11ξ22−ξ21√
ξ11ξ22

0

0 ξ21+
√
ξ11ξ22√

ξ11ξ22

 V11 =

−
√
ξ11√
ξ22

√
ξ11√
ξ22

1 1

 . (A.25)
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The spectral decomposition of Ξ11 then becomes:

S̃11 = V11Λ1/2

11 V
−1
11

=


1
2

[(√
ξ11ξ22−ξ21√
ξ11ξ22

)1/2

+
(
ξ21+

√
ξ11ξ22√

ξ11ξ22

)1/2
] √

ξ11
2
√
ξ22

[(
ξ21+

√
ξ11ξ22√

ξ11ξ22

)1/2

−
(√

ξ11ξ22−ξ21√
ξ11ξ22

)1/2
]

√
ξ22

2
√
ξ11

[(
ξ21+

√
ξ11ξ22√

ξ11ξ22

)1/2
−
(√

ξ11ξ22−ξ21√
ξ11ξ22

)1/2
]

1
2

[(√
ξ11ξ22−ξ21√
ξ11ξ22

)1/2

+
(
ξ21+

√
ξ11ξ22√

ξ11ξ22

)1/2
]
 . (A.26)

Combining (A.26) with Θ1, it readily follows that S̃11S̃11Θ1 = S̃11Θ1S̃
′
11 = Ξ11,

S̃ΘS̃′ =

 ξ11
2

[(
1− ξ21√

ξ11ξ22

)
+
(

ξ21√
ξ11ξ22

+ 1
)] √

ξ11ξ22
2

[(
ξ21√
ξ11ξ22

+ 1
)
−
(

1− ξ21√
ξ11ξ22

)]
√
ξ11ξ22

2

[(
ξ21√
ξ11ξ22

+ 1
)
−
(

1− ξ21√
ξ11ξ22

)]
ξ22
2

[(
1− ξ21√

ξ11ξ22

)
+
(

ξ21√
ξ11ξ22

+ 1
)]

 ,

=

 ξ11 ξ21

ξ21 ξ22

 = Ξ11. (A.27)

Using the same steps, it is straightforward to show that Ξ22 = S̃22Θ2S̃
′
22, implying that

S̃S̃Θ = S̃ΘS̃ ′ = Ξ holds.

B Simulations

In this section, I illustrate the proposed estimation methodology by comparing it with

existing methodologies in the literature. Using the identification strategy discussed in Sub-

section 3.2, it is possible to isolate the relative performance of the two methodological changes

implemented in this paper, namely, the computation of matrix G∗ using α′Ω−1 instead of β′

and the use of spectral decomposition rather than the usual Cholesky or BCB′ decomposi-

tions.18

The model used for data generation in this set of simulations is consistent with other

partial adjustment models (see Amihud and Mendelson, 1987; Hasbrouck and Ho, 1987; and

Yan and Zivot, 2010). I work with two common factors, but the extension to the case with

18Yan and Zivot (2010) adopt the BCB′ decomposition as an alternative to the Gonzalo and Ng’s (2001)
Cholesky choice. Essentially, the BCB′ decomposition factorizes Ξ, such that Ξ = BCB′, where B is a lower
triangular matrix with ones in its main diagonal and C is a diagonal matrix with unknown positive entries.
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more common factors is straightforward. The data generation process is given by:

mt = mt−1 + ηm

t ,

et = et−1 + ηe

t ,

where et is the efficient exchange rate and mt is the asset efficient price. The structural

innovations ηe
t and ηm

t are random normal processes that are generated with a diagonal

covariance matrix. The transitory innovations ηT
t are also normally distributed. The observed

prices are given by:

∆p1,t = γ1 (mt − p1,t−1) + b1η
T

t ,

∆et = ηe

t ,

∆p∗2,t = γ2 (mt − p2,t−1)− γ̇2 (et − et−1) + b2η
T

t ,

∆p∗3,t = γ3 (mt − p3,t−1)− γ̇3 (et − et−1) + b3η
T

t ,

where p1,t are the transaction prices observed in the domestic market; et is exogenous; p∗2,t

and p∗3,t are prices observed in the foreign market and expressed in foreign currency; and the

1×2 vectors bi = (b1i, b2i) with i = 1, 2, 3 have the parameters that accompany the transitory

innovations.

The elements of d0 are the parameters that give the partial adjustment between efficient

and observed prices, as shown below:

d0 =



γ1 0 b1i b2i

0 1 0 0

γ2 γ̇2 b1i b2i

γ3 γ̇3 b1i b2i


. (B.1)

Table B.1 reports the results based on the four comparisons. First, I seek to measure the
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benefit of computing d0 using the matrix G, which is constructed with α′Ω−1. Therefore,

I compare d̃0 with ḋ0, where ḋ0 represents d0 computed using α′Ω−1 and decomposed with

BCB′, and d̃0 represents d0 calculated with the matrix G computed using β′ and the BCB′

decomposition. In the second comparison, I assess the benefit of using only the spectral

decomposition. Hence, I compute two estimates of d0: the first one uses the α′Ω−1 expression

in G and the spectral decomposition (denoted as d̂0), whereas the second measure uses α′Ω−1

and the BCB′ decomposition (denoted as ḋ0). In the third comparison, I address the benefits

of combining the two methodological changes discussed in this work. I compute d0 using

both the α′Ω−1 and the spectral decomposition (denoted as d̂0), and I denote d̃0 as the

estimates computed using β′ and the BCB′ decomposition. Finally, I also compare d̂0 with

the methodology suggested by Gonzalo and Ng (2001) (computing with β′ and using the

Cholesky decomposition). I denote the latter as d0.

I report the results in terms of the mean, relative mean squared errors (RMSE), and

relative root mean squared errors (RRMSE). I also display a ratio that offers information on

how these two measures are computed. For instance, the ratio d̂0/d0 implies that the relative

measures in columns (9) and (13) in Table B.1 are computed with d0 in the denominator

and d̂0 in the numerator. Thus, relative measures that are smaller than one in columns (9)

and (13) indicate that the d̂0 outperforms d0.

The results show that d̃0 is biased for systems with more than one cointegrating vector

(computations of d̃0 for a smaller system with only one cointegrating vector eliminate the

bias). Using α′Ω−1 to construct matrix G eliminates the finite sample bias, even when the

BCB′ decomposition is adopted (see the results of ḋ0). Hence, ḋ0, d0, and d̂0 are not biased.

By analyzing the relative measures, I show that compared to the d̃0 measures, d̂0 presents

massive gains. Similar results are obtained when ḋ0 is compared to d̃0, showing that the use

of α′Ω−1 instead of β′ considerably improves the estimates of the d0 matrix. In summary,

the proposed measure outperforms all competitors.
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Table B.1: Monte Carlo simulations

True value Mean RMSE RRMSE
βBCB′ αBCB′ βC αS

αBCB′
βBCB′

αS

αBCB′
αS

βBCB′
αS

βC

αBCB′
βBCB′

αS

αBCB′
αS

βBCB′
αS

βC

d0 d̃0 ḋ0 d0 d̂0 ḋ0/d̃0 d̂0/ḋ0 d̂0/d̃0 d̂0/d0 ḋ0/d̃0 d̂0/ḋ0 d̂0/d̃0 d̂0/d0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
d0,(11) = 0.8 0.87 0.79 0.79 0.79 0.01 1.00 0.01 0.99 0.09 1.00 0.09 0.99
d0,(21) = 0.0 0.01 0.00 0.00 0.00 0.20 0.70 0.10 0.51 0.45 0.50 0.32 0.71
d0,(31) = 0.2 0.45 0.20 0.20 0.20 0.00 0.96 0.00 0.93 0.04 0.93 0.04 0.96
d0,(41) = 0.5 0.54 0.50 0.49 0.50 0.01 0.93 0.01 0.86 0.10 0.87 0.10 0.93
d0,(12) = 0.0 0.46 0.00 0.00 0.00 0.00 0.80 0.00 0.65 0.03 0.64 0.02 0.81
d0,(22) = 1.0 1.03 0.99 0.99 0.99 0.05 1.00 0.05 0.92 0.22 1.00 0.22 0.96
d0,(32) = 0.2 1.15 0.20 0.20 0.20 0.00 0.99 0.00 0.97 0.01 0.99 0.01 0.99
d0,(42) = 0.5 0.95 0.50 0.50 0.50 0.00 0.95 0.00 0.87 0.05 0.91 0.05 0.93
Results are expressed in terms of relative mean squared error (RMSE) and relative root mean squared error (RRMSE). Sample size and replication number are
fixed at 10,000 and 1,000, respectively. The variable d0,(i,j) denotes the ijth element of the d0 matrix. Finally, columns are labelled from (1) to (13).

50


	Introduction
	A simple price discovery model for cross-listed firms
	Econometric framework
	Price discovery measures in reduced and structural forms
	Identification strategy

	Brazilian cross-listing: exchange rate and price discovery
	Institutional background
	Discussion of Results
	Markets' importance
	Exchange rate price discovery

	Robustness

	Conclusion
	Appendices
	Technical appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Normalization proof: S"0365SS"0365S=S"0365SS"0365S=

	Simulations

