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Abstract: A class of dynamical systems associated to rings of S–integers in
rational function fields is described. General results about these systems give
a rather complete description of the well–known dynamics in one–dimensional
additive cellular automata with prime alphabet, including simple formulæ for
the topological entropy and the number of periodic configurations. For these
systems the periodic points are uniformly distributed along some subsequence
with respect to the maximal measure, and in particular are dense. Periodic
points may be constructed arbitrarily close to a given configuration, and
rationality of the dynamical zeta function is characterized. Throughout the
emphasis is to place this particular family of cellular automata into the wider
context of S–integer dynamical systems, and to show how the arithmetic of
rational function fields determines their behaviour. Using a covering space
the dynamics of additive cellular automata are related to a form of hyperbol-
icity in completions of rational function fields. This expresses the topological
entropy of the automata directly in terms of volume growth in the covering
space.
Keywords: Cellular automata, Entropy, Rational function field, Adele ring,
Hyperbolic dynamics
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1 Introduction

Cellular automata are a particular class of dynamical system studied by von
Neumann [24] as a primitive model for self–reproduction. Since then they
have been widely studied in a variety of contexts in physics, biology and com-
puter science. A detailed discussion with extensive references may be found in
Wolfram’s paper [31]. The state space of a cellular automaton is particularly
simple: it consists in one dimension of a one–dimensional array with values
taken from a fixed finite alphabet, and their evolution in time is determined
by a finite or local rule. Nonetheless, the global dynamical behaviour of time
evolutes of a cellular automata may exhibit extremely intricate behaviour
and – in complete generality – understanding global dynamical invariants
may be genuinely intractable ([7, 14]).

In this paper two restrictions are placed on the cellular automata: first,
that the alphabet have cardinality a prime (though the methods apply equally
well to prime–power alphabets once ‘additivity’ is interpreted in a way that
reflects a finite field structure on the alphabet). Second, that the local rule
determining the time evolution be ‘additive’. This latter restriction is very
strong, and forces the cellular automata to be an endomorphism of a com-
pact abelian group. The measurable structure of these systems has been
completely determined, [19].

Recently, an arithmetically natural class of algebraic dynamical systems,
the so–called S–integer systems, has been studied ([5, 27, 28]). These systems
arise as extensions of simple algebraic dynamical systems, and they have two
features of particular interest. Firstly, their structure may be studied using
tools from number theory (in particular, the use of an adelic covering space
to relate the entropy of the complicated dynamics of the automata to the
simple volume-growth dynamics of the automata lifted to the covering space).
Secondly, the collection of all such systems extending a given initial system is
parametrized in a natural way by a probability space, giving some meaning to
the idea of ‘typical’ behaviour for algebraic dynamical systems. Special cases
of S–integer systems include the additive cellular automata on prime–power
alphabets, and results from [5] apply to give alternate proofs of the results of
Favati et al. and Margara [10]. The arithmetic structure at work also gives
additional information: for example, the periodic points are not only dense
but uniformly distributed with respect to the maximal measure along time
sequences where the number of periodic points grows. The algebraic structure
of finite characteristic fields gives a method for constructing periodic points
arbitrarily close to any given point.

Many of the results presented here are well–known; in particular Corollary
1 and 3, and Theorems 4 and 5 may be found for example in the work of
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Margara et al., [4], [8], [10], and [22].
The paper is organized as follows. In Section 2 standard notation is

fixed and the elementary properties of linear cellular automata are recalled.
Section 3 introduces the S-integer dynamical systems and shows how they
contain some simple additive cellular automata. In Section 4 the main dy-
namical properties of these automata are studied using methods from S-
integers: topological entropy, numbers and distribution of periodic points.
In Section 5 a quantitative denseness of periodic points of periodic points
is exhibited, and Section 6 contains a summary and some remarks. Finally,
Section 7 gives a short review of the number theory used in the paper.

2 Notation for cellular automata

Let A be a finite set or alphabet, and let ΣA denote the two–sided sequence
space

ΣA = AZ = {x = (xi)i∈Z | xi ∈ A ∀ i ∈ Z}.

The set ΣA will also be written Σ|A| since only the cardinality of the alphabet
matters. The metric on Σ|A| defined by

ρ(x, y) =
∞∑

i=−∞

2−|i|d(xi, yi), (1)

where d is any metric on the finite set A, makes Σ|A| into a compact metric
space. The left shift σ : Σ|A| → Σ|A| defined by

(σ(x))i = xi+1 (2)

is a homeomorphism of this compact metric space.
A cellular automaton is a continuous map α : Σ|A| → Σ|A| that commutes

with σ. The evolution of a configuration x ∈ Σ|A| under α is called temporal,
and under σ spatial. An easy consequence of the compactness of Σ|A| is that
any such map α must be given by a local rule: there is a neighbourhood size
k and a map

f : A2k+1 → A

with the property that

(α(x))i = f(xi−k, . . . , xi, . . . , xi+k),

(this is an observation due to Curtis, Lyndon and Hedlund, [12]).
A similar definition may be made for automata on one–sided shift spaces:

define Σ+
|A| to be the one–sided shift space AN, sum from 0 to ∞ only in
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(1), and define σ+ to be the continuous |A|–to–one map defined by (2) for
i ≥ 0 only. Any continuous σ+–commuting map α : Σ+

|A| → Σ+
|A| is given by

a one–sided local rule of the form

f : Ak+1 → A

with the property that

(α(x))i = f(xi, . . . , xi+k)

for all i ≥ 0.
If the alphabet is written A = {0, 1, . . . , a − 1} for some a, identified

with the integers mod a under addition, then a cellular automaton is called
additive if it is an endomorphism of the group structure on Σa or Σ+

a . It is
clear that this holds if and only if the local rule is of the form

f(x−k, . . . , x0, . . . , xk) = a−kx−k + · · ·+ a0x0 + . . . akxk mod a (3)

for some coefficients a−k, . . . , ak ∈ A: if α : Σa → Σa is an additive cellular

automaton, then α̂ is a homomorphism of the dual group Σ̂a = (Z/aZ)[u±1]
that commutes with multiplication by u (the dual of the spatial shift map).
It follows that α̂ – and hence α – is determined by the polynomial

α̂(1) = a−ku
−k + · · ·+ a0x0 + . . . aku

k mod a

from which (3) follows. For a one–sided state space, all the ai with i < 0 are
required to be zero. The Tychonoff topology on the compact group coincides
with the topology defined by the metric (1).

Surjective cellular automata preserve the Haar measure on the compact
group Σn or Σ+

n , and this measure coincides with the independent identically
distributed ( 1

n
, . . . , 1

n
) measure. With the exception of the proof of Theorem

4 we shall not be interested in measure–theoretic aspects of cellular automata
– [20] has some precise results on statistical phenomena in the evolution of
cellular automata.

3 S–integer dynamical systems

In this section we introduce a family of dynamical systems defined using
the arithmetic of rational function fields: the examples below show how
they relate to additive cellular automata. In order to make this paper self–
contained, we include proofs in simple cases: in particular, we give proofs
only for the case of finite sets S.
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Let k denote an A–field of positive characteristic: that is, a rational
function field of the form Fp(t) where Fp is a field with p elements, or a finite
algebraic extension of such a field. Associated to k is a set of places P (k):
each element of P (k) is an equivalence class of valuations. We abuse notation
slightly by identifying a prime element for each place with a corresponding
valuation (see Chapter III, §1 of [30] for the precise formulation).

Example 1 The simplest case is the field k = Fp(t) itself. For each monic
irreducible polynomial ν ∈ Fp[t] there is a distinct place ν ∈ P (k) with
corresponding valuation given by

|f |ν = p−ordν(f)·deg(ν),

where ordν(f) is the signed multiplicity with which ν divides the rational
function f . There is in addition one exceptional place given by ν(t) = t−1,
with corresponding valuation defined by

|f(t)|ν = |f(t)|t−1 = |f(t−1)|t.

It is conventional to regard this exceptional place as the ‘infinite’ one, and
to write P∞(k) = {t−1}.

The next examples show how the valuations work in practice. The first
is a polynomial and the second is a rational function.

Example 2 [1] Let p = 7 and consider the polynomial

f(t) = t6 + 2t5 + 3t4 + 5t3 + 6t2 + t+ 4.

This may be factorized using standard methods (from Chapter 4 of [18], for
example) into

f(t) = (t+ 3)(t2 + t+ 3)(t3 + 5t2 + 5t+ 2).

Each of the three factors is irreducible over F7 (see Table C in the Appendix
of [18]). This allows us to calculate all the valuations of f . The three finite
valuations corresponding to irreducible polynomials that divide f ,

|f |t+3 = 7−(1)(1) = 1
7
; |f |t2+t+3 = 7−(1)(2) = 1

49
; |f |t3+5t2+5t+2 = 7−(1)(3) = 1

343
.

Then the infinite valuation

|f(t)|t−1 = |f(t−1)|t =

∣∣∣∣1 + 2t+ 3t2 + 5t3 + 6t4 + t5 + 4t6

t6

∣∣∣∣
t

= 7−(−6)(1) = 117649.
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Finally, for ν(t) any irreducible polynomial other than those appearing as
factors of f ,

|f |ν = 7−(0)(deg(ν)) = 1.

[2] As an illustration of how valuations work for rational functions, let p = 2
and consider the rational function f(t) = 1+t2

t
. Then∣∣∣∣1 + t2

t

∣∣∣∣
t

= 2−(1)(−1) = 2,

∣∣∣∣1 + t2

t

∣∣∣∣
1+t

= 2−(1)(2) =
1

4
,

(since, over F2, 1 + t2 = (1 + t)2), and∣∣∣∣1 + t2

t

∣∣∣∣
t−1

=

∣∣∣∣1 + t−2

t−1

∣∣∣∣
t

=

∣∣∣∣t2 + 1

t

∣∣∣∣
t

= 2−(1)(−1) = 2.

For all ν /∈ {t, 1 + t, t−1} we have |f |ν = 1 since ν does not divide f .

For the general case – in which k is a finite extension field of Fp(t) for
some prime p, there are finitely many valuations of k with the property that
they restrict to a given ν ∈ P (Fp(t)) for each ν: the details are in [30].

Definition 1 Let k = Fp(t). Given an element ξ ∈ k\{0}, and any set
S ⊂ P (k)\P∞ with the property that |ξ|w ≤ 1 for all w /∈ S ∪ P∞, define
a dynamical system (X,α) = (XS, α(S,ξ)) as follows. The compact abelian
group X is the dual group to the discrete countable group of S–integers RS

in k, defined by

RS = {x ∈ k : |x|w ≤ 1 for all w /∈ S ∪ P∞}.

The continuous group endomorphism α : X → X is dual to the monomor-
phism α̂ : RS → RS defined by α̂(x) = ξx.

To explain this definition and to show how it relates to cellular automata,
consider the following examples.

Example 3 [1] Let k = Fp(t), S = ∅, and ξ = t. Then RS = Fp[t], and so

X = R̂S =
∏∞

i=0{0, 1, . . . , p− 1} = Σ+
p . The map α is therefore the full one–

sided shift on p symbols. Equivalently, the map α is the cellular automaton
with one–sided state space and with local rule f(x0, x1) = x1.

[2] Let k = Fp(t), S = {t}, and ξ = t. Recall that the valuation corresponding
to t is |g|t = p−ordt(g), so |t|t = p−1. The ring of S–integers is

RS = {g ∈ Fp(t) : |g|w ≤ 1 for all w 6= t, t−1} = Fp[t
±1].
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The dual of RS is then
∏∞
−∞{0, 1, . . . , p− 1} = Σp, and in this case α is the

full two–sided shift on p symbols. Equivalently, the map α is the cellular
automaton with local rule f(x−1, x0, x1) = x1.

[3] Let k = Fp(t), S = {t}, and ξ = 1 + t. Then X = Σp is the two–sided
shift space on p symbols, and α is the cellular automaton with local rule
f(x−1, x0, x1) = x0 + x1.

[4] Let k = Fp(t), S = {t, 1 + t}, and ξ = 1 + t. Then α is the invertible
extension of the cellular automaton in [3]. The Z2 dynamics under both
the temporal and spatial maps for this example is a version of Ledrappier’s
example [17].

[5] Fix the characteristic to be p = 2 and S = {t}. Then XS = Σ2, the
full 2-shift. Following Favati et al. in [10], additive local rules for cellular
automata with k = 1 have a natural parametrization: associate the local rule

f(x−1, x0, x1) = ax−1 + bx0 + cx1

to the natural number

nf = f(0, 0, 0) · 20 + f(0, 0, 1) · 21 + · · ·+ f(1, 1, 0) · 26 + f(1, 1, 1) · 27.

By suitable choice of the Laurent polynomial ξ in Definition 1 we produce
the following examples.

Polynomial f Rule number nf
0 0
1 204
t 170
t−1 240

t−1 + 1 60
1 + t 102
t−1 + t 90

t−1 + 1 + t 150

Other examples - in which the set S includes some finite valuations - give
certain isometric extensions of additive cellular automata (see [5, 28] for the
details).

4 Dynamical properties

Let α now be any uniformly continuous map of a metric space (X, ρ). A set
E ⊂ X is said to be (n, ε)–separated under α if for every pair x 6= y in E
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there is an m ∈ {0, 1, . . . , n−1} with the property that ρ(αm(x), αm(y)) > ε.
For each compact set K ⊂ X, let

sK(n, ε) = max{|E| : E ⊂ K is (n, ε)− separated under α},

hK(α, ε) = lim sup
n→∞

1

n
log sK(n, ε), and

hK(α) = lim
ε↘0

hK(α, ε),

(the expression under the limit means the limit is taken as ε decreases to
zero). Finally, define the topological entropy of α to be

h(α) = sup
K
hK(α). (4)

Notice that if X is compact, then hX(α) = h(α).
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The topological entropy of a map is a crude global measure of the expo-
nential complexity of the structure of the orbits of the map.

Theorem 1 The topological entropy of the S–integer system (XS, α(S,ξ)) is
given by

h(α(S,ξ)) =
∑

w∈S∪P∞

log+ |ξ|w (5)

The proof of this result motivates the viewpoint adopted here. Roughly
speaking, the number theory (the adele ring) provides a covering space for
the cellular automata, and the complicated dynamics of the automata lifts to
a ‘linearised’ dynamics on the covering space. General results about covering
spaces show that the topological entropy of the automata coincides with the
rate of volume growth of the lifted map – expressed in equation (6) below.
Proof. This is shown in [5], Theorem 4.1 using the adelic method of [21]. A
very simple proof is outlined here for S finite. This is easier than the general
case because there are no Archimedean places to deal with, the arithmetic
‘dimension’ is one, and the topology on the covering space is simply the
product topology.

According to the Appendix, the group RS embeds as a discrete subgroup
of
∏

ν∈S∪P∞ kν with compact quotient, and there is a map p : kS → ks/∆(RS);
Theorem 6 means that there is a commutative diagram expressing the adelic
covering space kS as follows:

kS/∆(RS) ∼= XS -α(S,ξ)

XS ∼= kS/∆(RS)
? ?

p p

kS kS-
α̃

Figure 1: The adelic covering space

in which the map p is a local isometry and α̃ denotes multiplication by ξ
in each coordinate..

It follows by Theorems 9 and 20 in [3] that

h(α) = h(α̃) = lim
ε↘0

lim sup
n→∞

− 1

n
log µ

(
n−1⋂
j=0

α̃−j(Bε)

)
(6)
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where Bε is the metric open ball of radius ε around the identity, µ is Haar
measure on the locally compact group

∏
ν∈S∪P∞ kν , and α̃ is the lifted map

(xν)ν∈S∪P∞ 7→ (ξxν)ν∈S∪P∞ on the covering space
∏

ν∈S∪P∞ kν .
Since S is finite, we may use the max metric on

∏
ν∈S∪P∞ kν . It follows

that
Bε = {(xν) : |x|ν < ε ∀ ν ∈ S ∪ P∞}.

Now the covering map from
∏

ν∈S∪P∞ kν onto XS gives a local portrait of the
hyperbolicity.

For example, if S ∪ P∞ = {ν1, ν2, ν3} say, and |ξ|ν1 > 1, |ξ|ν2 > 1,
|ξ|ν3 < 1 then the local dynamics in a neighbourhood of the identity in XS is
illustrated in Figure 2. The box Bε is transformed under α̃−1 (multiplication
by ξ−1) into a squashed box with sides of length 2ε|ξ|−1

ν1
, 2ε|ξ|−1

ν2
, 2ε|ξ|−1

ν3
in

the directions corresponding to ν1, ν2, ν3 respectively.

6

×|ξ|ν1

?

-×|ξ|ν2�

�
�
��+

�
��

�
�
��3
�
��

×|ξ|ν3

�� ��

��Bε

-α̃−1
�
�
�
�

�
�

�
�

�
�
���

�
��

�
�
��

kν2

kν1

kν3

Figure 2: Multiplying Bε by ξ−1 for S ∪ P∞ = {ν1, ν2, ν3}

In the covering space the effect of multiplying the box Bε by ξ−1 gives

α̃−j(Bε) = {(xν) : |ξjx|ν < ε ∀ ν ∈ S∪P∞} = {(xν) : |x|ν < ε/|ξ|jν ∀ ν ∈ S∪P∞}.

Thus the set

D(n, ε) =
n−1⋂
j=0

α̃−j(Bε)

is a ‘box’ with one side for each term ν ∈ S ∪ P∞, and the ‘length’ of each
side is

min{ε, ε/|ξ|ν , ε/|ξ|2ν , . . . , ε/|ξ|n−1
ν } =

{
ε if |ξ|ν ≤ 1,
ε/|ξ|n−1

ν if |ξ|ν > 1.
(7)

It follows that

µ (D(n, ε)) = ε|S∪P∞| ·

 ∏
ν:|ξ|ν>1

|ξ|n−1
ν

−1

,
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which when substituted into (6) gives the formula (5). �
The Haar measure µ is maximal in the sense that the measure–theoretic

entropy of α with respect to µ coincides with the topological entropy h(α)
by [2].

Example 4 [1] The simplest application of equation (5) is to give the en-
tropy of the full shift on p symbols: let α be the S–integer dynamical system
corresponding to k = Fp(t), S = {t} and ξ = t. Then h(α) = log p arising
from the one term |t|t−1 = |1

t
|t = p−(1)(1) = p in (5). Here the local hyper-

bolicity portrait in the covering space is shown in Figure 3, showing that the
system is hyperbolic.

6

×|t|t−1 = p

?

�×|t|t = p−1
-

Figure 3: Multiplication by t is hyperbolic for S = {t}

[2] A less trivial example is the following. Consider the additive cellular
automata on Σ7 = {0, 1, . . . , 6}Z defined by the local rule

f(x0, x1, . . . , x6) = 4x0 + x1 + 6x2 + 5x3 + 3x4 + 2x5 + x6.

This map is given by the S–integer dynamical system α = α(k,S,ξ) with k =
F7(t), S = {t} and ξ = t6 + 2t5 + 3t4 + 5t3 + 6t2 + t + 4 ∈ F7[t]. Using the
factorization in Example 2[1] and equation (5) we see that h(α) = 6 · log 7.
[3] Consider the ‘rule 90’ cellular automata in Example 3[5]. This corresponds
to the S–integer dynamical system with k = F2(t), S = {t} and ξ = t−1 + t.
Over F2 we have

t−1 + t =
1 + t2

t
=

(1 + t)2

t

as a factorization into irreducibles. Using Example 2[2] and formula (5) we
see that

h(α) = log

∣∣∣∣(1 + t)2

t

∣∣∣∣
t−1

+ log

∣∣∣∣(1 + t)2

t

∣∣∣∣
t

= 2 · log 2.

Of course the expressions arising in Example 4 for S–integer systems
which have the special structure of additive cellular automata can be simpli-
fied.
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Corollary 1 An additive cellular automaton α : Σp → Σp with local rule

f(x−`, . . . , x0, . . . , xr) = a−`x−` + · · ·+ a0x0 + · · ·+ arxr,

(a−`, ar 6= 0) has topological entropy

h(α) =


r · log p if r ≥ −` ≥ 0,
(`+ r) · log p if `, r ≥ 0,
` · log p if − ` ≤ r ≤ 0.

(8)

Proof. The cellular automaton is given by the S–integer dynamical system
with k = Fp(t), S = {t} and ξ = a−`t

−` + · · ·+ art
r. Simply evaluate (5) for

the valuations t and t−1. Assume first that `, r ≥ 0. Then

|ξ|t =

∣∣∣∣a` + · · ·+ art
r+`

t`

∣∣∣∣
t

= p−(−`)(1) = p`;

|ξ|t−1 = |ξ(t−1)|t =

∣∣∣∣a`t`+r + · · ·+ ar
tr

∣∣∣∣
t

= p−(−r)(1) = pr.

Summing gives h(α) = r · log p+ ` · log p.
For r ≥ −` ≥ 0, ξ is a polynomial in t so |ξ|t ≤ 1 and |ξ|t−1 = pr. The

case −` ≤ r ≤ 0 is similar. �
Corollary 1 is a simple instance of a more general principle concerning

directional entropies in zero–dimensional algebraic dynamical systems of di-
mension at least 2: in that setting the directional entropies are determined
by ‘widths’ of the support of certain polynomials by [15, 16]. It also gives
the entropy of mixed dynamics (involving spatial and temporal motion): the
map σnαm is given by the S–integer dynamical system with S = {t} and
ξ = tn ·

(
a−`t

−` + · · ·+ art
r
)

so the corresponding entropy is given by a sim-
ilar formula.

Recall that a map α preserving a probability measure µ is ergodic if any
measurable set A with µ(A∆α−1(A)) = 0 has µ(A) = 0 or 1. Before turning
to periodic points, notice that a simple application of the Halmos criterion for
ergodicity of compact group endomorphisms in [11] shows that an additive
cellular automata is ergodic for the preserved Haar measure if and only if the
polynomial corresponding to the local rule is non–constant. It follows from
the formula below that for ergodic additive cellular automata there are only
finitely many periodic points of each period.

Theorem 2 Let α : Σp → Σp be the S–integer dynamical system with k =
Fp(t), S finite and ξ non–constant. The number of points with period n under
α is

Fixn(α) =
∏

ν∈S∪P∞

|ξn − 1|ν .
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The upper growth rate exists and coincides with the topological entropy:

lim sup
n→∞

1

n
log Fixn(α) = h(α).

Moreover, a sequence nj →∞ with the property that 1
nj

log Fixnj(α)→ h(α)

can be identified explicitly.

A sequence along which the growth rate of periodic points gives the en-
tropy comes from the last line of the proof.
Proof. Use the covering space construction from the Appendix again. Recall
that the group XS = R̂S sits as a quotient of the product Y =

∏
ν∈S∪P∞ kν by

the discrete subgroup RS. Let F be a fundamental domain for this quotient
which has finite Haar measure (see Appendix). Standard harmonic analysis
(for example, [13] Volume 1) shows that

Fixn(α) = | ker(αn−1)| = µ ((α̃n − 1)F ) = modY (α̃n−1) =
∏

ν∈S∪P∞

|f(t)n − 1| ,

where modY is the ‘module’ (scaling of Haar measure) in the locally compact
group Y .

Turning now to the upper growth rate, note that the erratic behaviour of
periodic configurations in cellular automata still arises in the additive setting
(cf. Example 5[2] below), so there are some difficulties. The proof here comes
from [5], included for completeness. Write

1

n
log Fixn(α) =

1

n

∑
ν∈S∪P∞:ξ /∈r∗ν

log |ξn − 1|ν +
1

n

∑
ν∈S′

log |ξn − 1|ν ,

where S ′ is the subset of S defined by

S ′ = {ν ∈ S : ξ ∈ r∗ν},

and r∗ν = {x ∈ k : |x|ν = 1}. Split S ′ into two sets A and B, where

A = {ν ∈ S ′ : |ξ − 1|ν = 1}

and
B = {ν ∈ S ′ : |ξ − 1|ν < 1}.

For each νj (j = 1, . . . ,m) ∈ A we can associate integers d1, . . . , dm ≥ 2
such that |ξn − 1|νj = 1 if and only if dj6 |n.

Consider next the valuations ν1, . . . , νl ∈ B. If ν ∈ B we may write
ξ = 1 +

∑∞
i=1 aiπ

i, where ai and π are as above, and |ξ − 1|ν = p−s where
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s = 1
e

min{i : ai 6= 0} > 0 and ordν(π) = 1
e
. For each νj ∈ B label such s by

sj, the coefficients ai by ai(j) and π by πj. Then

1

n

∑
ν∈B

log |ξn − 1|ν =
1

n

∑
ν∈B

log |ξ − 1|ν +
1

n

∑
ν∈B

log |ξn−1 + · · ·+ ξ + 1|ν

=
1

n

l∑
j=1

log |πj|sjνj +
1

n

l∑
j=1

log

∣∣∣∣∣n+
∞∑
i=1

bi(j)πj
i

∣∣∣∣∣
νj

,

for computable coefficients bi(j) ∈ rνj and j = 1, . . . , l. This expression
tends to zero if p6 |n. Hence

1

n

∑
ν∈S′

log |ξn − 1|ν → 0 as n→∞

through the set {n ≥ 1 : p 6 |n, dj 6 |n for j = 1, . . . ,m}. It follows that
p+(α) = h(α). �

Corollary 2 Let α : Σp → Σp be an ergodic additive cellular automata cor-
responding to the S–integer dynamical system with k = Fp(t), S = {t} and
ξ ∈ Fp[t±1]. Then there are

Fixn(α) = |ξn − 1|t · |ξn − 1|t−1

points of period n. If q1, q2, . . . is an enumeration of the primes, then

lim
m→∞

1

qm
Fixqm(α) = h(α) > 0.

A consequence of Theorem 2 is that the periodic points are dense – indeed,
along any sequence with the number of periodic points going to infinity they
are uniformly distributed with respect to Haar measure.

Lemma 1 Let α be an ergodic S–integer dynamical system as in Theorem
2. If nj → ∞ is any sequence of times for which Fixnj(α) → ∞, then the
uniform periodic point measures at times nj converge weakly to Haar measure
as j →∞.

That is, under the hypotheses of Lemma 1, for any continuous complex–
valued function φ on Σp,

1

Fixnj(α)

∑
x:αn(x)=x

φ(x) −→
∫

Σp

φdµ. (9)
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Proof. Let the corresponding S–integer dynamical system be given by k =
Fp(t), S and ξ as usual. Since finite combinations of characters are dense in
the space of continuous functions on the compact group XS, if (9) fails to be
true it must fail with φ = r for some non–trivial character r ∈ RS\{0}. This
requires there to be a subsequence nj(m) → ∞ for which r ∈ (ξnj(m) − 1)RS

for all m. By the formula used in the proof of Theorem 2 this requires

∞ >
∏

ν∈S∪P∞

|r|ν =

∣∣∣∣ RS

r ·RS

∣∣∣∣ ≥ ∣∣∣∣ RS

(ξnj(m) − 1) ·RS

∣∣∣∣ = Fixnj(m)(α)→∞,

which is impossible. �

Corollary 3 If α : Σp → Σp is an ergodic additive cellular automata, then
the set of periodic points is dense, and there are sequences of times along
which the periodic points are uniformly distributed with respect to the pre-
served Haar measure.

The precise behaviour of the periodic points in any non–trivial cellular
automaton is erratic. In the examples below we give some information for
certain cases. Even for additive cellular automata, there may be positive
logarithmic growth rates other than the entropy. These examples are part of
a wider investigation into periodic point behaviour for S–integer dynamical
systems in [5]. One surprising result is that there are examples for which S
may be infinite but

lim sup
n→∞

1

n
log Fixn(α) = h(α)

still holds. In fact Corollary 3 in [28] shows that additive linear cellular
automata with prime alphabet must have this property for almost every set
S in the sense of probability, for all values of the prime p excepting at most
two.

A delicate measure of the complexity of the periodic point structure of
any continuous map is given by the dynamical zeta function

ζα(z) = exp
∞∑
n=1

zn

n
Fixn(α).

In particular, if this function is rational, then the number of periodic points
of period n grows in a simple recurrent fashion in n.
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Example 5 [1] The simplest case is, as usual, the full shift on p symbols.
This is given by k = Fp(t), S = {t} and ξ = t. Using Theorem 2 we have
that

Fixn(α) = |tn − 1|t−1|tn − 1|t = pn,

so in this case 1
n

log Fixn(α) converges to h(α) = log p. The dynamical zeta
function is rational, given by

ζα(z) =
1

1− pz
.

[2] Let k = Fp(t), S = {t} and ξ = 1 + t. This is the additive cellular
automata with local rule given by

f(x0, x1) = x0 + x1.

If p = 2 this is ‘rule 102’ in the sense of Example 3[5]. The local hyper-
bolicity portrait is shown in Figure 4, which indicates why this system is
non–hyperbolic.

6

×|1 + t|t−1 = p

?

×|1 + t|t = 1

Figure 4: Local effect of multiplication by 1 + t

Using Theorem 2 we have

Fixn(α) = |(1 + t)n − 1|t−1|(1 + t)n − 1|t = pn ·
∣∣∣∣tn +

(
n

1

)
tn−1 + · · ·+

(
n

n− 1

)
t

∣∣∣∣
t

.

(10)

It follows that the exact number of points of period n depends on the van-
ishing properties of binomial coefficients modulo the prime p. The following
simple argument (for details, see Section 9 of [5]) gives some insight into how
complicated the periodic points really are – and shows that the dynamical
zeta function must be irrational. Write n = q · pordp(n) (that is, factor the
prime p out of n as many times as possible). Then using (10) we see that

Fixn(α) = pn · p−pordp(n)
= pn(1−1/q) since by construction q does not divide p.
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It follows that for any sequence nj →∞ with njp
−ordp(nj) = q for some fixed

q, we have

lim
nj→∞

1

nj
log Fixnj(α) =

(
1− 1

q

)
log p.

That is, for this example the set{
1

n
log Fixn(α)

}
has infinitely many limit points. The complex behaviour seen here seems to
be prevalent for most S–integer dynamical systems – see [29].

The non-hyperbolicity is manifested in the extremely complex dynamics.
This is illustrated in Figure 5, where the time evolution of a random initial
configuration is shown for p = 3 (the elements ‘0’,‘1’, and ‘2’ in F3 are coded
white, grey, black respectively in Figure 5).

Figure 5: Time evolution in a non-hyperbolic example

The last result in this section is a generalization of Example 5[2] that
covers all additive cellular automata on prime alphabet.

17



Theorem 3 If α is an additive cellular automaton on Σp with p prime, and
with local rule corresponding to the polynomial

ξ(t) = a−`t
−` + · · ·+ art

r

with a−`, ar 6= 0, then the dynamical zeta function of α is rational if and only
if ` = r or ` and r are both positive.

Proof. If ` = r then ξ(t) = art
r, so Theorem 2 gives

Fixn(α) = |anr tnr − 1|t × |anr tnr − 1|t−1 = pnr,

so

ζα(z) =
1

1− prz
.

If both ` and r are positive, then

|ξ(t)n − 1|t−1 =
∣∣an−`tn` + · · ·+ anr t

−nr − 1
∣∣
t

= pnr.

On the other hand,

|ξ(t)n − 1|t =
∣∣an−`t−n` + · · ·+ anr t

nr − 1
∣∣
t

= pn`,

so by Theorem 2 there are pn(r+`) points of period n and

ζα(z) =
1

1− pr+`z
.

For the remaining case, we may write

ξ(t) = a0 + a`t
` + · · ·+ art

r,

with a`, ar 6= 0 (the case in which only negative powers of t are involved is
similar). Then

|ξ(t)n − 1|t−1 =
∣∣an0 + · · ·+ anr t

−nr∣∣
t

=

∣∣∣∣an0 trn + · · ·+ anr
trn

∣∣∣∣
t

= prn.

To compute the other part of the periodic point formula, write n = qpordp(n).
Then, since q does not divide p,

|ξ(t)n − 1|t =
∣∣∣(aq0 + qaq−1

0 a`t
` + · · ·+ aqrt

rq
)n/q − 1

∣∣∣
t

=
∣∣(an0 − 1) +Dt`n/q + . . .

∣∣
t

where D is not divisible by p. It follows that

Fixn(α) =

{
prn if an0 6≡ 1,
pn(r−`/q) if an0 ≡ 1.

(11)

From this we may exhibit infinitely many limit points for the set { 1
n

log Fixn(α)},
showing that ζα cannot be rational.

�
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5 Constructing periodic points and ‘chaotic’ behaviour

Finally, we use methods from ergodic theory and the arithmetic viewpoint
above to give an alternative proof of the result in [10] that additive ergodic
cellular automata on prime alphabets are ‘chaotic’ in the sense of Devaney.
Recall that a continuous map α on a compact metric space (X, d) is regionally
transitive if for every pair of open sets U , V in X there is an n ∈ N with
αn(U)∩ V 6= ∅, has dense periodic points if the set

⋃
n∈N Fixn(α) is dense in

X, and has sensitive dependence on initial conditions if there is a constant
δ > 0 such that for all x ∈ X and any open set U 3 x there is a y ∈ U such
that supn∈N d(αn(x), αn(y)) > δ. Following [9], a map satisfying all three
properties is called ‘chaotic’.

Theorem 4 An ergodic additive cellular automata on Σp for p prime is re-
gionally transitive, has dense periodic points, and has sensitive dependence
on initial conditions.

Proof. Since the invariant Haar measure is a Borel measure whose support
is all of the space Σp, regional transitivity follows at once from ergodicity
(see [25], page 151-152 for the details). The set of periodic points is certainly
dense. Finally, it is well–known that sensitive dependence to initial conditions
follows from regional transitivity and dense periodic points by [1]. �

Theorem 5 Let α be an ergodic additive cellular automata on Σp for p
prime, and let x ∈ Σp be any initial configuration. Then there is a sim-
ple procedure for constructing a point of finite period n within distance ε
of x. Moreover, the period n may be chosen smaller than a constant times
log(1/ε).

Proof. If the support of the local rule of the automaton is a singleton (that
is, the corresponding polynomial is a monomial) then the automaton is a
power of the shift and the result is obvious.

Assume next that the cellular automaton has a local rule that looks back
as well as forward: then the corresponding polynomial in Fp[t

±1] is

ξ(t) = c−`t
−` + · · ·+ c0 + · · ·+ c`t

`,

with both c−` and c` non–zero, and ` > 0, r > 0. Then by the ‘freshman’s
dream’ in characteristic p we have

ξp
k

(t) = cp
k

−`t
−`·pk + · · ·+ cp

k

0 + · · ·+ cp
k

` t
`·pk . (12)
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This means that the map αp
k

is the additive cellular automaton with local
rule corresponding to the polynomial (12). Since the support of this polyno-
mial lies only on points whose coordinates are multiples of pk, it is clear that
a point y which is fixed under αp

k
may be constructed by defining yj to be

xj for all j with |j| < pk, and then simply using the local rule (12) and the

requirement that αp
k
(y) = y to write down the remaining coordinates.

Now assume that the local rule only depends on strictly positive co–
ordinates: that is, the corresponding polynomial is of the form

ξ(t) = c`t
` + · · ·+ crt

r

with c`, cr 6= 0 and r > ` > 0. Then the same construction works: the
automaton αp

k
has local rule corresponding to the polynomial

cp
k

` t
`·pk + · · ·+ cp

k

r t
r·pk ,

and it is straightforward to extend a finite configuration (xj)|j|<pk . The case
of strictly negative co–ordinates is similar.

The remaining case is where the polynomial corresponding to the local
rule has the form

ξ(t) = c0 + c`t
` + · · ·+ crt

r

for some c`, cr, c0 6= 0 and r ≥ ` > 0. In this case there may be only one
point of period pk (for example, the ‘rule 102’) cellular automaton has this
property) so we need to use a different argument. By the argument used
above,

ξ(t)p
k

= cp
k

0 + cp
k

` t
`·pk + · · ·+ cp

k

r t
r·pk .

It follows that if D is the coefficient of t` in ξ(t)p
k−1, then

D · c0 + c`c
pk−1
0 ≡ 0

in Fp. In particular, D ≡ 0 mod p. On the other hand, since c0 6= 0 in Fp,

cp
k−1

0 = c
(p−1)(1+p+···+pk−1)
0 ≡ 1, so the polynomial corresponding to the local

rule of the automaton αp
k−1 is

ξ(t)p
k−1 = 1 +D · t` + · · ·+ cp

k−1
r tr·(p

k−1).

Now construct a point y with period pk − 1 under α as follows. The point y
must lie in the kernel of the map corresponding to multiplication by

ξ(t)p
k−1 − 1 = D · t` + · · ·+ cp

k−1
r tr·(p

k−1).

20



It follows that y must solve the equations

r·(pk−1)∑
j=`

yj+N ≡ 0

in Fp for all N ∈ Z. It is clear that a solution can be found for which yj = xj
for any

(
r(pk − 1)− `

)
− 1 specified j, and choosing these to be the central

co–ordinates of x gives the result.
The estimate on the size of period needed follows from a simple calcu-

lation: two points in Σp that agree on all coordinates j with |j| < s are
distance on the order of 2−s apart under ρ. �

This result gives a very simple and general construction for this class of
cellular automata.

Example 6 [1] To illustrate the simple case of Theorem 5, we find a periodic
point that agrees with the point

x = . . . 0110̂101︸ ︷︷ ︸ . . .
(the hat indicates the zero position) on the indicated positions for the ‘rule
90’ cellular automata. The polynomial defining the local rule here is ξ(t) =
t−1 + t ∈ F2[t±1], so following the procedure in Theorem 5 we write down

(t−1 + t)4 = t−4 + 4t−2 + 6 + 4t2 + t4 = t−4 + t4

mod 2. Then it is clear that we may write down a point y that is fixed by
α4 and that agrees with the displayed positions in x. In fact there are two
such points:

y = . . . 100 0110̂101︸ ︷︷ ︸ 011 . . .

and
y′ = . . . 101 0110̂101︸ ︷︷ ︸ 111 . . .

[2] Now consider the same point

x = . . . 0110̂101︸ ︷︷ ︸ . . .
for the ‘rule 102’ cellular automaton. Following the procedure, we will need
k = 4, so the point y will be a point in the kernel of the automaton with
local rule corresponding to

(1 + t)15− 1 = t+ t2 + · · ·+ t15.

Thus a point may be constructed by appending 8 arbitrary symbols to either
side and then using the rule that any fifteen adjacent symbols in y must sum
to zero to build the rest of the point:

y = . . . 00 0110̂101︸ ︷︷ ︸ 00000000︸ ︷︷ ︸ 01 . . .
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6 Conclusion and remarks

[1] The machinery developed for S–integer dynamical systems may be used
to give insights into the dynamical behaviour of the special class of additive
cellular automata with prime alphabets. Very exact information about how
the periodic configurations lie in the space is shown, and a simple formula
for the topological entropy and for counting periodic points is arrived at.

[2] The method used involves a ‘linear’ covering space kS that comprises
a direct product of fields. The lifted map α̃ may be thought of as having
generalized eigenvalues on this space, and the modulus of these eigenvalues
is given by the set {|ξ|ν}ν∈S∪P∞ . It is reasonable to view an additive cellular
automaton as hyperbolic if this set does not contain 1. For example, the
eigenvalues for the ‘rule 90’ cellular automaton are found in Example 2[2]
to have sizes 2 (since here S = {t} and |t−1 + t|t−1 = |t−1 + t|t = 2). The
eigenvalues for the ‘rule 102’ cellular automaton has one eigenvalue of size 2
(since |1 + t|t−1 = 2) and one of size 1 (since |1 + t|t = 1). In this setting,
Theorem 3 shows that additive cellular automata have rational zeta function
only when they are hyperbolic, and in general the hyperbolic systems have
much more straightforward dynamics.

Another manifestation of the simple dynamical consequences of hyper-
bolicity is the following. If α is hyperbolic, then it is easy to check that it
either has local rule corresponding to a monomial or a polynomial involving
both negative and positive powers of t. Since additive cellular automata on
prime alphabets are automatically bipermutative, a result of Shereshevsky
and Afraimovich [26] applies to show that any such cellular automaton is
topologically conjugate to some power of the one–sided full shift on p sym-
bols.

[3] Additive cellular automata in general (with arbitrary alphabet) are not
directly amenable to the S–integer formalism.

[4] Some results on higher–dimensional cellular automata are available: in [23]
it is proved that an ergodic additive cellular automaton in two dimensions
has infinite topological entropy. The method of proof is to exhibit subsystems
that are periodic in one spatial dimension that have dense periodic points.
An easy consequence of this work is therefore that additive cellular automata
in two dimensions are chaotic in the sense of Devaney. Other dynamical
properties of higher–dimensional cellular automata are in [22].

[5] The volume-growth approach to computing entropy used here does not
extend to non-linear automata, because the maximal measure is usually not
homogeneous in the sense of [3]. Exact calculations for certain individual
non-linear automata have been carried out – an example is [6] – but in
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general the problem is completely intractable by [14].

7 Appendix

For completeness, we give a short introduction to the relevant parts of number
theory used above. The full story – the main theorems for adele rings of
rational function fields – is in [30] and in [5].

Let G be a locally compact abelian group. A character on G is a continu-
ous homomorphism χ : G→ S

1. The set of characters forms a group Ĝ under
multiplication, and when endowed with the topology of uniform convergence
on compact sets, Ĝ is again a locally compact abelian group. The results on
harmonic analysis used below are all standard and may be found in [13] for
example.

Let k = Fp(t), and let | · |ν be a valuation on k defined as in Section 3.
The valuation | · |ν defines a metric

dν(x, y) = |x− y|ν

on the field k. Notice that this is an ultrametric in that a stronger form of
the triangle inequality is true:

dν(x, y) ≤ max{dν(x, z), dν(z, y)}

for all x, y, z ∈ kν . The completion (in the sense of metric spaces) of k with
respect to dν is a local field kν . Each local field kν has a maximal compact
subring,

rν = {x ∈ kν : |x|ν ≤ 1},

(closed under addition since the metric dν is an ultrametric). The invertible
elements in the ring rν form the multiplicative group

r∗ν = {x ∈ kν : |x|ν = 1}.

The field kν is then a locally compact non–discrete topological field, and
so k̂ν is isomorphic to kν (Chapter II,§5 in [30]). The explicit form of this
isomorphism is important. Define a non–trivial character on kν by writing
the elements of kν in the form

x =
∞∑
i=m

aiπ
i (13)

for some coefficients ai ∈ Fp, m ∈ Z and π a chosen element of k (Chapter
I, §4 of [30]) and then setting χ(x) = ψ(a−1) for an arbitrary non–trivial
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character ψ on Fp. Notice that the elements of rν in the notation (13) are
exactly those with m ∈ N. Then the map

θ : kν → k̂ν (14)

defined by θ(a)(x) = χ(ax) is an isomorphism of topological groups between

kν and k̂ν .
Now let S denote any finite set of finite valuations on k, and write T =

S ∪ P∞. Let
kS =

∏
ν∈T

kν ;

elements of kS are called S-adeles. Since kS is a finite product of locally
compact non–discrete fields, we have

k̂S ∼= kS, (15)

an isomorphism of topological groups. However, a specially constructed iso-
morphism will be needed later.

Recall that the ring of S–integers in the global field k is defined in Defi-
nition 1,

RS = {x ∈ k : |x|w ≤ 1 for all w /∈ T}.

The map

∆(x) = (x, x, . . . , x) ∈
∏
ν∈T

kν

is an injective homomorphism ∆ : RS 7→ kS. The image of ∆ is a copy of RS

sitting inside kS, and the main observation is the following.

Theorem 6 The subgroup ∆(RS) is a discrete subgroup of kS with compact
quotient. Moreover, there is an isomorphism between the quotient kS/∆(RS)

and the dual group R̂S.

The map kS → kS/∆(RS) is the covering map used in the proof of The-
orem 1

The isomorphism used to prove Theorem 6 has to be constructed with
some care: starting with the character χ in equation (14) for ν = t−1 extend
it to the character χ′(x, y) = χ(x) on {(x, y) : x ∈ kt−1 , y ∈

∏
ν∈S kν}. Then

χ′ can be extended uniquely to a character χ̄ on kS that is trivial on ∆(k).
Then any character on kS may be written in the form (x, y) 7→ χ̄(ax, by) for
x ∈ kt−1 and y ∈

∏
ν∈S kν . One may then check that the map from kS to

k̂S that sends (a, b) to that character has the desired properties. For the full
details, see Chapter IV, §2 of [30].
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For S infinite (in fact, for S comprising all the places of k) and for general
k (that is, allowing k to be a number field as well) this is one of the ‘main
theorems’ in adelic number theory: see Chapter IV, §2 in [30].
Proof. Let dS denote the maximum metric on kS:

dS ((xν), (yν)) = max
ν∈T
{dν(xν , yν)}. (16)

Let x ∈ RS be a non–zero element. Then x is of the form h
g

where h, g ∈
Fp[t] have no factors in common and g can only be divisible by polynomials
corresponding to valuations in S. If x = h is actually a polynomial, then
|h|t−1 = pdeg(h) ≥ 1 by a calculation similar to that in Example 2[2], so

dS ((xν), 0) ≥ 1

by (16). If g is non–constant, then it must be divisible by some irreducible
polynomial corresponding to one of the finite valuations ν ∈ S, so

|h
g
|ν ≥ p,

showing again that
dS ((xν), 0) ≥ 1

by (16). It follows that every element of the subgroup ∆(RS)\{0} is distance
at least 1 from zero, so the subgroup is discrete. This implies that ∆(RS) is
a closed subgroup of kS, and general results on duality show that

R̂S
∼= ̂∆(RS) ∼= kS/∆(RS)⊥,

where
∆(RS)⊥ = {χ ∈ k̂S : χ(x) = 1 ∀ x ∈ ∆(RS)}

is the annihilator of ∆(RS) in the dual group k̂S. Now a careful examina-
tion of the exact form of the isomorphism constructed as described in the
discussion after Theorem 6 shows that the subgroup ∆(RS)⊥ is the image of
∆(RS). Thus

R̂S
∼= ̂∆(RS) ∼= kS/∆(RS).

This also shows that the quotient kS/∆(RS) is compact since it is the dual
group of the discrete group RS. �

It remains only to exhibit a fundamental domain with finite volume for
the quotient map (this is needed in the proof of Theorem 2). Of course
Theorem 6 shows that such a domain must exist – the argument below gives
a simple description.
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Theorem 7 A fundamental domain for the quotient map

kS −→ R̂S

may be chosen with finite measure.

Proof. Let
R

(ν)
S = {x ∈ RS : |x|w ≤ 1 ∀ w ∈ T\{ν}}

for each ν ∈ T . Assume first that ν ∈ S. Then it is clear that

R
(ν)
S ∩ rν = Fp (17)

since R
(ν)
S comprises those rational functions h

g
∈ RS with the property that

only powers of the polynomial corresponding to ν appear in g, so intersecting
with rν means the denominator must be constant. On the other hand, h must
be constant since |h

g
|t−1 ≤ 1, so if h

g
∈ k(ν)∩ rν both h and g are constants. If

ν is the infinite place the same proof works with t replaced by t−1, showing
that (17) holds for all ν ∈ T .

Now any element of kν may be written as a sum of an element of rν and
an element of R

(ν)
S (this is easy to see using the notation (13) for elements of

kν), so

kν = R
(ν)
S + rν . (18)

Now let
F =

∏
ν∈T

rν .

Then ∆(RS) ∩ F = ∆(Fp), which is finite, and kS = ∆(RS) + F . Since F
is an open compact subgroup of kS, this shows that the quotient map has a
compact, hence finite measure, fundamental domain. �
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