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Abstract: Over the last decade, metaheuristic algorithms have emerged as a powerful paradigm
for global optimization of multimodal functions formulated by nonlinear problems arising from
various engineering subjects. However, numerical analyses of many complex engineering design
problems may be performed using finite element method (FEM) or computational fluid dynamics
(CFD), by which function evaluations of population-based algorithms are repetitively computed
to seek a global optimum. It is noted that these simulations become computationally prohibitive
for design optimization of complex structures. To efficiently and effectively address this class of
problems, an adaptively integrated swarm intelligence-metamodelling (ASIM) technique enabling
multi-level search and model management for the optimal solution is proposed in this paper. The
developed technique comprises two steps: in the first step, a global-level exploration for near optimal
solution is performed by adaptive swarm-intelligence algorithm, and in the second step, a local-level
exploitation for the fine optimal solution is studied on adaptive metamodels, which are constructed
by the multipoint approximation method (MAM). To demonstrate the superiority of the proposed
technique over other methods, such as conventional MAM, particle swarm optimization, hybrid
cuckoo search, and water cycle algorithm in terms of computational expense associated with solving
complex optimization problems, one benchmark mathematical example and two real-world complex
design problems are examined. In particular, the key factors responsible for the balance between
exploration and exploitation are discussed as well.

Keywords: adaptive multi-level search; metamodel-based hybrid algorithm; particle swarm opti-
mization; multipoint approximation method

1. Introduction

With tremendous advances in computational sciences, information technology, and
artificial intelligence, design optimization becomes increasingly popular in many engi-
neering subjects, such as mechanical, civil, structural, aerospace, automotive, and energy
engineering. It helps to shorten the design-cycle time and to identify creative designs that
are not only feasible but also progressively optimal, given predetermined design criteria.

At the outset of design optimization, running a gradient-based algorithm with a
multi-start process proves to be very successful in finding the global optimum of simple
problems when gradient information is available [1]. While under the pressure of being
faced with increasingly complex optimization problems in which derivative information is
unreliable or unavailable, researchers gradually focus on the development of derivative-
free optimization methods [2] and metaheuristic methods to address this issue. Followed
by Glover’s convention [3], modern metaheuristic algorithms such as simulated annealing
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(SA) [4], genetic algorithms (GA) [5,6], particle swarm optimization (PSO) [7], and ant
colony optimization (ACO) [8] have been applied with good success in solving complex
nonlinear optimization problems [9,10]. The popularity of these nature-inspired algorithms
lies in their ease of implementation and the capability to obtain a solution close to the
global optimum. However, for many real-life design problems, more than thousands of
calls for high-fidelity simulations (for example, computational fluid dynamics simulation)
may be executed to seek a near-optimal solution. This is the overwhelming part of the
total run time required in the design cycle. Thus, it is desirable to retain the appeal of
metaheuristic algorithms on a global search while replacing as many as possible calls to
the solver with evaluations on metamodels for the purpose of less computational cost [11].

The typical techniques for metamodel building include Kriging [12], polynomial
response surface (PRS) [13], radial basis function (RBF) [14], artificial network (ANN) [15],
etc. Among them, PRS and ANN are regression methods that have advantages in dealing
with convex problems; Kriging and RBF belong to interpolation methods that are more
appropriate for nonconvex or multi-modal problems [16]. Therefore, metamodels have
been successfully employed to assist evolutionary optimizations [17–19] and the PSO
method. For example, Tang et al. [20] proposed a hybrid surrogate model formed from
a quadratic polynomial and a RBF model to develop a surrogate-based PSO method
and applied it to solve mostly low-dimensional test problems and engineering design
problems. Regis [21] used RBF surrogates on PSO to identify the most promising trail
position surrounding the current overall global best position for solving a 36-dimensional
bioremediation problem. However, the inherent nature of the PSO method leads to an
extremely large number of calls for function evaluations, which might be prohibitive in
simulation-based optimization.

In this paper, an adaptively integrated swarm intelligence-metamodelling technique
(ASIM) is proposed, which combines multi-level search and model management during
the entire optimization process. It orients the solution of the approximate model to the
global optimum with a smaller number of iterations of analyses and achieves a higher level
of efficiency than conventional approximation methods. Meanwhile, model management
in the optimization process has been established, which integrates an adaptive trust-region
strategy with a space reduction scheme implemented in the multipoint approximation
method (MAM) framework. The model management has been able to facilitate the opti-
mization process and to improve robustness during iterations. It especially has allowed
a small perturbation to be assigned to the current position in case of no updates for the
optimal position. The developed ASIM makes full use of the global-exploration potential
of PSO and local-exploitation advantage of MAM to efficiently and accurately seek the
global optimal solution with low computational cost. In comparison to the results by other
algorithms such as conventional MAM, particle swarm optimization [22], hybrid cuckoo
search [23], water cycle algorithm [24], etc., the superiority of ASIM has been demonstrated
in terms of computational expense and accuracy throughout three case studies.

2. Brief Review of the Multipoint Approximation Method (MAM)

The MAM [25,26] was proposed to tackle black-box optimization problems and has
gained continuous development in recent years, e.g., Polynkin [27] enhanced MAM to
solve large-scale optimization problems, one of which is the optimization of transonic axial
compressor rotor blades; Liu [28] implemented discrete capability into MAM. Recently,
Caloni [29] has applied MAM to solve a multi-objective problem. Based on a response
surface methodology, multipoint approximation method (MAM) aims to construct mid-
range approximations and is suitable to solve complex optimization problems owing to
(1) producing better-quality approximations that are sufficiently accurate in a current trust
region and (2) affordability in terms of computational costs required for their building.
These approximation functions have a relatively small number (N + 1 where N is number
of design variables) of regression coefficients to be determinedm and the corresponding
least squares problem can be solved easily [25].



Appl. Sci. 2021, 11, 2277 3 of 20

In general, a black-box optimization problem can be formulated as follows:

min f (x)

s.t. gj(x) ≤ 1 (j = 1, . . . , M)

Ai ≤ xi ≤ Bi (i = 1, . . . , N)

(1)

where x refers to the vector of design variables; Ai and Bi are the given lower and upper
bounds of the design variable xi; N is the total number of design variables; f (x) is the
objective function; gj(x) is the jth constraint function and M is the total number of the
constraint functions.

In order to represent the detailed physical model using the response functions and to
reduce the number of calls for the response function evaluations, the MAM replaces the
optimization problem with a sequence of approximate optimization problems as follows:

min f̃ k(x)

s.t. g̃k
j (x) ≤ 1 (j = 1, . . . , M)

Ai ≤ Ak
i ≤ xi ≤ Bk

i ≤ Bi (i = 1, . . . , N)

(2)

where f̃ k(x) and g̃k
j (x) are the functions which approximate the functions f (x) and gj(x)

defined in Equation (1); Ak
i and Bk

i are the side constraints of a trust sub-region; and k is
the iteration number.

Compared with the time spent by evaluation of the actual response functions gj(x),
the selected form of approximate functions g̃k

j (x) (j = 0, . . . M) remarkably reduces the
computational expense and adequately improves the accuracy in a current trust region.
This is achieved by appropriate planning of numerical experiments and use of the trust
region defined by the side constraints Ak

i and Bk
i . Once the current suboptimization

problem is solved, the suboptimal solution becomes the starting point for the next step.
Meanwhile, the move limits are modified and the trust region is resized [25,26]. Based
on this information, the metamodel is updated in the next iteration until eventually the
optimum is reached.

The process of metamodel building in MAM can be described as an assembly of
multiple surrogates into one single metamodel using linear regression. Therefore, there are
two stages of metamodel building.

In the first stage, the parameter al of an individual surrogate ϕl is determined by
solving a weighted least squares problem involving n fitting points as

min
n

∑
i=1

ωi[F(xi)− ϕl(xi, al)]
2 (3)

where ωi denotes the weighting parameters and F is the original function that needs to be
approximated. Here, the selection of weighting factors ωi should reflect the quality of the
objective function and the location of a design point with respect to the border between the
feasible and the infeasible design subspace [30], which are defined as

wi = wo
i × wc

i (4)

wo
i = [

f (xk)

f (xi)
]β (5)

wc
i =


1 for objective f (x)
[g(x) + 1]α if g(x) ≤ 0
[g(x) + 1]−α if g(x) ≥ 0

(6)
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where α, β > 0 are user-defined constants, where, here, α = 4 and β = 1.5 are used;
xk is the starting point in the kth iteration; and xi is the ith design point in the fitting
points. With this definition, a point with a larger objective function has a smaller weighting
coefficient component wo

i . For a constraint function g(x), a point that is much closer to the
boundary of the feasible region of g(x) is given a larger weighting coefficient component
wc

i . For building a surrogate of the objective function f (x), the weighting coefficient wi
only considers the component wo

i . However, for building a surrogate of the constraint
function g(x), the weighting coefficient wi will also take the constraint component wc

i
into consideration.

It should be noted here that, in MAM, both the objective and constraint functions will
be approximated by Equation (3). The simplest case of ϕl is the first-order polynomial
metamodel, and more complex ones are intrinsically linear functions (ILF) that have been
successfully applied for solving various design optimization problems [25,28,29]. ILFs are
nonlinear but they can be led to linear ones by simple transformations. Currently, five
functions are considered in the regressor pool {ϕl(x)}:

ϕ1(x) = a0 +
N

∑
i=1

aixi

ϕ2(x) = a0 +
N

∑
i=1

aix2
i

ϕ3(x) = a0 +
N

∑
i=1

ai/xi

ϕ4(x) = a0 +
N

∑
i=1

ai/x2
i

ϕ5(x) = a0

N

∏
i=1

xai
i

(7)

In the second stage, for each function ( f (x) or g(x)), different surrogates are assembled
into one metamodel:

F̃(x) =
nl

∑
l=1

bl ϕl(x) (8)

where nl is the number of surrogates applied in the model bank {ϕl(x)} and bl is the
regression coefficient corresponding to each surrogate ϕl(x), which reflects the quality
of the individual ϕl(x) on the set of validation points. Similar to Equation (3), bl can be
determined in the same manner:

min
n

∑
i=1

ωi
[
F(xi)− F̃(xi, b)

]2 (9)

It should be noted that, in the process of metamodel building, the design of experi-
ments (DOE) is fixed, i.e., ωi remains unchanged across the aforementioned stages.

Figure 1 illustrates the main steps in MAM. Note that, once the metamodels for the ob-
jective and constraint functions have been built, the constrained optimization subproblem
formulated in the trust region (Equation (2)) could be solved by any existing optimizers. In
this paper, the sequential quadratic programming (SQP) method [31] is applied to solve the
constrained optimization subproblem for the optimal solution. Since numerical optimiza-
tion solvers such as SQP are deterministic, the quality of the obtained solution is highly
sensitive to the initial point. In other words, MAM could not perform the global search
very well. To address this issue, the ASIM framework in Section 4 has been proposed to
integrate the stochastic nature with the exploratory search ability of PSO for the global
optimal solution.
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start

Input initial design x0 and
build initial trust region

Sample new points inside the
trust region and obtain their ob-

jective and constraint values

Metamodel building stage 1:
Build single surrogate ϕ(x, a)

for the objective and constraints

Metamodel building stage 2:
Assemble different approximate mod-
els into one metamodel F̃(ϕ(x, a), b)

Use the Sequential quadratic Pro-
gramming (SQP) method to solve
the optimization subproblem on
metamodel within trust region

Output:
The optimal design xopt

Are the termination criteria
satisfied?

end

Resize and move trust
region towards the ob-
jective improvement

Is metamodel good?

YES

NO

YES

NO

Figure 1. Flow chart of the mulitpoint approximation method (MAM).

3. Brief Review of Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO), inspired from swarm behaviors in nature such
as fish and bird schooling, was developed by Kennedy and Eberhart [32]. Since then,
PSO has attracted a lot of attention and been developed as a main representative form
of swarm intelligence. PSO has been applied to many areas, such as image and video
analysis applications, engineering designs and scheduling applications, classification and
data mining, etc. [33]. There are at least twenty PSO variants as well as hybrid algorithms
obtained by combining PSO with other existing algorithms, which are also becoming
increasingly popular [34–36].

To integrate PSO with MAM to find the global optimum, adaptive multi-level search
is proposed in this paper. PSO is employed for the global-level exploration in the first
step. A number of particles are first placed in the search space of the optimization problem
with initial positions and velocities. However, the particles can fly over the entire design
space not only determined by the individual and collective knowledge of positions from
the global-level search but also based on the “local” information of each particle. Here,
the “local” information means the local-level exploitation in the second step. In the
neighborhood of each particle, an adaptive metamodel is constructed using MAM in
Section 2, which replaces the original optimization problem by a sequence of mathematical
approximations that use much simpler objective and constraint functions. Hence, the
critical information about individual constraint functions is kept and this leads to the
improved accuracy of metamodels. During the process of metamodel building, each
particle is endowed with a horizon in the surrounding region and then is refined with
the current individual position to boost the possibility of finding an optimal position.
Eventually, the swarm as a whole, similar to a flock of birds collectively foraging for food



Appl. Sci. 2021, 11, 2277 6 of 20

while each bird brilliantly and directly finds the most tasty food within the limited horizon,
has the ability to move toward to a global optimum.

Each particle in PSO represents a point in the design space of an optimization problem
with an associated velocity vector. In each iteration of PSO, the velocity vector is updated
by using a linear combination of three terms shown in Equation (10). The first term called
inertia or momentum reflects a memory of the previous flight direction and prevents
the particle from changing directions thoroughly. The second term, called the cognitive
component, describes the tendency of particles returning to the previously found best
positions. The last term, called the social component, quantifies the group norm or standard
that should be attained. In other words, each particle tends to move toward the position of
the current global best gbest and the location of the individual best pbest while moving
randomly [33]. The aim is to find the global best among all the current best solutions
until the objective no longer improves or a certain number of iterations are reached. The
standard iteration procedure of PSO is formulated as follows:

V t+1
i = ωV t

i + αε1(pbestt
i − xt

i) + βε2(gbestt
i − xt

i)

xt+1
i = xt

i + V t+1
i

(10)

where ω is the parameter called inertial weight, t is the current iteration number, α and
β are parameters called acceleration coefficients, and ε1 and ε2 are two homogeneously
distributed random vectors generated within the interval [0, 1), respectively. If the values
of ω, ε1, and ε2 are properly chosen (ε = α + β > 4 and ω = 2

ε−2+
√

ε2−4ε
), it has been

proven that PSO could converge to an optimum [37].
Even if PSO has been used in a variety of industry applications, it should be noted

that the standard PSO suffers the disadvantages of information loss in the penalty function
and high computational cost, especially in solving constrained optimization problems.
Therefore, the proposed ASIM framework in the following section takes the advantage
of PSO in global searching and reduces the burden on computation by introducing the
metamodel building technique, model management, and trust region strategy.

4. Adaptively Integrated Swarm Intelligence-Metamodelling Framework
4.1. Methodology of the ASIM Framework

In this paper, an adaptively integrated swarm intelligence-metamodelling (ASIM)
framework is proposed to perform a search for the optimal solution in two levels.

In the first level of optimization, also known as exploration, a number of entities are
initially placed in the search space of the particular optimization problem with respective
positions xt

i and velocities υt
i . Each particle i has its movement controlled by Equation (10).

The final global best solution is obtained only if the objective no longer improves or after
a certain number of iterations. However, distinguished from the conventional PSO, each
particle also gains an insight within its neighborhood. That forces each particle to refine
their personal best position by exploiting their neighborhood, which is known as the
second level of optimization. In this local level search, an adaptive metamodel is built by
MAM within a trust region surrounding the particle, and then the personal best solution
xi,MAM obtained by MAM is regarded as a local refinement in position. Following that,
the personal and global best position pbestt, gbestt is determined and updated until the
termination criterion is satisfied. To sum up, the surrogate helps guide the search direction
of each particle and assists in refining the current overall best position until the final global
best solution is found. Eventually, the swarm as a whole moves close to a global optimum
of the objective function. The flowchart of the ASIM framework is depicted in Figure 2.
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Initialization of particles
x0

i , υ0
i , f (x0

i )

For each particle i

MAM optimization procedure

Output:
xt

i,refined = xi,MAM

f (xt
i,refined) = f (xi,MAM)

Update pbestt
i and gbestt

Termination criteria
satisfied?

Output optimal solution:
gbestt

PSO process

Update xt
i , υt

i

t = t + 1

Reduce the trust region

YES

NO

Figure 2. Flow chart of ASIM Framework.

It is worth noting that there are three rules applied to compare solutions during the
optimization process:

1. Any feasible solution is preferred to any infeasible solution;
2. Among feasible solutions, the one with a better objective function value is preferred.
3. Among infeasible solutions, the one having a fitness value with smaller constraint vi-

olations is preferred. In the current implementation, the fitness function is defined by

Fitness(x) =


f (x) if x is feasible
f (x)×∏[gj(x)]2 elseif f (x) ≥ 0
f (x) + | f (x)| ×∏[gj(x)− 1]2 elseif f (x) < 0

(11)

4.2. Model Management
4.2.1. Strategy for Particles “Flying out” in PSO

For particles located outside the boundary, they should adjust their positions according
to the formulations determined by the current bounds, as follows:

xi,k =

{
a[k] + γ× (b[k]− a[k]) i f xi,k ≤ a[k]
b[k]− γ× (b[k]− a[k]) i f xi,k ≥ b[k]

(12)

where xi,k means the kth dimensional position of xt
i , a[k] and b[k] are kth dimensional side

constraints, and γ is a relatively small value randomly generated from the range (0, 0.1).
This perturbation of positions could actually force the particles back into the design space
if particles violate the boundary constraints during the entire search process and could
ensure the efficiency and accuracy in local exploitation.

4.2.2. Modified Trust Region Strategy in MAM

The aim of the trust region strategy in MAM is to control the quality of a metamodel
constructed. When the approximation gets better, the trust region is further reduced for the
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optimal solution. The track of the trust regions also indicates a path of the direction from
the initial starting point to the optimum over the entire search domain. At each iteration, a
new trust region must be updated, i.e., its new size and its location have to be specified.
Several indicators are formulated to support the control of the trust region and to facilitate
the search process. The basic knowledge about these indicators was introduced in [38].

The first indicator is to evaluate the quality of the metamodel and focuses on the
accuracy of the constraint approximations at the obtained suboptimal point xk+1. This is
based on the following equation:

Ek = Max

| g̃
(

xk+1
)
− g
(

xk+1
)

g
(
xk+1

) |

 (13)

where g̃
(

xk+1
)

and g
(

xk+1
)

are normalized functions of the approximate and true con-

straints at the suboptimal point xk+1, respectively. In this way, a single maximal error
quantity between explicit approximation and implicit simulation is defined. Then, the
quality of metamodel can be labeled as “bad”, “reasonable”, or “good” shown below.

Ek ⇒


≥ 0.25× Sk ⇒ ‘Bad’
≤ 0.01× Sk ⇒ ‘Good’
Else ⇒ ‘Reasonable’

(14)

where Sk represents the maximum ratio of the dimension length between the present trust
region, and the entire design space is defined by

Sk = Max

(
Bk

i − Ak
i

Bi − Ai

)
(i = 1, . . . , d) (15)

The second indicator is for indicating the location of the current iterate xk+1 in the
present search subregion. For each dimension, if none of the current move limits (Ak, Bk) is
active, this solution is regarded as “internal”; otherwise, it is viewed as “External”.

The third and fourth indicators reflect the movement history for the entire optimization
process. For this purpose, the angle between the last two move vectors is calculated. The
formulation of this measure θk is given below:

θk =
xk+1 − xk

‖xk+1 − xk‖
× xk − xk−1

‖xk − xk−1‖
(16)

If θk > 0 holds, the movement will be denoted as “forward”, while θk ≤ 0 is denoted
as moving “backward”. Moreover, if θk ≤ 0.3, the convergence history is labelled as
“curved”; otherwise, it is “Straight”.

The fifth indicator in MAM, as a termination criterion, is the size of the current search
subregion. It can be marked as “small” or “large” according to the quality of the metamodel
determined by the first indicator. When the approximations are “bad” and Sk ≤ 0.0005, the
present search subregion is considered “small”. When the approximations are “reasonable”
or “good”, the trust region is denoted as “small” if Sk ≤ 0.001.

The sixth indicator is based on the most active constraint. It is considered “close” to
the boundary between the feasible and infeasible design space if gmax(xk+1) ∈ [−0.1, 0.1];
otherwise, it is denoted as “far”.

Both reduction and enlargement of the trust region is executed using

Bk+1
i − Ak+1

i =
1
τ

(
Bk

i − Ak
i

)
(i = 1, . . . , d) (17)

where τ is the resizing parameter.
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When the approximations are “bad” and the trust region is “small”, the current trust
region is considered too small for any further reduction to achieve reasonable approxi-
mations and the process is aborted. When the approximations are “bad” and the trust
region is “large”, a reduction in the search region should be applied in order to achieve
better approximations. When the approximations are not “bad”, the trust region is “large”
and the suboptimal point is not “internal”; a “backward” convergence history means that
the iteration point progresses in a direction opposite to the previous move vector. In this
situation, the trust region has to be reduced. If the iteration point moves “forward” and the
approximations are “good”, the same metamodels are reutilized in the next iteration for
the purpose of reducing the computational cost. If the optimization convergence history is
labelled as “curved” and the approximations are “reasonable”, the trust region is enlarged
as the optimization process moves in the same direction.

A summary of termination criteria as well as the move limit strategy is presented in
Table 1 and Figure 3, respectively. Note that, in Figure 3, some processes are only executed
when the indicators have the same superscript. For example, the process can only output
the final optimum when the approximation is “good” (with superscript 1) and the current
location (2nd indicator) of the solution is within a small (5th indicator) trust region. If the
quality of the metamodel is “bad” with the superscript “3” and the 5th indicator has the
value “large”, the 4th indicator is triggered and a move limit should be then determined.

4.2.3. Space Reduction Scheme in the ASIM Framework

As optimization proceeds, the particles narrow down their horizon to improve the
local search ability. In other words, for each particle involved, the size of the individual
trust region reduces from 1.0 by a factor of 2 in each iteration, i.e., ( 1

2 )
t times the size of

the initial design space. Although the particles still fly through the whole design space,
each individual seems to behave more cleverly and finds the local optimal position more
precisely because the metamodel becomes more accurate.

Table 1. Six indicators in MAM.

1st indicator
The quality of metamodel approximation

Good Reasonable Bad

2nd indicator
Location of the suboptimal point xk+1 with respect to trust region

Boundary Internal External

3rd indicator and
4th indicator

The angle between the last two move vectors

Backward
(

π
2 ≤ θ ≤ 3π

2

)
Forward

(
−π

2 ≤ θ ≤ π
2
)

Parallel Curved

5th indicator
Termination criterion: size of the current region

Small Large

6th indicator
Value of the most active constraint

Close from the boundary Far from the boundary
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start

Metamodel building and analysis

1st Indicator

2nd Indicator

3rd Indicator

4th Indicator

Keep model1

Enlarge1,2

Reduce or Enlarge3

Keep model1

Keep size1,2

Reduce3
Reduce

5th Indicator

6th Indicator

Convergence found1,2

Convergence not found3

End

Good1Reasonable2

Boundary1External2

Forward

Backward

Straight

Curved

Small

Large1,2

FarClose

Internal

bad3

Large3

Figure 3. Overview of trust region strategy in MAM.

5. Benchmark Problem

In this section, the parameters used in MAM and the proposed ASIM framework are
given in Table 2 for solving complex optimization problems: one benchmark mathematical
example and two real-world complex design problems. The MAM parameters (the maxi-
mum number of iteration, the number of required sampling points, the size of the initial
trust region, and the minimum size of the trust region) are well configured for solving
general optimization tasks, as proposed in our previous work [28]. The PSO parameters
(the initial weight and the acceleration coefficients) are chosen as the values proposed
in [37], which ensure the convergent behavior of the search process.
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Table 2. Default parameters for MAM and ASIM.

Method
MAM Parameters PSO Parameters

MI a NOP b SIR c SMR d ω e α f β f

MAM 30 n + 5 0.25 0.1 N.A.
ASIM 30 n + 5 0.25 0.1 0.7298 1.49618 1.49618

a The maximum number of iteration. b The number of required sampling points. c The size of the initial trust
region. d The minimum size of the trust region. e The initial weight in PSO. f The acceleration coefficients in PSO.

5.1. Welded Beam

The design optimization of a welded beam in Figure 4 is a complex and challenging
problem in nature with many variables and constraints. Usually, conventional optimization
methods fail to find global optimal solutions. Hence, the welded beam design problem
is often used to evaluate the performance of optimization methods. To determine the
best set of design variables for minimizing the total fabrication cost of the structure, the
minimum cost optimization is performed considering shear stress (τ), bending stress (σ),
buckling load (pc), and end deflection δ constraints. The design variables comprise the
thickness of the weld (x1), the length of the welded joint (x2), the width of the beam (x3),
and the thickness of the beam (x4), and the mathematical formulation of this problem can
be expressed as follows:

min f (x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)

s.t. g1(x) = τ(x)− τmax ≤ 0

g2(x) = σ(x)− σmax ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = [0.10471x2
1 + 0.04811x3x4(14 + x2)]− 5 ≤ 0

g5(x) = 0.125− x1 ≤ 0

g6(x) = δ(x)− δmax ≤ 0

g7(x) = p− pc(x) ≤ 0

where P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi,

τmax = 13,600 psi, σmax = 30,000 psi, δmax = 0.25 in

τ′ =
P√

2x1x2
, τ′′ =

MR
J

, M = P
(

L +
x2

2

)
R =

√
x2

2
4

+

(
x1 + x3

2

)2

τ(x) =
√
(τ′)2 + 2τ′τ,, x2

2R + (τ′′)2

J = 2

{
√

2x1x2

[
x2

2
12

+

(
x1 + x3

2

)2
]}

σ(x) =
6PL
x4x2

3
, δ(x) =

4PL3

Ex3
3x4

pc(x) =

4.013

√
E
(

x2
3x6

4
36

)
L2

(
1− x3

2L

√
E

4G

)
0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

(18)

To solve the aforementioned problem, the GA-based method [39], co-evolutionary
PSO method (CPSO) [22], ES-based method [40], charged system search (CSS) [41], and
colliding bodies optimization (CBO) [42] were used to find the optimal solution.
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In Table 3, the optimized design variables and cost obtained by MAM and ASIM have
been compared with those obtained in literature. The best solutions (1.724852) by MAM and
ASIM are more competitive than those obtained by other methods. Although Kaveh [42]
claimed that 1.724663 was the better cost, the solution actually violated the g1 constraint
and it was an infeasible solution. Based on the statistical results in Table 4, it is concluded
that the ASIM technique is very robust and efficient because the standard deviation of
different runs of simulations is almost 0 (1.1× 10−7) and the number of function analysis
(NFEs) is remarkably smaller (565) than that called by other methods except MAM. Both
ASIM and MAM demonstrate efficiency in finding the optimal design owing to their
accuracy approximations and adaptive trust region strategy at local level exploitation.
On average, hundreds of evaluations are required to determine an optimum. It is noted
that enhancement of global exploration for the optimal solution by the PSO process in the
ASIM framework could be demonstrated by a standard deviation of zero (1.1× 10−7) for
statistical results, which is approximately four orders of magnitude smaller than the value
by MAM (0.0031358). Furthermore, by comparison with the NFEs (200,000) obtained by
co-evolutionary PSO [22], the accurate surrogates built by ASIM framework indeed assist
each particle in finding the local refinement position and speed up the converged global
optimum. In conclusion, ASIM needs less computational cost for a global optimum with
improved accuracy and great robustness.

Figure 4. Schematic of the welded beam structure with indication of design variables.

Table 3. Comparison of present optimized designs with the literature for welded beams.

Methods x1(h) x2(l) x3(t) x4(b) Cost

GA-based [39] 0.205986 3.471328 9.020224 0.20648 1.728226
CPSO [22] 0.202369 3.544214 9.04821 0.205723 1.728024

ES-based [40] 0.199742 3.612060 9.037500 0.206082 1.737300
CSS [41] 0.20582 3.468109 9.038024 0.205723 1.724866
CBO [42] 0.205722 3.47041 9.037276 0.205735 1.724663

MAM 0.2057296 3.4704893 9.0366242 0.2057297 1.724852
ASIM 0.2057296 3.4704887 9.0366239 0.2057296 1.724852
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Table 4. Statistical results from different optimization methods for the welded beam design problem.

Methods Best Average Worst S.D. NFEs

GA-based [39] 1.728226 1.792654 1.993408 0.074713 80000
CPSO [22] 1.728024 1.748831 1.782143 0.012926 200000

ES-based [40] 1.737300 1.813290 1.994651 0.070500 25,000
CSS [41] 1.724866 1.739654 1.759479 0.008064 4000
CBO [42] 1.724662 1.725707 1.725059 0.0002437 4000

MAM 1.724852 1.725563 1.739605 0.0031358 122
ASIM 1.724852 1.724852 1.724852 1.10E-07 565

5.2. Design of a Tension/Compression Spring

This problem, first described by Belegundu [43], has arisen from the wide applications
of vibration resistant structures in civil engineering. The design objective is to minimize the
weight of a tension/compression spring subject to constraints on the minimum deflection
g1, shear stress g2, and surge frequency g3 and to limit on the outside diameter g4. As
shown in Figure 5, the design variables include the wire diameter d, the mean coil diameter
D, and the number of active coils N. The mathematical description of this problem can be
expressed as follows:

min f (N, D, d) = (N + 2)× Dd2

s.t. g1(x) = 1− D3N
71,785d4 ≤ 0

g2(x) =
4D2 − Dd

12,566(Dd3 − d4)
+

1
5108d2 − 1 ≤ 0

g3(x) = 1− 140.45d
D2N

≤ 0

g4(x) =
D + d

1.5
− 1 ≤ 0

where 0.05 ≤ d ≤ 1, 0.25 ≤ D ≤ 1.3, 2 ≤ N ≤ 15.

(19)

The statistical results by MAM are in Table 5. From the first row to the sixth row,
every row is the optimal results of 40 independent runs of MAM and the last line con-
cludes the average results of the 6 parallel experiments, i.e., each experiment comprises
40 independent runs of MAM with randomly generated starting points. The best optimal
design represented by [d, D, N] is [0.051656122, 0.355902943, 11.33791803] with the objective
value of 0.012666692. Moreover, the fourth column “Best” in Table 5 indicates that MAM
cannot achieve a converged robust solution and falls into the local optima when faced with
multimodal function optimization. The optimal result ranges from 0.01266 (the best design
in the fourth row) to 0.070 (the worst design in the third row). As a general deficiency of
the trajectory-based algorithm, MAM could not find the known optimum 0.0126652 by
balancing the efforts between exploration and exploitation.

Figure 5. Schematic of the tension/compression spring.
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Table 5. Statistical results for the tension/compression spring problem by MAM.

Number Worst Mean Best S.D. NFEs

1 0.032839737 0.015057587 0.0126692 0.004246608 8041
2 0.046478999 0.01537479 0.012677425 0.005275199 8536
3 0.070551755 0.015521846 0.012680762 0.009064574 7483
4 0.053871312 0.016530777 0.012666692 0.00857695 7483
5 0.030829567 0.014687079 0.012733211 0.003455907 7536
6 0.017557055 0.014067046 0.012667273 0.001247161 8149

Average 0.012733211 0.012682427 0.012666692 2.55305× 10−5 7871

A more intuitive perspective for understanding the global search mechanism using
the ASIM framework is represented in Table 6, which includes the optimal results obtained
by 8 independent experiments, each of which is initialized with 5 particles. In Figure 6, the
results show the objectives of initial designs and global optima for the tested 40 particles.
Even the initial designs are remarkably different at the start of the optimization process
due to the random nature of statistical tests; the developed ASIM has the capability to
eventually find the converged global optimum. It is concluded that the ASIM algorithm
can achieve a robust solution for random starting points, and it will not be trapped into
local optima due to its multi-level search and model management strategies. Therefore,
these 8 independent experiments could almost obtain the same global optimum. The best
optimal design found by ASIM framework is [0.051724501, 0.357570887, 11.23912608], with
the objective value 0.012665259, which has a good agreement with the known optimum.
Additionally, the global solutions from 8 independent experiments have been proven
feasible by function evaluations.

Table 6. Statistical results for the tension/compression spring problem by adaptively integrated
swarm intelligence-metamodelling (ASIM).

Number Worst Mean Best S.D. NFEs

1 0.012707419 0.01268076 0.012669372 1.53792× 10−5 4891
2 0.015076822 0.013158868 0.012665512 0.001072278 5719
3 0.012734131 0.012681909 0.012665469 2.94215× 10−5 5161
4 0.013151181 0.012797596 0.012666127 0.000201587 5233
5 0.012674725 0.012671127 0.012665294 3.80784× 10−6 4882
6 0.012962267 0.012734387 0.012665259 0.000128041 5337
7 0.012787169 0.012679022 0.012669651 1.17008× 10−5 4702
8 0.012780362 0.01269988 0.012665634 4.68624× 10−5 5170

Average 0.012669651 0.01266654 0.012665259 1.85492× 10−6 5141

Other algorithms recently used to optimize this problem include co-evolutionary
particle swarm optimization (CPSO) [22], differential evolution with dynamic stochastic
selection (DEDS) [44], hybrid evolutionary algorithm with adaptive constraint-handling
techniques (HEAA) [45], league championship algorithm (LCA) [46], water cycle algorithm
(WCA) [24], and hybrid cuckoo search (HCS) [23]. A comparison of the optimal solutions
by the aforementioned methods is given in Table 7, and the statistical results by ASIM,
MAM, and other algorithms are shown in Table 8.

In Table 7, the ASIM framework has the ability to find the optimal solution (0.0126652),
which is the best available design compared to that which the other algorithms achieved.
Although LCA [46] found a slighter better solution (0.01266523), the corresponding con-
straint g1(x) was violated. Therefore, it was not a feasible solution. The same conclusion
can be drawn for the results by DEDS [44] and HEAA [45]. Together with the statistical
results shown in Table 8, it can be observed that the ASIM method is superior to other
methods for the global solution in terms of the number of function evaluations and the
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accuracy throughout the optimization process. Obviously, the referenced methods used
more than 10,000 calls to find the global optimum while ASIM finds the optimum with
about half of those calls. Meanwhile, the ASIM could reduce the number of simulations by
over 28% compared to MAM.
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Figure 6. First and final fitness values in ASIM for solving the tension/compression spring.

Table 7. Comparison of the best solutions obtained by various studies for the tension/compression spring design optimiza-
tion problem.

Name CPSO [22] DEDS [44] HEAA [45] LCA [46] WCA [24] HCS [23] MAM ASIM

x1 0.051728 0.051689 0.051689 0.051689 0.051680 0.051689 0.051656 0.051724
x2 0.357644 0.356717 0.356729 0.356718 0.356522 0.356718 0.355902 0.357570
x3 11.244543 11.288965 11.288293 11.28896 11.300410 11.28896 11.33791 11.239126

g1(x) −8.25× 10−4 1.45× 10−9 3.96× 10−10 N.A./2.00× 10−15 −1.65× 10−13 −6.41× 10−6 −1.64× 10−5 −1.13× 10−7

g2(x) −2.52× 10−5 −1.19× 10−9 −3.59× 10−10 N.A./−2.22× 10−15 −7.9× 10−14 −3.90× 10−6 −5.16× 10−5 −1.05× 10−7

g3(x) −4.051306 −4.053785 −4.053808 N.A./−4.053786 −4.053399 −4.053775 −4.051810 −4.055466
g4(x) −0.727085 −0.727728 −0.727720 N.A./−0.727728 −0.727864 −0.727729 −0.728293 −0.727136
f (x) 0.012674 0.012665 0.012665 0.01266523 0.012665 0.0126652 0.0126667 0.0126652

Table 8. Comparison of statistical results given by different algorithms for the tension/compression
spring design optimization problem.

Methods Worst Mean Best S.D. NFEs

CPSO [22] 0.012924 0.012730 0.012674 5.20× 10−4 240,000
DEDS [44] 0.012738 0.012669 0.012665 1.3× 10−5 24,000
HEAA [45] 0.012665 0.012665 0.012665 1.4× 10−9 24,000
LCA [46] 0.01266667 0.01266541 0.01266523 3.88× 10−7 15,000
WCA [24] 0.012952 0.012746 0.012665 8.06× 10−5 11,750
HCS [23] 0.0126764 0.0126683 0.0126652 5.37× 10−7 150,000

MAM 0.012733211 0.012682427 0.012666692 2.55305× 10−5 7871
ASIM 0.012669651 0.01266654 0.012665259 1.85492× 10−6 5141

As a general remark on the comparisons above, ASIM shows a very competitive
performance over eight state-of-the-art optimization methods to find the global optimal
solution in terms of the efficiency, the quality, and the robustness.
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5.3. Mathematical Problem G10

This problem was first described in [47] and then was considered one of the benchmark
problems at the 2006 IEEE Congress on Evolutionary Computation [48]. In this optimization
example, there are eight variables and six inequality constraints (three linear and three
nonlinear). The mathematical formulations are shown below.

min f (x) = x1 + x2 + x3

s.t. g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83,333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1,250,000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10,000, 1000 ≤ xi ≤ 10,000(i = 2, 3),

10 ≤ xi ≤ 1000(i = 4, . . . , 8)

(20)

The optimal solutions found by ASIM and MAM are given in Table 9 as well as the
known optimum. In Table 10, nine independent experiments have been performed and each
experiment includes 40 parallel runs of MAM. Although each run by MAM is initialized
with a random starting point, there is no guarantee that the converged global optimum
can be achieved. As there has a very small feasible region (0.0010%) in this challenging
example, limited runs by MAM could not find a feasible solution, and normally, a bad
design with a very large value of the fitness function (up to 100,000) is obtained. However,
a feasible solution could be achieved within 20,000 function evaluations. Applying the
developed ASIM, the capability of the adaptive multi-level search for the global optimum
was significantly improved, and the statistical results are shown in Table 11. Using the
same parameter settings in the previous example, the worst solution found by the particles
is about 7361, which is only 4.42% higher than the global optimum 7049.248. In the mean
time, all nine independent experiments of ASIM could find a decent global optimum,
which is slightly 10−5 higher than the global optimum even in the worst case (number
5 in Table 11). In Figure 7, it shows how 10 independent runs initialized with a total of
50 particles converge to the global optimum by ASIM. It is noted that the initial design
varies dramatically for each particle, and finally, all particles succeed in finding the global
optimum. It is concluded that the PSO process applied in ASIM remarkably boosts the
exploration capability. Owing to advantages such as the guidance of personal memory for
the best position and social cognition in addition to the stochastic search behavior, ASIM is
a robust and efficient algorithm for solving such a challenging problem.

Table 9. Optimal solutions of G10 found by ASIM and MAM.

Description Solution [x1, x2, x3, x4, x5, x6, x7, x8] Objective Value

Known optimum [48]
[579.3066850, 1359.9706780, 5109.970657,
182.0176996, 295.6011737, 217.98230036, 286.4165259,
395.6011737]

7049.2480

ASIM [579.0697378, 1360.029849, 5110.148583, 181.9979046,
295.5940579, 218.0020914, 286.4038427, 395.5940579] 7049.2481

MAM [579.2439615, 1360.814966, 5109.189094, 182.0124631,
295.6324343, 217.9875329,286.380036, 395.6324333] 7049.2499
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Table 10. Statistical results for G10 by MAM.

Number Worst Mean Best S.D. NFEs

1 142,392.7156 17,882.82055 7069.390888 30,251.49815 18,436
2 68,065.07371 11,619.11583 7049.296446 11,320.46339 19,388
3 43,458.18348 10,426.99053 7049.249948 6247.162418 19,584
4 76,953.38912 12,669.27407 7052.442664 12,331.32358 18,478
5 53,761.55465 11,938.01326 7060.468503 8513.607171 19,122
6 38,601.51929 11,216.42827 7049.304236 5669.873504 17,274
7 133,020.3445 12,395.33809 7062.698763 19,714.98684 19,640
8 50,195.68872 12,527.61721 7061.831868 10,079.5634 19,668
9 86,553.78422 12,382.57366 7053.509331 13,257.22511 20,270

Average 7069.390888 7056.46585 7049.249948 7.334903947 19,095

Recently, other algorithms including evolutionary optimization by approximate rank-
ing and surrogate models (EOAS) [49], constraint optimization via particle swarm opti-
mization (COPSO) [50], league championship algorithm (LCA) [46], hybrid cuckoo search
(HCS) [23], and surrogate-assisted differential evolution (SADE) [51] have also solved this
optimization problem. A comparison of results by ASIM, MAM, and other algorithms is
given in Table 12. Although all methods listed are very competitive and has the ability
to find global or near global optimum, ASIM demonstrates superiority over the others
in terms of computational efficiency. Evolutionary algorithms usually need over 150,000
simulations to find the global optimum, while ASIM could reduce the number of function
evaluations to 19,522 by more than 80%. Furthermore, the optimum (7049.2481) achieved
by ASIM is in a good agreement with the global optimum (7049.2480). Although HCS [23]
proposed a best optimum (7049.237), the fourth constraint is slightly violated and, there-
fore, is not a feasible design. Summarily, ASIM outperforms other methods in seeking the
global optimal solutions of complex black-box optimization problems in terms of efficiency
and accuracy.

Table 11. Statistical results for G10 by ASIM.

Number Worst Mean Best S.D. NFEs

1 7071.746167 7054.064714 7049.24996 9.89925027 19,374
2 7058.554639 7051.206052 7049.248851 4.112416516 20,452
3 7151.048877 7070.606275 7049.248909 45.01472868 19,612
4 7361.05089 7112.256788 7049.275307 139.0818573 18,450
5 7063.107951 7053.22295 7049.318392 5.982378418 19,094
6 7049.802007 7049.418117 7049.248849 0.23813293 19,318
7 7361.648467 7111.850254 7049.248177 139.6416717 20,102
8 7206.603344 7081.369993 7049.26296 70.01358744 19,780
9 7052.697369 7049.999679 7049.251224 1.512797685 19,962
10 7105.192042 7060.643287 7049.261412 24.90483007 19,794

Average 7049.318392 7049.262676 7049.248177 0.024517331 19,522

Table 12. Statistical features of the results obtained by various algorithms on G10.

Methods Worst Mean Best S.D. NFEs

EOAS [49] 7258.540 7082.227 7049.404 42.0 304,066
COPSO [50] 7049.668593 7049.278821 7049.248871 N.A. 240,000

LCA [46] 7049.2482816 7049.2480542 7049.2480206 5.80× 10−5 225,000
HCS [23] 7250.957 7049.668 7049.237 86.5 150,000

SADE [51] N.A. 7278.785 7049.249 N.A. 500,000
MAM 7069.390888 7056.46585 7049.249948 7.334903947 19,095
ASIM 7049.318392 7049.262676 7049.248177 0.024517331 19,522
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Figure 7. First and final output fitness values for G10 in a hybrid optimization framework.

6. Conclusions

In this paper, an adaptively integrated swarm intelligence-metamodelling (ASIM)
technique that enables adaptive multi-level adaptive search for the global optimal solution
was proposed for solving expensive and complex black-box constrained optimization
problems. In the first step, the adaptive swarm-intelligence algorithm carries out global
exploration for the near-optimal solution. In the second step, the metamodel-based op-
timization algorithm multipoint approximation method (MAM) is performed for local
exploitation. Essentially, each particle’s current position in ASIM gains local refinement
by optimization of metamodel building around their neighborhood and tends to move
towards the global best position according to swarm intelligence. Eventually, the swarm
as a whole, similar to a flock of birds collectively foraging for food while each bird bril-
liantly finds the most tasty food with limited horizon directly, possibly moves close to a
global optimum position. One mathematical problem and two engineering optimization
problems were studied in detail using the ASIM framework. By comparison of the results
obtained from ASIM, MAM, and other state-of-art algorithms, it was demonstrated that
ASIM has the capability to tackle expensive constrained black-box optimization problems
with remarkably less computational effort, higher accuracy, and stronger robustness. The
adaptive multi-level search ability of ASIM indeed makes up the local search deficiency and
the sensitivity to the starting point observed in MAM. Consequently, the ASIM technique
achieves a good balance between exploration and exploitation. Moreover, ASIM provides
valuable insight into the development of nature-inspired metaheuristic algorithms for
solving nonlinear optimization problems with less computational cost throughout the
simulation-based optimization process.
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Tiňvno, P., Kabán, A., Schwefel, H.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 401–410. [CrossRef]

50. Aguirre, A.H.; Zavala, A.E.M.; Diharce, E.V.; Rionda, S.B. COPSO: Constrained Optimization via PSO Algorithm; Technical Report;
Center for Research in Mathematics, CIMAT: Guanajuato, Mexico, 2007.

51. Garcia, R.d.P.; de Lima, B.S.L.P.; Lemonge, A.C.D.C. A Surrogate Assisted Differential Evolution to Solve Constrained Optimiza-
tion Problems. In Proceedings of the 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa,
Peru, 8–10 November 2017; pp. 1–6.

http://dx.doi.org/10.1007/s00158-011-0692-1
http://dx.doi.org/10.1080/15502287.2016.1139013
http://dx.doi.org/10.3390/aerospace5040116
http://dx.doi.org/10.1007/BF01743808
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1109/TSMCB.2009.2015956
http://dx.doi.org/10.1016/j.amc.2015.11.001
http://dx.doi.org/10.1109/TCYB.2018.2794503
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1016/S1474-0346(02)00011-3
http://dx.doi.org/10.1080/03081070701303470
http://dx.doi.org/10.1007/s00707-009-0270-4
http://dx.doi.org/10.1016/j.compstruc.2014.04.005
http://dx.doi.org/10.1016/j.ins.2008.02.014
http://dx.doi.org/10.1007/s00158-008-0238-3
http://dx.doi.org/10.1016/j.cad.2011.07.003
http://dx.doi.org/10.1007/978-3-540-30217-9_41

	Introduction
	Brief Review of the Multipoint Approximation Method (MAM)
	Brief Review of Particle Swarm Optimization (PSO)
	Adaptively Integrated Swarm Intelligence-Metamodelling Framework 
	Methodology of the ASIM Framework
	Model Management
	Strategy for Particles ``Flying out'' in PSO
	Modified Trust Region Strategy in MAM
	Space Reduction Scheme in the ASIM Framework


	Benchmark Problem 
	Welded Beam
	Design of a Tension/Compression Spring
	Mathematical Problem G10

	Conclusions
	References

