1	Flying the extra mile pays-off: foraging on
2	anthropogenic waste as a time and energy-saving
3	strategy in a generalist bird
4	Andrea Soriano-Redondo ^{1,2*} , Aldina M.A. Franco ³ , Marta Acácio ³ , Bruno
5	Herlander Martins ^{1,2,3} , Francisco Moreira ^{1,4} , Inês Catry ^{1,2,4}
6	
7	¹ CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório
8	Associado, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas,
9	4485–601 Vairão, Portugal
10	² CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório
11	Associado, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
12	³ School of Environmental Sciences, University of East Anglia, NR4 7TJ Norwich, UK
13	⁴ REN Biodiversity Chair, CIBIO/InBIO-UP, Centro de Investigação em Biodiversidade e
14	Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando
15	Quintas, 4485–601 Vairão, Portugal
16	* Corresponding author: Andrea Soriano-Redondo asorianoredondo@outlook.com
17	
18	Abstract
19	Food waste disposal represents a major global source of predictable anthropogenic food
20	subsidies and is exploited by many organisms. However, the energetic cost-benefits of
21	foraging on these food subsidies have remained largely unexplored. Here we investigate
22	the year-round foraging decisions of resident white storks, Ciconia ciconia, in Iberia and
23	assess the energetic and time cost-benefits of foraging on both landfill waste and natural
24	food sources. To do so, we use GPS and acceleration data from 55 individuals tagged in
25	southern Portugal between 2016 and 2019. We find that the probability of attending

26 landfill sites was 60% during the non-breeding season and 44% during the breeding 27 season. Moreover, foraging on landfill waste is a time- and energy-saving strategy; 28 although birds had to travel 20% further to exploit this resource during the breeding 29 period, they spent overall 10% less energy than when foraging on natural prey. We show 30 that this relationship could be mediated by a reduction in foraging time and an increase 31 in foraging efficiency while exploiting landfill waste. Surprisingly, we did not find any 32 evidence that landfill specialists experienced any competitive advantage during landfill 33 exploitation over birds that visit landfills occasionally. These insights are key to predict 34 how species that rely on landfills can be affected by waste reduction initiatives planned 35 by the European Union, and implement the necessary management strategies.

36

37 Keywords: landfill closure; landfill waste; foraging ecology; predictable anthropogenic
38 food subsidies; white storks.

39

40 **1. Introduction**

41 Humans produce enormous quantities of food waste; estimates suggest that 30-40% of all 42 food produced is wasted (Parfitt et al., 2010) and deposited in locations where it can be 43 accessible to wildlife. These predictable anthropogenic food subsidies (PAFS), in the 44 form of organic waste on landfills, fisheries discards or crop residuals, generate impacts 45 on animal populations at multiple scales, from the individual to the ecosystem (Oro et al., 46 2013). Individuals from numerous animal species have modified their movements, 47 activity, geographical range, and home range size in response to PAFS (Gilbert et al., 48 2016; López-López et al., 2014; Newsome et al., 2015; Patrick et al., 2015; van Donk et al., 2019); which can affect survival and reproduction rates, and subsequently the 49 50 demography of these populations (Plaza and Lambertucci, 2017).

51 Landfill sites, in particular, can potentially sustain high densities of scavenging individuals (Oro et al., 2013). The spatial and temporal predictability, accessibility, and 52 53 nutritional value of anthropogenic food waste can provide abundant food resources for 54 wildlife, and has been shown to be responsible for the demographic explosion of 55 generalist animals (such as foxes, rats and gulls), but also for the sustenance of some 56 endangered species (Plaza and Lambertucci, 2017). Landfill use has been associated with 57 increased body mass in black vultures (Coragyps atratus) (Plaza and Lambertucci, 2018), 58 kelp gull (Larus dominicanus) nestlings (Lenzi et al., 2019), and grizzly bears (Ursus 59 arctos horribilis) (Blanchard, 1987). Landfill use has also been linked to higher 60 reproduction performance; for example, white storks (Ciconia ciconia) had larger clutch 61 sizes (Djerdali et al., 2008), glaucous gulls (Larus hyperboreus) experienced higher 62 fledging rate (Weiser and Powell, 2010), and laughing gull (*Leucophaeus atricilla*) chick 63 growth and survival was enhanced (Dosch, 1997), compared to conspecifics foraging in 64 more natural landscapes.

65 According to the optimal foraging theory animals choose to forage in sites that maximize energy intake while minimizing energy and time expenditure (Stephens and Krebs, 1986; 66 67 Ydenberg et al., 1994). Landfill waste offers large quantities of high-energy food 68 (Patenaude-Monette et al., 2014; van Donk et al., 2019) but is localised in space; hence 69 trade-offs exist between time spent in landfills sites and energetic costs of travelling, 70 especially for central-place foragers during the breeding season (Gilbert et al., 2016). 71 Foraging in landfill sites is likely to exacerbate inter and intraspecific competition 72 (through agonistic interactions and food-robbing), which increases energetic costs, since 73 they attract large numbers of individuals and at high densities (Oro et al., 2013). On the 74 other hand, on natural heterogeneous landscapes, prey is often patchily distributed and 75 intraspecific competition is likely to be low since individuals tend to forage in smaller

76 groups (Catry et al., 2017). These dynamics could lead to the emergence of individual 77 foraging strategies and specialisation, with less competitive individuals avoiding landfill 78 sites. Despite many studies focusing on the fitness benefits for individuals exploiting 79 landfill waste, the energetic cost-benefits of landfill use have not yet been fully quantified. 80 Use of landfill resources, together with the global increase of temperature due to climate 81 change, may have facilitated the establishment of non-migratory white stork populations 82 in Iberia (Catry et al., 2017). Resident individuals heavily rely on food waste disposal 83 sites for foraging and no longer complete their annual migrations to and from their sub-84 Saharan wintering grounds. In two decades the number of resident white storks in 85 Portugal has increased from 1,187 individuals (18% of the breeding population) in 1995 86 to 14,434 (62% of the breeding population) in 2015 (Catry et al., 2017). White storks' 87 use of landfill resources in Iberia has been investigated, and evidence shows that storks 88 nesting close to landfill sites heavily relied on them (Gilbert et al., 2016). Moreover, 89 breeding success for these individuals was higher than for individuals nesting further 90 away (Gilbert, 2015).

91 Whilst this increasing number of white storks in Iberia is widely attributed to their high 92 adaptability and behavioral plasticity, new EU directives (1999/31/UE and, more 93 recently, 2018/850/UE), regulating waste disposal, can greatly revert this trend. These 94 directives have established new circular economy targets aiming to reduce municipal 95 waste landfilled to 10% in the next decade. Recent evidence shows that landfill closure 96 can cause declines on survival, body mass, egg volume and/or clutch size in several gull 97 species (Payo-Payo et al., 2015; Pons and Migot, 1995; Steigerwald et al., 2015) (but see 98 (Katzenberger et al., 2019)). Therefore, it is crucial to understand foraging decisions, and 99 how animals search for and exploit landfill waste, as opposed to natural prey, to predict

how animal populations might respond when food waste is removed, and to developappropriate conservation and management strategies.

102 Here we investigate (i) the foraging decisions of resident white storks feeding on PAFS 103 and natural food sources in Iberia; (ii) the energetic and time cost-benefits of these 104 foraging decisions during the breeding and non-breeding seasons; and (iii) whether birds 105 highly specialised on landfills gain a competitive advantage while exploiting PAFS, by 106 increasing their foraging efficiency and decreasing the foraging time necessary to meet 107 their energetic requirements, over birds that only visit landfills occasionally. These 108 insights will be key to understand the drivers of landfill use and to predict how storks — 109 and to some extent other birds found regularly in large numbers at landfills (e.g. egrets, 110 herons, gulls and some raptors) - may be affected by reductions in PAFS. This 111 understanding is key for a species that has substantially increased in numbers in the last 112 decades due to the exploitation of landfills (Catry et al., 2017), and for which density 113 dependent effects of food depletion are associated with high nestling mortality (Denac, 114 2006; Zurell et al., 2015).

115 In this study we examine 4 years of GPS and tri-axial acceleration data from resident 116 white storks in Iberia and determine their behaviour, energy expenditure, foraging 117 decisions, and landfill use. We use structural equation models (SEM) (Lefcheck et al., 118 2016; Lefcheck, 2016) to understand the relationships among foraging movements, 119 energy expenditure and behaviour. We hypothesize that the choice of food resources 120 (anthropogenic waste or natural prey) will lead to different foraging strategies, for 121 example at landfills sites birds will reduce the time devoted to foraging and increase 122 energy efficiency given the spatiotemporal predictability of organic waste deposition. 123 Moreover, we predict that foraging strategies might differ between the breeding and non-124 breeding season, as breeding birds will have to return to the nest frequently, so their

foraging range will be reduced, and landfill sites might then be outside the range. In this context, fundamental trade-offs between energetic and nutritional requirements in parental provisioning strategies are expected (Wright et al., 1998). Finally, we predict that landfill specialists will have competitive advantage over birds that only use landfills occasionally.

130 **2. Material and methods**

131 <u>2.1 Bird capture and GPS tracking</u>

132 Our dataset included GPS data with tri-axial acceleration from 55 resident adult white 133 storks, tagged between 2016 and 2019 in southern Portugal. Resident individuals 134 overwintered in the Iberian Peninsula and did not cross the Strait of Gibraltar. Storks were 135 tagged with 'Flyway 50' GPS/GSM loggers from Movetech Telemetry (4 different 136 models varying slightly in weight) and 'Ornitrack-50' GPS/GSM loggers from Ornitela. 137 Adult birds were caught at multiple landfill sites using nylon leg nooses, and at several 138 breeding colonies using a remotely activated clap net at the nests. Birds were measured 139 and ringed, and the devices were mounted on the back of the birds as backpacks with a 140 Teflon harness. The tag and harness together weighted 60-90 g, which represented 1.5-141 3.7% of a given bird's body mass at the time of tagging. Most birds were resignted in the 142 days following tag deployment and no abnormal behaviour or adverse effects due to 143 tagging were observed. The procedure was approved by the Instituto da Conservação da 144 Natureza e Floresta (Portugal). The tags were programmed to record 9 consecutive GPS 145 positions at 1 Hz every 20 minutes, and concurrently a 9 s tri-axial acceleration burst at 146 1 Hz. We kept the first GPS position recorded, thus location and acceleration matched. 147 GPS data was visually examined to detect potential outliers, which were subsequently 148 removed, together with the associated acceleration burst. We identified 75 nest locations 149 for the tagged birds across the years after visually inspecting the GPS tracks and visiting the sites. The nests were situated between 1.5 and 40.2 km away from the closest landfill
site (mean = 17.3 km).

152 <u>2.2 Data selection and processing</u>

153 From each acceleration burst we derived two metrics, ODBA (overall dynamic body acceleration, 1 G = 9.8 m/s²), a proxy of energy expenditure invested in locomotion, and 154 behaviour (Gleiss et al., 2011; Shepard et al., 2008b). ODBA was obtained from tri-axial 155 156 acceleration bursts by subtracting the smoothing of total acceleration, using a running-157 mean of 4 s, from the total acceleration, as recommended in (Gleiss et al., 2011; Shepard 158 et al., 2008a, 2008b). To determine the bird behaviour at each burst, we used the tri-axial 159 acceleration data to train random forest machine-learning algorithms (R package 160 'randomForest' ver. 4.6 (Liaw and Wiener, 2002)). Movetech Telemetry tags and 161 Ornitela tags differ in their sensor characteristics (e.g. position of the sensor and axes 162 orientation) hence we created device specific algorithms. We characterised four 163 behaviours: foraging, resting (including preening), flapping, and soaring flight (including 164 gliding and orographic and thermal soaring). To train the algorithm we manually labelled 165 250 tri-axial acceleration bursts for each behaviour and tag type; 70% of the data was 166 used for training the algorithm and 30% for testing it. To label the training data we 167 compiled information from several sources: (i) 9 tags that were programmed to 168 continuously record GPS and acceleration data which allowed a detailed understanding 169 of the birds' movements and behaviour, (ii) video recordings of captive white storks that 170 were fitted with the tracking devices, and (iii) from the 9 consecutive GPS locations that 171 allowed to infer birds' speed and movement during the acceleration burst. The random 172 forest model had 96% accuracy for Movetech Telemetry tags data and 97% accuracy for 173 Ornitela tags data. For this study, flapping and soaring flight were aggregated and

174 considered as flying, as both behaviours occurred infrequently, representing only 5.7 %175 of locations.

Landfill sites were determined through visual inspection of satellite images, and in all cases, they were confirmed by visits or contact with local authorities. Each GPS location was classified as either inside or outside a landfill. Subsequently, using the behavioural and GPS data, we created daily foraging strategy metrics for each individual stork. We only included in the analyses days with more than 10 daylight GPS positions and acceleration bursts (median GPS positions per day was 29) and with more than 4 positions classified as 'foraging' to guarantee representative metrics.

183 We built two different datasets for the subsequent analyses. First, to assess individual and seasonal differences in attendance to landfill sites, we created a 'daily attendance dataset'. 184 185 In this dataset each day was classified as a 'landfill attendance day' when at least one 186 foraging location occurred on a landfill in the corresponding 24-h period, or as a 'non-187 landfill attendance day' when no foraging locations occurred on landfills. Second, to 188 understand the foraging movements, behaviour and energy expenditure of feeding on 189 anthropogenic waste or natural prey we built a 'daily foraging strategy dataset' that only 190 included days where birds displayed either one or the other strategy, thus removing days 191 where birds foraged on both waste and natural prey. To do so, we created a variable, 192 'foraging site' with two levels: 'landfill foraging day', when 70% of the daily foraging 193 positions occurred in landfill sites, and 'non-landfill foraging day', when 70% of the 194 foraging positions for a given day occurred outside landfill sites. We chose this threshold 195 as it ensured birds spent most of the day in one of the two areas, while it minimised the 196 number of days that had to be removed from the dataset to less than 20%.

The activity and energetic trade-offs between foraging on landfills vs natural prey were
explored using several metrics: (i) daily distance travelled (km), calculated as the summed

199 distance between consecutive locations for each day; (ii) daily relative flight time, 200 calculated by dividing the number of burst classified as flying by the total of bursts 201 obtained in a day; (iii) mean ODBA (G) as a proxy of daily energy expenditure (Gleiss 202 et al., 2011), calculated as the mean ODBA of the accelerometer bursts obtained in a day; 203 (iv) daily relative foraging time, calculated by dividing the number of burst classified as 204 foraging by the total of burst in a day; and (v) mean foraging ODBA (G), as a proxy for 205 foraging efficiency (lower mean foraging ODBA values indicate higher foraging 206 efficiency), calculated as the daily mean ODBA for the foraging bursts. Daily distance 207 travelled and relative flight time were highly correlated (Pearson correlation = 0.75), 208 which indicates that the metrics were largely insensitive to the number of fixes; we only 209 retained daily distance travelled in further analyses.

To account for the potential effect of season on the foraging site choice (landfill sites or non-landfill sites), we located the nesting site of each individual, and using the GPS data, we defined the beginning of the breeding season as the first three consecutive days that an individual occupied the nest; and the end of the breeding period as last three consecutive days the nest was occupied.

To explore if birds that visited landfill sites more often had a competitive advantage when exploiting this resource, we used the 'daily attendance dataset' to create a landfill specialisation index, from 0 (natural prey specialist; never visits landfill sites) to 1 (waste specialist; only forages on landfill sites), for each individual. We divided the number of days that the bird attended a landfill by the total numbers of days that the bird was tagged.

220 <u>2.3 Statistical analysis</u>

To understand seasonal variability in foraging site attendance we fitted a generalised linear mixed-effects model (GLMM) with foraging site attendance (landfill or nonlandfill) as the response variable and season (breeding or non-breeding) as the 224 explanatory variable, using the *glmmPQL* function with a binomial structure (R package 225 'MASS' ver. 7.3 (Ripley et al., 2013)); the model included bird ID nested in tag type (5 226 levels: 4 types of Movetech tags and 1 type of Ornitela tag) as random effects and an 227 autocorrelation structure of order 1 to account for the potential temporal correlation 228 between consecutive days. Subsequently, to understand the potential constraints of 229 reproduction in the choice of foraging site, we used the data from the breeding season to 230 fit a GLMM with a binomial structure, using the *glmer* function (R package 'lme4' ver. 231 1.1-21 (Bates et al., 2015)). We considered foraging site attendance as the response 232 variable, and included as explanatory variables, distance from the nest site to the closest 233 landfill site, and its quadratic term, to account for potential non-linearity in the 234 relationship; we also included bird ID nested in tag type as random effects. We used the 235 R package 'MASS' when the inclusion of an autocorrelation structure was necessary as 236 'lme4' does not allow the implementation of GLMMs with that structure.

237 Using the 'daily foraging strategy dataset', we explored the effect of landfill use on time 238 and energy budgets, by implementing 3 linear mixed-effects models (LMM) with daily 239 distance travelled (km), mean ODBA (G), and mean foraging ODBA (G) as response 240 variables and foraging site (landfill or non-landfill), season (breeding or non-breeding), 241 and its interaction, as explanatory variables, using the *lme* function (R package 'nlme' 242 ver. 3.1 (Pinheiro et al., 2017)). The model with daily distance travelled as response 243 variable, included an additional covariate, the number of GPS positions, to account for its 244 the potential effect on the response. We implemented a GLMM with the glmmPQL 245 function for relative foraging time with a binomial structure that included foraging site, 246 season, and its interaction as fixed effects as well. All four models included bird ID nested 247 in tag type as random effects and an autocorrelation structure of order 1. Subsequently, 248 we calculated for each model the coefficient of determination R^2 (Nakagawa et al., 2017).

249 We explored the relative contribution of individuals' foraging decisions into the overall 250 energy expenditure when using different foraging sites and during different seasons. To 251 do so, we implemented multigroup analysis for piecewise SEM with foraging site and 252 season as grouping variables, using the functions *psem* and *multigroup* (R package 253 'piecewiseSEM' ver. 2.1 (Lefcheck et al., 2016; Lefcheck, 2016)). The SEM included 254 two sub-models: 1. an LMM with mean ODBA as the response variable, and daily 255 distance travelled, relative foraging time and mean foraging ODBA as explanatory 256 variables; and 2. a GLMM with relative foraging time as the response variable, and mean 257 foraging ODBA as explanatory variables. Both models included random effects and 258 autocorrelation structure as described above. The global structure of the SEM model was 259 well supported according to the global goodness-of-fit: Fisher's C = 0.098 with p = 0.952. 260 To test the role of landfill specialisation on landfill exploitation we selected only days 261 classified as landfill foraging days. We modelled a LMM with mean foraging ODBA and 262 a GLMM with relative foraging time as the response variables, and season and 263 specialisation index as explanatory variables. We used random effects and an 264 autocorrelation structure as previously specified. Normality of the residuals was checked 265 for all LMMs performed.

266 **3. Results**

We obtained two datasets of movement and acceleration data; the 'daily attendance dataset' contained data of 12,616 stork-days (median \pm SE; 162 \pm 28 days per individual); and the 'daily foraging strategy dataset' of 10,183 stork-days (136 \pm 22 days per individual, see detailed information in Table S1 and S2). During both the breeding and non-breeding season foraging occurred in southern Portugal, but during the non-breeding season white storks increased their foraging range towards southern Spain (Fig 1). All individuals but one foraged both on landfill sites and outside of landfill sites. The 274 probability of attending landfill sites varied with season (Estimate = 0.63; SE = 0.07; p < 275 0.001); it was 60% during the non-breeding season and 44% during the breeding season. 276 Moreover, during the breeding season, the probability of attending a landfill was 277 constrained by the distance from the nest to the closest landfill site (Estimate = -0.16; SE 278 = 0.03; p < 0.001) in a linear way (quadratic term was non-significant; χ^2 = 2.882; p = 279 0.09), with individuals nesting closer to a landfill site foraging there more often (Fig 2). 280 White storks travelled further during the breeding season to visit landfill sites (Estimate 281 \pm SE; 27.02 \pm 0.98 km) than when foraging outside landfill areas (22.01 \pm 0.79 km); while 282 during the non-breeding season, storks travelled less overall, and birds that used landfills 283 travelled shorter distances $(13.11 \pm 0.82 \text{ km})$ than those feeding outside of landfills (15.76 m)284 \pm 0.80, Table 1, Fig 3). The results for mean ODBA, relative foraging time and mean 285 foraging ODBA were similar. The three parameters were higher during the breeding 286 season in the days birds foraged outside landfill sites (mean ODBA 0.10 ± 0.01 G; relative 287 foraging time 0.37 \pm 0.05; mean foraging ODBA 0.19 \pm 0.01 G, Table 1, Fig 3), and 288 decreased during the non-breeding season and in days that birds foraged in landfill sites, 289 reaching the lowest values when both conditions occurred (mean ODBA 0.07 ± 0.01 G; 290 relative foraging time 0.26 ± 0.05 ; mean foraging ODBA 0.15 ± 0.01 G, Table 1, Fig 3). 291 Thus, mean ODBA, relative foraging time, and mean foraging ODBA decreased 34.6 %, 292 30.1 %, and 12.4 %, respectively, from the days that birds foraged outside landfills during 293 the breeding season to days that birds foraged in landfills during the non-breeding season. 294 The multigroup analysis for piecewise SEM indicated that mean ODBA increased when 295 white storks had to travel further, when they spent a higher proportion of time foraging, and for storks that presented higher mean foraging ODBA (Table 2). The effect was 296 297 stronger when foraging occurred outside of landfills during the breeding season (Fig 4). 298 The relationship between relative foraging time and mean foraging ODBA differed depending on the foraging site (Table 2). When foraging on outside of landfills, an
increase on mean foraging ODBA led to a significant increase in relative foraging time;
while on landfill sites, an increase on mean foraging ODBA led to slight decrease in
foraging time (Fig 5).

Finally, we did not find any relationship between relative foraging time and landfill
specialisation, and between mean foraging ODBA and landfill specialisation when birds
foraged on landfill waste (Table 3).

306 4. Discussion

307 This study unravels some of the mechanisms that determine landfill use in a generalist 308 and opportunistic species. In Iberia, expansion and population growth of white storks is 309 widely attributed to their high adaptability and behavioural plasticity, which allow them 310 to efficiently use opportunities provided by anthropized environments such as landfills 311 (Catry et al., 2017; Elliott et al., 2020). Here, we show that foraging on landfill waste is 312 a time- and energy-efficient strategy for white storks compared to foraging on natural 313 habitats. Remarkably, although storks had to travel further to exploit this resource during 314 the breeding period, they spent overall less energy, in terms of locomotion, than when 315 foraging on natural prey (Fig 3). Our results indicate that this could be mediated by a reduction in foraging time and an increase in foraging efficiency (i.e. a decrease in mean 316 317 foraging ODBA) while exploiting landfill waste (Fig 3). These findings contrasts with 318 previous evidence from herring gulls (Larus argentatus), which increase energy 319 expenditure 34 % when foraging on PAFS compared to natural prey (van Donk et al., 320 2019). These differences between species are likely to be ascribed to their flight mode; 321 while herring gulls tend to use flapping flight, which is energetically costly, white storks 322 soar, which allow them to fly longer distances to reach landfill sites at a cheaper energetic

323 cost, especially at certain times of day when flight conditions (e.g. uplift) are favorable324 (Duriez et al., 2014).

325 Nevertheless, we find that white storks experience constraints during the breeding season 326 and reduce landfill attendance to 44% of days compared to 60% in the non-breeding 327 period. This reduction is mostly a function of distance to nest location: white storks 328 nesting further to landfill sites visit them less often than birds nesting closer (Fig 2). These 329 differences in foraging site preference indicate that the energetic compensation of longer 330 flights, with increased foraging efficiency and decreased foraging time at landfill sites, 331 compensate for longer flights only up to a certain limit, after which it is no longer 332 beneficial to travel further to forage at landfills.

333 The hindrance imposed by reproduction is reflected on all the parameters that we studied; 334 storks increased distance travelled, energy expenditure, foraging time, and mean foraging 335 ODBA during the breeding season (Fig 3). These parameters are likely to increase in 336 response to the spatial restrictions that impose returning to the nest frequently and the 337 higher energetic demands derived from raising chicks (Johst et al., 2001). On the contrary, 338 during the non-breeding period, storks are not constrained by nest location and often roost 339 closer to landfill sites, thus reducing daily distances travelled. Moreover, foraging just to 340 meet their own energy demands could be leading to a reduction in foraging time and daily 341 energy expenditure.

Our results show that daily energy expenditure is highly influenced by distance travelled, foraging time and foraging efficiency, with higher energy expenditure with increasing distance travelled and foraging time and decreasing foraging efficiency (Fig 4). The slopes of these relationships were maintained when foraging at landfill sites and nonlandfill sites, both during the breeding and non-breeding season. However, in all cases the intercept was lower when foraging at landfill sites, indicating that there could be other

unaccounted factors decreasing the daily energy expenditure on days that birds forage at
landfill sites, such as a reduction on flight energetics, a change of flight mode (soaring vs
flapping), or a decrease on time spent preening.

351 Interestingly, we found that the relationship between relative foraging time and energy 352 efficiency differed depending on the foraging site. At natural sites, birds with high levels 353 of energy expenditure (low energy efficiency) during foraging, increased the time spent 354 foraging. On the contrary, at landfill sites, birds that were less energy-efficient during 355 foraging spent less time foraging, this effect was stronger during the non-breeding season 356 (Fig 5). This divergence is likely to steam from the different characteristics of foraging 357 on landfill waste versus natural prey. Individuals foraging at landfill sites, where large 358 numbers of white storks congregate, are likely to experience easy access to food but also 359 density dependence effects, such as direct competition from conspecifics (Oro et al., 360 2013). This could lead to an increase of energy expenditure during foraging due to 361 antagonistic interactions with other individuals, but also to a reduction in foraging time, 362 since birds could be displaced from optimal foraging sites (Burger, 1981). On natural 363 areas, however, white storks hunt large invertebrates and small vertebrates and do not 364 aggregate in such large numbers (Elliott et al., 2020). Thus, an increase of mean foraging 365 ODBA is likely to be linked to active hunting, which could then favour an increase in 366 relative foraging time.

Surprisingly, we did not find any evidence that landfill specialists experienced any competitive advantage during landfill exploitation in terms of foraging time and energy efficiency. Thus, our results suggest that landfill use is mainly driven by distance from the nest to the nearest landfill site, rather than by the ability of individuals to exploit this resource. Therefore, it is likely that white storks compete for nests located in close proximity to landfill sites (Itonaga et al., 2011; Janiszewski et al., 2015).

373 In this study we have quantified one of the aspects required to define optimal foraging 374 strategies: time allocation and energy expenditure related to locomotion. However, we 375 could not quantify energy intake, a key aspect for energetic balances. Natural prey is 376 patchily distributed, and energetic values can be variable. For example, the energetic 377 value of red-swamp crayfish (Procambarus clarkii), an invasive alien species that occurs 378 in rice fields and is widely consumed by white storks (Ferreira et al., 2019; Negro et al., 379 2000; Tablado et al., 2010), is ~ 3 kJ/g (Elvira et al., 1996). On the other hand, landfill 380 waste is abundant, easily accessible and predictable in space and time, and highly 381 energetic (up to 10–25 kJ/g (van Donk et al., 2019, 2017)). Recent evidence shows that 382 white stork nestlings in Iberia whose parents exploit landfill sites present better body 383 condition and nutritional status than nestlings whose parents feed on natural resources, 384 which complements our findings (Pineda-Pampliega et al., 2021).

385 However, landfill waste exploitation can also have associated costs, such as higher 386 exposure to heavy metals, poisons, pathogens, and plastics (Ahlstrom et al., 2018; de la 387 Casa-Resino et al., 2014; Plaza and Lambertucci, 2017; Tongue et al., 2019). For 388 example, a recent study of white storks in Iberia found that nestlings from birds foraging 389 on landfill waste had a higher presence of antibiotic-resistant Escherichia coli than 390 nestlings from birds feeding on natural resources (Pineda-Pampliega et al., 2021); while 391 another found that nestlings from white storks near landfill sites presented higher blood 392 levels of lead, mercury, selenium, iron, zinc, and arsenic, which can be toxic at high 393 concentrations (de la Casa-Resino et al., 2014). Moreover, the occurrence of plastics in 394 landfills can lead to their ingestion, which can hurt the digestive organs of the birds (Peris, 395 2003).

396 Overall, our study shows that white storks nesting in the proximity of landfill sites and 397 foraging there frequently save energy and time, thus exploiting landfill waste can be an

398 advantageous strategy. Increased breeding success and population growth driven by 399 waste exploitation has been described for other bird species (Bialas et al., 2020; Djerdali 400 et al., 2008; Gilbert, 2015; Tauler-Ametller et al., 2017), thus a potential reduction of 401 landfill waste could have dramatic impacts on the population, since alternative food 402 resources might not be available to meet the energetic requirements of such large number 403 of individuals (but see (Katzenberger et al., 2019)). In light of the European Union 404 directives that will lead to a substantial reduction of landfill waste in the next few years, 405 our results indicate that species that heavily rely on landfill waste will be severely affected 406 and will have to radically change their behaviour, for example by increasing foraging 407 time and energy expenditure while foraging, affecting energetic and time balances. 408 However, it is currently unknown whether alternative foraging resources will be able to 409 sustain these populations in the future.

410 Acknowledgements

411 We are grateful to João Paulo Silva and Phil Atkinson for assistance in programming the 412 devices, and to Carlos Pacheco, and students and volunteers that help tagging and 413 monitoring white storks over the years.

414 Funding

415 This work was financed by the FEDER Funds through the Operational Competitiveness 416 Factors Program — COMPETE and by National Funds through FCT – Foundation for 417 Science and Technology within the scope of the project 'POCI-01-0145-FEDER-418 028176', by InBIO (UID/BIA/50027/2013 and POCI-01-0145-FEDER-006821) and 419 FCT/MCTES. ASR, BHM and IC were supported by FCT [grant numbers PTDC/BIA-420 ECO/28176/2017, DL57/2016/CP1440/CT0023 and SFRH/BD/145323/2019]. AMAF 421 was supported by the by the Natural Environment Research Council (NERC) [grant 422 number NE/ K006312], Norwich Research Park Translational Fund, University of East

- 423 Anglia Innovation Funds and Earth and Life Systems Alliance funds. MA was supported
- 424 by the NERC [grant number NE/N012070/1]. FM was supported by FCT [grant number
- 425 IF/01053/2015] and the REN Biodiversity Chair.

426 Authors' contributions

- 427 ASR conceived the study, carried out the statistical analyses, and drafted the manuscript;
- 428 AMAF and FM coordinated the study, and critically revised the manuscript; MA
- 429 processed data, collected field and behavioural data, and critically revised the manuscript;
- 430 BHM collected field and behavioural data, and critically revised the manuscript; IC
- 431 conceived the study, coordinated the study and helped draft the manuscript. All authors
- 432 gave final approval for publication.

433 **References**

- 434 Ahlstrom, C.A., Bonnedahl, J., Woksepp, H., Hernandez, J., Olsen, B., Ramey, A.M.,
- 435 2018. Acquisition and dissemination of cephalosporin-resistant E . coli in migratory
- 436 birds sampled at an Alaska landfill as inferred through genomic analysis. Sci Rep 8, 1–
- 437 11. https://doi.org/10.1038/s41598-018-25474-w
- 438 Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects
- 439 Models Using Ime4. Journal of Statistical Software 67, 1–48.
- 440 https://doi.org/10.18637/jss.v067.i01
- 441 Bialas, J.T., Dylewski, Ł., Tobolka, M., 2020. Determination of nest occupation and
- 442 breeding effect of the white stork by human-mediated landscape in Western Poland.
- 443 Environ Sci Pollut Res 27, 4148–4158. https://doi.org/10.1007/s11356-019-06639-0
- 444 Blanchard, B.M., 1987. Size and Growth Patterns of the Yellowstone Grizzly Bear.
- 445 Bears: Their Biology and Management 7, 99–107. https://doi.org/10.2307/3872615
- 446 Burger, J., 1981. Feeding Competition between Laughing Gulls and Herring Gulls at a
- 447 Sanitary Landfill. Condor 83, 328–335. https://doi.org/10.2307/1367501
- 448 Catry, I., Encarnação, V., Pacheco, C., Catry, T., Tenreiro, P., da Silva, L.P., Moreira,
- 449 F., 2017. Recent changes on migratory behaviour of the White stork (Ciconia ciconia)
- 450 in Portugal: Towards the end of migration. Airo 24, 28–35.
- 451 de la Casa-Resino, I., Hernández-Moreno, D., Castellano, A., Pérez-López, M., Soler,
- 452 F., 2014. Breeding near a landfill may influence blood metals (Cd, Pb, Hg, Fe, Zn) and
- 453 metalloids (Se, As) in white stork (Ciconia ciconia) nestlings. Ecotoxicology 23, 1377–
- 454 1386. https://doi.org/10.1007/s10646-014-1280-0
- 455 Denac, D., 2006. Intraspecific Exploitation Competition as Cause for Density
- 456 Dependent Breeding Success in the White Stork. cowa 29, 391–394.
- 457 https://doi.org/10.1675/1524-4695(2006)29[391:IECACF]2.0.CO;2
- 458 Djerdali, S., Tortosa, F.S., Hillstrom, L., Doumandji, S., 2008. Food supply and external
- 459 cues limit the clutch size and hatchability in the White Stork Ciconia ciconia. Acta
- 460 Ornithologica 43, 145–150. https://doi.org/10.3161/000164508X395252
- 461 Dosch, J.J., 1997. Diet of nestling Laughing Gulls in Southern New Jersey. Waterbirds

- 462 20, 273–281.
- 463 Duriez, O., Kato, A., Tromp, C., Dell'Omo, G., Vyssotski, A.L., Sarrazin, F., Ropert-
- 464 Coudert, Y., 2014. How Cheap Is Soaring Flight in Raptors? A Preliminary
- 465 Investigation in Freely-Flying Vultures. PLOS ONE 9, e84887.
- 466 https://doi.org/10.1371/journal.pone.0084887
- 467 Elliott, A., Garcia, E.F.J., Boesman, P.F.D., 2020. White Stork (Ciconia ciconia),
- 468 version 1.0, in: Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA.
- 469 Elvira, B., Gnicola, G., Almodovar, A., 1996. Pike and red swamp crayfish: a new case
- 470 on predator-prey relationship between aliens in central Spain. Journal of Fish Biology
- 471 48, 437–446. https://doi.org/10.1111/j.1095-8649.1996.tb01438.x
- 472 Ferreira, E., Grilo, F., Mendes, R., Lourenço, R., Santos, S., Petrucci-Fonseca, F., 2019.
- 473 Diet of the White Stork (Ciconia ciconia) in a heterogeneous Mediterranean landscape:
- 474 the importance of the invasive Red Swamp Crayfish (Procambarus clarkii). Airo 26,475 27–41.
- 476 Gilbert, N., 2015. Movement and foraging ecology of partially migrant birds in a
- 477 changing world (Doctoral thesis). University of East Anglia.
- 478 Gilbert, N.I., Correia, R.A., Silva, J.P., Pacheco, C., Catry, I., Atkinson, P.W., Gill,
- 479 J.A., Franco, A.M.A., 2016. Are white storks addicted to junk food? Impacts of landfill
- 480 use on the movement and behaviour of resident white storks (Ciconia ciconia) from a
- 481 partially migratory population. Movement Ecology 4, 7. https://doi.org/10.1186/s40462482 016-0070-0
- 483 Gleiss, A.C., Wilson, R.P., Shepard, E.L.C., 2011. Making overall dynamic body
- 484 acceleration work: on the theory of acceleration as a proxy for energy expenditure.
- 485 Methods in Ecology and Evolution 2, 23–33. https://doi.org/10.1111/j.2041-
- 486 210X.2010.00057.x
- 487 Itonaga, N., Köppen, U., Plath, M., Wallschläger, D., 2011. Declines in breeding site
- 488 fidelity in an increasing population of White Storks Ciconia ciconia. Ibis 153, 636–639.
- 489 https://doi.org/10.1111/j.1474-919X.2011.01131.x
- 490 Janiszewski, T., Minias, P., Wojciechowski, Z., 2015. Selective Forces Responsible for
- 491 Transition to Nesting on Electricity Poles in the White Stork Ciconia ciconia. arde 103,
 492 39–50. https://doi.org/10.5253/arde.v103i1.a4
- 493 Johst, K., Brandl, R., Pfeifer, R., 2001. Foraging in a Patchy and Dynamic Landscape:
- 494 Human Land Use and the White Stork. Ecological Applications 11, 60–69.
- 495 https://doi.org/10.1890/1051-0761(2001)011[0060:FIAPAD]2.0.CO;2
- 496 Katzenberger, J., Tabur, E., Şen, B., İsfendiyaroğlu, S., Erkol, I.L., Oppel, S., 2019. No
- 497 short-term effect of closing a rubbish dump on reproductive parameters of an Egyptian
- 498 Vulture population in Turkey. Bird Conservation International 29, 71–82.
- 499 https://doi.org/10.1017/S0959270917000326
- Lefcheck, J., Byrnes, J., Grace, J., 2016. Package 'piecewiseSEM.' R package version1.1.
- 502 Lefcheck, J.S., 2016. piecewiseSEM: Piecewise structural equation modelling in r for
- solution, and systematics. Methods in Ecology and Evolution 7, 573–579.
 https://doi.org/10.1111/2041-210X.12512
- 505 Lenzi, J., González-Bergonzoni, I., Machín, E., Pijanowski, B., Flaherty, E., 2019. The
- 506 impact of anthropogenic food subsidies on a generalist seabird during nestling growth.
- 507 Science of The Total Environment 687, 546–553.
- 508 https://doi.org/10.1016/j.scitotenv.2019.05.485
- Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. R News 2,6.
- 511 López-López, P., García-Ripollés, C., Urios, V., 2014. Food predictability determines

- 512 space use of endangered vultures: implications for management of supplementary
- 513 feeding. Ecological Applications 24, 938–949. https://doi.org/10.1890/13-2000.1
- 514 Nakagawa, S., Johnson, P.C.D., Schielzeth, H., 2017. The coefficient of determination
- 515 R2 and intra-class correlation coefficient from generalized linear mixed-effects models
- 516 revisited and expanded. Journal of The Royal Society Interface 14, 20170213.
- 517 https://doi.org/10.1098/rsif.2017.0213
- 518 Negro, J.J., Tella, J.L., Blanco, G., Forero, M.G., Garrido-Fernández, J., 2000. Diet
- 519 Explains Interpopulation Variation of Plasma Carotenoids and Skin Pigmentation in
- 520 Nestling White Storks. Physiological and Biochemical Zoology 73, 97–101.
- 521 https://doi.org/10.1086/316724
- 522 Newsome, T.M., Dellinger, J.A., Pavey, C.R., Ripple, W.J., Shores, C.R., Wirsing, A.J.,
- 523 Dickman, C.R., 2015. The ecological effects of providing resource subsidies to
- 524 predators. Global Ecology and Biogeography 24, 1–11.
- 525 https://doi.org/10.1111/geb.12236
- 526 Oro, D., Genovart, M., Tavecchia, G., Fowler, M.S., Martínez-Abraín, A., 2013.
- 527 Ecological and evolutionary implications of food subsidies from humans. Ecology
- 528 Letters 16, 1501–1514. https://doi.org/10.1111/ele.12187
- 529 Parfitt, J., Barthel, M., Macnaughton, S., 2010. Food waste within food supply chains:
- 530 quantification and potential for change to 2050. Philosophical Transactions of the Royal
- 531 Society B: Biological Sciences 365, 3065–3081. https://doi.org/10.1098/rstb.2010.0126
- 532 Patenaude-Monette, M., Bélisle, M., Giroux, J.-F., 2014. Balancing Energy Budget in a
- 533 Central-Place Forager: Which Habitat to Select in a Heterogeneous Environment?
- 534 PLOS ONE 9, e102162. https://doi.org/10.1371/journal.pone.0102162
- 535 Patrick, S.C., Bearhop, S., Bodey, T.W., Grecian, W.J., Hamer, K.C., Lee, J., Votier,
- 536 S.C., 2015. Individual seabirds show consistent foraging strategies in response to
- 537 predictable fisheries discards. Journal of Avian Biology 46, 431–440.
- 538 https://doi.org/10.1111/jav.00660
- 539 Payo-Payo, A., Oro, D., Igual, J.M., Jover, L., Sanpera, C., Tavecchia, G., 2015.
- 540 Population control of an overabundant species achieved through consecutive
- anthropogenic perturbations. Ecological Applications 25, 2228–2239.
- 542 https://doi.org/10.1890/14-2090.1
- 543 Peris, S., 2003. Feeding in urban refuse dumps: Ingestion of plastic objects by the White
- 544 Stork (Ciconia ciconia). Ardeola: revista ibérica de ornitología 50.
- 545 Pineda-Pampliega, J., Ramiro, Y., Herrera-Dueñas, A., Martinez-Haro, M., Hernández,
- 546 J.M., Aguirre, J.I., Höfle, U., 2021. A multidisciplinary approach to the evaluation of
- 547 the effects of foraging on landfills on white stork nestlings. Science of The Total
- 548 Environment 145197. https://doi.org/10.1016/j.scitotenv.2021.145197
- 549 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B.,
- 550 Maintainer, R., 2017. Package 'nlme.' Linear and nonlinear mixed effects models,
- 551 version 3.
- 552 Plaza, P.I., Lambertucci, S.A., 2018. More massive but potentially less healthy: black
- vultures feeding in rubbish dumps differed in clinical and biochemical parameters with
- wild feeding birds. PeerJ 6, e4645. https://doi.org/10.7717/peerj.4645
- 555 Plaza, P.I., Lambertucci, S.A., 2017. How are garbage dumps impacting vertebrate
- demography, health, and conservation? Global Ecology and Conservation 12, 9–20.
- 557 https://doi.org/10.1016/j.gecco.2017.08.002
- 558 Pons, J.-M., Migot, P., 1995. Life-History Strategy of the Herring Gull: Changes in
- 559 Survival and Fecundity in a Population Subjected to Various Feeding Conditions.
- 560 Journal of Animal Ecology 64, 592–599. https://doi.org/10.2307/5802
- 561 Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D., Ripley,

- 562 M.B., 2013. Package 'mass.' Cran R 538.
- 563 Shepard, E.L.C., Wilson, R.P., Halsey, L.G., Quintana, F., Laich, A.G., Gleiss, A.C.,
- 564 Liebsch, N., Myers, A.E., Norman, B., 2008a. Derivation of body motion via
- appropriate smoothing of acceleration data. Aquatic Biology 4, 235–241.
- 566 https://doi.org/10.3354/ab00104
- 567 Shepard, E.L.C., Wilson, R.P., Quintana, F., Laich, A.G., Liebsch, N., Albareda, D.A.,
- 568 Halsey, L.G., Gleiss, A., Morgan, D.T., Myers, A.E., Newman, C., Macdonald, D.W.,
- 569 2008b. Identification of animal movement patterns using tri-axial accelerometry.
- 570 Endangered Species Research 10, 47–60. https://doi.org/10.3354/esr00084
- 571 Steigerwald, E.C., Igual, J.-M., Payo-Payo, A., Tavecchia, G., 2015. Effects of
- 572 decreased anthropogenic food availability on an opportunistic gull: evidence for a size-
- 573 mediated response in breeding females. Ibis 157, 439–448.
- 574 https://doi.org/10.1111/ibi.12252
- 575 Stephens, D.W., Krebs, J.R., 1986. Foraging Theory. Princeton University Press.
- 576 Tablado, Z., Tella, J.L., Sánchez-Zapata, J.A., Hiraldo, F., 2010. The Paradox of the
- 577 Long-Term Positive Effects of a North American Crayfish on a European Community
- of Predators. Conservation Biology 24, 1230–1238. https://doi.org/10.1111/j.15231739.2010.01483.x
- 580 Tauler-Ametller, H., Hernández-Matías, A., Pretus, J.L., Real, J., 2017. Landfills
- 581 determine the distribution of an expanding breeding population of the endangered
- 582 Egyptian Vulture Neophron percnopterus. Ibis 159, 757–768.
- 583 https://doi.org/10.1111/ibi.12495
- 584 Tongue, A.D.W., Reynolds, S.J., Fernie, K.J., Harrad, S., 2019. Flame retardant
- 585 concentrations and profiles in wild birds associated with landfill: A critical review.
- 586 Environmental Pollution 248, 646–658. https://doi.org/10.1016/j.envpol.2019.01.103
- van Donk, S., Camphuysen, K.C.J., Shamoun-Baranes, J., Meer, J. van der, 2017. The
- 588 most common diet results in low reproduction in a generalist seabird. Ecology and
- 589 Evolution 7, 4620–4629. https://doi.org/10.1002/ece3.3018
- van Donk, S., Shamoun-Baranes, J., van der Meer, J., Camphuysen, K.C.J., 2019.
- 591 Foraging for high caloric anthropogenic prey is energetically costly. Movement Ecology
- 592 7, 17. https://doi.org/10.1186/s40462-019-0159-3
- 593 Weiser, E.L., Powell, A.N., 2010. Does Garbage in the Diet Improve Reproductive
- 594 Output of Glaucous Gulls? Condor 112, 530–538.
- 595 https://doi.org/10.1525/cond.2010.100020
- 596 Wright, J., Both, C., Cotton, P.A., Bryant, D., 1998. Quality vs. Quantity: Energetic and
- 597 Nutritional Trade-Offs in Parental Provisioning Strategies. Journal of Animal Ecology598 67, 620–634.
- 599 Ydenberg, R.C., Welham, C.V.J., Schmid-Hempel, R., Schmid-Hempel, P.,
- 600 Beauchamp, G., 1994. Time and energy constraints and the relationships between
- 601 currencies in foraging theory. Behav Ecol 5, 28–34.
- 602 https://doi.org/10.1093/beheco/5.1.28
- 603 Zurell, D., Eggers, U., Kaatz, M., Rotics, S., Sapir, N., Wikelski, M., Nathan, R.,
- 604 Jeltsch, F., 2015. Individual-based modelling of resource competition to predict density-
- 605 dependent population dynamics: a case study with white storks. Oikos 124, 319–330.
- 606 https://doi.org/10.1111/oik.01294
- 607

608

(a) Distance travelled	Estimate	SE	t	р
Fixed effects				
Intercept	20.32	1.50	13.58	< 0.001
Season	-13.90	0.81	-17.15	< 0.001
Foraging site	-5.001	0.71	-7.07	< 0.001
Season:Site	7.65	0.87	8.83	< 0.001
GPS positions	0.23	0.04	6.05	< 0.001
Random effects				
Bird ID Tag type	4.98			
Tag type	0.01			
AR(1)	0.50			
Residual variance	15.50			
Marginal R ²	0.08			
Conditional R ²	0.17			
(b) Mean ODBA				
Fixed effects				
Intercept	0.09	0.01	10.36	< 0.001
Season	-0.02	0.00	-16.24	< 0.001
Foraging site	0.01	0.00	12.57	< 0.001
Season:Site	0.00	0.00	-1.78	0.0755
Random effects				
Bird ID Tag type	0.01			
Tag type	0.02			
AR(1)	0.54			
Residual variance	0.03			
Marginal R ²	0.17			
Conditional R ²	0.46			
(c) Relative foraging time				
Fixed effects				
Intercept	-0.83	0.06	14.08	< 0.001
Season	-0.20	0.03	-5.82	< 0.001
Foraging site	0.33	0.03	11.91	< 0.001
Season:Site	-0.03	0.03	-0.90	0.3694
Random effects				
Bird ID Tag type	0.25			
Tag type	0.05			
AR(1)	0.59			
Residual variance	1.58			
Marginal R ²	0.01			
Conditional R ²	0.03			
(d) Foraging ODBA				
Fixed effects				
Intercept	0.17	0.01	15.46	< 0.001
Season	-0.02	0.002	-9.59	< 0.001
Foraging site	0.02	0.002	15.42	< 0.001
Season:Site	-0.02	0.002	-8.71	< 0.001
Random effects				

	Bird ID Tag type	0.01			
	Tag type	0.02			
	AR(1)	0.32			
	Residual variance	0.03			
	Marginal R ²	0.15			
	Conditional R ²	0.44			
611	Table 1: Estimates from LMMs an	d GLMM exp	laining (a) t	otal distance	travelled, (b)
612	mean overall dynamic body acceler	ration (mean C	DDBA), (c) 1	relative forag	ging time, and
613	(d) mean foraging ODBA. Reference	ce level for sea	son is 'bree	ding', and for	r foraging site
614	is 'landfill'.				
615					
616					
617					
618					
619					
620					
621					
622					
623					
624					
625					
626					
627					
628					
629					
630					
631					
632	Ç				

-

(a) Model-wide Interactions	Predictor	Estimate	SE	р
Response				
Mean ODBA	Distance travelled			< 0.001
Mean ODBA	Relative foraging time			< 0.001
Mean ODBA	Foraging ODBA			< 0.001
Relative foraging time	Foraging ODBA			< 0.001
(b) Breeding, non-landfill				
Response				
Mean ODBA	Distance travelled	0.0005	0.0000	< 0.001
Mean ODBA	Relative foraging time	0.1049	0.0020	< 0.001
Mean ODBA	Foraging ODBA	0.3150	0.0091	< 0.001
Relative foraging time	Foraging ODBA	0.8266	0.2827	0.0035
(c) Non-Breeding, non-				
landfill				
Response				
Mean ODBA	Distance travelled	0.0005	0.0000	< 0.001
Mean ODBA	Relative foraging time	0.1016	0.0020	< 0.001
Mean ODBA	Foraging ODBA	0.2536	0.0091	< 0.001
Relative foraging time	Foraging ODBA	1.6589	0.3157	< 0.001
(d) Breeding, landfill				
Response				
Mean ODBA	Distance travelled	0.0006	0.0000	< 0.001
Mean ODBA	Relative foraging time	0.0985	0.0068	< 0.001
Mean ODBA	Foraging ODBA	0.2218	0.0184	< 0.001
Relative foraging time	Foraging ODBA	-0.0627	0.5119	0.9026
(e) Non-Breeding, landfill				
Response				
Mean ODBA	Distance travelled	0.0004	0.0000	< 0.001
Mean ODBA	Relative foraging time	0.0691	0.0033	< 0.001
Mean ODBA	Foraging ODBA	0.1696	0.0085	< 0.001
Relative foraging time	Foraging ODBA	-0.7308	0.2773	0.0085

Table 2: Estimates from structural equation models (SEM) explaining the relationship

among total distance travelled, mean overall dynamic body acceleration (ODBA), relative foraging time, and mean foraging ODBA. Estimates for (a) the whole model, (b) breeding

period outside landfills, (c) non-breeding period outside landfills, (d) breeding period in

landfills, and (e) non-breeding period in landfills.

(a) Relative foraging time	Estimate	SE	t	р
Fixed effects				
Intercept	-1.21	0.11	-11.29	< 0.001
Season	-0.03	0.09	-0.28	0.7795
Specialisation index	0.31	0.19	1.65	0.1062
Season:Specialisation index	-0.11	0.14	-0.79	0.4323
Random effects				
Bird ID Tag type	0.14			
Tag type	0			
AR(1)	0.25			
Residual variance	1.01			
(b) Foraging ODBA				
Fixed effects				
Intercept	0.16	0.01	11.22	< 0.001
Season	-0.02	0.01	-2.51	0.0120
Specialisation index	0.01	0.01	0.42	0.6756
Season:Specialisation index	0.01	0.01	0.82	0.4142
Random effects				
Bird ID Tag type	0.01			
Tag type	0.02			
AR(1)	0.10			
Residual variance	0.03			

642 Table 3: Estimates from GLMM and LMM explaining (a) relative foraging time, and (b)

643 mean foraging overall dynamic body acceleration (ODBA), while foraging on landfills.

644 Reference level for season is 'breeding'.

Figure 1: Foraging areas of tracked white storks in southern Iberia (Portugal and Spain)
between 2016 and 2019 during a) the breeding and b) the non-breeding periods. Stars
indicate landfill sites.

-

Figure 2: Estimates from GLMMs explaining the probability of white storks attending a landfill during the breeding season as a function of the distance from the nesting site to the closest landfill.

Figure 3: Predicted values and 95 % confidence intervals from GLMMs explaining (a) daily distance travelled, (b) mean overall dynamic body acceleration (ODBA), (c) relative foraging time, and (d) mean foraging ODBA of foraging white storks, as a function of season (breeding or non-breeding) and foraging site (landfill or non-landfill).

- 688
- 689
- 690
- 691
- 692

694	Figure 4: (a) Graphical explanation of the structural equation model (SEM) showing the
695	relative contribution of white storks' foraging decisions into the mean overall dynamic
696	body acceleration (ODBA). Black arrows indicate relationships represented in the figure
697	and the grey arrow relationship not represented in the figure. Mean ODBA as a function
698	of daily distance travelled for (b) the breeding season and (c) the non-breeding season;
699	mean ODBA as a function of relative foraging time for (d) the breeding season and (e)
700	the non-breeding season; and mean ODBA as a function of mean foraging ODBA for (f)
701	the breeding season and (g) the non-breeding season. Solid line on landfill sites and
702	dashed line on non-landfill sites.
703	
704	
705	
706	
707	
708	
709	
710	
711	
712	
713	
714	
715	
716	
717	
718	

Figure 5: (a) Graphical explanation of the structural equation model (SEM) showing the relative contribution of white storks' foraging decisions into the mean overall dynamic body acceleration (ODBA). Black arrows indicate relationships represented in the figure and the grey arrow relationship not represented in the figure. Relative foraging time as a function of mean foraging ODBA for (b) the breeding season and (c) the non-breeding season. Solid line on landfill sites and dashed line on non-landfill sites.

726