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Highlights 11 

• Insect control techniques are rapidly expanding, including novel genomic tools 12 

• Many techniques target reproduction by releasing males with manipulated fertility 13 

• Control is hampered if males have low mating and fertilisation success 14 

• Females can respond behaviourally and evolutionarily to maintain reproductive fitness 15 

• Considering mating ecology is important to improve a technique’s effectiveness 16 

 17 

Abstract 18 

Attempts to control insect pests and disease vectors have a long history. Recently, new technology 19 

has opened a whole new range of possible methods to suppress or transform natural populations. But 20 

it has also become clear that a better understanding of the ecology of targeted populations is needed. 21 

One key parameter is mating behaviour. Often modified males are released which need to successfully 22 

reproduce with females while competing with wild males. Insect control techniques can be affected 23 

by target species’ mating ecology, and conversely mating ecology is likely to evolve in response to 24 

manipulation attempts. A better understanding of (female) mating behaviour will help anticipate and 25 

overcome potential challenges, and thus make desirable outcomes more likely. 26 

 27 

Targeting reproduction to control pest and vector populations 28 

Insect pests and disease vectors cause huge economic costs [1], mortality in livestock and more human 29 

deaths than any other animals [2]. Not surprisingly then, the wish to control or eradicate insect pest 30 

populations has a long and diverse history. Many technologies for insect control involve direct 31 

attempts to kill targets with insecticides and natural enemies (e.g. on dengue [3]). An alternative (and 32 

often complimentary) strategy is to disrupt the reproduction of target populations. Early ideas 33 

included pheromone traps, the release of irradiation-sterilised males, disrupting reproduction by 34 

releasing closely related species leading to hybrid offspring mortality or sterility, and the introduction 35 

of desirable alleles into populations through the repeated release of individuals carrying these variants 36 

[4]. These techniques have largely involved releases of males, as adding males to a population rarely 37 

increases population size and stability [5]. The recent revolution in genome modification techniques 38 
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has allowed the design of novel technologies to more effectively disrupt reproduction in a greater 39 

range of targets (e.g. [6,7]). Many of these techniques also focus on negative effects of males on 40 

female fitness, either disrupting male fertilisation of wild females to eliminate populations [8,9] or 41 

directly transforming the target population by using reproductive incompatibility to drive a tailored 42 

cargo of genes into wild populations [10,11] — for example making mosquitos unable to transmit 43 

dengue virus [12].  44 

Many different technical and ecological aspects determine the success of pest and disease vector 45 

control attempts. In this review, we focus on one aspect, interactions between control strategies and 46 

mating ecology, particularly in the context of male release and female behaviour. Previous reviews 47 

have highlighted the value of considering mating ecology and incorporating research on reproductive 48 

behaviour into pest control [4,13,14], but these reviews largely predated recent technological 49 

advances. Here we focus on Dipterans, because the order has a long history of successful SIT (see [15] 50 

for a recent review), and practical advances in novel control technologies have disproportionately 51 

been developed in Drosophila for application in mosquitos. Applying novel technologies to non-52 

dipteran targets may be more challenging. For example, key lepidopteran targets such as army worms, 53 

cactus moths, or winter moths may be hindered by less developed genomic tools and knowledge [16]. 54 

It will be exciting to see whether novel techniques can be developed for colonial organisms with long 55 

generation times like fire ants or hornets, or facultatively parthenogenetic species such as aphids.  56 

Among the newer genetic technologies, initial attention focussed predominantly on mechanistic 57 

feasibility [17], and on whether genetic resistance at target loci would halt the spread and thwart 58 

effectiveness [18,19]. Recently, ideas and concepts from evolutionary ecology have increasingly been 59 

incorporated to improve insect release technologies (e.g. [5,20–24]) and combat pesticide resistance 60 

[25], which is key to developing a more long-term sustainable management strategy. Importantly, the 61 

mating ecology of a population can have dramatic impacts, not only on the initial responsiveness to 62 

release strategies [26], but also on long-term evolutionary responses. Manipulating the reproduction 63 

of a target population in many cases means getting individuals (i.e. females) to behave against their 64 

fitness interests, which will promote the evolution of resistance through changes in behaviour, 65 

physiology or anatomy. The greater the impact on reproduction, the stronger the selective pressure 66 

to evolve mitigation strategies. Thus, whether target populations can be eliminated or transformed is 67 

ultimately a question of whether and how quickly they evolve resistance in response to manipulation 68 

attempts. We therefore need a holistic approach that includes evolutionary strategies and is able to 69 

predict and mitigate likely resistance scenarios, to ensure effective, sustainable and safe deployment 70 

[5]. 71 

 72 

Male-release strategies that disrupt reproduction 73 

Here, we briefly summarise the techniques used for population transformation and/or suppression in 74 

three broad categories: SIT and RIDL, IIT, and insects carrying novel genetic constructs, explained 75 

below (Fig 1). 76 
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 77 

(i) Sterile insect technique (SIT) and release of insects carrying dominant lethals (RIDL) 78 

The traditional SIT typically works through the mass-release of radiation-sterilised insects, with males 79 

seeking out and mating with wild females, thus reducing their offspring production (Fig 1A). The SIT 80 

has been successfully deployed in numerous countries around the globe to suppress populations of 81 

screwworm flies, tephritid fruit flies, tsetse flies, onion flies, beetles, moths and mosquitos [4,15]. This 82 

technique has been shown to work best against low density target populations with large release 83 

numbers and a correspondingly high sterile male to wild male ratio. Given the labour intensity and the 84 

large infrastructural investments needed to create and irradiate millions or billions of insects (and sex-85 

sort mosquitos for male-only releases), the traditional SIT is not accessible for economically less 86 

important pests. The sterility of males means that releases have to be repeated to suppress wild 87 

populations. RIDL updates SIT by releasing fertile males bearing dominant lethal alleles that in nature 88 

kill offspring during development [27]. If lethality occurs only in female offspring (fsRIDL), the 89 

dominant lethals can continue to spread through sons, reducing the need for repeated releases 90 

[20,28]. 91 

 92 

(ii) Incompatible insect technology (IIT) 93 

Endosymbionts are microorganisms living within the cells of their host. They are present in most 94 

insects and are predominantly vertically inherited from mother to offspring. Some endosymbionts 95 

manipulate host reproduction in a variety of ways to enhance their spread. Frequently, this involves 96 

inducing cytoplasmic incompatibility (CI) in which sperm from infected males kills zygotes when 97 

mating with uninfected females, thereby reducing the fitness of uninfected females (Fig 1B). The best-98 

characterised endosymbiont is the bacterium Wolbachia, which has been enlisted as an agent to 99 

suppress vector and pest insect populations since the 1950s, predominantly in mosquito vectors 100 

[10,23]. Release of Wolbachia-infected males can suppress populations through severe reproductive 101 

incompatibilities. Bi-sex releases can spread Wolbachia through CI and effectively reduce virus 102 

transmission (e.g. dengue, zika) in mosquitoes [23]. However, Wolbachia can also have major impacts 103 

on insect mating biology (Fig 1; [29]). 104 

 105 

(iii) Sperm killing and sex ratio distorting gene drives 106 

Segregation distorting gene drives are selfish genetic elements that manipulate gametogenesis, often 107 

killing a male’s non-carrying sperm, to enhance their own transmission (i.e. they “drive”; Fig 1C). While 108 

Wolbachia can generate drive by cytoplasmically-induced male sterility, most natural gene drives are 109 

segregation distorters that operate during gametogenesis. Sperm-killer drives frequently impair the 110 

fertility of carrier males [30], and some gene drives cause sex ratio distortion by targeting Y- or X-111 

bearing sperm [31]. There is growing excitement about the recent development of a variety of 112 

different types of synthetic gene drivers (e.g. CRISPR-Cas9, homing endonucleases) to manage pest 113 

and vector populations, in particular malaria-transmitting mosquitoes (e.g. [32]). Some of these novel 114 
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technologies specifically seek to disrupt female reproduction by inducing male sterility [8,9]. However, 115 

there are several obstacles to their successful implementation. Target organisms rapidly evolve 116 

resistance [18], and synthetic gene drives may invade non-target populations [33]. In addition, gene 117 

drives that compromise male fertility will impose strong selection on females to evolve mating 118 

strategies, such as increased mating frequency, that can undermine the success of drive-carrying 119 

males (e.g. [34]). One potential solution could be to modify existing natural gene drives, as these have 120 

proven themselves able to remain successful in natural populations over evolutionary timescales [35]. 121 

 122 

Figure 1: Three ways of manipulating reproduction of target insect populations through male release. A) Mass 123 

release of sterilised males or males with dominant lethal alleles that disrupt reproduction in females by 124 

rendering offspring inviable or sterile. Sterilisation of released males is typically achieved by irradiation-induced 125 

mutations and is often accompanied by a reduction in sperm quantity and/or quality [36]. Though not an intrinsic 126 

feature of the technique, insertion of genetically engineered dominant lethal mutations might also negatively 127 

affect sperm phenotypes [20]. B) Mass release of Wolbachia-carrying males which cause reproductive failure 128 

through cytoplasmic incompatibility (CI) with wildtype females, or bi-sex releases of insects carrying Wolbachia 129 

as a cargo (e.g. blocking virus transmission) that spreads due to CI. Wolbachia-encoded genes of viral origin 130 

modify sperm of infected males inducing CI and ensure rescue of infected females’ eggs, resulting in production 131 

of Wolbachia-infected offspring [37]. Sperm modification by Wolbachia can decrease male fertility [38,39] and 132 

reduce sperm competitive ability [40], the severity of which depends on male mating history and age [41]. C) 133 

Release of males with a sperm killer gene drive that spreads reduced viability, a biased sex ratio, or a genetic 134 

cargo through a population by distorting inheritance in heterozygous males. Sperm killing by default renders a 135 
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large portion of a male’s spermatids or ejaculated sperm unfit for fertilisation, thus reducing ejaculate quantity 136 

and sometimes also quality [30]. 137 

 138 

Consequences for insect reproduction 139 

(i) Impact on male reproductive success 140 

No matter the intervention mechanism, what this diverse range of insect control attempts have in 141 

common is that, for a desirable outcome, the (male) carriers need to survive and mate in the target 142 

population, and the manipulation mechanism needs to work under field conditions (Fig 2). One 143 

commonality across the different intervention techniques discussed here is that they have the 144 

potential to reduce male fertility (Fig 1), which can have a large impact on female mating behaviour 145 

and the success of the technique. Mating with a sterilised male may not render females unresponsive 146 

to further mating attempts. The success of the SIT thus depends on the effects of sterilisation on sperm 147 

and seminal fluids, and on which of these ejaculate components female sexual receptivity responds 148 

to [36]. If females mate with multiple males, sperm competitiveness of sterilised males depends on 149 

whether sterilisation is achieved through elimination of sperm or through dominant lethal mutations 150 

in sperm. In polyandrous species, females that mate with a sterile male may remate rapidly [42]. 151 

Depending on the relative number of fertile males available, female remating can potentially maintain 152 

female fertility, and thus reduce or undermine the effectiveness of the SIT. Similarly, there is strong 153 

evidence that Wolbachia can reduce male fertility (e.g. flies [40], moths [39]) which may reduce the 154 

efficacy of Wolbachia for population control. Sperm killing and sex ratio distortion by gene drives can 155 

also have dramatic impacts on male fertility and female mating decisions, which has been shown in 156 

several taxa [29,30]. At times, severe sperm killing can reduce female fertility after mating with drive-157 

carrying males, promoting increased mating frequency, which can be exacerbated under a female-158 

biased sex ratio [43]. 159 
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 160 

Figure 2: Released males need to survive in nature, find or attract a mate, successfully court, copulate and 161 

transfer an ejaculate. Mating success of released males can be reduced by the impact of mass-rearing [20], by 162 

using a genetic background that is not locally adapted [44], or by inadvertently linking the construct to an existing 163 

mate choice target that is unfavourable. For example, mass-rearing may relax selection on effective mate-164 

searching, long-distance attraction and male attractiveness, or lead to excessive male aggression. It is also likely 165 

to alter the microbiota of the males [45], which can affect survival and attractiveness [46]. On the other hand, 166 

lab-rearing conditions could be optimised to create very attractive and successful males, such as by feeding 167 

supplements or managed breeding [15,20,47]. After mating, males need to elicit the appropriate refractory 168 

period in females [42], and sperm of manipulated males need to be competitive against wildtype sperm in 169 

species where females remate, typically requiring high sperm numbers and appropriate seminal fluid proteins. 170 

The (genetic) manipulation mechanism needs to ensure that ejaculate production is robust under field 171 

conditions, which are likely to be more challenging than lab conditions. Finally, the sterility-, lethality-, 172 

incompatibility- or drive-inducing mechanism needs to work properly in field conditions. Similarly, if 173 

transformation is the aim of the intervention, the cargo must remain intact (e.g. endosymbiont susceptibility to 174 

heat [48]). 175 

 176 

(ii)  Counteradaptations by females: Behavioural plasticity and evolutionary responses 177 

Competitiveness and fertility of released males are often compromised, particularly under challenging 178 

natural conditions (but see e.g. [49,50]). Evolution has shaped female reproductive strategies to 179 

respond to variation in male fertility and genetic quality, and to mitigate fitness costs imposed by 180 

males [51]. Thus, females are likely to respond to interventions that suppress male fertility through 181 
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facultative behaviours and/or evolved changes. Natural rates of mating failure can be substantial, and 182 

females may increase remating after ineffective matings (e.g. [42,52]), even in monandrous species 183 

[53]. Similarly, females of many species by default mate with multiple — sometimes very many — 184 

males, which will dampen the success of released males if their sperm have reduced competitiveness. 185 

For example, experimentally allowing multiple mating in a polyandrous species conferred protection 186 

from a driving sex ratio distorter that caused extinction in populations with enforced monandry [34]. 187 

Finally, females may have pre-existing reproductive strategies that allow them to circumvent the need 188 

to mate altogether, such as facultative asexual reproduction through parthenogenesis, though this is 189 

probably not very widespread among insect species. 190 

Mitigating fitness costs associated with modified males may also promote evolved responses. If 191 

the modification is detectable (directly or through linkage with an expressed trait), then females could 192 

evolve to discriminate against modified males before mating [54–56]. Indeed, in some instances, 193 

females have been found to evolve behavioural discrimination against sterile males after releases into 194 

natural populations [54,57]. However, this appears to be quite rare. Similarly, if Wolbachia affects 195 

female mate discrimination, with infected females preferentially mating with infected males, then this 196 

may undermine the efficacy of the IIT as it will reduce the incidence of CI [58]. Evidence for this comes 197 

from the Drosophila paulistorum species complex where flies preferentially mate with flies carrying 198 

the same Wolbachia strain [59]. However, several other studies have found no evidence for female 199 

mate choice by uninfected females against Wolbachia-infected males [29]. Perhaps more simply, 200 

increased inbreeding behaviour or assortative mating could be another evolutionary response in 201 

females that can hamper the success of population control technologies [60]. 202 

If males bearing the manipulation technology are poor sperm competitors, females may increase 203 

their fitness by mating with multiple males. This could cause females to rapidly evolve higher remating 204 

rates. Polyandry is heritable in many insects (e.g. [61]), populations can carry high loads of standing 205 

variation for polyandry [62], and mating systems can evolve rapidly (e.g. within ten generations [43]). 206 

However, empirical evidence for effects of polyandry on the success of insect control techniques is 207 

scarce. A rare test of the hypothesis that sterilised males select for increased polyandry did not find 208 

elevated polyandry (or discrimination against sterile males) after experimental evolution, but the 209 

starting populations may not have included genetic variation in polyandry [63]. On the other hand, a 210 

naturally occurring sex ratio distorter caused rapid evolution of increased polyandry in fruit flies [43]. 211 

Whether females will counter population control attempts through evolved responses will depend on 212 

the competitiveness of released males, on the amount of standing genetic variation for female mating 213 

behaviour, and on the speed of population elimination/transformation. 214 

 215 

(iii) Consequences for the success of control technologies 216 

It is clear that any intervention technology aimed at targeting male fertility will impose strong 217 

selection on females to mitigate the fitness costs associated with mating with manipulated males, 218 

often involving increased female mating frequency. Therefore, it is important to take the 219 



 

 

8 

consequences of increased polyandry into consideration when designing insect control measures. 220 

Mating ecology has started to receive more attention recently, as have ecological factors that can 221 

influence the success of released males [5,21] (Fig 3). Ecological factors themselves can also affect 222 

female mating activity. For example, several gene drives skew the population sex ratio, which can 223 

promote increased female mating to ensure high fertility when males are rare [64], hence 224 

undermining the effectiveness of the technique. Nonetheless, a biased sex-ratio combined with 225 

additional intervention techniques could potentially suppress a population before resistance can 226 

evolve [32,65]. Moreover, combining Wolbachia IIT with SIT has recently been shown to result in an 227 

almost complete elimination of Aedes albopictus mosquito populations in the field [66]. Wolbachia 228 

has also been shown to confer protection to the insect host against RNA viruses and bacteria [12], 229 

that may aid the transmission success of Wolbachia through target populations [23,58], thus 230 

accelerating its spread and effectiveness of the intervention technology [10]. 231 

 232 

Figure 3: Manipulation technologies can negatively affect mating and fertilisation success of released (A) sterile, 233 

(B) Wolbachia- or (C) gene drive-carrying males, and field conditions may exacerbate these effects. Mass-rearing 234 

of lab populations and the choice of genetic background is likely to have an impact on male success [20,67]. 235 

Harsh climatic conditions, pesticides and pathogens as well as environmental complexity might also impact 236 

released adults disproportionately [44]. For example, releases of a susceptible strain of Aedes aegypti 237 

mosquitoes in Brazil failed whereas a pesticide-resistant strain successfully transformed the native mosquito 238 

population [68]. Similarly, field conditions could hamper the effectiveness of the (genetic) manipulation 239 

mechanism. For example, low temperatures can alter sperm competition dynamics between drive-carrying and 240 

wildtype males [69], and elevated temperatures in the field can substantially reduce Wolbachia-induced CI in 241 

Ae. aegypti [48]. Mass-release of males also alters the operational sex ratio in a population, which likely 242 

increases selection on (sperm) competitiveness of wild males, and may increase female mate acceptance 243 

thresholds beyond pre-release levels [70]. Conversely, Y-shredder gene drives that reduce male availability are 244 

likely to increase female multiple mating in response to sperm limitation [64]. Given the fitness costs of disrupted 245 
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reproduction, females may also directly decrease the mating and/or fertilisation success of manipulated males, 246 

both through behavioural plasticity and evolved responses [43,52,71,72]. 247 

 248 

Key lessons 249 

Understanding mating ecology of the target organism is important when choosing the technique most 250 

robust to resistance evolution. Even closely related species can differ vastly in mating ecology and in 251 

how females respond after mating with infertile males [73], making generalisations difficult. However, 252 

we think that two key aspects need to be considered. 253 

(i) Accurately assessing male mating and fertilisation competitiveness. Lowered male 254 

competitiveness increases deployment costs, and delays eradication/suppression of the target 255 

population, leaving more time for resistance evolution. Using released insects genetically close to 256 

target population might help, as should regularly “refreshing” lab populations with wild individuals 257 

carrying alleles that have proven competitive under field conditions, though this may trade-off with 258 

lab rearing efficiency. Drive technologies might outperform SIT in this respect, as they can potentially 259 

quickly introgress into wild populations rather than relying on repeated releases of individuals mass-260 

bred in the lab.  261 

(ii) Evaluating likely evolved female responses. Understanding the mating ecology of the target 262 

populations and how it potentially interacts with the manipulation technique is pivotal. For example, 263 

releasing a technology that severely impairs sperm quality into a population with substantial genetic 264 

variation for polyandry could fail due to immediate and/or evolved responses in female mating 265 

behaviour. Explicitly testing the fertility of manipulated males in sperm competition with wild males 266 

is a crucial step towards predicting their efficacy as population control agents, particularly in species 267 

where females are known to remate. When experimentally testing female responses, it is important 268 

to not only measure the average response, but also the (genetic) variation in the response, which 269 

ultimately determines the evolutionary potential for behavioural resistance evolution. 270 

We have illustrated here that female mating behaviour and mating strategies are likely to be key 271 

components determining how target populations will respond to many of the novel control 272 

technologies. Decades of research has given us a strong understanding of female mating strategies, 273 

how plastic female behaviour can alter male success, and how it evolves in response to selective 274 

forces. Incorporating this wealth of knowledge into the development and deployment of novel control 275 

technologies promises to increase their long-term effectiveness. 276 

 277 
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