2 TITLE OF ARTICLE:

- 3 Developing a core outcome set for hand fractures and joint injuries in adults: a systematic review
- 4 of treatment outcomes

5

1

6 **AUTHORS:**

- 7 Sandeep Rajiv Deshmukh¹, Christos Mousoulis¹, Ben Marson², Douglas Grindlay¹, Alexia
- 8 Karantana¹, and the Core Outcome Set for Hand Fractures and Joint Injuries in Adults Group³

9

- 10 ¹ Centre for Evidence Based Hand Surgery, Academic Orthopaedics, Trauma and Sports Medicine,
- 11 Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of
- 12 Nottingham, UK
- 13 ² Trauma Outcomes Group, University of Nottingham, Queen's Medical Centre, Nottingham, UK
- 14 ³ Group members are all authors
- 15

16 CORRESPONDING AUTHOR:

- 17 Alexia Karantana
- 18 Centre for Evidence Based Hand Surgery, Academic Orthopaedics, Trauma and Sports Medicine,
- 19 Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of
- 20 Nottingham, NG7 2UH, UK

21	alexia.karantana@nottingham.ac.uk
----	-----------------------------------

23 **KEYWORDS:**

24 Hand fractures; joint injuries; core outcome set; treatment outcomes; systematic review

25

26 **CONFLICTING INTERESTS:**

- 27 The author(s) declare no potential conflicts of interest with respect to the research, authorship,
- 28 and/or publication of this article.

29

30 INFORMED CONSENT

31 Not applicable

32

33 ETHICAL APPROVAL

34 Not applicable

35

36 CORE OUTCOME SET FOR HAND FRACTURES AND JOINT INJURIES IN ADULTS

37 **GROUP MEMBERS**

38	Sandeep Rajiv Deshmukh	¹ , Douglas Grindlay ¹	, Christina Jerosch-Herold [!]	⁵ , Alexia Karantana ¹ , Pau
----	------------------------	--	---	--

- Leighton³, Ben Marson², Alan A Montgomery⁴, Christos Mousoulis¹, Jeremy N Rodrigues⁶, Ryan
 Trickett⁷.
- 41 ¹ Centre for Evidence Based Hand Surgery, Academic Orthopaedics, Trauma and Sports Medicine,
- 42 Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of
- 43 Nottingham, UK
- ² Trauma Outcomes Group, University of Nottingham, Queen's Medical Centre, Nottingham, UK
- 45 ³ Centre of Evidence Based Dermatology, Faculty of Medicine and Health Sciences, School of
- 46 Medicine, University of Nottingham, UK
- 47 ⁴ Nottingham Clinical Trials Unit, Faculty of Medicine and Health Sciences, School of Medicine,
- 48 University of Nottingham, UK
- 49 ⁵ School of Health Sciences, University of East Anglia, UK
- ⁶ Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS),
- 51 University of Oxford, & Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust,

52 Aylesbury, UK

- ⁷ Cardiff and Vale University Health Board, University Hospital of Wales, UK
- 54

55 **CONTRIBUTORSHIP**

- 56 SRD, AK, AAM and PL conceived the study. SRD, DG, AK, AAM, PL, CJ-H, JNR and RT developed the
- 57 protocol. SRD, DG and AK were involved in screening of search results. SRD, CM and BM
- 58 conducted data extraction and analysis. SRD wrote the first draft of the manuscript. All authors
- reviewed and edited the manuscript and approved the final version of the manuscript.
 - 3

61 **FUNDING STATEMENT:**

- 62 This research received no specific grant from any funding agency in the public, commercial, or not-
- 63 for-profit sectors. SRD is funded by PhD studentship at the CEBHS, University of Nottingham,
- 64 which receives funds from the British Society for Surgery of the Hand.
- 65 BM is funded by a National Institute for Health Research (NIHR) Doctoral Fellowship (NIHR300240)
- 66 and JNR is funded by a National Institute for Health Research (NIHR) Postdoctoral Fellowship (PDF-
- 67 2017-10-075). This paper presents independent research funded by the National Institute for
- 68 Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those
- 69 of the NHS, the NIHR or the Department of Health and Social Care.

- 72 Developing a core outcome set for hand fractures and joint injuries in adults: a systematic review
- 73 of treatment outcomes

ABSTRACT

75 This study identifies the treatment outcome domains used in recently published studies on the 76 treatment of hand fractures and joint injuries, to inform development of a core outcome set. 77 Seven databases were searched from January 2014 to March 2019 for randomized and quasi-78 randomized studies and large prospective observational studies. We identified 1777 verbatim 79 outcomes in 160 eligible studies. From the verbatim outcomes we distinguished 639 unique 80 outcomes which we categorised into 74 outcome domains based on the World Health Organization International Classification of Functioning, Disability, and Health framework. The 81 82 primary outcome was appropriately identified in only 65% (72/110) of randomized and quasi-83 randomized controlled trials. Of the 72 studies with a primary outcome identified, 74% (53/72) 84 had an appropriate power calculation. The vast heterogeneity in outcome selection across studies 85 highlights the need for a core outcome set of what outcomes to measure in future clinical research on hand fractures and joint injuries. 86

INTRODUCTION

88	The recent James Lind Alliance Priority Setting Partnership on common conditions affecting the
89	hand and wrist incorporated the opinions of patients, carers and clinicians. It highlighted the need
90	for research to answer uncertainties concerning both the treatment of injuries in the hand and
91	wrist and the methods of best assessing patient outcomes from treatment (James Lind Alliance,
92	2017). Outcome selection is a fundamental aspect of clinical research. However, when different
93	researchers select outcomes independently, there is the risk of inconsistency in outcomes used
94	across studies. There is also the risk that researchers omit outcomes of priority to patients
95	themselves (Kirwan et al., 2003).
96	A core outcome set (COS) is an agreed minimum set of outcomes that should be measured and
97	reported in all clinical trials or research studies in a specific area of health (Williamson et al., 2017).
98	It should have input from key stakeholder groups including healthcare professionals but also
99	patients. Use of a COS increases consistency across studies, allowing more trials to be included in
100	future meta-analyses and helping to measure clinically relevant outcomes. Selective reporting bias
101	is also reduced since it becomes apparent if COS outcomes are not fully reported.
102	The aims of this systematic review were to:
103	1. Identify and map the outcome domains measured in recent clinical studies of hand fractures
104	and joint injuries
105	2. Assess selective outcome reporting bias in these studies
106	3. Compare outcome domains reported on the treatment of patients with distal radial fractures
107	(DRF) versus other hand and wrist injuries (non-DRF). Epidemiological studies have indicated a

108 difference in the typical age and sex distribution of the patient populations of DRF and non-

87

- DRF injuries (Karl et al., 2015; Van Onselen et al., 2003; Van Staa et al., 2001). Such differences
 may influence outcome selection by researchers.
- 111
- 112

METHODS

- 113 The design of this systematic review was guided by the Core Outcome Set-STAndards for
- 114 Development (COS-STAD) (Kirkham et al., 2017). The protocol was prospectively registered on the
- 115 PROSPERO international prospective register of systematic reviews (CRD42019126299).

116 Scope and eligibility criteria

- 117 We defined hand fractures and joint injuries as phalangeal, metacarpal, carpal or distal radial
- 118 fractures (with or without distal ulna) or an injury to a joint between any of these bones. These
- injuries included dislocation, subluxation, volar plate injury, avulsion injury, ligamentous
- 120 tears/sprains/ruptures, and closed tendon ruptures/tears.
- 121 We excluded complex hand injuries (i.e. 'mangled hand', amputations requiring replantation),
- 122 primary nerve injuries, burns and open tendinous injuries, as such injuries likely have very
- 123 different outcome domains of interest.
- 124 Study types included randomized controlled trials (RCTs) and pilot or feasibility studies, quasi-
- randomized controlled trials (qRCTs) and prospective observational studies with \geq 100 patients.
- 126 Detailed inclusion and exclusion criteria are outlined in Online Table S1.

127 Study identification

- 128 We compiled search strategies under guidance of an information specialist experienced in the
- 129 hand surgery literature (DG). Key search strategy concepts were:
- 130 1. Bones, joints, tendons and ligaments of the hand, carpus and distal radial

- 131 2. Generic terms for fractures and joint injuries
- 132 3. Specific hand fracture and joint injury terms

133 We combined [1] and [2] with AND, then added to these by combining with [3] using OR.

134 We identified relevant free text terms and subject headings for each database. Databases

135 searched were Ovid MEDLINE, Ovid Embase, Cochrane Central Register of Controlled Trials

136 (CENTRAL), PubMed, CINAHL (EBSCO), PEDro and Ovid PsycINFO.

137 We conducted a staged search strategy as outlined in the COMET Initiative handbook (Williamson

et al., 2017), with initial search run on 29/03/2019. An example of the search strategy and

descriptions of the staged search method and study selection process are provided in Online

140 Appendix S1.

141 **Risk of bias assessment**

142 We determined the outcomes captured by studies rather than the quantitative results obtained.

143 However, selective outcome reporting can offer insight into which outcomes authors truly

144 prioritise. Kirkham et al. (2010) describe an outcome matrix for the assessment of outcome

145 reporting bias (ORB) based on the premise that any outcome specified for inclusion should be

146 reported in the final publication. We used a modified version of this, as summarised in Online

147 Table S2.

148 We deemed the primary outcome to be one of the following (in descending order):

149 i. The outcome upon which the study sample size calculation was based

150 ii. The primary outcome specified in the study

151 iii. The outcome which appeared to correspond most closely with the study aim

152 If there was no clear primary outcome, we considered all outcomes in the study as secondary153 outcomes.

We performed independent two-reviewer assessment of outcome reporting status (SRD for alloutcomes, second assessment divided between CM and BM).

156 We excluded generic 'adverse event' or 'complication' outcomes from the assessment, except in 157 cases where specific named complications were identified as being standalone study outcomes.

158 Data synthesis

159 We analysed all extracted verbatim outcomes for similarity in meaning through discussion (SRD for 160 all, and either CM or BM). "Verbatim outcome" means the literal outcome. For example, "finger 161 flexion" and "flexion of the finger" would technically constitute different "verbatim outcomes" but 162 one unique outcome if measured in the same way. We split verbatim outcomes with similar 163 terminology but different meaning into two unique outcomes where results for these outcomes 164 could not be reasonably pooled in a meta-analysis. For example, "finger flexion" constitutes two 165 unique outcomes if reported in degrees of joint movement in some studies but as a percentage compared to the contralateral limb in others. We categorised unique outcomes into domains 166 167 based on the World Health Organization International Classification of Functioning, Disability, and 168 Health (WHO ICF) framework (World Health Organization, 2001), using the WHO ICF linking rule 169 guide (Cieza et al., 2005).

We analysed patient-reported outcome measure (PROM) instruments by categorising the
individual items and components of any scales into WHO ICF outcome domains (Macefield et al.,
2014).

Time points of outcomes are often heterogeneous. To determine 'meaningful' heterogeneity
resulting from use of multiple and varying time points for outcome assessment, we created time

175 point 'ranges' representing typical 'follow-up windows' and categorised our findings according to

these 'ranges'.

177

RESULTS

- 178 Figure 1 shows the PRISMA study flow diagram (Moher et al., 2009).
- 179 A table of all 160 included studies is provided in Online Appendix S2. Most studies were single-
- 180 centre and based in Europe and Asia (Table 1). A total of 20228 participants were recruited from
- 181 39 countries. Most studies were RCTs. The primary outcome was appropriately identified in 65%
- 182 (72/110) of RCTs and qRCTs. Of those 72 studies with a primary outcome identified, 74% (53/72)
- 183 had an appropriate power calculation.

184 Outcomes

- 185 There were 1777 verbatim outcomes. The number of outcomes reported per study varied from 1
- to 36, with a median of ten outcomes (interquartile range 6 to 14). Verbatim outcomes were
- deduplicated and rationalised to 639 unique outcomes. Of these unique outcomes, 71% (456/639)
- 188 were used in only a single study, 20% (128/639) were used in only two to four studies and just
- 189 8.9% (57/639) were used in five or more studies.
- 190 Clinicians and healthcare professionals were the outcome assessors for 66% (1181/1777) of
- 191 verbatim outcomes (Figure 2). There was heterogeneity in time point 'range' for outcome
- assessment as summarised in Table 2. The modal time point 'range' was 6 weeks to 6 months
- 193 (28% of verbatim outcomes, 1109/3936).

194 **Outcome domains**

195 We mapped the 639 unique outcomes to 74 outcome domains using the WHO ICF framework

196 (World Health Organization, 2001). The presence of each outcome domain in individual studies

197 was noted; further details are depicted in Online Appendix S3.

198 While many of the unique outcomes linked to a single WHO ICF domain, some (in particular

199 PROMs) linked to multiple domains. Certain outcomes did not map onto the framework at all, the

200 most common being adverse events/complications (58% of studies, 93/160), patient satisfaction

201 (24% of studies, 38/160) and bone healing (23% of studies, 36/160).

202 Comparison of distal radial fractures and non-DRF studies

203 There were 121 (76%) studies involving mainly patients with DRFs. Table 3 summarises the age

and sex distribution of participants in DRF studies as compared to non-DRF studies.

205 PROMs were used in 79% (96/121) of DRF studies and 92% (36/39) of non-DRF studies. Table 4

shows the five most common PROMs and ten most common outcome domains used, and their

207 frequency in DRF compared to non-DRF studies. The Visual Analog Scale (VAS) for pain was the

208 most commonly reported PROM overall (41% of studies, 66/160). The DASH was second most

209 common PROM for DRF studies (38% of studies, 46/121) and the QuickDASH was second

commonest PROM for non-DRF studies (12/39). The most common outcome domain for both DRF

and non-DRF studies was 'sensation of pain' (92% of studies, 147/160) and second commonest

212 was 'mobility of joint functions' (86% of studies, 137/160).

213 Outcome reporting bias

Figure 3 depicts the reporting status of outcomes across the different study types, with RCTs and
 qRCTs subdivided based on trial registration status. This reflects the reporting bias for these
 outcomes. Of the RCTs and qRCTS, only 20% (22/110) were prospectively registered. Fewer than

217 half of the outcomes in RCTs and qRCTs and two-thirds in prospective observational and

218 randomized pilot/feasibility studies were 'completely' reported.

219

220

DISCUSSION

221 This review reveals several fundamental methodological issues in outcome selection for clinical 222 research on hand fractures and joint injuries. It is important to raise awareness of these issues 223 amongst hand surgeons, who will form a key stakeholder group in any future consensus work. 224 A wide range of heterogeneous outcome domains and outcome time points are reported in the 225 recent literature on hand fractures and joint injuries. Such variation hinders meta-analysis and 226 predisposes to 'research waste' (loannidis et al., 2014; Yordanov et al., 2018). 227 The high number of unique outcomes is partially explained by the broad scope of injuries being 228 covered. However, even at the more fundamental outcome domain level we identified 74 distinct 229 domains. Only three domains were reported in over 75% of studies; 'sensation of pain', 'mobility 230 of joint functions' (range of movement) and 'muscle power function' (grip/pinch strength, 231 performing certain actions). Even these were measured in a variety of ways and at various time 232 points, hindering or precluding meta-analysis. 233 A prior study limited to a small selection of journals found that 'objective clinical measures' (e.g. 234 grip strength, range of motion, functional status), 'quality of life' and morbidity were the 235 commonest outcomes assessed (Chung et al., 2006). Weinstock-Zlotnick and Mehta (2016) 236 reported on outcomes for wrist fractures and ligament injuries from RCTs between 2005 and 2015. 237 Though lacking details in terms of WHO ICF outcome domains, they found 'range of movement', 238 'grip strength' and 'pain' were the commonest physical outcome measures used, while DASH and

239 PRWE were the commonest PROMs. Their findings are in broad agreement with ours, indicating

that priorities in outcome selection for studies preceding our search window were similar.

241 Goldhahn et al. (2014) undertook a literature review as part of a process which aimed to establish 242 a core set for DRF. Though highlighting some commonly used outcomes, they did not present detail on the heterogeneity of outcomes identified. They found that 'radiological outcomes' (e.g. 243 healing and alignment), 'grip strength', 'range of motion' and 'pain' were commonest, present in 244 245 68%, 49%, 49% and 38% of studies respectively. The 'pain' outcome was used much less 246 commonly than the near-universal use we found. The frequency of 'radiological outcomes' is 247 higher than we found but this is because they combined outcomes that we considered distinct 248 domains of 'healing' (bone healing) and 'alignment' (structure of upper extremity). 249 We compared outcome selection in DRF and non-DRF studies and found considerable overlap. 250 Though the rank order of commonest PROMs and outcome domains varied slightly, the top five 251 PROMs and top ten outcome domains were the same (Table 4). Hence similar outcomes appear to 252 be considered relevant to both populations.

However, most PROMs reflect multiple domains giving rise to greater apparent overlap. The
commonest multi-domain PROMs used were DASH (Hudak et al., 1996), PRWE (MacDermid et al.,
1998) and QuickDASH (Beaton et al., 2005). DASH captures all of the ten commonest outcome
domains, while PRWE and QuickDASH each capture eight of the ten commonest domains used
(except for 'mobility of joint functions' and 'muscle power functions').

258 Outcome reporting bias

The International Committee of Medical Journal Editors has deemed prospective trial registration in a public registry a condition for publication since 01/07/2005 (De Angelis et al., 2004). The updated Consolidated Standards of Reporting Trials statement (CONSORT) in 2010 contains clear

262 recommendations for registration and outcome reporting (Schulz et al., 2010). Despite these 263 standards being set, (Lee et al., 2018) found that only 31% (28/90) of RCTs on distal radial 264 fractures were registered. Only 16 trials specified a primary outcome measure at registration and 265 seven of these ended up reporting either a different/additional primary outcome or none at all. We found marked selective reporting bias in the recent literature of hand fractures and joint 266 injuries, in agreement with previous studies of different populations. Many outcomes were not 267 268 reported at all despite being specified in the publication or trial registration. Multiple others were 269 reported incompletely, with only a brief comment or lacking sufficient detail for meta-analysis. All 270 represent non-adherence to reporting standards.

We also found 'unexpected' outcomes, with 'duration of surgery' being the commonest. The prospectively registered studies had a lower proportion of 'unexpected' outcomes as compared to retrospectively registered trials. It is possible that prospective registration correlates with a higher methodological quality in general, which is reflected in this marker of ORB. An assessment of overall study design and risk of bias across all domains was beyond the primary scope of this study.

Other reviews of hand fractures and joint injuries have highlighted issues of "inadequate outcome
assessment" and "large variation in reported outcomes" (Handoll and Vaghela, 2004; Poolman et
al., 2006; Verver et al., 2017). This review specifically quantifies the magnitude of the problem.

280 One limitation of this review was the exclusion of studies for which a publication in English could 281 not be obtained (n=22, Figure 1). However, for almost every country of origin where this occurred 282 there were other studies with an English publication available maintaining some representation of 283 these countries in the review. A theoretical limitation was the date range used, but we made this

- 284 choice to focus on outcomes used in the more recent literature through a 'staged search'
- approach, as recommended by the COMET Initiative (Williamson et al., 2017).

This review contributes to a longlist of outcome domains, laying the foundations for COS
development. The next step is to formally and extensively explore the patients' perspective,
through interviews and focus groups with those who have first-hand experience of these injuries.

- 289 Information from both will be processed through consensus work in the form of a Delphi study
- and a final consensus meeting. Key stakeholders will be involved throughout to develop a COS of
- what key outcomes should always be reported in all future studies of the treatment of hand
- fractures and joint injuries, improving the evidence-base that guides clinical practice.

REFERENCE LIST

- 294 De Angelis C, Drazen JM, Frizelle FA, et al. Clinical trial registration: a statement from the
- International Committee of Medical Journal Editors. Lancet (London, England). 2004, 364: 911–2.
- 296 Beaton DE, Wright JG, Katz JN, Group UEC. Development of the QuickDASH: comparison of three
- item-reduction approaches. JBJS. 2005, 87: 1038–46.
- Chung KC, Burns PB, Davis Sears E. Outcomes Research in Hand Surgery: Where Have We Been
 and Where Should We Go? J Hand Surg Am. 2006, 31: 1373–9.
- 300 Cieza A, Geyh S, Chatterji S, Kostanjsek N, Üstün B, Stucki G. ICF linking rules: An update based on
- 301 lessons learned. J Rehabil Med. 2005, 37: 212–8.
- 302 Goldhahn J, Beaton D, Ladd A, Macdermid J, Hoang-Kim A. Recommendation for measuring clinical
- 303 outcome in distal radius fractures: A core set of domains for standardized reporting in clinical
- 304 practice and research. Arch Orthop Trauma Surg. 2014, 134: 197–205.
- Handoll HH, Vaghela M V. Interventions for treating mallet finger injuries. Cochrane Database Syst
 Rev. 2004: CD004574.
- 307 Hudak PL, Amadio PC, Bombardier C, et al. Development of an upper extremity outcome measure:
- 308 The DASH (disabilities of the arm, shoulder, and head). Am J Ind Med. 1996, 29: 602–8.
- 309 Ioannidis JPA, Greenland S, Hlatky MA, et al. Increasing value and reducing waste in research
- design, conduct, and analysis. Lancet. 2014, 383: 166–75.
- 311 James Lind Alliance. Common conditions affecting the hand and wrist. 2017.
- 312 http://www.jla.nihr.ac.uk/priority-setting-partnerships/common-conditons-affecting-the-hand-
- and-wrist/downloads/JLA-Final-Summary.pdf (accessed July 6, 2019).

- 314 Karl JW, Olson PR, Rosenwasser MP. The epidemiology of upper extremity fractures in the United
- 315 States, 2009. J Orthop Trauma. 2015, 29: e242–4.
- 316 Kirkham JJ, Dwan KM, Altman DG, et al. The impact of outcome reporting bias in randomised
- 317 controlled trials on a cohort of systematic reviews. BMJ. 2010, 340: 637–40.
- 318 Kirkham JJ, Tunis S, Clarke M, et al. Core Outcome Set-STAndards for Development: The COS-STAD
- recommendations. PLOS Med. 2017, 14: e1002447.
- 320 Kirwan J, Heiberg T, Hewlett S, et al. Outcomes from the Patient Perspective Workshop at
- 321 OMERACT 6. J Rheumatol. 2003, 30: 868–72.
- 322 Lee S, Khan T, Grindlay D, Karantana A. Registration and Outcome-Reporting Bias in Randomized
- 323 Controlled Trials of Distal Radial Fracture Treatment. JB JS Open Access. 2018, 3: e0065.
- 324 MacDermid JC, Turgeon T, Richards RS, Beadle M, Roth JH. Patient Rating of Wrist Pain and
- 325 Disability: A Reliable and Valid Measurement Tool. J Orthop Trauma. 1998, 12: 577–86.
- 326 Macefield RC, Jacobs M, Korfage IJ, et al. Developing core outcomes sets: Methods for identifying
- and including patient-reported outcomes (PROs). Trials. 2014, 15: 49.
- 328 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and
- 329 meta-analyses: the PRISMA statement. BMJ. 2009, 339: b2535.
- 330 Poolman RW, Goslings JC, Lee JB, Statius Muller M, Steller EP, Struijs PA. Conservative treatment
- for closed fifth metacarpal (small finger) fractures. Orthop Trauma Dir. 2006, 4: 21–8.
- 332 Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated guidelines for
- reporting parallel group randomised trials. BMJ. 2010, 340: c332.
- 334 Van-Onselen EBH, Karim RB, Hage JJ, Ritt MJPF. Prevalence and distribution of hand fractures. J
- 335 Hand Surg Br. 2003, 28: 491–5.

- 336 Van-Staa TP, Dennison EM, Leufkens HGM, Cooper C. Epidemiology of fractures in England and
- 337 Wales. Bone. 2001, 29: 517–22.
- 338 Verver D, Timmermans L, Klaassen RA, Van der Vlies CH, Vos DI, Schep NWL. Treatment of extra-
- 339 articular proximal and middle phalangeal fractures of the hand: a systematic review. Strateg
- 340 Trauma Limb Reconstr. 2017, 12: 63–76.
- 341 Weinstock-Zlotnick G, Mehta SP. A structured literature synthesis of wrist outcome measures: An
- 342 evidence-based approach to determine use among common wrist diagnoses. J Hand Ther. 2016,

343 29: 98–110.

344 Williamson PR, Altman DG, Bagley H, et al. The COMET Handbook: version 1.0. Trials. 2017, 18:

345 280.

- 346 World Health Organization. International Classification of Functioning, Disability, and Health. 2001.
- 347 https://www.who.int/classifications/icf/en/ (accessed July 6, 2019).
- 348 Yordanov Y, Dechartres A, Atal I, et al. Avoidable waste of research related to outcome planning
- and reporting in clinical trials. BMC Med. 2018, 16: 87.

351		FIGURE LEGENDS
352	Figure 1	PRISMA Flow Diagram
353		
354	Figure 2	Pie chart demonstrating number and proportion of outcomes by assessor category
355		PROM – patient-reported outcome measure; PRO – patient-reported outcome;
356		PBOM – performance-based outcome measure
357		
358	Figure 3	Cumulative bar chart showing percentage and number of outcomes within each
359		reporting bias category across study types
360		
361		SUPPLEMENTARY MATERIAL
362	Table S1	Inclusion and exclusion criteria for studies
363		
364	Table S2	Modified outcome matrix reporting status categories for risk of selective reporting
365		bias
366		
367	Appendix S1	Descriptions of staged search strategy, study selection process and data extraction,
368		and example of search strategy
369		
370	Appendix S2	Included studies
371		
372	Appendix S3	All outcome domains across all included studies
373		
	20	

374 Table 1. Study characteristics

Study characteristic	n/N (%)375
Type of study	376
Randomised controlled trial	377 99/160 (62%) 378
Quasi-randomised controlled trial	11/160 (6.9%) 379
Prospective cohort study	24/160 (15%)
Prospective case series	21/160 (1 3%)
Randomised pilot/feasibility study	5/160 (3.13%)
Geographic distribution of recruitment	383
(number of participants recruited by region also provided below)	384
Africa – 309 participants	385 4/160 (2.5%) 386
• Asia – 6043 participants	56/160 (35%)
Australasia – 2271 participants	7/160 (4.43%)8
• Europe – 8192 participants	65/160 (4 B%)
North America – 2997 participants	22/160 (14%)
• South America – 416 participants	391 6/160 (3.8%) 392
Number of sites	393
• Single-centre	136/160 (85%)
Multi-centre	24/160 (15%)\$
Number of participants in randomised/quasi-randomised studies	396
• ≤50	397 49/110 (45%) 398
• 51-100	41/110 (37%) 399
• >100	20/110 (1890)
	401

402 n – number of studies within each category of a characteristic

403 N – total number of studies for which data were available for the characteristic

Table 2. Time points of verbatim outcomes

Time point range	n/N (%) 406
Baseline (pre-intervention)	326/3936 (8.3%)
Immediately post-intervention to 14 days	573/3936 (15%)
>14 days to 6 weeks	823/3936 (21%)
>6 weeks to 6 months	1109/3936 (28%)
>6 months to 1 year	742/3936 (19%)
>1 year	243/3936 (6.2%)
Final discharge/follow-up	88/3936 (2.2%)
Not stated	32/3936 (0.8%)

Type of	Number of		Age distribution of p	articipants	Sex	distribution of p	participants
study	studies	No. of studies	Range of mean age	Weighted mean age (SD)	No. of studies	Range	Weighted mean (SD)
		reporting data	(years)	(years)	reporting data	(% female)	(% female)
DRF	121/160	113	32.2 – 77.1	58.2 (SD 10.4)	112	12.0 - 100.0	72 (SD 19)
Non-DRF	39/160	33	26.0 - 50.0	38.5 (SD 6.0)	38	0.0 – 59.0	33 (SD 18)
3 9 Weighte	ed values in this	s table are mean ar	nd (SD)				
)							
L							
2							
3 n – num	ber of verbatin	n outcomes within	a given time point rang	ge			

Table 3. Participant age and sex distribution in DRF and non-DRF studies

414 N – total number of different verbatim outcomes when accounting for time point at which outcome was assessed/measured

415 **Table 4.** Top five PROMs and ten outcome domains most commonly used across all studies and in

416	DRF vs non-DRF studies
-----	------------------------

		Type of study	
	All studies	DRF study	Non-DRF study
	(160 studies)	(121 studies)	(39 studies)
ROM			
VAS pain	66/160 (41%)	51/121 (42%)	15/39(38%)
DASH	57/160 (36%)	46/121 (38%)	11/39 (28%)
PRWE	30/160 (19%)	28/121 (23%)	2/39 (5.1%)
QuickDASH	29/160 (18%)	17/121 (14%)	12/39 (31%)
EQ-5D-3L	13/160 (8.1%)	9/121 (7.4%)	4/39 (10%)
utcome domain			
b280 Sensation of pain	147/160 (92%)	108/121 (89%)	39/39 (100%)
b710 Mobility of joint functions	137/160 (86%)	102/121 (84%)	35/39 (90%)
b730 Muscle power functions	123/160 (77%)	94/121 (78%)	29/39 (74%)
d850 Remunerative employment	115/160 (72%)	84/121 (69%)	31/39 (79%)
d440 Fine hand use	114/160 (71%)	85/121 (70%)	29/39 (74%)
d920 Recreation and leisure	113/160 (71%)	84/121 (69%)	29/39 (74%)
d510 Washing oneself	111/160 (69%)	83/121 (69%)	28/39 (72%)
d430 Lifting and carrying objects	111/160 (69%)	82/121 (68%)	29/39 (74%)
d640 Doing housework	110/160 (69%)	82/121 (68%)	28/39 (72%)
d445 Hand and arm use	107/160 (67%)	81/121 (67%)	26/39 (67%)

417 VAS: visual analogue scale; DASH: disability of the arm, shoulder and hand; PRWE: patient-rated wrist evaluation;

418 QuickDASH: abbreviated version of DASH; EQ-5D-3L: EuroQOL-5D-3L tool

Figure 1 PRISMA Flow Diagram

422 **Figure 2** Pie chart demonstrating number and proportion of outcomes by assessor category

PROM – patient-reported outcome measure; PRO – patient-reported outcome;

PBOM – performance-based outcome measure

424 Figure 3 Cumulative bar chart showing percentage and number of outcomes within each reporting bias category across study types 425

Criteria

Inclusion criteria

Study design

- Randomised/Quasi-randomised controlled trials or pilot studies
- Prospective observational studies (cohort/case series) with ≥100 patients enrolled

Population

- Adults who sustained an injury within the scope of the review
- Studies of mixed populations (e.g. adults and children) have been included if ≥90% of the population were adults

Intervention

• Any interventions for the treatment of hand fractures and joint injuries, whether conservative or surgical, but not prophylactic or preventative interventions

Exclusion criteria

- Systematic reviews
- Biomechanical studies
- Cadaveric studies
- Reports where only abstract (rather than full report) available (incl. conference abstracts)
- Unpublished and ongoing studies
- Studies not assessing treatments (e.g. purely diagnostic/epidemiological studies)
- Purely clinimetric studies (studies only evaluating/validating measurement instruments)
- Studies which only reported early anaesthesia/analgesia-related outcomes (i.e. within

first 24 hours of intervention)

Table S2. Modified outcome matrix reporting status categories for risk of selective reporting bias

Category	Definition
Not done	No clear reporting of an outcome either through description, a table or figure
Minimal	Outcome reported merely by a summary comment (e.g. 'there was no
	significant difference between the intervention arms') but with no numerical
	values provided, or if there is such deficiency of information that the reporting is
	no longer meaningful (e.g. values given but no indication of time point)
Partial	Outcome reported but not at all time points specified elsewhere in the
	study/registration or lacks sufficient detail to be included in a meta-analysis (e.g.
	mean value is reported but not variance or p-value for the difference in means
	between intervention arms)
Complete	Outcome reported at all time points specified elsewhere in the study and with
	sufficient detail to allow inclusion in a meta-analysis
Unexpected	Outcome reported but was not specified in the study registration or prior to the
	'Results' section of the study

430 Appendix S1 Descriptions of staged search strategy, study selection process and data

431 extraction, and example of search strategy

432

433 Staged search strategy

The staged search strategy involved an initial search run on 29/03/2019. Data extraction and

analysis were conducted for studies published in the last five years (01/01/2014 to 29/03/2019).

436 Outcomes extracted from studies published in 2014 were compared to those extracted from

437 studies published from 2015 onwards. If novel important outcomes were identified from studies

438 published in 2014, then the search would have been extended back by a further year, i.e. 2013. If

439 necessary, this process would be repeated until either 'outcome saturation' was reached or the

440 search was extended to a maximum of ten years.

441

442 Study selection process

443 We checked titles and abstracts of retrieved articles and removed duplicates using a combination

of the deduplication tool and manual checking. Two reviewers (SRD and DG) independently

screened deduplicated titles and abstracts for eligibility based on the criteria in Table 1, with any

446 disagreements resolved by discussion and senior author input (AK). For those that passed this

447 sifting process, we then screened the full-text articles for inclusion. In the case of an article being a

follow-up or secondary analysis of a study, the original study report or primary analysis was

449 located and included.

450

451 Data extraction

A single reviewer (SRD) extracted the following data: author details, lead country where study was
conducted, single- or multi-centre, publication year and journal, whether time points for outcome
collection were from injury/randomisation/intervention, study type and registration status (if
RCT/qRCT). If registration was not indicated in the publication, we searched for the study in the
World Health Organization International Clinical Trials Registry Platform (World Health
Organization, 2020). If no registration was found, we contacted the study's corresponding author.
We took non-response to mean that no trial registration was completed.

We performed independent two-reviewer extraction of all other data (SRD for all studies; seconddata extraction divided between CM and BM), with disagreement resolved through discussion.

461

462 Example search strategy

- 463 An example search strategy is provided for Ovid MEDLINE. The other databases searched were
- 464 PubMed, Ovid Embase, Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL (EBSCO),
- 465 PEDro and Ovid PsycINFO.

467 OVID MEDLINE

468	1.	exp Hand/
469	2.	hand.ti.
470	3.	hands.mp.
471	4.	exp Hand Bones/
472	5.	phalan*.mp.
473	6.	finger.mp.
474	7.	fingers.mp.
475	8.	thumb.mp.
476	9.	thumbs.mp.
477	10.	metacarp*.mp.
478	11.	wrist.mp.
479	12.	wrists.mp.
480	13.	carpus.mp.
481	14.	carpi.mp.
482	15.	carpal.mp.
483	16.	carpals.mp.
484	17.	scapho*.mp.
485	18.	hamate.mp.
486	19.	hamates.mp.
487	20.	lunate.mp.
488	21.	lunates.mp.
489	22.	triquet*.mp.
490	23.	trapeziu*.mp.
491	24.	trapezoi*.mp.
492	25.	pisiform.mp.
493	26.	pisiforms.mp.
494	27.	exp Radius/ and distal.mp
495	28.	distal radio*.mp.
496	29.	distal radius.mp.
497	30.	distal radial.mp.
498	31.	radial styloid*.mp.
499	32.	exp Collateral Ligament, Ulnar/
500	33.	radial collateral.mp.
501	34.	rcl.mp.
502	35.	ulnar collateral.mp.

503	36.	ucl.mp.	
504	37.	sagittal band.mp.	
505	38.	sagittal bands.mp.	
506	39.	beak ligament.mp.	
507	40.	beak ligaments.mp.	
508	41.	exp Palmar Plate/	
509	42.	volar plate.mp.	
510	43.	volar plates.mp.	
511	44.	exp Triangular Fibrocartilage/	
512	45.	triangular fibrocartilage.mp.	
513	46.	triangular fibrocartilages.mp.	
514	47.	triangular cartilage.mp.	
515	48.	triangular cartilages.mp.	
516	49.	triangular fibrocartilaginous.mp.	
517	50.	triangular ligament.mp.	
518	51.	triangular ligaments.mp.	
519	52.	tfcc.mp.	
520	53.	exp Hand Joints/	
521	54.	interphalangeal.mp.	
522	55.	metacarpophalangeal.mp.	
523	56.	carpometacarpal.mp.	
524	57.	druj.mp.	
525	58.	pericapitate.mp.	
526	59.	transcapitate.mp.	
527	60.	midcarpal.mp.	
528	61.	mesocarpal.mp.	
529	62.	mediocarpal.mp.	
530	63.	carpocarpal.mp.	
531	64.	transcarpal.mp.	
532	65.	intracarpal.mp.	
533	66.	perihamate.mp.	
534	67.	transhamate.mp.	
535	68.	hemihamate.mp.	
536	69.	perilunate.mp.	
537	70.	perilunar.mp.	
538	71.	translunate.mp.	
539	72.	midmetacarpal.mp.	
540	73.	transmetacarpal.mp.	
541	74.	midphalangeal.mp.	
542	75.	transphalangeal.mp.	
543	76.	peripisiform.mp.	
544	77.	periscaphoid.mp.	

545	78.	transscaphoid.mp.	
546	79.	peritrapezium.mp.	
547	80.	peritrapezial.mp.	
548	81.	transtrapezium.mp.	
549	82.	transtrapezial.mp.	
550	83.	pantrapezial.mp.	
551	84.	peritrapezoid.mp.	
552	85.	peritrapezoidal.mp.	
553	86.	peritriquetral.mp.	
554	87.	transtriquetrum.mp.	
555	88.	transtriquetral.mp.	
556	89.	cleland's ligament.mp.	
557	90.	cleland's ligaments.mp.	
558	91.	grayson's ligament.mp.	
559	92.	grayson's ligaments.mp.	
560	93.	extensor retinaculum.mp.	
561	94.	lateral band.mp.	
562	95.	lateral bands.mp.	
563	96.	lunotriquetral.mp.	
564	97.	natatory ligament.mp.	
565	98.	natatory ligaments.mp.	
566	99.	pisohamate.mp.	
567	100.	pisometacarpal.mp.	
568	101.	radiocapitate.mp.	
569	102.	radiolunotriquetral.mp.	
570	103.	radiopalmar.mp.	
571	104.	radioscaphocapitate.mp.	
572	105.	radioscapholunate.mp.	
573	106.	radiotriquetral.mp.	
574	107.	retinacular ligament.mp.	
575	108.	retinacular ligaments.mp.	
576	109.	scaphotrapeziotrapezoid.mp.	
577	110.	scaphotrapezoid.mp.	
578	111.	flexor pulley.mp.	
579	112.	flexor pulleys.mp.	
580	113.	annular pulley.mp.	
581	114.	annular pulleys.mp.	
582	115.	oblique pulley.mp.	
583	116.	oblique pulleys.mp.	
584	117.	trapeziocapitate.mp.	
585	118.	trapeziotrapezoid.mp.	
586	119.	triquetralcapitate.mp.	

- 587 120. triquetralhamate.mp.
- 588 121. triquetrocapitate.mp.
- 589 122. triquetrohamate.mp.
- 590 123. ulnocapitate.mp.
- 591 124. ulnolunate.mp.
- 592 125. ulnotriquetral.mp.
- (abductor digiti or abductor pollicis or adductor pollicis or anconeus or brachialis or 593 126. brachioradialis or extensor carpi or extensor digiti or extensor digitorum or extensor 594 indicis or extensor pollicis or flexor carpi or flexor digiti minimi or flexor digitorum or 595 596 flexor pollicis or hypothenar or hypothenars or interosseous or interosseus or interossei 597 or lumbrical or lumbricals or opponens digiti minimi or opponens pollicis or palmaris 598 brevis or palmaris longus or pronator quadratus or pronator teres or supinator or 599 supinators or thenar or thenars or parona or APL or ECRB or ECRL or ECU or ED or EDC or EDM or EIP or EPB or EPL or FCR or FCU or FDP or FDS or FPL or hand or wrist or 600 601 finger or thumb).mp. and ((tendon or tendons).mp. or exp Tendons/)
- 602 127. central slip.mp.
- 603 128. central slips.mp.
- 604 129. extensor expansion.mp.
- 605 130. extensor expansions.mp.
- 606 131. extensor hood.mp.
- 607 132. extensor hoods.mp.
- 608 133. junctura tendinum.mp.
- 609 134. juncturae tendinum.mp.
- 610 135. palmaris brevis.mp.
- 611 136. palmaris longus.mp.
- 612 137. fractures, bone/ or exp fracture dislocation/ or exp fractures, avulsion/ or exp fractures,
 613 closed/ or exp fractures, comminuted/ or exp fractures, compression/ or exp fractures,
 614 malunited/ or exp fractures, multiple/ or exp fractures, open/ or exp fractures,
 615 spontaneous/ or exp fractures, stress/ or exp intra-articular fractures/ or exp
- 616 osteoporotic fractures/
- 617 138. Joint Instability/
- 618 139. Joint Dislocation/
- 619 140. Sprains and Strains/
- 620 141. exp Tendon Injuries/
- 621 142. injuries.fs
- 622 143. fractur*.mp.
- 623 144. trauma.mp.
- 624 145. non-union.mp.
- 625 146. nonunion.mp.
- 626 147. avulsio*.mp.
- 627 148. tear*.mp.
- 628 149. torn*.mp.

629	150.	rupture*.mp.
630	151.	sprain*.mp.
631	152.	instability*.mp.
632	153.	dislocation*.mp.
633	154.	dislocated.mp.
634	155.	subluxation*.mp.
635	156.	subluxed.mp.
636	157.	mallet*.mp.
637	158.	exp Hand Injuries/
638	159.	Forearm Injuries/ or exp Radius Fractures/
639	160.	exp Wrist Injuries/
640	161.	boutonnier*.mp.
641	162.	colles*.ti,ab,kw and fracture*.mp.
642	163.	smith*.ti,ab,kw and fracture*.mp.
643	164.	bennett*.ti,ab,kw and fracture*.mp.
644	165.	rolando*.ti,ab,kw and fracture*.mp.
645	166.	barton*.ti,ab,kw and fracture*.mp.
646	167.	((jersey or rugby or sweater) and (finger* or fracture* or avulsion* or rupture* or
647		tear*)).mp.
648	168.	(boxer* and (fracture* or finger or fingers or knuckle*)).mp.
649	169.	(gamekeeper* and (fracture* or avulsion* or rupture* or tear* or thumb or
650		thumbs)).mp.
651	170.	(skier* and (fracture* or avulsion* or rupture* or tear* or thumb or thumbs)).mp
652	171.	stener.mp.
653	172.	die-punch.mp.
654	173.	or/1-136
655	174.	or/137-157
656	175.	or/158-172
657	176.	173 and 174
658	177.	175 or 176
659	178.	177 not ((Infant/ or Preschool/ or exp Child/ or Adolescent/) not exp Adult/)
660	179.	178 not review.pt
661	180.	limit 181 to yr="2014 -Current"

First author	Study title		Diagnosis under study
		publication	
Abe, Y.	Management of Intra-Articular Distal Radius Fractures: Volar or Dorsal Locking Plate-	2017	Distal radius fracture
	Which Has Fewer Complications?		
Abimanyi-Ochom, J.	Changes in quality of life associated with fragility fractures: Australian arm of the	2015	Mix of wrist fracture -
	International Cost and Utility Related to Osteoporotic Fractures Study (AusICUROS)		mainly distal radius
Abubeih, H. M. A.	Extensor tendon splitting versus extensor tendon sparing approach for miniplate	2016	Proximal phalanx
	fixation of extraarticular proximal phalangeal fractures		fracture
Acosta-Olivo, C.	Laser Treatment on Acupuncture Points Improves Pain and Wrist Functionality in	2017	Distal radius fracture
	Patients Undergoing Rehabilitation Therapy after Wrist Bone Fracture. A Randomized,		
	Controlled, Blinded Study		
Aita, M. A.	Randomized clinical trial on percutaneous minimally invasive osteosynthesis of	2014	Distal radius fracture
	fractures of the distal extremity of the radius		
Alkner, B. A.	Effect of postoperative pneumatic compression after volar plate fixation of distal	2018	Distal radius fracture
	radial fractures: a randomized controlled trial		
Alsubheen, S. A.	The effect of diabetes on functional outcomes among individuals with distal radial	2018	Distal radius fracture
----------------------	--	------	------------------------
	fractures		
Alter, T. H.	A Prospective Randomized Study Comparing Bupivacaine Hydrochloride Versus	2017	Distal radius fracture
	Bupivacaine Liposome for Pain Management After Distal Radius Fracture Repair		
	Surgery		
Andrade-Silva, F. B.	Influence of postoperative immobilization on pain control of patients with distal	2019	Distal radius fracture
	radius fracture treated with volar locked plating: A prospective, randomized clinical		
	trial		
Athar, S. M.	Is external fixation a better way than plaster to supplement K-wires in non-	2018	Distal radius fracture
	comminuted distal radius fractures?		
Bartl, C.	The treatment of displaced intra-articular distal radius fractures in elderly patients	2014	Distal radius fracture
Batibay, S. G.	Conservative management equally effective to new suture anchor technique for acute	2018	Mallet finger
	mallet finger deformity: A prospective randomized clinical trial		
Bayon-Calatayud, M.	Mirror therapy for distal radial fractures: A pilot randomized controlled study	2016	Distal radius fracture
Bentohami, A.	Non- or Minimally Displaced Distal Radial Fractures in Adult Patients: Three Weeks	2019	Distal radius fracture
	versus Five Weeks of Cast Immobilization-A Randomized Controlled Trial		

Brehmer, J. L.	Accelerated rehabilitation compared with a standard protocol after distal radial	2014	Distal radius fracture
	fractures treated with volar open reduction and internal fixation: a prospective,		
	randomized, controlled study		
Brogren, E.	Cast-treated distal radius fractures: a prospective cohort study of radiological	2015	Distal radius fracture
	outcomes and their association with impaired calcaneal bone mineral density		
Bruder, A. M.	A progressive exercise and structured advice program does not improve activity more	2016	Distal radius fracture
	than structured advice alone following a distal radial fracture: a multi-centre,		
	randomised trial		
Buijze, G. A.	Cast immobilization with and without immobilization of the thumb for nondisplaced	2014	Scaphoid fracture
	and minimally displaced scaphoid waist fractures: a multicenter, randomized,		
	controlled trial		
Cacchio, A.	Effectiveness and safety of a mixture of diosmin, coumarin and arbutin (Linfadren) in	2019	Mix of diagnoses. Over
	addition to conventional treatment in the management of patients with post-		80% distal radius/ulna
	trauma/surgery persistent hand edema: a randomized controlled trial		fracture/scaphoid
			fracture

Cantero-Tellez, R.	Treatment of proximal interphalangeal joint flexion contracture: combined static and	2015	PIPJ contracture
	dynamic orthotic intervention compared with other therapy intervention: a		
	randomized controlled trial		
Cantlon, Matthew B.	Does malunion in multiple planes predict worse functional outcomes in distal radial	2016	Distal radius fracture
	fractures?		
Caporrino, F. A.	Dorsal vascularized grafting for scaphoid nonunion: a comparison of two surgical	2014	Scaphoid nonunion
	techniques		
Cepni, S. K.	A minimally invasive fixation technique for selected patients with fifth metacarpal	2016	Little finger
	neck fracture		metacarpal neck
			fracture
Chang, W. D.	Therapeutic outcomes of low-level laser therapy for closed bone fracture in the	2014	Mix
	human wrist and hand		
Che Daud, A. Z.	Integration of occupation based intervention in hand injury rehabilitation: A	2016	Mix
	Randomized Controlled Trial		
Chen, C.	The efficacy of using 3D printing models in the treatment of fractures: a randomised	2019	Distal radius fracture
	clinical trial		

Christersson, A.	Prospective randomized feasibility trial to assess the use of rhPDGF-BB in treatment of	2015	Distal radius fracture
	distal radius fractures		
Christersson, A.*	Radiographic results after plaster cast fixation for 10 days versus 1 month in reduced	2016	Distal radius fracture
	distal radius fractures: a prospective randomised study		
Chung, K. C.**	Assessment of Distal Radius Fracture Complications Among Adults 60 Years or Older:	2019	Distal radius fracture
	A Secondary Analysis of the WRIST Randomized Clinical Trial		
Clementson, M.*	Conservative Treatment Versus Arthroscopic-Assisted Screw Fixation of Scaphoid	2015	Scaphoid fracture
	Waist Fractures – A Randomized Trial With Minimum 4-Year Follow-Up		
Constand, M. K.	Patient-centered care and distal radius fracture outcomes: a prospective cohort study	2014	Distal radius fracture
	analysis		
Costa, M. L.*	UK DRAFFT: a randomised controlled trial of percutaneous fixation with Kirschner	2015	Distal radius fracture
	wires versus volar locking-plate fixation in the treatment of adult patients with a		
	dorsally displaced fracture of the distal radius		
Daddamani, Ravi M.	A Study of Unstable Distal Radius Fractures Treated by Percutaneous Techniques	2014	Distal radius fracture
Dailey, S. K.	The Effectiveness of Mini-C-Arm Fluoroscopy for the Closed Reduction of Distal Radius	2018	Distal radius fracture
	Fractures in Adults: A Randomized Controlled Trial		

Daniel, R.	The effect of local bone mineral density on the rate of mechanical failure after surgical	2015	Distal radius fracture
	treatment of distal radius fractures: a prospective multicentre cohort study including		
	249 patients		
Dennison, D. G.	Early Versus Late Motion Following Volar Plating of Distal Radius Fractures	2018	Distal radius fracture
Dilek, B.	Effectiveness of the graded motor imagery to improve hand function in patients with	2018	Distal radius fracture
	distal radius fracture: A randomized controlled trial		
Drac, P.	Comparison of the results and complications of palmar and dorsal mini-invasive	2014	Scaphoid fracture
	approaches in the surgery of scaphoid fractures. A prospective randomized study		
Drobetz, H.	Volar locking distal radius plates show better short-term results than other treatment	2016	Distal radius fracture
	options: A prospective randomised controlled trial		
Duckworth, A. D.	Effect of Alendronic Acid on Fracture Healing: A Multicenter Randomized Placebo-	2019	Distal radius fracture
	Controlled Trial		
Ekrol, I.	The influence of vitamin C on the outcome of distal radial fractures: a double-blind,	2014	Distal radius fracture
	randomized controlled trial		
El-Hadidy, S. S.	Occupational and non occupational metacarpal bone fractures at the Mansoura	2019	Metacarpal fracture
	University Emergency Hospital: A comparative study		

El-Saeed, M.	Kirschner Wires Versus Titanium Plates and Screws in Management of Unstable	2019	Proximal and middle
	Phalangeal Fractures: A Randomized, Controlled Clinical Trial		phalanx fractures
Fakoor, M.	Displaced Intra-Articular Fractures of the Distal Radius: Open Reduction With Internal	2015	Distal radius fracture
	Fixation Versus Bridging External Fixation		
Filipova, V.	Efficacy of combined physical and occupational therapy in patients with	2015	Distal radius fracture
	conservatively treated distal radius fracture: randomized controlled trial		
Finger, A.	Do patients prefer optional follow-up for simple upper extremity fractures: A pilot	2016	Mix
	study		
Galal, S.	Transverse pinning versus intramedullary pinning in fifth metacarpal's neck fractures:	2017	Little finger
	A randomized controlled study with patient-reported outcome		metacarpal neck
			fracture
Galos, D. K.	Does Brachial Plexus Blockade Result in Improved Pain Scores After Distal Radius	2016	Distal radius fracture
	Fracture Fixation? A Randomized Trial		
Gamba, C.	Which immobilization is better for distal radius fracture? A prospective randomized	2017	Distal radius fracture
	trial		

Gao, Y.	Timing for Surgical Stabilization with K-wires after Open Fractures of Proximal and	2017	Open fracture
	Middle Phalangeal Shaft		proximal or middle
			phalanx shaft
Goehre, F.	Comparison of palmar fixed-angle plate fixation with K-wire fixation of distal radius	2014	Distal radius fracture
	fractures (AO A2, A3, C1) in elderly patients		
Goudie, S.	Is Use of a Psychological Workbook Associated With Improved Disabilities of the Arm,	2018	Distal radius fracture
	Shoulder and Hand Scores in Patients With Distal Radius Fracture?		
Gradl, G.	Intramedullary nail versus volar plate fixation of extra-articular distal radius fractures.	2014	Distal radius fracture
	Two year results of a prospective randomized trial		
Gradl, G.	Fixation of intra-articular fractures of the distal radius using intramedullary nailing: a	2016	Distal radius fracture
	randomized trial versus palmar locking plates		
Grle, M.	Early results of the conservative treatment of distal radius fractures-immobilization of	2017	Distal radius fracture
	the wrist in dorsal versus palmar flexion		
Gruber, J. S.	A prospective randomized controlled trial comparing night splinting with no splinting	2014	Mallet finger
	after treatment of mallet finger		

Gulke, J.	Postoperative treatment of metacarpal fractures-Classical physical therapy compared	2018	Metacarpal fracture
	with a home exercise program		
Gutierrez-Espinoza, H.	Supervised physical therapy vs home exercise program for patients with distal radius	2017	Distal radius fracture
	fracture: A single-blind randomized clinical study		
Gutierrez-Monclus, R.	Correlation Between Radiological Parameters and Functional Outcomes in Patients	2018	Distal radius fracture
	Older Than 60 Years of Age With Distal Radius Fracture		
Haberle, S.	Pronator quadratus repair after volar plating of distal radius fractures or not? Results	2015	Distal radius fracture
	of a prospective randomized trial		
Hammer, O. L.	Volar Locking Plates Versus Augmented External Fixation of Intra-Articular Distal	2019	Distal radius fracture
	Radial Fractures: Functional Results from a Randomized Controlled Trial		
Hannemann, P. F.*	CT scan-evaluated outcome of pulsed electromagnetic fields in the treatment of acute	2014	Scaphoid fracture
	scaphoid fractures: a randomised, multicentre, double-blind, placebo-controlled trial		
Hill, J. R.	Immobilization following Distal Radius Fractures: A Randomized Clinical Trial	2018	Distal radius fracture
Hohendorff, B.	Pronator quadratus repair with a part of the brachioradialis muscle insertion in volar	2018	Distal radius fracture
	plate fixation of distal radius fractures: a prospective randomised trial		

Holmberg, A.	Pre-operative brachial plexus block compared with an identical block performed at	2017	Distal radius fracture
	the end of surgery: a prospective, double-blind, randomised clinical trial		
Imai, R.	Influence of illusory kinesthesia by vibratory tendon stimulation on acute pain after	2016	Distal radius fracture
	surgery for distal radius fractures: a quasi-randomized controlled study		
Imai, R.	Effect of illusory kinesthesia on hand function in patients with distal radius fractures: a	2017	Distal radius fracture
	quasi-randomized controlled study		
Jesswani, M. L.	The Complex regional pain syndrome after fractures of distal radius	2014	Distal radius fracture
Kamal, Y.	Functional outcome of distal radius fractures managed by barzullah working	2015	Distal radius fracture
	classification		
Kappos, E. A.	Implantation of a denaturated cellulose adhesion barrier after plate osteosynthesis of	2016	Proximal phalanx
	finger proximal phalangeal fractures: results of a randomized controlled trial		fracture
Karantana, A.***	Cost-effectiveness of volar locking plate versus percutaneous fixation for distal radial	2015	Distal radius fracture
	fractures: Economic evaluation alongside a randomised clinical trial		
Karponis, A.	Analgesic effect of nasal salmon calcitonin during the early post-fracture period of the	2015	Distal radius fracture
	distal radius fracture		

Kato, S.	The results of volar locking plate fixation for the fragility fracture population with	2014	Distal radius fracture
	distal radius fracture in Japanese women		
Khan, J. I.	A comparative study of functional outcome of treatment of intra articular fractures of	2017	Distal radius fracture
	distal radius fixed with percutaneous Kirschner's wires vs T-plate		
Kim, J. K.	Antegrade intramedullary pinning versus retrograde intramedullary pinning for	2015	Little finger
	displaced fifth metacarpal neck fractures		metacarpal neck
			fracture
Kim, J. K.	Natural history and factors associated with ulnar-sided wrist pain in distal radial	2016	Distal radius fracture
	fractures treated by plate fixation		
Kumar, K.	Fracture of distal radius treated by orthofix v/s plaster cast	2014	Distal radius fracture
Kumar, S.	Comparison of treatment of unstable intra articular fractures of distal radius with	2014	Distal radius fracture
	locking plate versus non-locking plate fixation		
Kumaravel, S.	Clinical and radiological comparison of displaced extra articular distal radius fracture	2015	Distal radius fracture
	treated with plaster or external fixator		
Lalone, E. A.	A cohort study of one-year functional and radiographic outcomes following intra-	2014	Distal radius fracture
	articular distal radius fractures		

Landgren, M.	Fragment-Specific Fixation Versus Volar Locking Plates in Primarily Nonreducible or	2017	Distal radius fracture
	Secondarily Redisplaced Distal Radius Fractures: A Randomized Controlled Study		
Landgren, M.	Intermediate-Term Outcome After Distal Radius Fracture in Patients With Poor	2019	Distal radius fracture
	Outcome at 1 Year: A Register Study With a 2- to 12-Year Follow-Up		
Larouche, J.	Determinants of Functional Outcome in Distal Radius Fractures in High-Functioning	2016	Distal radius fracture
	Patients Older Than 55 Years		
Lee, C. H.	Single-Blinded, Randomized Preliminary Study Evaluating the Effect of Transcutaneous	2015	Distal radius fracture
	Electrical Nerve Stimulation on Postoperative Pain in Patients with Colles' Fracture		
Lee, S. K.	Conservative Treatment Is Sufficient for Acute Distal Radioulnar Joint Instability With	2016	Acute DRUJ instability
	Distal Radius Fracture		with distal radius
			fracture. All had volar
			plate for the radius
			fracture
Lei, M.	The effect of probiotic treatment on elderly patients with distal radius fracture: a	2016	Distal radius fracture
	prospective double-blind, placebo-controlled randomised clinical trial		

Li, Z.	Treatment of the distal fracture in radioulna based on the volar wrist dual channel	2015	Distal radius and ulna
	approach and postoperative X-ray diagnosis		fracture
Liu, Y.	Ultrasound treatment for accelerating fracture healing of the distal radius. A control	2014	Distal radius fracture
	study		
Luo, P.	Pain Management during Rehabilitation after Distal Radius Fracture Stabilized with	2018	Distal radius fracture
	Volar Locking Plate: A Prospective Cohort Study		
Ma, C.	External fixation is more suitable for intra-articular fractures of the distal radius in	2016	Distal radius fracture
	elderly patients		
Ma, T.	The role of brachioradialis release during AO type C distal radius fracture fixation	2017	Distal radius fracture
Malizos, K. N.	Management of scaphoid nonunions with vascularized bone grafts from the distal	2017	Scaphoid nonunion
	radius: mid- to long-term follow-up		
Mardani-Kivi, M.	Comparison of hematoma block and wrist block in the treatment of fracture of neck of	2019	Little finger
	fifth metacarpus		metacarpal neck
			fracture
Martinez-Mendez, D.	Intra-articular distal radius fractures in elderly patients: a randomized prospective	2018	Distal radius fracture
	study of casting versus volar plating		

Mehmood, A.	A Randomized Study of Dynamic vs Static External Fixation of Distal Radial Fractures	2018	Distal radius fracture
Mellstrand Navarro, C.*	Volar Locking Plate or External Fixation With Optional Addition of K-Wires for Dorsally	2016	Distal radius fracture
	Displaced Distal Radius Fractures: A Randomized Controlled Study		
Miller, L.	No difference between two types of exercise after proximal phalangeal fracture	2016	Proximal phalanx
	fixation: a randomised trial		fracture
Miller-Shahabar, I.	Efficacy of Compression Gloves in the Rehabilitation of Distal Radius Fractures:	2018	Distal radius fracture
	Randomized Controlled Study		
Moens, K.	Pronator sparing plate osteosynthesis in distal radius fractures: early functional	2018	Distal radius fracture
	outcome		
Moineau, B.	Superimposed electrical stimulation improves mobility of pre-stiff thumbs after ulnar	2014	Stiffness after surgery
	collateral ligament injury of the metacarpophalangeal joint: a randomized study		for thumb UCL rupture
Moseley, G. L.	Intense pain soon after wrist fracture strongly predicts who will develop complex	2014	Wrist fracture
	regional pain syndrome: prospective cohort study		
Namazi, H.	Investigating the Effect of Intra-articular Platelet-Rich Plasma Injection on Union: Pain	2016	Scaphoid fracture
	and Function Improvement in Patients with Scaphoid Fracture		

Namazi, H.	Investigating the effect of intra-articular PRP injection on pain and function	2016	Distal radius fracture
	improvement in patients with distal radius fracture		
Neutel, N.	Prognostic factors for return to work and resumption of other daily activities after	2019	Mix of injuries
	traumatic hand injury		
Pandey, R.	Hand function outcome in closed small bone fractures treated by open reduction and	2019	Metacarpal /
	internal fixation by mini plate or closed crossed pinning: a randomized controlled trail		phalangeal / thumb
			shaft fracture
Park, M. J.	Is a short arm cast appropriate for stable distal radius fractures in patients older than	2017	Distal radius fracture
	55 years? A randomized prospective multicentre study		
Patwardhan, T. Y.	Efficacy of Superficial Heat Therapy as an Adjunct to Therapeutic Exercise Program in	2015	Distal radius fracture
	Rehabilitation of Patients with Conservatively Managed Distal End Radius Fractures		
Pellatt, R.	Is Buddy Taping as Effective as Plaster Immobilization for Adults With an	2019	Little finger
	Uncomplicated Neck of Fifth Metacarpal Fracture? A Randomized Controlled Trial		metacarpal neck
			fracture
Perugia, D.	Comparison between Carbon-Peek volar locking plates and titanium volar locking	2017	Distal radius fracture
	plates in the treatment of distal radius fractures		

Plate, J. F.	Randomized comparison of volar locking plates and intramedullary nails for unstable	2015	Distal radius fracture
	distal radius fractures		
Quadlbauer, S.	Early Rehabilitation of Distal Radius Fractures Stabilized by Volar Locking Plate: A	2017	Distal radius fracture
	Prospective Randomized Pilot Study		
Ratajczak, K.	The Effect of Isometric Massage on Global Grip Strength after Conservative Treatment	2015	Distal radius fracture
	of Distal Radial Fractures. Pilot Study		
Rocchi, L.	A modified spica-splint in postoperative early-motion management of skier's thumb	2014	UCL thumb rupture
	lesion: a randomized clinical trial		
Rocchi, L.	Antegrade Percutaneous Intramedullary Fixation Technique for Metacarpal Fractures:	2018	Metacarpal fracture
	Prospective Study on 150 Cases		
Roh, Y. H.	Factors associated with complex regional pain syndrome type I in patients with	2014	Distal radius fracture
	surgically treated distal radius fracture		
Roh, Y. H.	Effect of anxiety and catastrophic pain ideation on early recovery after surgery for	2014	Distal radius fracture
	distal radius fractures		
Roh, Y. H.	Factors delaying recovery after volar plate fixation of distal radius fractures	2014	Distal radius fracture

Roh, Y. H.	A randomized comparison of volar plate and external fixation for intra-articular distal	2015	Distal radius fracture
	radius fractures		
Sabzghabaei, A.	Ultrasound-Guided Reduction of Distal Radius Fractures	2016	Distal radius fracture
Safdari, M.	Comparing the effect of volar plate fixators and external fixators on outcome of	2015	Distal radius fracture
	patients with intra-articular distal radius fractures: A clinical trial		
Saied, A.	Prophylactic corticosteroid injection in ulnar wrist pain in distal radius fracture	2015	Distal radius fracture
Saito, K.	A randomized controlled trial of the effect of 2-step orthosis treatment for a mallet	2016	Mallet finger
	finger of tendinous origin		
Sarmiento, A.	Colles' fractures: functional treatment in supination	2014	Distal radius fracture
Scaglione, M.	Strontium ranelate as an adjuvant for fracture healing: clinical, radiological, and	2016	Distal radius fracture
	ultrasound findings in a randomized controlled study on wrist fractures		
Sen, R	Home-based Exercise Program(HEP) Vs. Institution-based Occupational Therapy(IOT)	2014	Distal radius fracture
	in improving hand skills in post Collies' fractures: A comparative study		
Shakir, S.	Titanium versus Stainless-Steel Plating in the Surgical Treatment of Distal Radius	2016	Distal radius fracture
	Fractures: A Randomized Trial		

Sharma, H.	Outcomes and complications of fractures of distal radius (AO type B and C): volar	2014	Distal radius fracture
	plating versus nonoperative treatment		
Shewring, D. J.	Fractures at the junction of diaphysis and metaphysis of the proximal phalanges in	2018	Proximal phalanx
	adults		fracture
Shukla, R.	External fixation versus volar locking plate for displaced intra-articular distal radius	2014	Distal radius fracture
	fractures: a prospective randomized comparative study of the functional outcomes		
Shukla, R.	A Long-Term Study of Application of Joshi's External Stabilizing System in Displaced	2019	Distal radius fracture
	Intra-articular Distal End Radius Fractures		
Sirnio, K.	Early palmar plate fixation of distal radius fractures may benefit patients aged 50	2019	Distal radius fracture
	years or older: a randomized trial comparing 2 different treatment protocols		
Sletten, I. N.	Conservative treatment has comparable outcome with bouquet pinning of little finger	2015	Little finger
	metacarpal neck fractures: a multicentre randomized controlled study of 85 patients		metacarpal neck
			fracture
Socransky, S.	Ultrasound-Assisted Distal Radius Fracture Reduction	2016	Distal radius fracture
Strassmair, M. K.	Distal Radial Fracture Management With an Intramedullary Cage and Fragment	2016	Distal radius fracture
	Fixation		

Stuby, F. M.	Early functional postoperative therapy of distal radius fracture with a dynamic	2015	Distal radius fracture
	orthosis: results of a prospective randomized cross-over comparative study		
Szekeres, M.*	The Effect of Therapeutic Whirlpool and Hot Packs on Hand Volume During	2017	Distal radius fracture
	Rehabilitation After Distal Radius Fracture: A Blinded Randomized Controlled Trial		
Tahririan, M. A.	Results of pronator quadratus repair in distal radius fractures to prevent tendon	2014	Distal radius fracture
	ruptures		
Tanaka, H.	Comparative study of treatment for distal radius fractures with two different palmar	2016	Distal radius fracture
	locking plates		
Teunis, T.	Catastrophic Thinking Is Associated With Finger Stiffness After Distal Radius Fracture	2015	Distal radius fracture
	Surgery		
Valdes, K.	Therapist-supervised hand therapy versus home therapy with therapist instruction	2015	Distal radius fracture
	following distal radius fracture		
van Aaken, J.	Fifth metacarpal neck fractures treated with soft wrap/buddy taping compared to	2016	Little finger
	reduction and casting: results of a prospective, multicenter, randomized trial		metacarpal neck
			fracture

Venkatesh, R. B.	A Comparative Study between Closed Reduction and Cast Application Versus	2016	Distal radius fracture
	Percutaneous K- Wire Fixation for Extra-Articular Fracture Distal end of Radius		
Vergara, I.	Wrist fractures and their impact in daily living functionality on elderly people: a	2016	Distal radius fracture
	prospective cohort study		
Vernet, P.	Treatment of tendinous mallet fingers using a Stack splint versus a dorsal glued splint	2019	Mallet finger
Wadsten, M. A.*	Influence of Cortical Comminution and Intra-articular Involvement in Distal Radius	2014	Distal radius fracture
	Fractures on Clinical Outcome: A Prospective Multicenter Study		
Wadsten, M. A.	Cortical comminution in distal radial fractures can predict the radiological outcome: a	2018	Distal radius fracture
	cohort multicentre study		
Wang, Y.	Effect and nursing study of traditional Chinese medicine preparation huayu zhitong	2015	Distal radius fracture
	powder in the treatment of distal radius fracture		
Watson, N.	A Comparison of the Effect of One, Three, or Six Weeks of Immobilization on Function	2018	Distal radius fracture
	and Pain After Open Reduction and Internal Fixation of Distal Radial Fractures in		
	Adults: A Randomized Controlled Trial		
Williksen, J. H.***	External Fixation and Adjuvant Pins Versus Volar Locking Plate Fixation in Unstable	2015	Distal radius fracture
	Distal Radius Fractures: A Randomized, Controlled Study With a 5-Year Follow-Up		

Wollstein, R.	Postoperative Treatment of Distal Radius Fractures Using Sensorimotor Rehabilitation	2019	Distal radius fracture
Yamazaki, H.	Arthroscopic assistance does not improve the functional or radiographic outcome of	2015	Distal radius fracture
	unstable intra-articular distal radial fractures treated with a volar locking plate: a		
	randomised controlled trial		
Ydreborg, K.	Hand function, experienced pain, and disability after distal radius fracture	2015	Distal radius fracture
Yeoh, J. C.	Role of Depression in Outcomes of Low-Energy Distal Radius Fractures in Patients	2016	Distal radius fracture
	Older Than 55 Years		
Zehir, S.	Intramedullary repair device against volar plating in the reconstruction of extra-	2014	Distal radius fracture
	articular and simple articular distal radius fractures; a randomized pilot study		
Zhang, B.	Comparison of AO Titanium Locking Plate and Screw Fixation versus Anterograde	2016	Mix
	Intramedullary Fixation for Isolated Unstable Metacarpal and Phalangeal Fractures		
Zhang, X.	A comparison of minimally invasive approach vs conventional approach for volar	2017	Distal radius fracture
	plating of distal radial fractures		
Zhang, X.	A randomized comparison of bone-cement K-wire fixation vs. plate fixation of shaft	2018	Proximal phalanx
	fractures of proximal phalanges		fracture

Zhu, H.	Three-screw versus two-screw fixation of distal fragment in fifth metacarpal neck	2017	Little finger	
	fractures stabilized with locking plate		metacarpal neck	
			fracture	
Zyluk, A.	Percutaneous K-wires vs palmar locking plate fixation for different types of distal	2018	Distal radius fracture	
	radial fractures: a comparison of the outcomes of two methods to control our			
	guidelines			
Zyluk, A.	A comparison of outcomes of K-wire vs plate fixation for distal radial fractures with	2018	Distal radius fracture	
	regard to patients' quality of life			
* Also includes data from a follow-up study/secondary analysis				
** A secondary analysis published before the primary. Primary analysis published after completion of review, but all outcomes extracted from trial				

- 665 registration and from secondary analysis
- 666 *** Also includes data from a primary study published prior to search window

Outcome domain	Type of study		
	DRF study	Non-DRF	All studies
	(n=121)	study (n=39)	(n=160)
b280 Sensation of pain	108 (89%)	39 (100%)	147 (92%)
b710 Mobility of joint functions	102 (84%)	35 (90%)	137 (86%)
b730 Muscle power functions	94 (78%)	29 (74%)	123 (77%)
b265 Touch function	78 (64%)	25 (64%)	103 (64%)
b134 Sleep functions	69 (57%)	25 (64%)	94 (59%)
b126 Temperament and personality functions	59 (49%)	14 (36%)	73 (46%)
b640 Sexual functions	46 (38%)	11 (28%)	57 (36%)
b152 Emotional functions	33 (27%)	5 (13%)	38 (24%)
b180 Experience of self and time functions	15 (12%)	5 (13%)	20 (13%)
b130 Energy and drive functions	17 (14%)	1 (2.6%)	18 (11%)
b820 Repair functions of the skin	12 (9.9%)	1 (2.6%)	13 (8.1%)
b455 Exercise tolerance functions	10 (8.3%)	1 (2.6%)	11 (6.9%)
b289 Sensation of pain, other specified and	8 (6.6%)	1 (2.6%)	9 (5.6%)
unspecified			
b270 Sensory functions related to temperature	7 (5.8%)	1 (2.6%)	8 (5.0%)
and other stimuli			
b830 Other functions of the skin	7 (5.8%)	1 (2.6%)	8 (5.0%)
b164 Higher-level cognitive functions	7 (5.8%)	0 (0%)	7 (4.4%)
b760 Control of voluntary movement functions	5 (4.1%)	1 (2.6%)	6 (3.8%)
b140 Attention functions	3 (2.5%)	0 (0%)	3 (1.9%)
b160 Thought functions	3 (2.5%)	0 (0%)	3 (1.9%)
b715 Stability of joint functions	2 (1.7%)	1 (2.6%)	3 (1.9%)
b144 Memory functions	2 (1.7%)	0 (0%)	2 (1.3%)
b117 Intellectual functions	1 (0.8%)	0 (0%)	1 (0.6%)
b122 Global psychosocial functions	1 (0.8%)	0 (0%)	1 (0.6%)
b156 Perceptual functions	1 (0.8%)	0 (0%)	1 (0.6%)
b260 Proprioceptive function	1 (0.8%)	0 (0%)	1 (0.6%)

667 Appendix S3 All outcome domains across all included studies

Outcome domain	Type of study		
	DRF study	Non-DRF	All studies
	(n=121)	study (n=39)	(n=160)
d850 Remunerative employment	84 (69%)	31 (80%)	115 (72%)
d440 Fine hand use	85 (70%)	29 (74%)	114 (71%)
d920 Recreation and leisure	84 (69%)	29 (74%)	113 (71%)
d510 Washing oneself	83 (69%)	28 (72%)	111 (69%)
d430 Lifting and carrying objects	82 (68%)	29 (74%)	111 (69%)
d640 Doing housework	82 (68%)	28 (72%)	110 (69%)
d445 Hand and arm use	81 (67%)	26 (67%)	107 (67%)
d550 Eating	79 (65%)	26 (67%)	105 (66%)
d230 Carrying out daily routine	73 (60%)	26 (67%)	99 (62%)
d540 Dressing	77 (64%)	18 (46%)	95 (59%)
d750 Informal social relationships	63 (52%)	21 (54%)	84 (53%)
d760 Family relationships	62 (51%)	21 (54%)	83 (52%)
d470 Using transportation	48 (40%)	11 (28%)	59 (37%)
d650 Caring for household objects	46 (38%)	11 (28%)	57 (36%)
d410 Changing basic body position	40 (33%)	4 (10%)	44 (28%)
d530 Toileting	35 (29%)	5 (13%)	40 (25%)
d450 Walking	21 (17%)	2 (5.1%)	23 (14%)
d455 Moving around	12 (9.9%)	1 (2.6%)	13 (8.1%)
d839 Education unspecified	7 (5.8%)	2 (5.1%)	9 (5.6%)
d520 Caring for body parts	7 (5.8%)	1 (2.6%)	8 (5.0%)
d630 Preparing meals	5 (4.1%)	3 (7.7%)	8 (5.0%)
d560 Drinking	4 (3.3%)	1 (2.6%)	5 (3.1%)
d620 Acquisition of goods and services	4 (3.3%)	1 (2.6%)	5 (3.1%)
d570 Looking after one's health	3 (2.5%)	0 (0%)	3 (1.9%)
d420 Transferring oneself	2 (1.7%)	1 (2.6%)	3 (1.9%)
d460 Moving around in different locations	2 (1.7%)	1 (2.6%)	3 (1.9%)
d855 Non-remunerative employment	2 (1.7%)	1 (2.6%)	3 (1.9%)
d870 Economic self-sufficiency	2 (1.7%)	1 (2.6%)	3 (1.9%)
d845 Acquiring, keeping and terminating a job	1 (0.8%)	2 (5.1%)	3 (1.9%)

d475 Driving	2 (1.7%)	0 (0%)	2 (1.3%)
d710 Basic interpersonal interactions	1 (0.8%)	0 (0%)	1 (0.6%)
d720 Complex interpersonal interactions	1 (0.8%)	0 (0%)	1 (0.6%)
d860 Basic economic transactions	1 (0.8%)	0 (0%)	1 (0.6%)
d910 Community life	1 (0.8%)	0 (0%)	1 (0.6%)

Outcome domain	Type of study		
	DRF study	Non-DRF	All studies
	(n=121)	study (n=39)	(n=160)
e580 Health services, systems and policies	28 (23%)	8 (21%)	36 (23%)
e565 Economic services, systems and policies	1 (0.8%)	1 (2.6%)	2 (1.3%)

Outcome domain		Type of study		
	DRF study	Non-DRF	All studies	
	(n=121)	study (n=39)	(n=160)	
s730 Structure of upper extremity	74 (61%)	18 (46%)	92 (58%)	
s810 Structure of areas of skin	5 (4.1%)	1 (2.6%)	6 (3.8%)	

Outcome domain (not definable [nd] or not	Type of study		
covered [nc] within WHO ICF)	DRF study	Non-DRF	All studies
	(n=121)	study (n=39)	(n=160)
nc-Complications/Adverse events	73 (60%)	20 (51%)	93 (58%)
nc-Overall satisfaction	27 (22%)	11 (28%)	38 (24%)
nc-Bone healing	20 (17%)	16 (41%)	36 (23%)
nd-gh (general health)	18 (15%)	3 (7.7%)	21 (13%)
nd-ph (physical health)	17 (14%)	1 (2.6%)	18 (11%)
nc-Bone healing time	7 (5.8%)	9 (23%)	16 (10%)
nc-Technical (related to intervention)	11 (9.1%)	1 (2.6%)	12 (7.5%)
nc-Satisfaction with intervention	2 (1.7%)	1 (2.6%)	3 (1.9%)
nc-Blood tests	1 (0.8%)	0 (0%)	1 (0.6%)
nc-Individualised rating scale	1 (0.8%)	0 (0%)	1 (0.6%)
nd-Patient adherence to treatment	0 (0%)	1 (2.6%)	1 (0.6%)