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Genetic pest management (GPM) methods involve releasing modified
versions of a pest species to mate with wild pests in the target area. Proposed
for a wide range of applications in public health, agriculture and conserva-
tion, most progress has been made with pest insects. Offspring of the
released modified insects and wild pests carry the modification—which
might be transgenes, artificially introduced Wolbachia or genetic damage
from radiation, for example—but they also carry a complete haploid
genome from their laboratory-reared parent, as well as one from their wild
parent. Unless these F1 hybrids are completely unable to reproduce, further
mating will lead to introgression of DNA sequences from the release strain
into the wild population. We discuss issues around strain selection and the
potential consequences of such introgression. We conclude that such intro-
gression is probably harmless in almost all circumstances, and could, in
theory, provide specific additional benefits to the release programme. We out-
line population monitoring approaches that could be used, going forward, to
determine how background genetics may affect GPM.

This article is part of the theme issue ‘Novel control strategies for
mosquito-borne diseases’.
1. Introduction
Pest insects do enormous damage to human health (through the transmission of
diseases such as dengue fever and malaria) and to agriculture (through damage
to crops or livestock). Control methods, such as the use of insecticidal chemi-
cals, are highly successful. However, their continued application may become
restricted by concerns over environmental impact, and the evolution of chemi-
cal resistance. In the light of these drawbacks, there has been considerable
investment in applying genetics-based approaches to pest control [1–3]. Genetic
pest management (GPM) strategies aim to harness the natural mating systems
of the pest in order to introduce into the pest population, traits that will steri-
lize, kill or otherwise modify the population. Here, the control agent is a
version of the pest itself, laboratory-reared individuals with a heritable modifi-
cation that desirably alters its properties are released into the wild. Such GPM
has been proposed for a wide range of pest species, with a significant focus on
insects, particularly mosquitoes [1].

While there are many inherent traits one might wish to change in a pest
population, for GPM work has focused almost exclusively on two—fitness
and vector competence. Introgression of traits such as sterility or lethality—
reduced fitness traits—aims to reduce the numerical size of the target popu-
lation, and so these are collectively described as ‘population suppression’
traits or methods. Reduced vector competence traits, relevant only to vector
species, aim to reduce transmission of one or more pathogens with only
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incidental effects on population size; these are ‘population
modification’ methods, sometimes called ‘population conver-
sion’ or ‘population replacement’ though the population is
not typically actually replaced [1].

By far the most widely used GPM method to date has
been the sterile-insect technique (SIT) and its variants, in
which ‘sterile’ insects are released to mate with their wild
pest conspecifics [4]. Introducing sterile insects, particularly
sterile males, reduces the reproductive potential of the
target population and with sustained releases can lead to
the decline or even elimination of the target population.
Sterility can be induced by irradiation [5–7], Wolbachia-
induced cytoplasmic incompatibility [8–10], chemical treatment
[11] or genetic engineering, for example, release of insects
carrying a dominant lethal (RIDL) [12–15].

Whilemuch attention has focused on the novel genetic trait,
the background genotype in which it is developed will contrib-
ute significantly to the performance of the released modified
insects, for example, in terms of mating success. Considerably
less attention has been paid to the capacity for hybridization
and gene flow between the released modified insects and wild
ones. ‘Sterilization’ of males is rarely 100% effective, for
example, because of a need to balance sterility and negative
effects onperformance in selecting radiationdose, or incomplete
penetrance of genetic sterility [16,17]. Other GPM methods
require fertile matings to allow introgression of novel traits
into target populations [14]; in both cases introgression of back-
ground genetic material is likely. This is a relevant question as
introgression of novel genetic variation could affect the target
population and perhaps even, in theory, result in an increase
in fitness in the target population. With the rapid development
of a variety of novel strategies, with varying propensities for
gene flow, selection of background genotype should, therefore,
be a significant decision for a developer, and correspondingly
perhaps also for regulators and other stakeholders.
2. Population genetics of laboratory strains
Genetic differences have repeatedly been observed between
laboratory colonies of mosquitoes and their source field
populations, though their nature and magnitude vary sub-
stantially (reviewed in [18–20]). These laboratory insects
differ from field ones owing to the combined effects of gen-
etic drift, bottlenecking and selection [21]. Though the
relative contribution of each has only rarely been studied
[18], it is well recognized that laboratory strains have reduced
fitness in the wild compared to their wild counterparts, lead-
ing to consistent concerns about the post-release performance
of these strains for GPM [22].

Laboratory-reared wild-type strains typically have low
effective population sizes, because founder population sizes
are generally small, and lines are usually maintained at rela-
tively low numbers after that. These small founding
populations experience elevated levels of inbreeding and gen-
etic drift relative to wild populations, leading to an accelerated
loss of allelic diversity and heterozygosity [23–25]. Not sur-
prisingly then, laboratory strains are consistently found to be
less genetically variable than their field counterparts [26].
Small population sizes and low levels of genetic diversity
present in laboratory strains result in reduced individual and
population fitness through inbreeding depression and loss of
adaptive potential. As such, theory predicts that, through
neutral processes alone, laboratory populations should be less
fit than their wild counterparts, especially in a wild setting
[27]. In addition to these demographic processes, natural selec-
tion can also have large effects on individual fitness and
population dynamics in laboratory populations. Laboratory
environments are inherently artificial and colonized insect
populations experience a substantially different set of selective
pressures compared to those in natural populations (reviewed
in [21]). Laboratory environments lack many selective pressures
typical ofwild populations, usually being very stable (controlled
temperature, humidity, light : dark cycles and controlled rearing
schedules) and benign (lacking many biotic and abiotic threats
such as predators, disease, droughts or food scarcity)
[23,28,29]. Simultaneously, laboratory rearing protocols involve
artificial selection for a host of traits, including faster develop-
ment to reproductive maturity and a front-loaded reproductive
period [30–32], body size [24,33,34], longevity [24], courtship
[35–38], blood-feeding behaviours [39–41], among others.

Genetic control strains probably experience even greater
effects of bottlenecking and laboratory adaptation than
laboratory-reared wild-type strains. As genetic modification
is still highly inefficient, control strains must typically be con-
structed from those laboratory-adapted strains which are
most productive in captivity. For example, after some success
engineering Aedes aegypti [12,13], Oxitec—a company specia-
lizing in GPM technologies—attempted to develop similar
strains of Aedes albopictus. With an eye to potential field
use, they chose to start with a relatively recently colonized
strain of A. albopictus, rather than a much older strain as
had been used for A. aegypti. Successful engineering of
A. albopictus was achieved [42,43] only after substantial
improvements in strain productivity over 10 or so gener-
ations, attributed partly to improved methods but more to
the further adaptation of the strain to laboratory conditions.
Genetic control strains are also likely to experience a second
bottleneck at their genesis, since they often originate from a
single founder individual. This founder might carry a new
transgene, chromosome translocation, or Wolbachia insertion.
Recovering even the modest genetic diversity of a typical
laboratory strain requires extensive backcrossing; there will
be a further potential bottleneck if and when the strain is
made homozygous, though this may not always be required.
Inbreeding depression from such mating schemes may
adversely affect the performance of the strain and potentially
confound analyses of transgene-specific effects, e.g. fitness
cost of the transgene [44]. On the other hand, one rarely con-
sidered aspect of genetic control strains is that they are often
expanded to enormous population sizes for mass release.
This may allow for some recovery of genetic variation
through de novo mutations and increased recombination
rates, although owing to the time scales involved it is unlikely
that levels of genetic diversity in these populations will come
close to that of wild populations. Further, rearing for mass-
release programmes is likely to increase the strength and effi-
cacy of adaptation to laboratory conditions, an issue that has
long been of concern to SIT programmes [22].
3. Performance of laboratory strains in the wild
Empirical comparisons of laboratory and wild populations
confirm the theoretical expectation that highly laboratory-
adapted and inbred strains are unlikely to perform well in
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the field, or at least less well than field populations [45–47].
There is, therefore, a trade-off between rearing efficiency,
leading to lower unit costs (e.g. cost per million mosquitoes)
and ‘field-like’ genetics leading to better per-mosquito per-
formance [21]. Performance differences are not exclusively
owing to background genetics; environmental conditions,
rearing and distribution methods are also significant, as
well as the effects of the novel trait, e.g. radiation-sterilization,
Wolbachia or genetic engineering. Less well-understood differ-
ences such as the composition of the gut microbiota [48],
which have been shown to be less diverse in most laboratory
colonies of insects [49,50], may also be influential. There is
some evidence that probiotic use is a potential route towards
restoring population fitness for SIT [51,52].

SIT programmes have generally focused on improving
rearing efficiency while trying to mitigate the inevitable
reduction in performance. This has led to remarkably low-
cost production, less than $1000 per million insects for a
range of insect species (2008 USD, [53]). High-density, low-
cost rearing is assumed to have a negative impact on field
performance, but it is difficult to estimate the magnitude of
this. For sterile males, male mating competitiveness is the
key parameter of field performance. For example OX513A,
an engineered strain of A. aegypti [12], was estimated to
have a relative mating competitiveness of 0.031–0.14 varying
across three open field trials in the Cayman Islands, Brazil
and Panama [54–56]. This level of mating competitiveness,
while low relative to wild males, is comparable to other
large-scale, successful radiation-based SIT programmes;
field competitiveness of sterile males was estimated at 0.1
for New World screwworm (Cochliomyia hominivorax) [6,57]
and less than 0.01 for Mediterranean fruit fly (Ceratitis
capitata) [58,59].

Any genetic and/or phenotypic differences between
modified and wild mosquitoes raise the possibility of assorta-
tive mating. If wild females can recognize differences
between wild and laboratory males, there may be strong
selective pressure for females to avoid mating with released
males. The possibility of ‘behavioural resistance’ through
assortative mating was recognized from the early days of
the SIT, with perhaps the best-documented instance coming
from a melon fly programme in Okinawa [60,61]. Probably
caused by a change in male courtship through mass-rearing,
the selection pressure of prolonged releases of sterile males
had induced a capacity in wild females to recognize these
males and avoid mating [60]. Overall, this resistance was
modest, and successfully managed simply by increasing the
release rate of the sterile males. In practice, over the 60+
year history of the SIT, assortative mating has very rarely
been observed [62].

Considerable efforts have been made to improve the per-
formance of laboratory strains for GPM in the wild. Efforts to
avoid the potential for behavioural resistance and optimizing
male reproductive success include matching the background
genetics of the release strain to that of the target population
through backcrossing [24], and reducing the impacts of
inbreeding, but whether this works in practice is difficult to
determine. Oxitec’s OX513A strain was originally constructed
in a Rockefeller background, then backcrossed repeatedly
into a laboratory strain originally collected in Tapachula,
Mexico [54]. Rockefeller was colonized more than 100 years
ago from mosquitoes collected in Cuba [63]. This strain was
used successfully in the Cayman Islands, Brazil and
Panama. Similarly, the classic Medfly (C. capitata) genetic
sexing strains Vienna-7 and Vienna-8 and derivatives have
been used successfully with a single composite genetic back-
ground in multiple territories [64]. These examples
demonstrate that genetic backgrounds that are neither local
nor recently colonized can be used successfully.

Strains can be periodically outcrossed to fresh material,
e.g. recently wild-caught individuals. This may be more pro-
blematic for modified strains, depending on the nature of the
modification. Wolbachia are maternally transmitted, meaning
that new nuclear haplotypes can readily be introgressed via
non-infected males. Such hybrids inherit half of their alleles
from the mother and half from the father, so with each gener-
ation of backcrossing the residual contribution from the
starting strain is expected to halve, on average, though that
expectation may not be met if some alleles are under selec-
tion. In principle, this ‘halving the residual background per
generation’ expectation could be improved by marker-
selected breeding, though that is not commonly used for
insects. There are also some special cases—in the Wolbachia
example, the mitochondria are also maternally inherited,
and therefore co-inherited with the Wolbachia so the mito-
chondrial genome cannot be exchanged by this route. For
those transgenic strains that need to be made homozygous,
changing the background genetics is considerably more oner-
ous. The same process of repeated back crossing can be
applied, but the resulting individuals are heterozygous for
the transgene. The homozygous strain then needs to be
rebuilt, and through this process will lose genetic diversity
again. Similar issues may apply to strains made by classical
genetics, for example, translocation-based genetic sexing
strains. Furthermore, some parts of the genome may not be
efficiently exchanged by this process. Sequences which are
genetically linked to the novel trait will be retained through
the outcrossing scheme, so-called ‘hitch-hiking’ effects.

Recognizing these problems, sophisticated schemes have
been developed to preserve the genetic quality and diversity
of strains reared in captivity, for example, the clean filter rear-
ing system [65,66] and the use of multiple parallel sub-
populations (genetically diverse laboratory strain, [67,68]).
In a filter rearing system, a seed population is maintained
at relatively low density, and potentially more naturalistic
conditions. This population can be monitored as required
for genetic integrity and quality. Eggs from this population
are then taken for intensive rearing and expansion through
a small number of generations to provide the release cohorts.
The assumption is that genetic changes will have little time to
accumulate between the seed population and release. Criti-
cally, material from the release population is never returned
to the seed population—there is a conceptual one-way filter.

Though the novel trait(s) are not the main focus of this
paper, it should be noted that background genetics can poten-
tially affect the expression of novel traits. This has been
clearly demonstrated for traits with intermediate penetrance,
i.e. ones particularly sensitive to such variation, for example,
for sterile-male systems [69] or some laboratory model gene
drives [70], and is also known to have a significant effect
on the spread of naturally occurring gene drives in some
cases [71]. How relevant this is to the higher-penetrance
traits likely to be used in the field is not clear and may
vary between cases. Oxitec’s OX513A was used successfully
in the Cayman Islands, Brazil and Panama, and also tested
in a range of other genetic backgrounds, without obvious
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variation in effectiveness [54–56,72,73], on the other hand
standing genetic variation or new mutation leading to herita-
ble resistance to homing-based drives is a major concern for
durable field use of such systems (e.g. [74] but see also [15]).
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4. Population genetics and gene flow
GPM methods are likely to be imperfect, in that some indi-
viduals released from the laboratory into the wild do not
fully express the intended trait. For radiation-based SIT, up
to approximately 2% of males may be at least partially fertile
(because radiation doses are calibrated to avoid the negative
effect on insect performance of higher radiation doses), while
offspring survival rates for OX513A RIDL mosquitoes have
been estimated as 3–5% [12]. This raises the possibility of
gene flow from laboratory to wild populations, which may
have unintended consequences for individual fitness and
population dynamics. Because of the reduced fitness of lab-
oratory strains, levels of gene flow into wild populations
are expected to be low. However, owing to the sheer scale
of release programmes, at least some genetic introgression
from the laboratory into wild strains is expected. Other gen-
etic control methods, such as the use of female-specific
lethal genes [13,75,76], or Wolbachia-based gene drives for
population modification, can use lower release ratios but
hybrids have much higher fertility, likely leading to more
introgression of background genes. At the other end of the
spectrum, highly invasive (low-threshold) gene drives may
need only very low release ratios, so that introgression of
background genetics is modest.

Gene flow into populations can have both positive and
negative consequences for the receiving population. On the
one hand, the introduction of novel genetic variation can
counter the negative effects of inbreeding and genetic drift,
and can provide novel variation upon which selection can
act. On the other hand, gene flow can impede local adap-
tation and/or introduce deleterious variants. Theory
suggests that the effects of gene flow on population fitness
will depend on the rate of gene flow, the relative fitness of
native and migrant individuals, and the effective population
size [77]. However, very few studies have considered the
dynamics of gene flow from large-scale release programmes.

In a recent study of a target mosquito population during
and after a 27 month release trial of engineered A. aegypti,
10–60% of the target population were estimated to have at
least some DNA derived from the release strain study,
depending on the analysis used. There was, however, no evi-
dence of gene flow into the nearest non-targeted population
less than 3 km away [78]. This was interpreted as both unde-
sirable and unexpected, but there seems little basis for such
conclusions. Given the large release numbers associated
with sterile-male methods, even the very modest level of
survival by OX513A F1 hybrid offspring would lead to obser-
vable genetic introgression, in the absence of any advantage
to these ‘laboratory-adapted’ alleles, if these hybrids repro-
duced to any degree. The more pertinent question is
whether introduced genetic variation persists at significant
levels over extended periods, as has been observed between
crops and wild relatives [79]. Using a temporal sampling
approach, Evans et al. [78]. found consistent and marked
decreases in levels of admixture with time since the release
programme stopped. This strongly indicates selection against
introgressed genotypes, although drift may have also played
a role. This suggests, then, that selection against maladapted
laboratory genotypes will act to remove most introgressed
variation in a reasonably short amount of time.

Two caveats to the above arguments should be considered.
Firstly, the Evans et al. [78] study is just one example, and in
cases where selection against laboratory genotypes is weak,
introgressed variation will persist for longer, and may
become fixed owing to genetic drift. Secondly, and more
importantly, quantifying introgression using approaches
such as admixture analysis means that any inferences are
based on genome-wide data, and do not account for localized
introgression. Genome-wide studies of humans and other
organisms have shown that highly localized regions of adap-
tive introgression can occur, can have large phenotypic effects,
and be important for fitness [80]. Although it is hard to envi-
sage laboratory strains containing alleles that would be
adaptively introgressed into wild populations (see the section
below), it is difficult to assess this using genome-wide
approaches.
5. Fitness, vector competence and insecticide
resistance

Evans et al. [78] caused immediate controversy asserting that
hybridization would ‘very likely’ result in a more robust
population ‘due to hybrid vigour’—in apparent contradiction
of their earlier conclusion that there was selection against
introgressed alleles. Leaving aside the effect of the transgene,
F1 hybrids were likely to be fitter than the release strain
owing to the combined effect of outbreeding and hybridizing
with wild mosquitoes [18,81,82]. However, in comparison to
the more genetically diverse target wild population, an influx
of maladapted alleles from a highly inbred population is unli-
kely to have significantly increased levels of heterozygosity,
removing the potential for heterosis and increased fitness.

Hybrid vigour, or heterosis, is one potential outcome from
the introduction of new alleles into a population. Indeed, gen-
etic rescue is a conservation strategy built around increasing
the fitness of small, inbred populations by moving genes
in from another population to increase genetic diversity [83],
and this approach is rapidly emerging as a management tool
to restore population health [84,85]. However, gene flow can
also have negative effects on populations, for example, by
breaking up local adaptation through the introduction of
maladapted alleles [77,86]. In the case of the recent demise
of the grey wolf population on Isle Royale, attempted genetic
rescue by introducing migrants from the large mainland wolf
population was blamed for producing a rapid population
decline and bringing it to the brink of extinction [87]. As
discussed above, mass-release strains are highly laboratory-
adapted, having been through strong selection for rearing
in an artificial habitat [21], making them poor candidates for
producing a genetic rescue effect. Indeed, one of themajor pro-
blems with mass-release methods is that the laboratory-reared
insects perform rather poorly in the field.

Strong selective advantage at particular loci could allow
for introgression at highly localized areas of the genome,
which in turn could have consequences for population
fitness and future pest control efforts. Insecticide resistance
is a well-recognized issue in pest management, including
GPM, and if a release strain were more resistant than the
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wild population this would be under considerable selective
pressure. In practice, standard laboratory strains are typi-
cally more susceptible to insecticides than field strains,
since they were collected from the field many years ago
and have been maintained without selection for resistance
for tens or hundreds of generations. Nevertheless, this
should be confirmed for actual release strains [88], as was
the case for OX513A [89,90]. Interestingly, the lack of insec-
ticide resistance was a problem for A. aegypti-wMel, the only
mosquito gene drive system so far used in the field [91]. In
Brazil, the Wolbachia-based gene drive failed to establish;
this was attributed to use of a pyrethroid-susceptible gene
drive strain [91]. A derivative strain with much higher pyr-
ethroid resistance was developed and released to establish
the gene drive. This may be a consideration for future gen-
etic control strains, though different designs will differ in
their sensitivity to this issue.

The vector competence (ability to transmit pathogens) of
A. aegypti reflects virus genotype-by-mosquito genotype inter-
actions, complicated by several environmental factors [92].
Our understanding of the genotype-to-phenotype outcome of
genes affected by environmental interactions is limited, and
the effect of introducing new alleles from laboratory strains
may be difficult to predict, as acquired gut microbes, and
plastic phenotypes such as body size are important interacting
factors [93,94]. However, target populations are typically
highly competent vectors—this is why they are target
populations—and it is unlikely that laboratory strains are sig-
nificantly better vectors. Evans et al. [78] found no evidence
of a change in the vector competence of the hybridmosquitoes,
and to our knowledge no other studies have done so.

In addition to the potential negative impacts above—
which need to be considered, though do not seem likely to
be problematic in most cases—there is also the potential for
the release strain to have more desirable genetic traits than
the target population, such as reduced vector competence.
This could be unrelated to the gene drive or genetic control
trait and would mean that desirable alleles would enter the
wild population with the potential for that population to cor-
respondingly become somewhat more benign, though as
previously discussed such effects may be highly localized
and transient. A modelling-based analysis in the context of
managing insecticide resistance found such introgression
potentially very effective for slowing or even reversing the
spread of insecticide resistance [95], an effect also observed
in small glass-house studies [96]. This is a highly understu-
died area, where making predictions around the magnitude
of the effect may be difficult, and depends on the amount
of introgression, the fertility or otherwise of hybrids, and
the type of genetic control strain.

If necessary, the unintended consequences of introgres-
sion could be reduced—but not eliminated—by repeatedly
backcrossing the release strain to locally caught mosquitoes
before releases start. This may be advantageous for a different
reason, to improve the degree of mating between the released
mosquitoes and the target population. On the other hand,
more wild-like mosquitoes are likely to be harder to rear,
being less laboratory-adapted, and consequently more
expensive to produce. The cost of doing this for every
target population is also likely to be prohibitive, and the
limited data are mixed on whether such approaches are
necessary for success. Oxitec’s successful OX513A trials in
the Cayman Islands and Brazil used a laboratory-adapted
strain with primarily Mexican background [54]. On the
other hand, as noted above, a Wolbachia gene drive strain
failed to establish until matched to the local population gen-
etics, with increased insecticide resistance considered to be
the key trait [91].
6. Conclusion and recommendations
The selection of background strainwill probably aim to balance
several factors, including production traits and field perform-
ance. Existing precedent, primarily from sterile-insect
methods, provides little support for the notion that strain back-
ground needs to be closely matched to either field strains in
general or the target population in particular. Preliminary
experiments may be able to identify major mating incompat-
ibilities, as well as any adverse effects of the local genetic
background on expression of the novel trait, and are, therefore,
recommended at an early pre-release phase. Further research
on the genetic and phenotypic changes associated with labora-
tory adaptation may enable us to better predict the potential
and likelihood of any adaptive introgression into the wild. A
better understanding of the fate of genes from mass-reared
strains when released into the wild—perhaps through study-
ing the large, long-term successful SIT programmes—seems
prudent if we are to get a better understanding of the nature,
extent and consequences of hybridization between laboratory
and wild strains. A useful way forward in this respect may
be to combine high-density sequencingwith analyses designed
to detect regions of adaptive introgression that are localized to
specific parts of the genome [97].

There seem relatively few grounds for concern regarding
introgression of laboratory genetic backgrounds into wild
pest populations, though pre-release analysis of specific
traits of concern (e.g. insecticide resistance, vector compe-
tence) would be wise, coupled with post-release monitoring
as described. Indeed, introgression may in some instances
become a desirable outcome of release programmes; for
instance, we may wish to deliberately introgress background
traits such as insecticide susceptibility into wild pest popu-
lations, in addition to any novel trait incorporated in the
strain. Overall, more research into strain differences and its
effects on field performance may help to optimize decisions
about which strains to use in order to maximize the effective-
ness of release programmes, while controlling the effects of
gene flow and introgression.
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