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ABSTRACT 

 

Objectives: To determine the prevalence of vitamin D deficiency on dried blood spots (DBS) 

obtained at newborn bloodspot screening (NBS) and thereby test the efficacy of the UK 

national antenatal supplementation programme in an increasingly ethnically diverse English 

population. To evaluate the seasonal and ethnic variation in neonatal plasma 25 hydoxyvitamin 

D (25OHD) and its determinants.  

Design: Three thousand random DBS samples received at a single regional newborn screening 

laboratory (52° N) over two one-week periods, one in winter (February 2019) and one in 

summer (August 2019), were collected. Data was collected from NBS cards on birth weight, 

gestational age, maternal age, ethnicity, and post code which was replaced with index of 

multiple deprivation (IMD). 25OHD concentrations were measured on 6mm sub-punch from 

DBS using quantitative liquid chromatography tandem mass spectrometry adjusted to 

equivalent plasma values. 25OHD variation with season was assessed using Mann-Whitney U 

test and ethnic groups compared using Kruskal-Wallis test. Linear regression was used to 

assess the determinants of 25OHD concentrations.  

Results: 25OHD measurements were available in 2999 (1580 males) subjects [1499 winter-

born and 1500 summer-born]. The majority were white British (59.1%) and born at term (mean 

SD gestational age of 38.81.8 weeks) with a mean (SD) birth weight of 3306 (565) grams. 

The overall prevalence of vitamin D deficiency [25OHD<30 nmol/L (12 µg/L)] was 35.7% 

(n=1070) and insufficiency [30-50 nmol/L (12-20 µg/L)] 33.7% (n=1010). The median (IQR) 

25OHD concentration was significantly lower in the winter-born compared to summer-born 

[29.1 (19.8, 40.6) vs 49.2 (34.3, 64.8) nmol/L respectively; p<0.001]. Across both seasons, 

when compared to white British babies (41.6 nmol/L), the median 25OHD concentrations were 

significantly lower in babies of black (30.3 nmol/L; p<0.001), Asian (31.3 nmol/L; p<0.001), 

any other mixed (32.9 nmol/L; p<0.001), mixed white and black (33.7 nmol/L; p<0.05) and 
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any other white (37.7 nmol/L; p<0.05) ethnicity. The proportion of deficiency was also higher 

in babies of Asian (48%), black (47%) and mixed ethnicity (38-44%) compared to any other 

white (34%) or white British (30%) ethnicity. Season of birth, ethnicity, gestation and maternal 

age accounted for almost 24% of the variation in 25OHD concentrations.  

Conclusion: The current UK antenatal supplementation programme fails to protect newborns 

from vitamin D deficiency, especially those from minority ethnic groups who are at high risk 

of vitamin D deficiency. Nearly 70% of all newborns and 85% of winter-borns had 25OHD 

concentrations below 50 nmol/L (20 µg/L). Almost 50% of babies of Black or Asian origin 

were deficient at birth,  which explains their high risk of hypocalcaemic complications and 

rickets if left unsupplemented. Our findings call for an immediate review of the delivery of 

antenatal and infant vitamin D supplementation programmes and implementation of food 

fortification in the long term.  
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INTRODUCTION 
 

 

Neonates with vitamin D deficiency can develop serious life-threatening complications such 

as hypocalcaemic seizures, dilated cardiomyopathy, cardiac failure and, rarely, death in the 

first months of life.[1] Additional features include poor feeding, craniotabes, hypotonia and 

delayed motor milestones.[2] In infants over 6 months, vitamin D deficiency can present with 

hypocalcaemic (seizure, tetany) and hypophosphataemic complications (rickets with bowing 

deformities of legs, delayed development).   

Due to the high calcium demands of rapid growth in infancy,[3] hypocalcaemia can manifest 

as early as in the first week of life,[4-6] when the mother was severely vitamin D deficient and 

did not receive adequate replacement in pregnancy. There is robust evidence base now 

established which suggests that adequate vitamin D status in pregnancy is essential not only to 

maintain optimal skeletal health in the mother and her newborn,[7] but also to prevent 

hypocalcaemia,[8] and rickets in the newborn,[9] and to optimise future bone health of the 

offspring.[10] There is growing evidence on the effect of vitamin D deficiency on non-skeletal 

pregnancy-related adverse health outcomes such as gestational diabetes, pre-eclampsia and 

small for gestation birth.[11-12] It is therefore imperative to ensure adequate vitamin D status 

during pregnancy and infancy. Given the very few dietary sources of vitamin D, there is 

reliance on sunlight or supplements, in high latitude countries with limited sunshine. Most 

developed countries therefore have vitamin D supplementation policies in place for high-risk 

groups which includes pregnant women (antenatal) and infants (postnatal). Infants are 

particularly at high risk of vitamin D deficiency not only due to reduced sun-exposure but also 

because the requirements are not met through feeds alone, especially in breastfed infants.[9] 

We have previously reported on the ineffectiveness of the UK infant vitamin D 

supplementation policies compared to other European countries.[13] To date, the success and 

effectiveness of the UK antenatal supplementation programme remains unknown. The UK 
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guidance recommends a 400 IU/day vitamin D supplement in all pregnant women,[14-15] and 

a 1000 IU/day supplement in high-risk women, including those with darker skin 

pigmentation.[15]   

Vitamin D status in apparently healthy children, particularly infants, is poorly studied due to 

practical difficulties in obtaining blood samples.[16] In recent years, measuring 25 

hydroxyvitamin D (25OHD) on dried blood spot (DBS), obtained through minimally invasive 

techniques,[17-18] has evolved significantly enabling reliable assessment of population 

vitamin D status.[19] Measuring neonatal 25OHD on DBS samples collected as part of the 

national newborn bloodspot screening (NBS) programme is a suitable way of assessing the 

population prevalence of vitamin D deficiency in this most vulnerable group. This public health 

study was designed to assess the effectiveness of the UK antenatal supplementation 

programmes in preventing vitamin D deficiency in the newborn and provide direction to infant 

supplementation programmes.  

 

AIMS 

 

1. Determine the prevalence of 25OHD deficiency [<30 nmol/L (12µg/L)] in newborns as a 

key performance indicator of the UK antenatal vitamin D supplementation programme.  

2. Assess seasonal and ethnic variation in DBS 25OHD in newborns 

3. Study the determinants of 25OHD in newborns   

 

RESEARCH DESIGN AND METHODS 
 

Study Design: 

To collect a representative population sample in an increasingly ethnically diverse population, 

3000 DBS samples sent to Birmingham Women’s and Children’s Hospital’s regional newborn 



 6 

screening laboratory, in the Midlands region of England (52° N), were collected after obtaining 

ethical and relevant regulatory approvals. Data submitted on the NBS cards were gathered 

following anonymisation. 25OHD concentration on the DBS was measured by quantitative 

liquid chromatography tandem mass spectrometry (LC-MS/MS) and plasma equivalent values 

derived.  

Study population: 

All babies born in England have a blood spot sample collected on day 5 of life as part of the 

national NBS programme to screen for a specific set of metabolic diseases. To assess seasonal 

effects, samples were collected at the end of winter and summer months to capture the 

anticipated nadir and peak in 25OHD concentrations, respectively. All DBS samples received 

over one week in winter (last week of February 2019) and one week in summer (last week of 

August 2019) were retrieved after all routine NBS testing had been completed. Exclusion 

criteria included: samples marked high risk of infection (e.g. HIV), insufficient samples, 

second tests including neonates >21 days and cases with any missing information. 

DBS Samples:  

The samples are collected on a standard Whatman 903 filter paper through a heel prick by an 

appropriately trained healthcare professional. DBS sample were couriered from maternity 

services to the screening laboratory on a daily basis with; 90% of samples being received on 

the day and all samples within 3 days of collection. Samples were stored at room temperature 

and away from direct sunlight at all stages (in maternity service, during transportation and on 

receipt in the screening laboratory). Study samples were obtained within 7 days of receiving in 

the screening laboratory, stored at -20C and analysed at the completion of recruitment 

(October 2019 - December 2019).  

Source Data 

 

Personal data submitted alongside the NBS card is routinely entered and stored by the newborn 

screening laboratory team in an electronic format. Data provided to the research team was 
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anonymised by a member of the newborn screening team. Anonymised data gathered included: 

birth weight, gestational age, maternal age and ethnic group codes. For complete anonymity, 

postcodes were replaced by Lower-layer Super Output Area (LSOA) that each postcode falls 

within, and the deprivation indices for that LSOA.[20] LSOA is a geographic hierarchy 

designed to improve the reporting of small area statistics and includes a mean population of 

1500. The Index of Multiple Deprivation (IMD) is obtained by combining seven domains of 

deprivation: income, employment, education, health, crime, barriers to housing and services 

and living environment.[20] Each domain and the IMD can be represented in ranks (1 to 

32,844) or deciles which are calculated by ranking the 32,844 small areas in England from 

most deprived to least deprived and dividing them into 10 equal deciles, where 1 is the most 

deprived and 10 the least deprived.[21] 

Ethnicity group codes prescribed by the UK Office of National Statistics were used.[22] The 

independent ethnic group codes were clubbed and grouped as follows:  

Group 1: White British  

Group 2: Any other white (white Irish + Any other white)  

Group 3: Asian (Indian, Pakistani, Bangladeshi, Chinese and any other Asian background)  

Group 4: Black (African, Caribbean, any other black background) 

Group 5: Mixed white and black (White and black African and white and black Caribbean) 

Group 6: Mixed white and Asian  

Group 7: Any other mixed (any other mixed background and any other ethnicity) 

 

Analysis of DBS 25OHD and plasma equivalent values 

Dried blood spot 25OHD3 and 25OHD2 concentrations were measured at the Bioanalytical 

facility in The University of East Anglia, Norwich, UK, by quantitative LC-MS/MS following 

extraction methods previously detailed.[18,23] In brief, a 6mm sub-punch was made from each 
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blood spot sample using a pneumatic DBS card puncher (Analytical Sales & Services, NJ, 

USA). Samples were extracted using 300µL of 50:50 (v/v) isopropanol to water solution 

containing carbon-13 labelled 25OHD3-13C5 internal standard; in an ultrasonic water bath at 

35°C for 30 minutes. The extracts were transferred onto Supported Liquid Extraction (SLE+) 

plate (Biotage, Uppsala, Sweden) for further clean up, then eluted with 1.5 mL of heptane. The 

eluent was dried to completeness under nitrogen gas heated at 60°, followed by derivatisation 

with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). The PTAD-derivatised 25OHD3 and 

25OHD2 were separated using a C18 2.7µm. 50 x 2.1mm chromatographic column (Restek, 

PA, USA) and detected using the Micromass Quattro Ultima Pt tandem mass spectrometer 

(Waters Corp., Milford, MA, USA) according to analyte precursor to product transitions; 

607>298 (25OHD3) and 613>298 (25OHD2). Each batch of sample analysis was performed 

with matrix-matched calibration standards and quality controls prepared in vitamin D and its  

hydroxylated metabolite-free packed red cells. The inter/intra-assay coefficient of variation 

(CV) was between 3.9-9.4%, across the concentration range of the assay, with linearity from 

the lower limit of quantification (LLoQ) of 1 nmol/L up to 150 nmol/L. 

Data are reported as plasma equivalent total 25OHD, which was calculated using the following 

formula: Plasma equivalent total 25OHD nmol/L = [(DBS 25OHD3 + DBS 25OHD2 nmol/L) 

-1.2607]/ (1 – 0·60); where 1.2607 is to adjust for the difference in slope between plasma and 

DBS value,[18] and 0·60 is the mean haematocrit (Hct). Given that 25OHD exists primarily in 

the extracellular fluid compartment in blood, blood spot measurements for 25OHD must be 

adjusted for  Hct. Owing to the higher Hct in the neonatal period,[24] and specifically in 

capillary samples,[25] a value of 0.60 was used.  

 

Ethics and consent:  
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The study was approved by the UK Health Research Authority (HRA) and the East Midlands 

- Leicester South Research Ethics Committee (REC Reference 19/EM/0019). The study was 

also approved by the Antenatal and Newborn Research Advisory Committee of Public Health 

England, UK. Parental consent was not required as all data acquired were anonymised and 

compliance with the code of practice for the retention and storage of residual newborn blood 

spots was ensured.[26] 

 

Statistical analysis:  

 

Descriptive statistics are presented as medians with interquartile ranges (IQR) or mean with 

standard deviation (SD) for continuous variables, and frequencies with percentages for 

categorical variables. 25OHD concentrations were used both as a continuous variable and 

categorical variable, defining deficiency as <30 nmol/L (12µg/l), insufficiency as 30-50 

nmol/L (12-20µg/l) and sufficiency as >50 nmol/L (>20µg/l) according to the Institute Of 

Medicine,[27]  and Global consensus recommendation classifications.[9] Non-parametric tests 

were used as 25OHD concentrations were skewed. Whilst normal distribution for 25OHD 

overall was achieved following square root transformation, the results obtained on parametric 

tests were comparable and are therefore not reported here. 

Mann-Whitney U test was used to compare 25OHD concentrations between the winter and 

summer-born groups. The Kruskal-Wallis test was used to compare 25OHD concentrations 

between the different ethnic groups. The factors that were significant (p<0.05) on a bivariate 

analysis were included in the multiple linear regression model. The significant factors included 

were season of birth, ethnicity, gestational age, maternal age and IMD decile. Ethnicity, 

gestational age and IMD deciles (1 to 10) were used as categorical variables. Gestational age 

at birth was categorised as term (>37-41 weeks), extreme pre-term (<28 weeks), pre-term (28-

37 weeks) and post-term (>41 weeks). All analyses were performed using SPSS statistical 

software v25.0 (IBM, Armonk, NY).  
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RESULTS 

 

25OHD measurements were available on 2999 (1580 males) subjects; 1499 were winter-born 

and 1500 summer-born. Neonates were between 5 and 19 days old at the time of sample 

collection. Ninety nine percent of the samples were collected in the first week of life between 

day 5 and day 7 [93.3% on D5 (n=2800), 5.1% on D6 (n=154) and 0.6% on D7 (n=19)]. The 

baseline characteristics are presented in Table 1. The majority were white British (59.1%) and 

born at term (mean  SD gestational age of 38.8  1.8 weeks) with a mean ( SD) birth weight 

of 3306 ( 565) grams. The mean IMD decile was 4.0 ( 2.7) and nearly a quarter of the cohort 

(24%, n= 720) were from the most deprived IMD decile (decile 1). The baseline characteristics 

did not differ significantly between the winter-born and summer-born groups (Table 1).   

 
 Whole study 

group 

Winter-born  Summer-born  P value  

Numbers  2999 1499 * 1500  

Number of males (% of 

total) 

1580 (52.7%)  771 (51.4%)  809 (53.9%)  0.16 

Birth weight in g  3306 (565) 3313 (563) 3299 (566) 0.49 

Gestational age in 

weeks  

38.8 (1.8) 38.8 (1.8) 38.8 (1.7) 0.57 

Maternal age in years  30.4 (5.5) 30.4 (5.6) 30.5 (5.4) 0.61 

Ethnic groups n (%) 

 

White British  

Any other white  

Asian 

Black  

Mixed white and black 

Mixed white and Asian  

Any other mixed  

 

 

1774 (59.1%) 

264 (8.8%) 

494 (16.5%) 

173 (5.8%) 

94 (3.1%) 

45 (1.5%) 

156 (5.2%) 

 

 

877 (58.5%) 

134 (8.9%) 

249 (16.6%) 

90 (6.0%) 

53 (3.5%) 

21 (1.4%) 

76 (5.1%) 

 

 

897 (59.8%) 

130 (8.7%) 

245 (16.4%) 

83 (5.5%) 

41 (2.7%) 

24 (1.6%) 
80 (5.3%) 

0.64 

Index of Multiple 

Deprivation decile 

(1=most deprived to 

10=least deprived) 

4.0 (2.7) 4.1 (2.7) 4.0 (2.7) 0.34 

* One missing sample  

 

Table 1: Baseline characteristics of the whole study group and the winter and summer-born 

sub-groups. Numbers are reported as mean ( SD) or n (%). 
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Prevalence of Vitamin D deficiency  

The median (IQR) 25OHD concentration was 37.8 (24.8, 54.8) nmol/L. Vitamin D deficiency 

(<30 nmol/L) was present in 35.7% (n= 1070) of the cohort, of whom 6.2% (n= 186) were 

severely deficient with concentrations below 12.5 nmol/L (5µg/L) . Vitamin D insufficiency 

(30-50 nmol/L) and sufficiency (>50 nmol/L) were noted in 33.7% (n=1010) and 30.6% 

(n=919) respectively. Hence, only 30.6% of the neonates had levels in the sufficiency range. 

Using a higher threshold for sufficiency, 6.7% (n=200) had 25OHD concentrations > 75 

nmol/L.  

 

Seasonal and ethnic variation in 25OHD 

The median (IQR) 25OHD concentration was significantly lower in winter-born compared to 

summer-born [29.1 (19.8, 40.6) nmol/L vs 49.2 (34.3, 64.8) nmol/L respectively; p<0.001] 

Figure 1a. Vitamin D deficiency was also more prevalent in the winter-born babies compared 

to summer-born babies [52.9% (n=794) vs 18.4% (n=276) respectively; p<0.001] Figure 1b.  

The median (IQR) 25OHD concentrations differed significantly among ethnic groups, as 

presented in box 1 below. Compared to white British, the 25OHD concentrations were 

significantly lower in babies of black (p<0.001), Asian (p<0.001), any other mixed (p<0.001), 

mixed white and black (p<0.05) and any other white (p<0.05) background. Babies of Mixed 

white and Asian background also had lower median 25OHD concentrations compared to babies 

of white British background, but this was not statistically significant. The median 25OHD 

concentrations for various ethnic groups in winter and summer are shown in Figure 2 .  
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Box 1: Median (IQR) 25OHD for various ethnic groups. 

Ethnic group (n)                             Median (IQR)                          Median (IQR)                Median (IQR) 

                                                         25OHD nmol/L                       25OHD nmol/L             25OHD nmol/L 

                                                             Total                                      Summer                            Winter  

White British (1774)                      41.6 (27.6, 59.3)                    56.3 (42.1, 69.7)              29.3 (20.8, 40.3) 

Mixed white and Asian (45)         39.1 (22.3, 54.9)                      52.0 (34.0, 62.8)             25.6 (14.4, 39.6) 

Any other white (264)                   37.7 (24.7, 53.2)                               48.4 (33.7, 61.1)              30.4 (20.7, 41.0)        

Mixed white and black (94)          33.7 (21.6, 50.3)*                    45.1 (33.8, 59.9)              25.3 (16.9, 36.4) 

Any other mixed (156)                  32.9 (20.1, 47.3)**                  36.9 (24.7, 51.9)              26.8 (16.8, 44.1) 

Asian (493)                                    31.3 (20.1, 44.0)**                  31.8 (23.7, 46.7)              29.9 (18.3, 42.6) 

Black (173)                                    30.3 (19.4, 43.2)**                  38.3 (26.3, 49.1)              24.4 (15.0, 34.4) 

      **p<0.001 and p<0.05 when compared to white British  
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Figure 1: Figure 1a) Box plot demonstrating significantly lower median 25OHD 

concentrations in winter-born babies compared to summer-born babies [29.1 nmol/L vs 49.2 

nmol/L respectively; p<0.001]. Horizontal lines are drawn at 30nmol/L (deficiency cut-off) 

and 50nmol/L (sufficiency cut-off).  

Figure 1b) The proportion of deficiency, insufficiency and sufficiency in winter was 52.9%, 

34.6% and 12.4%, respectively and in summer 18.4%, 32.7% and 48.9%, respectively.  
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Figure 2: Median (IQR) 25OHD concentrations based on ethnicity and season of birth. 

When compared to white British the 25OHD concentrations were significantly lower in 

babies of any other white (p<0.05),  mixed white and black (p<0.05), any other mixed 

(p<0.001), Asian (p<0.001) and black (p<0.001) background.  
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The percentage of the study group who were vitamin D deficient across both seasons was 

lowest in white British at 30.3% and highest in babies of Asian and black ethnic background 

at 47.7% and 47.4%, respectively. Seasonal differences in the proportion of deficiency and 

insufficiency in various ethnic groups are presented in box 2 below and Figure 3a (winter) and 

Figure 3b (summer). 

 

Box 2: Seasonal variation in the proportion of 25OHD concentrations <25 nmol/L and 

50 nmol/L based on ethnicity 

Ethnicity  Summer Winter 

 % <25nmol/L          % 50nmol/L  % <25 nmol/L        % 50nmol/L 

White                                                         3.8                           39.2                       36.5                       86.7 

Any other white                                        14.6                          52.3                       35.1                       89.6  

Black                                                         21.7                          75.9                       53.3                       95.6 

Asian                                                         30.2                          78.4                       40.6                       86.3 

Mixed white and Asian                             8.3                            41.7                       47.6                       90.5 

Mixed white and Black                            17.1                           56.1                       49.1                       88.7 

Any other mixed                                       25                             73.8                       48.7                       88.2 
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Figure 3: Bar graph representing the proportion of study population that were deficient, 

insufficient and sufficient according to ethnic groups in winter (3a) and summer (3b) . Vertical 

bars are colour-coded by vitamin D status and ordered in according to decreasing sufficiency 

compared to white and any other white.  
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Determinants of 25OHD concentrations  

Parameters which were significant (p<0.05) on a bivariate linear regression and included in the 

multiple regression model were season of birth, ethnicity, gestational age, maternal age, and 

IMD decile. Birth weight and gender were not associated with 25OHD concentrations 

(p>0.05).  

The results of the regression model are presented in Table 2. The statistically significant 

determinants of 25OHD were season of birth, ethnicity (all ethnic groups except mixed white 

and Asian compared to white British), gestation (prematurity and extreme prematurity 

compared to term gestation) and maternal age. The mean (±SD) 25OHD concentration in term, 

pre-term, extremely pre-term and post-term babies was 40.7 (±21.7), 45.9 (±25.2), 64.3 (±26.9) 

and 38.6 (±16.8) nmol/L respectively. 

Nearly 24% (adjusted R2 0.242) of the variation in newborn 25OHD was explained by the 

model used, with season of birth being the major contributor at 19% (adjusted R2 0.19).  
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Table 2: Determinants of 25OHD concentrations in a linear regression model.  

Determinant   

Standardised 

Co-efficient  

 

95% Confidence 

interval  

P value  

Season (Winter/Summer) 0.43 17.70, 20.46 0.000  

 

Ethnicity  

 

White British  

 

Asian  

Black 

Mixed white and black 

Any other mixed 

Any other white 

Mixed white and Asian 

 

 

 

Reference 

 

-0.17 

-0.13  

-0.05 

-0.09 

-0.05 

-0.02 

 

 

 

 

 

-12.37, -8.34 

-15.56, -9.35 

-11.17, -3.19 

-12.86, -6.51 

-6.54, -1.53 

-10.60, 0.74 

 

 

 

 

 

0.000 

0.000 

0.000 

0.000 

0.002 

0.089 

 

Gestation in weeks  

 

Term >37- 41                (n=2,422) 

 

Extreme pre-term <28  (n=7) 

Pre-term 28-37              (n=502) 

Post-term >41               (n=68) 

 

 

 

Reference 

 

0.07 

0.05 

-0.01 

 

 

 

 

3.13, 8.50 

10.10, 39.43 

-6.74, 2.49 

 

 

 

 

0.000 

0.001 

0.367 

Maternal age 0.06 0.13, 0.38 0.000  

 

IMD deciles 

 

Decile 10 (least deprived) (n=136) 

 

Decile 1   (n=720) 

Decile 2   (n=501) 

Decile 3   (n=331) 

Decile 4   (n=260) 

Decile 5   (n=309) 

Decile 6   (n=217) 

Decile 7   (n=201) 

Decile 8   (n=175) 

Decile 9   (n=136) 

 

 

Reference  

 

0.00 

0.02 

0.00 

-0.01 

0.00 

0.00 

0.03 

0.00 

0.00 

 

 

 

 

-3.55, 3.68 

-2.33, 5.07 

-3.82, 3.92 

-4.82, 3.19 

-3.59, 4.19 

-3.90, 4.33 

-1.40, 6.96 

-3.63, 4.97 

-4.49, 4.40 

 

 

 

 

0.972 

0.469 

0.982 

0.690 

0.879 

0.919 

0.192 

0.760 

0.985 
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DISCUSSION 
 

Nearly 70% of the babies in our multi-ethnic cohort had low vitamin D status (25OHD <50 

nmol/L). Vitamin D deficiency, insufficiency and sufficiency were noted in approximately a 

third each. Winter-born babies are at significant risk of deficiency, with only 15% achieving 

sufficient vitamin D status. The proportion of deficiency, when compared to white race (52.5% 

in winter, 8.4% in summer), was much higher in the Black, Asian and Minority Ethnic (BAME) 

(63.3%,  30.1%), mixed (62.2%,  36.2%) and other white (49.2%,  17.6%) ethnic groups. 

Season of birth, ethnicity, gestation at birth and maternal age contributed to 24% of the 

variation in newborn 25OHD concentrations.  

The main strength of this study is the large, ethnically diverse newborn cohort from a high 

latitude country with complete data on birth weight, gestation, maternal age and ethnicity. Very 

few studies have assessed 25OHD on DBS obtained from NBS.[28-30] To our best knowledge, 

our study is the first to ascertain prevalence of neonatal vitamin D deficiency in non-archived 

DBS, eliminating the concern of 25OHD degradation with prolonged storage.[31] The 

potential limitation is the lack of data on maternal and early infant supplementation, especially 

since compliance with national policy on vitamin D supplementation is known to be poor.[15] 

In the UK, the uptakes of both infant,[13,32] and antenatal vitamin supplements,[10] remain 

<20%.  

The high prevalence of vitamin D deficiency and insufficiency in our multi-ethnic newborn 

cohort, of 70%, is comparable to the pooled global prevalence of 75%.[33] Other studies at 

comparable latitude also report mean/median 25OHD concentrations below 50 nmol/L.[34] 

We report a higher prevalence of deficiency (52.9% in winter and 18.4% in summer) compared 

to the pooled European data (19.7-31.8% in winter and 5.7-15.3% in summer),[35] which is 

explained by the underrepresentation of ethnic minority children and the absence of newborn 

data in the latter.[35] The well-recognised seasonal,[35,36] and ethnic,[37,38] variations in 
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25OHD concentrations were confirmed. Most importantly, the plasma equivalent 25OHD 

concentrations derived from DBS reported here are comparable to other reports from 

DBS,[28,39] and also cord serum.[29,40] These agreements across studies confirm the utility 

of blood spot assays in accurately determining the vitamin D status of the newborn.  

The major determinant of newborn 25OHD concentration was the season of birth as previously 

reported.[39] All ethnicities, except white British and mixed white and Asian, contributed to 

low vitamin D status. Although vitamin D status in the UK South Asian community has been 

widely studied, [38,41-44] other vulnerable ethnic groups such as the black and mixed race 

remain less well studied, despite the high incidence of rickets in these groups.[1,45-47] The 

mean 25OHD concentration in pre-term babies was around 5 nmol/L higher than the term 

babies, likely owing to the use of supplements or pre-term formula feeds. No significant effect 

on 25OHD concentrations was observed in the post-term babies, similar to previous 

reports.[30,48] Low socio-economic status has been linked to vitamin D deficiency and 

insufficiency in children.[49-51] Socio-economic status, determined by IMD decile, was 

independently associated with 25OHD concentrations but did not contribute to the final model 

confirming the predominant role of sunlight and skin colour.  

Our findings have profound implications for public health policies in high latitude countries. 

Whilst sunlight exposure is a modifiable factor, the lack of UVB at high latitude is hardly 

modifiable,[52] necessitating robust supplementation and/or food fortification policies. A high 

proportion of deficiency in our cohort suggests shortfalls in the current UK supplementation 

policy,[53] likely owing to lack of clarity and inconsistency among UK policy makers. 

Pregnant women were classed as high risk and recommended 400 IU (10 g)/day supplement 

in the letter issued by the UK Chief Medical Officers in 2012,[54] and the National Institute 

for Health and care excellence (NICE) guidance in 2014.[14] In addition to the general 

recommendation above, The Royal College of Obstetricians and Gynaecologists specifically 
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recommend a higher dose of 1000 IU (25g)/day in dark skinned individuals.[15] Conversely, 

the most recent Public Health England guidance in 2016,[55] which was based on the Scientific 

Advisory Committee on Nutrition report on vitamin D and health,[7] did not make any specific 

supplement recommendations for pregnant women or regard them as high risk. We have 

previously also elaborated on the complexities of  infant supplementation policy in the UK.[56] 

Clarity in public health policies and a unified approach is crucial for its success.  

Adult vitamin D requirements have been extended to pregnant women due to the lack of 

pregnancy-specific data. Since these requirements cannot be met through diet, the IOM,[27] 

and global consensus for prevention of rickets,[9] recommend 600 IU (15g)/day supplements 

in pregnancy. A study of pregnant women in Denmark (n=107) reported cord blood 25OHD 

concentrations <50 nmol/L in 61% of newborns (of whom 15% had concentrations <25 

nmol/L) despite the use of 400 IU/day supplements in 79% of the women.[57] Antenatal 

supplementation should aim at preventing vitamin D deficiency in the newborn, bearing in 

mind that 25OHD concentrations in the neonate are estimated to be 50-70% of maternal 

concentrations.[57] A supplementation trial of pregnant white women (n=144) residing in 

northern latitude reported that 1200 IU(30g)/day supplement achieved sufficiency (25OHD 

≥50 nmol/L) in almost all women and prevented deficiency (cord 25OHD <30 nmol/L) in 95% 

of neonates.[34] Similar dose-finding studies in ethnic minority population are warranted. 

Supplement use in the UK population is low,[58] as seen in the case of folic acid 

supplementation in pregnancy.[59] Only 27% of women aged 19-64 years reported taking 

vitamin D supplements in the National Diet and Nutrition Survey.[58] In a longitudinal study 

of pregnant women in Southampton, UK, only 15% (n=30/198) reported using vitamin D 

supplements.[10] Uptake of infant supplementation is equally poor,[13,32] and unsurprisingly 

the unsupplemented newborn with low reserve, in particular from BAME brackground, likely 

goes on to develop hypocalcaemic complications and rickets.[1,45,46,60-63] Countries with 
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poor adherence to supplements,[13,62] and/or a high proportion of immigrant population, 

[56,64,65] have therefore seen a resurgence in nutritional rickets.[66,67] A 90-166 fold higher 

incidence of rickets seen in the UK children of BAME background, compared to their white 

counterparts,[46,68] is consistent with our observation of lower 25OHD concentrations seen at 

birth reported here and the lack of rigid infant supplementation system.[56] Universal 

supplementation (irrespective of feeding mode) and greater adherence (>90%) to infant 

supplementation can mitigate these risks as demonstrated by a Danish study (n=108) where the 

proportion of newborns with 25OHD concentrations <50 nmol/L decreased from 61% at birth 

to 4% at 4 months; with none having concentrations below 25 nmol/L.[57] Universal 

supplementation of pregnant women (irrespective of risk factors) also enhances adherence.[69] 

Clear operational policies,[14] and national monitoring of supplement uptake,[13] are 

warranted in the UK. Additionally, measuring 25OHD on DBS samples from NBS at regular 

intervals could be considered to monitor the effect of these interventions.   

Vitamin D deficiency in the UK BAME residents and immigrants is a long-standing problem 

and considered a symbol of health inequality.[56] We have previously elaborated on the 

UK’s progression from eradication of rickets through rationing, food fortification and 

supplementation of infants and pregnant women with cod-liver oil during world war 2 to its 

subsequent resurgence ever since the 1960s.[56] The higher prevalence of deficiency in the 

UK population is in stark contrast to reports from Nordic countries where supplement use is 

generally high,[70,71] and/or widespread fortification is adopted.[70] Finland serves as a prime 

example demonstrating a steady improvement in population 25OHD status [from 48 nmol/L in 

2000 (n=6134) to 65 nmol/L in 2011 (n=4051)] following systematic fortification of fluid milk 

products (0.5 g/ 100 g in 2003, doubled to 1g/ 100 g in 2010) and increased supplement use 

(11% to 41%).[72] Even among non-supplement users, 91% achieved sufficiency.[72] The 

2011 Finnish health survey reported high-normal 25OHD concentrations [>125 nmol/L (>50 
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µg/L)] in only 0.2% (n=8/4051), where the majority (n=7/8) were supplement users.[72] The 

prevalence of maternal and newborn vitamin D deficiency in Finland has reduced from 60-

70% in 2007 (n=125) to 1% in 2016 (n=584) due to enhanced supplement use (increase from 

40 to 80%) and consumption of fortified food.[73] Hence, a combined approach with 

fortification and supplementation of high risk groups is the cost-effective way forward for the 

UK,[74] to improve population health and eliminate social inequalities.[75]  Urgent review of 

the UK public health policies relating to vitamin D supplementation and their implementation, 

[56,65] is warranted to address the preventable health consequences of vitamin D deficiency 

in infancy. 

 

CONCLUSIONS 
 

Vitamin D deficiency is highly prevalent in all babies born in the UK, especially in winter 

months. The high proportion of dark-skinned infants with low vitamin D status, demonstrates 

the failure of the UK’s national antenatal supplementation programme in protecting these 

ethnic groups, who are well recognised to be at a high risk of vitamin D deficiency. Evidently, 

the combination of poor antenatal and infant supplementation has resulted in the resurgence of 

the “English disease” in the UK, where hypocalcaemic seizures and rickets in dark-skinned 

infants are not a rarity. We conclude that vitamin D supplementation programmes should be 

delivered and monitored like immunisation programmes, and food fortification implemented. 

The successful example of the effect of vitamin D food fortification in other high latitude 

countries, such as Finland, should guide the design of a national fortification programme. We 

demonstrate that analysis of DBS 25OHD can serve as a key performance indicator for the 

success of antenatal supplementation programmes and thereby inform preventative public 

health interventions. 
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