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Abstract 22 

 23 
Prior systematic review on the efficacy of halofuginone treatment to prevent or treat cryptosporidiosis 24 

in bovine calves was inconclusive.  We undertook an updated synthesis and meta-analyses on key 25 

outcomes for treatment of calves with halofuginone. 26 

 27 

Evaluated outcomes were oocyst shedding, diarrhea, mortality and weight gain.  Experiments had to 28 

describe results for same age animals in contemporary arms.  Most doses were 100 to 150 mcg/kg/day.  29 

Results were subgrouped by study design, experiments with lowest risk of bias and lack of industry 30 

funding. 31 

 32 

Eighteen articles were found that described 25 experiments.  Most evidence came from randomized 33 

controlled trials in Europe.  Significantly lower incidence of oocyst shedding, diarrhea burden and 34 

mortality was reported when treatment started before calves were 5 days old.  Most studies reported 35 

on outcomes for animals up to at least 28 days old.  Publication bias was possible in all outcomes and 36 

seemed especially likely for diarrhea outcomes.  Beneficial results when halofuginone treatment was 37 

initiated in calves older than 5 days were also found. 38 

 39 

Prophylactic treatment to prevent cryptosporidiosis is effective in preventing multiple negative 40 

outcomes and is beneficial to calf health and will result in a reduction of environmental contamination 41 

by Cryptosporidium oocysts.   42 

 43 
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Introduction 49 

 50 

Background 51 

Cryptosporidium parvum is a common protozoan parasite in cattle.  It is a frequently diagnosed cause of 52 

acute diarrhea (scour) in neonatal calves worldwide leading to delayed growth, considerable morbidity 53 

and potentially death (Thomson et al., 2017; Manzoor et al., 2018).  Young calves (under six weeks old) 54 

are at greatest risk of both catching and spreading pathogenic infections (Silverlås et al., 2009; Wells and 55 

Thomson, 2014).  Economic costs in Great Britain were estimated in 2014 to be £100-£200 per infected 56 

calf (Shaw, 2014), arising mostly from veterinary treatment, need for higher nutritional inputs and 57 

reduced weight gain.  A more recent study of beef calves in Scotland found that calves with severe 58 

cryptosporidiosis in the first 16 days of life were on average 34Kg lighter aged 6 months old, compared 59 

to calves in the same housing who had had no clinical signs of the disease (Shaw et al., 2020).  The 60 

weight difference between the two groups was statistically significant and the authors calculated that 61 

the 34Kg in weight difference would account for a loss of £128/head based on market prices of cattle in 62 

2018 (Shaw et al., 2020).  Bovine cryptosporidiosis is widespread in Europe and prevalence of C. parvum 63 

in stool samples of European cattle herds were reported to range from 13-100% (Imre and Dărăbus, 64 

2011).  Cattle are recognised as an especially important reservoir for C. parvum, which can spread from 65 

cattle to other animals or to humans through many routes (Hunter and Thompson, 2005; Wells and 66 

Thomson, 2014; Brankston et al., 2018).  Higher infectious doses are linked to more severe disease and 67 

potentially higher losses (Zambriski et al., 2013).  Globally, infections from C. parvum and other 68 

Cryptosporidium species (eg. C. hominis) are considered important contributors to combined total 69 

human deaths from diarrheal illness (Vermeulen et al., 2017).  Large outbreaks in humans (affecting 70 

dozens or even hundreds of people) from pathogenic C. parvum infection regularly occur in Europe 71 

(Cacciò and Chalmers, 2016).  Control of C. parvum is therefore highly desirable for good animal welfare, 72 

to reduce risks to human health and to limit economic losses in affected industries.   73 

 74 

An evidence review written for livestock managers (Wells and Thomson, 2014) reiterated that 75 

prophylactic and treatment options for C. parvum infection are limited.  One of the few products widely 76 

licensed for the treatment of calves is halofuginone lactate, marketed as Halocur®.   Halofuginone (HFG) 77 

is a coccidiostat that was identified as having promise for cryptosporidiosis prophylaxis and treatment in 78 

calves by the early 1990s (Villacorta et al., 1991).  HFG is most often administered as halofuginone 79 

lactate.  It is a synthetic biological agent derived from the alkaloid Febrifugine isolated from roots and 80 



leaves of Dichroa febrifuga plants (Jang et al., 1948; Pines and Spector, 2015).  Halofuginone targets 81 

several cell processes, including ATP-dependent inhibition of tRNA synthetase (Keller et al., 2012; Zhou 82 

et al., 2013).  The piperidine ring on HFG binds to both the Proline-AMP binding pocket, stabilised by the 83 

quinazolinone group which mimics the terminal adenosine of tRNA.  Subsequently the biological activity 84 

of tRNA synthetase is inhibited, resulting in arrested cell growth and reduced viability (Francklyn and 85 

Mullen, 2019).  In vitro work by McDonald et al. (1990) found that HFG lactate suppressed 90% of C. 86 

parvum growth using 4g/ml.   In vitro studies of HFG lactate using C. parvum infected HCT-8 cells, by 87 

Shahiduzzaman et al. (2009) found that on average, 98.05% of sporozoites were inhibited using 25M at 88 

27h after exposure.  Experiments in Wistar rats demonstrated HFG lactate promoted metalloproteinase 89 

(MMP) -3 and -13, mediated by activation of p38 mitogen-activated protein kinase (MAPK) and nuclear 90 

factor NFB, in turn inhibiting T-helper cell-17 activity (Popov et al., 2006). This enables the extracellular 91 

matrix to be broken down (Kamberov et al., 2011), reducing fibrosis in the liver and other organs in 92 

mammalian systems.  93 

  94 

 95 

A prior systematic review on the efficacy of halofuginone lactate to prevent or reduce symptoms caused 96 

by C. parvum infection was published 11 years ago (Silverlås et al., 2009).  The meta-analyses in this 97 

previous review were based on only 7 comparison groups in 6 publications and concluded that evidence 98 

was inadequate and too heterogenous to say if halofuginone (HFG) products were effective.  The 99 

authors were concerned that the evidence base was limited (just 3-4 studies for most outcomes), 100 

heavily influenced by industry funding and suffered from publication bias.  Publication bias occurs when 101 

researchers decline to publish results due to believing they are not important due to no findings of 102 

significant assocation (Deeks et al., 2011).  Research may be unlikely to proceed to publication after 103 

insigificant findings when the study was at least part-funded by an intervention sponsor.  Longer 104 

duration studies (with outcomes beyond 3 weeks of age) were also few in the 2009 synthesis.  Silverlås 105 

et al. (2009) recommended that HFG should only be used in severe cases of existing disease, not least to 106 

prevent development of drug resistance.  Structured reviews to assess the efficacy of HFG for 107 

prevention or treatment have not been published since, although many trials since 2008 have been 108 

published.  The aim of our study was to investigate the effects of HFG treatment using updated trial data 109 

(published up until early 2020) on four outcomes: diarrheal intensity, oocyst shedding intensity, 110 

mortality and weight gain when used as prophylactic or therapeutic treatment against calf 111 

cryptosporidiosis. This was done by performing a systematic review and meta-analysis of available data. 112 



 113 

Materials and Methods 114 

 115 

PRISMA literature search reporting guidelines were followed (Toews, 2017).  The search strategy is 116 

available in Supplemental Material 1. 117 

 118 

Population and other inclusion and exclusion criteria 119 

 120 

The population of interest were cows (Bos taurus).  Articles on humans, related species such as buffalo 121 

or yaks and other animals were ineligible.  Studies on hybrids of cattle with other animals (eg., beefalo) 122 

or mixed species herds (of Bos taurus mixed with others) were considered individually, in case they 123 

provided sufficient cattle-specific information.  Selected studies had to address outcomes related to C. 124 

parvum infection.  C. parvum infection in the animals was based on clinical diagnosis.  Other 125 

Cryptosporidium spp. infections were excluded because evidence that other Cryptosporidium species are 126 

likely to be pathogenic in calves is weak (Wells and Thomson, 2014; Thomson et al., 2017; Åberg et al., 127 

2020). 128 

 129 

Intervention 130 

The intervention had to be halofuginone treatment, in the form of halofuginone lactate or halofuginone 131 

hydrobromide, in an attempt to reduce incidence or severity of cryptosporidiosis in young cows.  132 

Interventions could be either relatively prophylactic because very early in life (before 5 days old) or 133 

relatively late and therefore more likely to be treatment for existing or developing symptoms (age 5 134 

days +).  The vast majority of calves suffering from cryptosporidiosis are under 3-4 weeks old (Castro-135 

Hermida et al., 2002; Wells and Thomson, 2014). The threshold of five days was to distinguish 136 

prophylaxis from treatment and was chosen to reflect a likely point of onset of symptoms, typically on 137 

day 4 or 5 of life (Erbe, 2010).    138 

 139 

Study design and comparators 140 

Only deliberate experiments with concurrent comparison animals were included.  Pre-post and case-141 

control designs were not eligible.  There were no limits on location or publication date. Studies were 142 



excluded if not available in a language known to the authors (English, German, Spanish or French) or if the 143 

article could not be easily translated into English using Google Translate.  Articles without abstracts or 144 

available full text were excluded. 145 

 146 

 147 

Outcomes of experiments  148 

To be eligible, studies had to address at least one of these outcomes: 149 

  150 

• Clinically detectable infection in (shedding from) live animals, of C. parvum.   151 

• Fecal scoring consistency: usually on scales of 1-3, 0-3, 0-4 etc., to describe severity of diarrhea 152 

• Measures of weight gain 153 

• Mortality  154 

 155 

 156 

Reference Sources 157 

The search was mostly within peer-review research.  Literature databases were chosen following 158 

recommendations about the most comprehensive bibliographic sources for veterinary science research 159 

(Grindlay et al., 2012).  Searched databases were: Scopus, CAB International abstracts, Pubmed and 160 

Embase.  A limited grey literature search was undertaken of three government databases via websites:  161 

The UK Dept for Food and Rural Affairs, The US Dept. of Agriculture library (at Cornell University) and 162 

The European Commission, Agricultural and Rural Development section.  Conference proceedings were 163 

not searched. 164 

 165 

Search Strategy 166 

From preliminary literature scoping, we selected two exemplar articles that met our inclusion criteria 167 

(De Waele et al., 2010; Trotz-Williams et al., 2011).  The search terms were developed and validated by 168 

making sure searching using the below terms found both exemplar articles with a minimum of 169 

extraneous (irrelevant search return results).  Within the peer-review bibliographic databases, we 170 

searched title/abstract/keywords: 171 

 172 

At least one of (Cryptosporidium , C. parvum, cryptosporidiosis) 173 



AND 174 

At least one of (calf, cattle, cow, bull, dam, dairy, beef, herd, calves)  175 

 176 

Grey literature search terms were cryptosporidium, cryptosporidiosis and parvum.  Some especially 177 

thorough and recent review papers about cryptosporidiosis (Silverlås et al., 2009; Johnson et al., 2011; 178 

Taylor and Bartram, 2012; Olias et al., 2018; Beaver et al., 2019) were checked for eligible articles 179 

missed by our search strategy.  Forward and backward citation searches of included articles were not 180 

done to look for additional studies. 181 

 182 

Study selection, quality assessment and data extraction 183 

After de-duplication, titles and abstracts were independently screened by two investigators (JB and 184 

CCH).  Items were chosen for full text review or excluded.  Selection disagreements were resolved by 185 

discussion or on the verdict of a third reviewer (PRH).  Full texts were obtained where possible.  186 

Decisions about final inclusion or exclusion were made after full text review by one or more authors. 187 

 188 

Quality Assessment 189 

The reliability and consistency of the original experimental information was assessed using a 190 

customised-quality assessment form.  Focused questions were written to assess quality using consistent 191 

decision criteria. The standarised extraction form and quality assessment decision criteria are in 192 

Supplemental Material 2.  Full text review, data extraction and quality assessment were undertaken by a 193 

single author (either JB or CCH).  Low risk studies were deemed to be those who had low risk of bias 194 

assigned for at least 5 of the 7 possible quality checklist questions.  Trial quality is shown by colour 195 

coding (green = low risk of bias, yellow = unclear, red = high risk of bias).  Because C. parvum infection in 196 

the animals was based on clinical diagnosis, we report narratively what the diagnostic or clinical 197 

evidence was for C. parvum infection among the calves in each study. 198 

 199 

Reporting and Synthesis 200 

Meta-analysis was with random-effects due to expected high heterogeneity, using REVMAN version 5.3 201 

(Deeks et al., 2011).  Meta-analyses are described narratively with reference to forest plots.  Studies 202 

were all either randomized controlled trials (RCT) or controlled clinical trials (CCT) (Deeks et al., 2011).  203 

The advantage of RCTs is that animals are assigned randomly to treatment/not treatment, which means 204 



that any co-variates should be randomly distributed and are less likely to bias the experiment.  CCTs are 205 

structured similarly but animals were not randomized to treatment, which means that there are more 206 

likely to be unobserved confounders that explain any differences rather than the treatment regime.  The 207 

forest plots distinguish results by study design (RCT vs. CCT) for main results with combined study 208 

designs in subgroupings.  Significance level was set at p ≤ 0.05.  Funnel plots were generated and visually 209 

examined for evidence of publication bias, such as missing small trials with negative results. Funnel plots 210 

were only generated where at least ten studies provided relevant data (either/both CCTs or RCTs) for 211 

any outcome stratified by early/late treatment phase as described below.  Funnel plots are discussed 212 

narratively in this manuscript and provided in graphic format in Supplemental Material 3. 213 

 214 

How to best pool extracted data depended on the specific outcome.  Mortality was simple: of the 215 

animals that started the trials in each arm, how many died during the monitoring period could be input 216 

to calculate pooled risk ratios.  However, data for any amount (or severity) of oocyst shedding or 217 

diarrhea incidence were reported using a variety of scales.  Shedding of oocysts was reported (for 218 

instance) as prevalence of animals with any detected oocysts, prevalence of animals shedding above a 219 

certain threshold or by average score for the arm on specific dates (scoring from 0 to higher levels, 220 

where higher level numbers meant more oocysts detected).  Because all these forms of reporting were 221 

ways of comparing oocyst detection between groups, we pooled these outcomes into a combined 222 

outcome which we describe under the umbrella term “oocyst shedding”.  Fecal consistency was typically 223 

reported on multi-level scales (from 0 to 2, 3 or 4, where higher levels were more liquid). Weight might 224 

be reported as average daily weight gain, total weight at trial end, or weight change since birth.  These 225 

diverse metrics were measuring the same outcomes but on different scales.  They were therefore 226 

compared in meta-analysis using standard mean differences (SMDs).  SMDs standardize for differences 227 

between arms rather than rely on the same instrument being used to measure an outcome in all trials. 228 

Lower SMD was a better outcome for calves with regard to diarrhea or oocyst shedding but higher SMD 229 

value (above 0) was the preferred outcome with respect to weight gain.  However, rarely was variance 230 

reported with either oocyst counts or diarrhea outcomes.  These outcomes were usually presented as 231 

simple averages without variance at single points in the monitoring period.  For those studies, where an 232 

entire-period average and standard deviation value was unavailable, the mean period value was used 233 

with standard deviations calculated from the daily averages.  Eg., if the only fecal scores supplied for a 234 

group of animals for just 3 dates during the monitoring period were daily averages from three scores = 235 

1, 2, 3, then the mean for the monitoring period was assigned to equal 2, sd 1.  For transparency, the 236 



data extracted and used to calculate the oocyst/diarrhea scores are available to view in Supplemental 237 

Material 4.  Comparing transformed scores was valid as the original metrics fundamentally measured 238 

the same outcome (eg. weight gain, intensity of oocyst shedding or diarrhea) and were compared 239 

between studies using SMDs.    240 

 241 

 242 

Stratification and subgrouping   243 

Exposure soon after birth for most animals means that most untreated calves are symptomatic by 5 days 244 

old (Erbe, 2010).  The pathology of disease is worse in young animals (Thomson et al., 2019); older 245 

infected animals may be more resilient and have less morbidity and mortality.  Results were therefore 246 

divided by whether treatment was relatively early (before calves were 5 days old), or relatively ‘late’: 247 

started when animals were age 5 days or older.  Where at least four eligible trials were available, we 248 

analysed subgroups for when studies were funded by known or likely sellers of HFG or rival products, or 249 

had low risk of bias.  For diarrhea only, we also tested whether the efficacy of HFG varied depending 250 

whether dams received vaccination against other pathogens that can cause diarrhea (eg., rotavirus, 251 

coronavirus or E. coli).  We did not subgroup by daily dosage or duration of treatment because these 252 

varied relatively little between trials (see Results, Table 1). 253 

 254 

RESULTS 255 

 256 

Figure 1 shows the study selection process.  There were 2475 mostly unique articles found in scientific 257 

databases.  There were no hits on the USDA library site and 14 hits on the EC site (none of which were 258 

eligible for inclusion).  On the UK DEFRA site there were 33 hits, most of which related to prevalence in 259 

humans or human disease risk factors; none related to disease prevention in cattle. 260 

 261 

Figure 1 Study Selection Procedure 262 
 263 

Twenty articles were selected for full text review.  Of these reports, one was unavailable.  One write-up 264 

(available as a thesis, (Erbe, 2010)) was added because it is published online and was mentioned in 265 

recent literature reviews.  Two articles were excluded after full text review leaving 18 articles that were 266 

included in this review.  Most articles described randomized controlled trials (RCTs), but some described 267 



experiments where it was not stated that animals had been assigned to treatment randomly (clinical 268 

controlled trials, CCTs).  Often, more than one experiment was documented within a single report.  269 

There were 15 RCT comparison arms described in eleven articles.  One article (Keidel and Daugschies, 270 

2013) described two RCTS and a CCT. Seven other articles described ten comparisons in CCTs.  Most 271 

reports addressed early treatment with HFG, but four articles described tests of HFG when treatment 272 

started mostly after 4 days of age.  Table 1 lists characteristics of the 18 included scientific articles.  273 

 274 

Four trials were assessed to have low risk of bias (De Waele et al., 2010; Trotz-Williams et al., 2011; Al 275 

Mawly et al., 2013; Vélez et al., 2019).  Diagnosis of C. parvum infection was mostly based on clinical 276 

presentation, sometimes informed by herd history.  Confirmation of Cryptosporidium spp. oocyst 277 

shedding was done in all studies using microscopy, sometimes enhanced with staining or 278 

immunofluorescence (see detection methods for each study listed in Table 1).  Two studies (Joachim et 279 

al., 2003; Keidel and Daugschies, 2013) also used an immunological test (ELISA) as a diagnosis aid. 280 

 281 

All reports described treatment on herds of Bos taurus (no mixed species or hybrids).  The vast majority 282 

were Holstein breed or Holstein crosses, from dairy herds. There was a mix of sexes.  Most (14/18) of 283 

the included articles described research that took place in Western Europe. 284 

 285 

 286 

Oocyst shedding, early treatment 287 

 288 

Most of the included trials provided data to compare how many animals in each arm shed oocysts. The 289 

meta-analysis results for early treatment (Figure 2) are consistent in both RCTs and CCTs in showing 290 

significantly less oocyst shedding in the treatment arms (both p < 0.01).  Similar levels of significance 291 

were retained even when the data were subgrouped to only include experiments at low risk of bias 292 

(SMD -0.45, 95%CI -0.61 to -0.30, I2=0%) or those not funded by industry (SMD -0.60, 95%CI -0.87 to -293 

0.32, I2=35%). The funnel plot (Figure S3.1 in Supplemental Material 3) for these trials showed outliers 294 

but not large imbalances either side of the mean effect. 295 

 296 
 297 
 298 
Figure 2.  Oocyst shedding following early (prophylactic) treatment with halofuginone products 299 
 300 
 301 



Oocyst shedding, late treatment 302 

Information about oocyst shedding among animals who started treatment at age 5 days+ was available 303 

in four studies.  All of the studies reported significantly less oocyst shedding by calves in experimental 304 

arms (p  ≤ 0.01; Figure 3).  None of these trials had low risk of bias and only one trial (Klein et al 2008) 305 

was clearly not funded by industry. 306 

 307 
 308 
 309 
 310 

Figure 3.  Oocyst shedding following late treatment with halofuginone products 311 

 312 
 313 
 314 

Diarrhea, early treatment 315 

Figure 4 shows outcomes after halofuginone lactate treatment initiation before 5 days old.  Diarrheal 316 

burden was significantly lower in treated animals in the main results grouped by study design (RCT or 317 

CCT) and among studies with stated funders that were not sponsored by industry (p ≤ 0.05 in all of 318 

these; Figure 4).  However, among the four trials at low risk of bias, the pooled effect SMD did not reach 319 

the significance threshold, SMD -0.39, 95%CI -0.93 to 0.15, I2 78%, P = 0.16.  Heterogeneity was 320 

relatively high in all of the comparisons (I2 > 50%), which indicates lack of consistency in results.   321 

 322 

The funnel plot of the early treatment, diarrhea intensity outcome after halofuginone lactate treatment 323 

(Supplemental Material Figure S3.2) is strongly not symmetrical and suggests there are many missing 324 

small studies with negative results (ie., suggesting publication bias).  The funnel plot highlights that the 325 

Trotz-Williams et al. (2011) study is an outlier; it was especially large and unusually found that untreated 326 

calves had less diarrhea. Another trial (Klein, 2008) was relatively large while finding little evidence of 327 

differences in diarrhea intensity between experimental arms. 328 

 329 

 330 

Diarrhea after early treatment, whether dams had any vaccinations against diarrheal 331 

diseases 332 

 333 
Halofuginone seemed most effective when the studies did not state that dams had relevant vaccinations 334 

(SMD -0.57, 95%CI -0.88 to -0.26, I2 47%, p = 0.0003; Figure 5).  However, strong efficacy was also 335 



observed when dams were reported to have had vaccinations relevant to diarrheal disease (second 336 

subgroup Figure 5).  These findings suggest that vaccination status of dams did not prevent diarrhea in 337 

very young calves, but this is caveated with the observation that the pooled data were highly 338 

heterogeneous and therefore inconsistent (I2 ≥ 47%). 339 

 340 
 341 
 342 
Figure 4.  Diarrhea intensity following early (prophylactic) treatment with halofuginone products, 343 

subgroups by industry funding and risk of bias 344 

 345 

 346 

Figure 5.  Diarrhea intensity following early (prophylactic) treatment with halofuginone products, 347 
subgroup by vaccination history of dam 348 
 349 
 350 
 351 

Diarrhea, treatment from 5 days of age 352 

Two RCTs reported data about diarrhea in calves following treatment initiation at age 5+ days.  The trial 353 

by Klein (2008) used halofuginone lactate while the trial by Lallemond et al. (2006) used halofuginone 354 

hydrobromide.  Both seemed at least somewhat effective at reducing the severity of diarrhea.  In pooled 355 

analysis, diarrheal intensity scores were significantly lower among treated animals (SMD -0.31, 95%CI -356 

0.59 to -0.02, p = 0.03; Figure 6).  Neither trial had low risk of bias, while only the trial by Klein (2008) 357 

was clearly not funded by industry. 358 

 359 
 360 

 361 

 362 
Figure 6.  Diarrhea intensity following late treatment (at age 5 days+) with halofuginone products 363 

 364 

 365 

 366 

Mortality, prophylactic (early) treatment 367 

Pooled risk ratios were calculated for mortality outcomes at end of monitoring periods and are 368 

presented in the chart below.  Mortality was significantly lower in treatment arms (RCT RR 0.64, 95%CI 369 

0.42 to 0.98, I2 0%;  CCT RR 0.24, 95%CI 0.12-0.49, I2 0%).  In Figure 7 a lower risk ratio is good (meaning 370 

fewer deaths in that arm).  Heterogeneity was low (low I2) which means that the results from different 371 



trials are fairly similar.  The evidence base is somewhat problematic in that many trials made no explicit 372 

mention whether there were deaths or not.  Many other trials were explicit in saying that no deaths 373 

occurred in neither arm. The data below are drawn from trials where at least one death occurred in 374 

either arm.   375 

 376 

Four studies provided data on five early-treatment comparisons with low risk of bias gave mortality 377 

data; the RR almost reached significance threshold, p = 0.07 (RR 0.64, 95%CI 0.40 to 1.03, I2 0%). The 378 

near significance is due to the results of a single large trial (Trotz-Williams et al., 2011).  The funnel plot 379 

(Supplemental Material Figure S3.3) did not suggest strong publication bias: effects were scattered 380 

equally around the mean difference and roughly in a triangular shape. 381 

 382 

 383 

 384 
Figure 7.  Mortality following early (mortality) treatment with halofuginone products 385 
 386 
 387 
 388 

Mortality, late treatment 389 

Only two trials, one RCT and one CCT, reported on mortality when HFG treatment was initiated to 390 

animals aged ≥ 5 days. Again, mortality was lower in the treatment arms although the risk ratios are less 391 

significant than they were for early treatment experiments (see Figure 8). 392 

 393 
 394 
 395 
 396 
Figure 8.  Mortality following late (age 5 days+) treatment with halofuginone products 397 

 398 

 399 

Weight gain 400 

Relatively few reports (n=7 providing data on 8 comparisons) gave information about weight gain 401 

differences between arms following halofuginone lactate treatment (Figure 9). Weight gain comparison 402 

data suitable for meta-analysis were only available when calves had been treated relatively early (no 403 

data suitable for meta-analysis were available for when treatment started at age 5 days plus).  These 404 

data suggest no weight gain benefits for animals in either arm.  RCT evidence for weight gain 405 

comparisons had SMD 0.13 (95%CI -0.29 to 0.54, I2 23%).  Heterogeneity was relatively moderate among 406 



CCTs or RCTs.  It is important to note that the weight comparisons mostly apply to surviving animals at 407 

the end of the monitoring periods. The monitoring periods were typically 28-33 days long (see Table 1 408 

for specific durations).   409 

 410 

There were no studies at low risk of bias with weight gain data.  Just two of the studies that reported on 411 

weight gain outcomes after halofuginone lactate treatment (Villacorta et al., 1991; Niine et al., 2018) 412 

were not sponsored by industry.  413 

 414 
 415 
 416 
 417 
Figure 9.  Weight gain following early (prophylactic) treatment with halofuginone products 418 
 419 
 420 
 421 

DISCUSSION 422 

 423 

This systematic review has shown that the prophylactic use of halofuginone products had significant 424 

effects on calf health and welfare as measured by reductions in oocyst shedding, diarrhea and calf 425 

mortality.  These findings were also upheld when the data were subdivided into randomised control 426 

treatment studies or clinical control treatment studies, showing that both study types provided 427 

consistent results on the efficacy of the prophylactic treatment of halofuginone.  This current systematic 428 

review found more conclusive results on these characteristics than the earlier systematic review by 429 

Silverlås et al. (2009).  This was possible because the earlier review could only use the data from 6 430 

publications detailing 7 comparison groups.  In contrast, our review had data available from 18 431 

publications involving 25 comparison groups.  Our review separated the trials into prophylactic and 432 

therapeutic use of halofuginone in order to reduce variation of between studies due to the different 433 

treatment regimes.  Our analysis offers more conclusive support for the efficacy of halofuginone as a 434 

prophylactic treatment against cryptosporidiosis.  The previous systematic review by Silverlås et al. 435 

(2009) also highlighted the effect of potential bias in the available publications due to involvement by 436 

the funders. This was addressed in the current review by excluding data from publications which had 437 

industry sponsors. Our analysis showed significant differences between groups of calves that received 438 

prophylactic halofuginone treatments and the control groups for two outcomes: oocyst shedding and 439 

severity of diarrhea.  The evidence for reduced mortality was not as conclusive but did approach 440 



significance (p=0.07).  A further characteristic that did not give conclusive results was the prophylactic 441 

effect of halofuginone treatment on weight gain.  This may be because only a few studies provided data 442 

suitable for pooled analysis.  For example, in an RCT using 60 animals and halofuginone bromide, 443 

Lallemond et al. (2006) reported nearly identical average daily weight gain in the period from 3 to 28 444 

days old (0.31 kg/day for intervention arm, 0.33 kg/day for controls). Variance units for average daily 445 

weight gain in respective groups were unclearly reported in this study which made calculation of an 446 

odds ratio unfeasible and the study had to be excluded from meta-analysis.  Weight gain as an outcome 447 

may be especially sensitive to severity of disease.  Shaw et al. (2020) found no significant difference in 448 

weight gain between severely infected calves and calves that showed mild or moderate symptoms of 449 

cryptosporidiosis, by the age of six months.  Calves grouped by symptom severity all had significantly 450 

lower weight gain by six months old than calves who had never presented symptoms of 451 

cryptosporidiosis.  This suggests that preventive treatment may need to result in no signs of 452 

cryptosporidiosis to achieve significant difference in weight gain results. 453 

 454 

This current review also analysed the available data to see if there is any evidence for the efficacy for 455 

halofuginone as a therapeutic treatment, as defined by an initiation of treatment date after calves were 456 

5 days of age.  Unfortunately, only four studies were available for these analyses.  The CCT and the RCT 457 

studies did show significant reductions in oocyst shedding by the treated calves but one of the concerns 458 

is that only one study (Klein, 2008) did not have funding from industry sponsors.  For the subsequent 459 

analyses (diarrhea and mortality) only 2 studies provided data and none had data on weight gain, 460 

preventing comprehensive investigations into the therapeutic use of halofuginone against 461 

cryptosporidiosis.  Since the review by Silverlås and colleagues was published in 2009, no new papers 462 

have been published with trials that describe the therapeutic use of halofuginone, leaving only four 463 

reports (Peeters et al., 1993; Lallemond et al., 2006; Klein, 2008; Pilarczyk et al., 2008).  Four studies are 464 

unlikely to be sufficient to provide robust conclusions.  Other areas that need more research that could 465 

not be addressed by the current review were the economic costs/benefits from using halofuginone and 466 

the efficacy of other treatments for cryptosporidiosis such as paromomycin-based products, which are 467 

licensed in some localities for use against cryptosporidiosis in neonatal calves.  The environmental effect 468 

of halofuginone treatment was also not assessed in this review but treatment may be beneficial for 469 

calves born subsequently, as halofuginone treatment resulted in reduced oocyst shedding.  There is 470 

evidence that increased infection doses lead to more morbidity due to cryptosporidiosis (Zambriski et 471 

al., 2013).  This can explain why farmers often see more severe problems with cryptosporidiosis in the 472 



latter stages of the calving period as parasite loads are amplified due to greater environmental 473 

contamination.   474 

 475 

One of the main limitations of halofuginone treatment is that it cannot be given to calves that have 476 

diarrhea for more than 24 hours or that are already weak or dehydrated (European Medicines Agency, 477 

2007).  This limits its suitability as a therapeutic treatment.  As a result farms may have to rely on a 478 

different treatment but still use halofuginone prophylactically for their other calves that do not show 479 

any symptoms of infection yet.  Another complication with halofuginone treatment is that it is important 480 

to get the dose correct for each calf.  HFG has been shown to have toxic side at twice the recommended 481 

dose, which means that calves should be weighed in order to determine the correct dose (European 482 

Medicines Agency, 2007).  483 

 484 

Almost all of the studies we found reported on use of halofuginone lactate rather than halofuginone 485 

hydrobromide.  This is probably because halofuginone hydrobromide (a derivative of halofuginone 486 

lactate) is less soluble.  HFG products are typically administered as part of liquid feeds to very young 487 

calves, so it is impractical to use a poorly soluble product.   488 

 489 

 490 

It is unlikely that C. parvum can be eliminated from an affected farm as infected animals shed oocysts in 491 

huge amounts while the infectious dose required for animals to contract cryptosporidiosis is very small 492 

(as low as 25 oocysts; Zambriski et al., 2013).  However, disease severity seems to be dependent on the 493 

infectious dose (Zambriski et al., 2013) which means that many farmers have looked at livestock 494 

management strategies to reduce transmission and morbidity. Strategies involve improved hygiene, 495 

welfare, segregation and nutritional measures (Wells and Thomson, 2014).  Hygiene encompasses 496 

maintenance of rigorous cleaning and hygiene routines for both pens and animals with products that are 497 

efficacious for use against Cryptosporidium.  Deep straw bedding may increase cleanliness of the animals 498 

and reduce contact with contaminated faeces.  Bedding should be kept as dry as possible.  Disinfection 499 

(buckets or pans) should be available to staff at entrances to calf sheds.  Symptomatic treatment 500 

includes keeping animals warm and hydrated with rehydration with electrolytes if necessary.  Healthy 501 

animals should be attended before sick animals as part of daily husbandry routines.  Whether higher 502 

nutritional planes can make calves more resistant to morbidity from cryptosporidiosis has been tested in 503 



other experiments without conclusive advantages for any specific nutritional strategy (Meganck et al., 504 

2014; Wells and Thomson, 2014; Vélez et al., 2019; Brainard et al., 2020a).   505 

 506 

Segregation strategies encompass keeping healthy and sick animals separate as well as segregation by 507 

age groups.  Young cows are the most at-risk group for developing illness from C. parvum.  Sick calves 508 

should be quarantined as soon as possible after scouring begins and up to seven days after scouring 509 

ends.  Additionally, as older calves/cows can still shed C. parvum oocysts (Thomson et al., 2019), it may 510 

be best to keep older and pre-weaned animals separate.   Individual housing of neonatal dairy calves 511 

does not seem to reduce calf to calf transmission, however (Brainard et al., 2020b). Within Europe the 512 

possible management strategies are also governed by EU-side welfare regulations that ban the use of 513 

‘veal crates’ for example (European Union 2008).  Such confinement in contrast to use of large stalls that 514 

animals can move freely in was observed to increase morbidity due to cryptosporidiosis  (Graef et al., 515 

2018). 516 

 517 

This systematic review highlights the need for more targeted research of treatments against 518 

cryptosporidiosis.  In particular, evidence about the therapeutic use of halofuginone as a treatment for 519 

cryptosporidiosis is available from relatively few publications.  More studies (either therapeutic or 520 

prophylactic in design) not sponsored by industry would be preferable.  This review also shows that 521 

there is a need for more data on the economic cost/benefit of halofuginone for farmers as well as better 522 

measures for evaluating the welfare benefit for the treated animals.  The most reliable data available to 523 

date focused on oocyst counts and faecal consistency while fewer data on mortality and weight gain 524 

were available.  Therefore, future drug treatment trials should be better designed to address these 525 

outcomes. 526 

 527 

CONCLUSION 528 

This systematic review has shown that the evidence in the scientific literature is getting stronger in 529 

support of the prophylactic treatment of calves with halofuginone because it has a beneficial impact on 530 

their health as it reduces diarrhea, oocyst shedding and mortality.  The prophylactic use of halofuginone, 531 

as per manufacturer instructions at 12-48 hours old, on farms with confirmed cryptosporidiosis can be 532 

justified as it reduces morbidity and mortality.  Subgrouping by sponsor or studies with lowest risk of 533 

bias does not change the broad conclusion that HFG is protective when administered early.  However, 534 



no conclusions could be reached that prophylactic HFG treatment resulted to higher weight gain among 535 

surviving animals.  In addition, there is evidence of publication bias in the results and a dearth of utility 536 

calculations and reporting on adverse events, which means that it is difficult to establish that the 537 

treatment has economic benefits.   538 

 539 

HFG is less effective in calves if treatment commences after bovine calves are 5 days old, although 540 

reduced oocyst shedding and diarrhea intensity are still reduced by relatively late treatment.  Evidence 541 

is quite limited about whether HFG is effective at reducing mortality when given late.  No clear evidence 542 

was found whether late-treatment HFG affects weight gain.  There is also inadequate evidence about 543 

whether other treatments (not halofuginone based) might be equally or even more effective (Brainard 544 

et al., 2020a) for improving important outcomes when given prophylactically or to symptomatic animals. 545 

Limitations of HFG use due to toxicity means that alternative products may have to be used, such as 546 

Paromomycin, which were not evaluated within this systematic review. 547 

 548 
  549 
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Table 1.  Included article characteristics 725 
 726 

 
 

Article 
 

 
Dose* ; 
Industry 

sponsored? 

 
Study design 

Location 

 
Calf age (days) 

when HFG 
administered 

Oldest age 
data used in 

meta-analysis; 
Detection 
method 

 
 

Outcomes used in meta-
analysis 

Al Mawly et al. 
(2013) 

8 ml Halocur®/d 
Yes 

RCT 
New Zealand 

0-6 20 days 
fluor. microsc. 

Diarrhea, Mortality, 
Oocysts  

De Waele et al. 
(2010) 

100 µg/kg/d 
No 

RCT 
Ireland 

0-6 28 days 
fluor. microsc. 

Diarrhea, Mortality, 
Oocysts 

Erbe (2010) 8 ml Halocur®/d 
Yes 

RCT 
Germany 

0-6 22+ days 
stain microsc. 

Diarrhea, Oocysts, 
Weight 

Jarvie et al. 
(2005) 

5 mg/d 
Yes 

RCT 
Canada 

0-6 26+ days 
microscopy 

Diarrhea, Mortality, 
Oocysts, Weight 

Joachim et al. 
(2003) 

2 ml Halocur®/ 

10 kg 

No 

RCT 
Germany 

0-6 21 days 
Stain microsc. 

& ELISA 

Diarrhea, Mortality, 
Oocysts 

Keidel and 
Daugschies 

(2013) 

120 µg/kg/d 
Unclear 

RCT, CCT 
Germany 

1-7 20 days 
stain microsc. 
& ELISA/PCR 

Diarrhea, Oocysts 

Klein (2008) 100 µg/kg/d 
No 

RCT 
Czech Rep. 

1-7 and 
8-16 

27 days 
microscopy 

Diarrhea, Oocysts 

Lallemond et al. 
(2006) 

100 µg/kg/d 
Yes 

RCT 
Canada 

8-14 34 days 
microscopy 

Diarrhea, Oocysts, 
Mortality, Weight † 

Lefay et al. 
(2001) 

120 µg/kg/d 
Yes 

RCT 
France 

1-7 22 days 
microscopy 

Diarrhea, Mortality 

Martins et al. 
(2007) 

120μg/Kg/day 
Unclear 

CCT 
Portugal 

0/1 to 6/7 14 days 
stain microsc. 

Oocysts 

Naciri et al. 
(1993) 

120 µg/kg/d 
Unclear 

CCT 
Belgium 

2-8 31 days 
microscopy 

Oocysts, Mortality, 
Weight 

Niine et al. 
(2018) 

Unclear dose 
No 

CCT 
Estonia 

1-7 or 3-9 47 days 
fluor. microsc. 

Mortality, Oocysts, 
Weight 

Peeters et al. 
(1993) 

120 µg/kg/d 
Yes 

CCT 
France 

2-8 and 5-11 29 and 53 days 
microscopy 

Mortality, Oocysts 

Pilarczyk et al. 
(2008) 

2 ml Halocur ®/10 

kg 

Unclear 

CCT 
Germany 

0-6 and 
variable to +6 

d 

18 days 
Stain microsc. 

Mortality, Oocysts 

Trotz-Williams et 
al. (2011) 

100 µg/kg/d 
Yes 

RCT 
Canada 

0-6 21 days 
microscopy 

Diarrhea, Mortality, 
Oocysts 

Vélez et al. 
(2019) 

8 or 12 ml/d 
Yes** 

CCT 
Germany 

0-6 28+ days 
stain microsc. 

Diarrhea, Mortality, 
Oocysts, Weight 

Villacorta et al. 
(1991) 

125 µg/kg/d 
No 

CCT 
Spain 

1-7 28 days 
Stain microsc. 

Oocysts, Weight 

Wiedemann et 
al. (2012) 

100 µg/kg/d 
Yes 

CCT 
Germany 

1-7 35 days 
stain microsc. 

Diarrhea, Oocysts, 
Weight 

 727 



Notes for Table 1: Studies were deemed to be sponsored by industry if they stated an HFG distributor 728 
was their funder, a co-author worked for a pharmaceutical company that was possibly a distributor of 729 
HFG or potential rival products for controlling cryptosporidium (Intervet, Delimax, Roussel-Uclaf) or if 730 
authors stated that a company had “supplied” the HFG.  Sponsor was deemed to be “unclear” if no 731 
funding statement was made. *Some trials had arms receiving other doses; results from other doses 732 
were not used in our pooling.  **Vélez et al. 2019 was funded by commercial developer of a potential 733 
rival product to HFG that was also trialed in a third arm not summarized in this review.  † Weight was 734 
reported with unclear variance in Lallemond et al. (2006) so not suitable for pooling in meta-analysis.  735 
Abbreviations: CCT = controlled clinical trial; ELISA = enzyme linked immunoassay; fluor = fluorescent or 736 
immunofluorescence enhanced microscopy; microsc = microscopy; PCR = polymerase chain reaction 737 
(test); RCT = randomized controlled trial. 738 
 739 


