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1  | INTRODUCTION

Spatial variation in the environment is a key force driving local adap‐
tation and population divergence (Hereford, 2009). There is increas‐
ing evidence that fine‐scale changes in environmental conditions can 
result in variation in selection pressures over small geographic dis‐
tances (Garroway et al., 2013; Langin et al., 2015; Richardson, Urban, 

Bolnick, & Skelly, 2014) and that fine‐scale adaptation can persist 
despite the homogenizing effects of gene flow (e.g., Lenormand, 
2002). Adaptation to spatially heterogeneous environmental condi‐
tions can also facilitate balancing selection, where genetic variation 
is maintained within and between populations due to differential se‐
lection on genetic variants (Bockelmann, Reusch, Bijlsma, & Bakker, 
2003; Levene, 1953; Schmidt, Bertness, & Rand, 2000).
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Abstract
Environmental conditions play a major role in shaping the spatial distributions of 
pathogens, which in turn can drive local adaptation and divergence in host genetic di‐
versity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, 
impacting survival and fitness of hosts, with geographic distributions largely deter‐
mined by habitat suitability for their insect vectors. Here, we have tested whether 
patterns of fine‐scale local adaptation to malaria are replicated across discrete, eco‐
logically differing island populations of Berthelot's pipits Anthus berthelotii. We se‐
quenced TLR4, an innate immunity gene that is potentially under positive selection 
in Berthelot's pipits, and two SNPs previously identified as being associated with 
malaria infection in a genome‐wide association study (GWAS) in Berthelot's pipits 
in the Canary Islands. We determined the environmental predictors of malaria in‐
fection, using these to estimate variation in malaria risk on Porto Santo, and found 
some congruence with previously identified environmental risk factors on Tenerife. 
We also found a negative association between malaria infection and a TLR4 variant 
in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria 
risk in Porto Santo, but in the opposite direction to that found in the Canary Islands 
GWAS. Together, these findings suggest that disease‐driven local adaptation may be 
an important factor in shaping variation among island populations.
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Pathogens are major drivers of evolution, exerting strong selec‐
tive pressures on their hosts (Fumagalli et al., 2011). The high ge‐
netic variation found at many genes involved in immune processes is 
thought to be maintained by pathogen‐mediated balancing selection 
(Bernatchez & Landry, 2003; Ferrer‐Admetlla et al., 2008; Spurgin & 
Richardson, 2010). Spatial variation in pathogen‐mediated selection 
has the potential to drive fine‐scale heterogeneity in immunoge‐
netic diversity (Larson, Lisi, Seeb, Seeb, & Schindler, 2016; Tschirren, 
Andersson, Scherman, Westerdahl, & Råberg, 2011), highlighting 
the importance of spatial scale in understanding pathogen‐mediated 
selection.

Haemosporidians in the genera Plasmodium, Haemoproteus, and 
Leucocytozoon (hereafter termed malaria for simplicity) are proto‐
zoan parasites that infect the red blood cells of mammals, reptiles, 
and birds (Martinsen, Perkins, & Schall, 2008). Infection by malaria 
has been associated with increased mortality, decreased body con‐
dition, and reductions in fitness (Guggisberg, Sayler, Wisely, & Odom 
John, 2018; Knowles, Palinauskas, & Sheldon, 2010; Marzal, Bensch, 
Reviriego, Balbontin, & De Lope, 2008). The selective pressure ex‐
erted by malaria has driven the evolution of increased host resistance 
and tolerance (Atkinson, Saili, Utzurrum, & Jarvi, 2013; Hill et al., 
1991), with evidence of local adaptation to spatially heterogeneous 
selection pressures (Loiseau et al., 2011; Piel et al., 2010). Malaria 
parasites are dependent on vector transmission to complete their 
lifecycle, and their spatial distributions are therefore constrained 
by the environmental niches of their insect vectors. Temperature, 
rainfall, and altitude play especially important roles in determining 
malaria prevalence (Illera, López, García‐Padilla, & Moreno, 2017; 
Jones, Cheviron, & Carling, 2013; Padilla, Illera, González‐Quevedo, 
Villalba, & Richardson, 2017). Water is essential for aquatic larval 
development of vectors, and topographic features that increase 
surface water persistence promote increased abundance (Ferraguti 
et al., 2016; Ganser et al., 2016; González‐Quevedo, Davies, & 
Richardson, 2014). In addition, anthropogenic factors such as hab‐
itat degradation, agriculture, and urbanization can all influence ma‐
laria dynamics (González‐Quevedo et al., 2014; Turcotte, Bélisle, 
Pelletier, & Garant, 2018; Yanoviak, Paredes, Lounibos, & Weaver, 
2006). Together, these factors have the potential to shape fine‐scale 
spatial structuring in pathogen selection pressures and host immu‐
nogenetic variation.

Studying pathogen‐mediated selection has largely involved a 
candidate gene approach, where variation at genes with known, 
or predicted, host immunity function is investigated in relation to 
infection (Bernatchez & Landry, 2003; Netea, Wijmenga, & O'Neill, 
2012). Many studies have focused on the major histocompatibility 
complex (MHC), a gene family that plays a key role in pathogen rec‐
ognition in the adaptive immune system. However, a greater propor‐
tion of phenotypic variance in malaria response has been attributed 
to non‐MHC genes (Jepson et al., 1997). Within the innate immune 
system (a first line of defense against infection), Toll‐like receptors 
(TLRs) are a family of pattern‐recognition receptors which have been 
linked to malaria resistance (Ferwerda et al., 2007; Mockenhaupt 
et al., 2006), and show evidence of pathogen‐mediated balancing 

selection (Ferrer‐Admetlla et al., 2008; Fisher et al., 2011; Gavan, 
Oliver, Douglas, & Piertney, 2015). TLRs therefore represent import‐
ant candidates for investigating the role of pathogens in maintaining 
host genetic variation.

An alternative to the candidate gene approach is the use of ge‐
nome‐wide association studies (GWAS). These enable detection of 
single nucleotide polymorphisms (SNPs) throughout the genome 
that show statistical associations with pathogen infection. In addi‐
tion to identifying associations at known immune loci (Fellay et al., 
2007; He et al., 2015; Wong et al., 2010), GWAS approaches may 
reveal novel candidate genes (Fu et al., 2012; Ravenhall et al., 2018; 
Thye et al., 2010) for further study of the evolutionary dynamics be‐
tween host and pathogen.

Islands are excellent environments for investigating patho‐
gen‐mediated selection. In line with island biogeography theory 
(MacArthur & Wilson, 1967), pathogen diversity and abundance 
are often lower on islands compared with the mainland, simplifying 
the study of host–pathogen interactions (Pérez‐Rodríguez, Ramírez, 
Richardson, & Pérez‐Tris, 2013; Clark, Clegg, & Lima, 2014; but see 
Illera, Fernández‐Álvarez, Hernández‐Flores, & Foronda, 2015). 
Pathogen communities on each island are shaped by chance colo‐
nization and extinction events, which can result in distinct patho‐
gen assemblages and selection pressures between islands (Fallon, 
Bermingham, & Ricklefs, 2005; Olsson‐Pons, Clark, Ishtiaq, & Clegg, 
2015; Wang et al., 2017). Limited gene flow in and out of islands 
also allows for stable communities of hosts and pathogens (Spurgin, 
Illera, Padilla, & Richardson, 2012), which may facilitate strong co‐
evolutionary relationships.

Berthelot's pipit Anthus berthelotii is a small sedentary passerine 
endemic to three Macaronesian archipelagos (Figure 1). Following 
the colonization of the Madeiran archipelago from the Canary 
Islands ca. 8,500 years ago (Spurgin, Illera, Jorgensen, Dawson, & 
Richardson, 2014; but see Valente et al., 2017), there has been a 
lack of gene flow between the archipelagos (Illera, Emerson, & 
Richardson, 2007; Spurgin et al., 2014), potentially facilitating 
local adaptation and divergent selection (Armstrong et al., 2018). 
Malaria infection shows high spatial variability in this species, both 

F I G U R E  1   Map of Berthelot's pipit populations. Berthelot's 
pipits are found across all islands within the Madeiran archipelago 
(top left panel), the Canary Islands (bottom left panel), and the 
Selvagens archipelago, situated between the Canary Islands and 
Madeira
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between and within islands, making it a highly suitable model for in‐
vestigating the role of spatial scale in pathogen‐mediated selection. 
Characterization of malaria throughout Berthelot's pipit populations 
(Illera, Emerson, & Richardson, 2008; Spurgin et al., 2012) found 
the highest prevalence of Plasmodium and Leucocytozoon infection 
on Porto Santo, whereas no infection was detected elsewhere in 
the Madeiran archipelago. Prevalence of malaria on Tenerife is in‐
fluenced by a combination of climatic and anthropogenic effects 
(González‐Quevedo et al., 2014; Padilla et al., 2017), with malaria 
undetected at high altitude. Associations between the distribution 
of MHC variants and environmental predictors of malaria infection 
have been detected (González‐Quevedo, Davies, Phillips, Spurgin, & 
Richardson, 2016). No evidence of Haemoproteus infection has been 
found in this species.

Here, we test for associations between fine‐scale patterns 
of genetic variation and malaria in Berthelot's pipits across two 
divergent populations (Tenerife and Porto Santo) to investigate 
the spatial scale of local adaptation in the presence of gene flow 
within a population. This study also allows us to test the repeat‐
ability of patterns of association across populations. These two 
islands, situated on different archipelagos, show high genetic di‐
vergence at neutral loci, with limited to no gene flow between 
them (Armstrong et al., 2018; Spurgin et al., 2014). Despite a sharp 
decline in overall genetic diversity associated with the initial colo‐
nization of Madeira (Armstrong et al., 2018), higher levels of TLR4 
allelic and amino acid richness exist in Madeira compared to the 
Canary Islands (González‐Quevedo, Spurgin, Illera, & Richardson, 
2015). Furthermore, evidence of positive selection at TLR4 in 
Berthelot's pipits suggests it may be an evolutionarily important 
locus (González‐Quevedo et al., 2015). In this study, we (a) test 
for associations between Plasmodium infection status (the only 
Haemosporidian genus commonly detected; >1% prevalence) in 
this species (Spurgin et al., 2012), and variation at TLR4 and two 
SNPs previously identified in a GWAS of malaria infection across 
Berthelot's pipit populations (Armstrong et al., 2018); (b) deter‐
mine the environmental predictors of malaria risk on Porto Santo; 
(c) compare genetic associations with malaria risk in Porto Santo 
and Tenerife, utilizing the above measures of malaria risk for Porto 
Santo, and those previously calculated for Tenerife (González‐
Quevedo et al., 2016, 2014).

2  | MATERIALS AND METHODS

2.1 | Sample collection

Berthelot's pipits were sampled on Tenerife (Feb–April 2006, Jan–
Aug 2009, April–May 2010, Jan–May 2011) and Porto Santo (Sept 
2006, March 2009, April–June 2016). For samples collected prior 
to 2011, 30–96 birds were sampled widely across each island per 
season (Illera et al., 2007; Spurgin et al., 2012). For samples col‐
lected in Tenerife in 2011, attempts were made to catch one pipit 
in each 1 km2 of suitable habitat, with a total of 388 birds sampled 
(González‐Quevedo et al., 2014). On Porto Santo in 2016, all areas 

of suitable and accessible pipit habitat throughout the island were 
surveyed. We attempted to catch every pipit encountered, resulting 
in a sample of 129 birds. In total, 780 birds were sampled across all 
years and islands.

Birds were caught in spring traps baited with Tenebrio molitor lar‐
vae. Each bird was fitted with a colored plastic ring or a numbered 
aluminum ring issued by the Spanish or Portuguese authorities as 
appropriate, to avoid resampling individuals. Blood samples (ca. 
50 μl) were collected by brachial venipuncture and stored in 100% 
ethanol in a screw‐top Eppendorf tube at room temperature. Birds 
were classified as juvenile or adult based on feather molt pattern 
(Cramp, 1988).

2.2 | Molecular methods

DNA was extracted using a salt extraction protocol (Richardson, 
Jury, Blaakmeer, Komdeur, & Burke, 2001). Sexing PCRs (Griffiths, 
Double, Orr, & Dawson, 1998) determined the sex of the bird and 
confirmed that DNA extractions were successful.

2.3 | Parasite screening

We used a nested PCR approach that detects Plasmodium and 
Haemoproteus to characterize malaria infection status (Waldenström, 
Bensch, Hasselquist, & Östman, 2004), with multiple positive and 
negative controls included in each PCR plate. Samples that success‐
fully amplified at least twice were classified as infected. The strain 
of Plasmodium was determined by Sanger sequencing; Haemoproteus 
was not detected. We focused on Plasmodium as the most wide‐
spread and abundant haemosporidian found in Berthelot's pip‐
its (Illera et al., 2008; Spurgin et al., 2012). In addition, the vector 
species of Plasmodium (mosquitoes; Culicidae) and Leucocytozoon 
(blackflies; Simuliidae) have different ecological niches (Harrigan et 
al., 2014; Imura et al., 2012), thus combining the two may confound 
results.

2.4 | Sanger sequencing and SNP genotyping

A previous TLR4 study genotyped 23–30 individuals from all 13 
Berthelot's pipit populations, including Tenerife and Porto Santo 
(González‐Quevedo et al., 2015). The primers PauTLR4F, PauTLR4R 
(Grueber, Wallis, King, & Jamieson, 2012) were used to amplify a 
660‐bp region located within the leucine‐rich repeat domain of TLR4. 
Five SNPs were found: TLR4_1 (905 bp, nonsynonymous), TLR4_2 
(970 bp, nonsynonymous), TLR4_3 (990 bp, synonymous), TLR4_4 
(992 bp, nonsynonymous, triallelic), and TLR4_5 (1,010 bp, non‐
synonymous). Base‐pair positions are stated according to the zebra 
finch TLR4 protein coding region, GenBank accession FJ695612. 
Further Sanger sequencing of TLR4 was performed on all samples 
collected from Porto Santo in 2016 (n = 129). TLR4 SNPs were called 
through visual inspection of chromatograms in FinchTV (https ://
digit alwor ldbio logy.com/FinchTV). We used LGC Genomics' propri‐
etary KASP™ genotyping technology (https ://www.lgcgr oup.com) 

https://digitalworldbiology.com/FinchTV
https://digitalworldbiology.com/FinchTV
https://www.lgcgroup.com
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to genotype all additional samples from Tenerife and Porto Santo 
(n = 577) at each TLR4 SNP, except for TLR4_5 which was excluded 
due to a very low minor allele frequency of <0.05. Assay design and 
genotyping were performed by LGC Genomics, Hertfordshire.

A GWAS performed on restriction site‐associated DNA se‐
quencing (RAD‐seq) data from Berthelot's pipits by Armstrong et 
al. (2018) detected two SNPs (5239s1, Chr10:12048280; 7259s1, 
Chr20:6483195; SNP positions on zebra finch genome v3.2.4, 
Warren et al., 2010) that showed significant associations with 
Plasmodium strain LK6 (Ortego, Calabuig, Cordero, & Aparicio, 2007) 
infection. All birds were genotyped with KASP™ assays at these two 
SNPs.

2.5 | Genetic analysis

Genotypes AT, CT, and TT at the triallelic TLR4_4 SNP were coded 
as missing data (Tenerife n = 12; Porto Santo n = 1), to treat this 
SNP as biallelic. We used DnaSP v6 (Librado & Rozas, 2009) to phase 
the TLR4 SNPs into haplotypes. To aid phasing, we included TLR4 
sequences from all Berthelot's pipit populations, and each phased 
TLR4 haplotype previously detected in Berthelot's pipits (González‐
Quevedo et al., 2015). Samples with <90% phasing certainty were 
excluded from models that included TLR4 haplotypes as predictors. 
We translated the phased TLR4 sequences originating from Sanger 
sequencing into protein haplotypes. This gave us the amino acid resi‐
dues at each of the codons containing a SNP, from which we were 
able to infer the amino acids at each SNP for samples that were gen‐
otyped with KASP™ genotyping.

We used PLINK 1.9 (Chang et al., 2015) to calculate linkage dis‐
equilibrium (LD) between each pair of SNPs, and test for deviations 
from Hardy–Weinberg equilibrium with Hardy–Weinberg exact 
tests. Where frequencies ≤0.05 were found for SNP minor alleles or 
TLR4 protein haplotypes, these variants were not included as pre‐
dictors in genetic analyses.

2.6 | Porto Santo GIS analyses

A previous study demonstrated the importance of environmental and 
anthropogenic factors in shaping malaria risk in Tenerife (González‐
Quevedo et al., 2014). Variables were selected based on the potential 
for influencing the abundance of avian malaria or its mosquito vec‐
tors: the minimum temperature of the coldest month (MINTEMP), 
annual precipitation (PRECIPITATION), altitude (ALTITUDE), aspect 
(ASPECT), slope (SLOPE), pipit density (DENSITY), vegetation type 
(VEGTYPE), distance to nearest poultry farm (DISTPOUL), distance 
to nearest livestock farm (DISTFARM), distance to nearest artificial 
water reservoir (DISTWATER), and distance to urban site (DIST_
URB). We calculated the values of these variables at each sampling 
location on Porto Santo as outlined below.

All GIS analyses were performed in QGIS v2.18 (QGIS 
Development Team, 2017). MINTEMP and PRECIPITATION were ob‐
tained from WorldClim global climate data v2 (Fick & Hijmans, 2017) 
at a resolution of 30 arc‐seconds (approximately 1 km2). ALTITUDE 

was obtained from the Shuttle Radar Topography Mission (SRTM) 
3 Arc‐Second Global elevation data (srtm.csi.cgiar.org) at a resolu‐
tion of approximately 90 m2. SLOPE and ASPECT were calculated 
from SRTM data. VEGTYPE was characterized using the CORINE 
Land Cover inventory (CLC 2012 v.18.5.1; http://land.coper nicus.
eu/pan‐europ ean/corine‐land‐cover/ clc‐2012). We combined the 
land cover classes into six categories: arable, urban‐associated, for‐
est, rock‐associated, grass, and shrub (Table 1). Values of MINTEMP, 
PRECIPITATION, ALTITUDE, SLOPE, and ASPECT were calculated 
by taking the average value of each variable within a 100 m buffer 
around each sample location. In the case of VEGTYPE, the sample 
was assigned the category with the largest area within the buffer. 
ASPECT was classified as one of eight categories: N, NW, W, SW, S, 
SE, E, and NE.

We calculated DISTWATER with polygons drawn on Google 
Earth satellite imagery over water sources encountered during sam‐
ple collection and obtained from the OpenStreetMap data‐filtering 
tool Overpass Turbo (https ://overp ass‐turbo.eu) using the query 
“natural = water.” Water sources were 76–28,190 m2. The presence 
of livestock was dependent on visual encounters, as farming census 
data were not publicly available. The type of livestock was used to 
differentiate between factors related to livestock farming that might 
cause aggregations of birds (DISTFARM), and the potential effect of 
poultry as a reservoir of avian malaria (DISTPOUL). DIST_URB was 
the distance to the nearest urban‐associated area, as classified by 
VEGTYPE.

DENSITY was calculated as follows. A 1 km2 grid was overlaid on 
Porto Santo, and a 1 km radius buffer was drawn around the centroid 

TA B L E  1   CORINE Land Cover (CLC 2012 v.18.5.1; http://land.
coper nicus.eu/pan‐europ ean/corine‐land‐cover/ clc‐2012) classes 
used to categorize vegetation type on Porto Santo

Vegetation type CLC classes

Arable Non‐irrigated arable land

Vineyards

Complex cultivation patterns

Land principally occupied by agriculture 
with significant areas of natural vegetation

Urban‐associated Discontinuous urban fabric

Port areas

Airports

Sport and leisure (resort complex)

Forest Coniferous forest

Rock‐associated Beaches, dunes, and sand

Bare rock

Sparsely vegetated areas

Grass Natural grassland

Pastures

Sport and leisure (golf course)

Shrub Moors and heathland

Transitional woodland‐shrub

http://srtm.csi.cgiar.org
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
https://overpass-turbo.eu
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
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of each grid cell. Any part of the buffer covering the ocean was re‐
moved. This was converted into a measure of pipits per km2 for each 
grid cell by dividing the number of samples within the buffer by its 
area. The average density within a 100 m buffer around each sam‐
ple, weighted by the area of each 1 km2 grid cell occupied within the 
sample buffer, was used as the DENSITY measure.

2.7 | Environmental predictors of malaria risk

We modeled the environmental predictors of malaria infection on 
Porto Santo and used the predicted values from this model as a 
measure of the malaria risk at each sample location. This allowed 
us to account for spatial variation in the likelihood of malaria expo‐
sure when analyzing the relationship between genotype and infec‐
tion status. This was calculated using a model selection and then 
model averaging approach. Model selection tests all combinations 
of variables as predictors of the response variable and calculates the 
Akaike information criterion (AIC; Akaike, 1973) as a measure of fit 
of each model. Model averaging is then applied to a set of models 

with the lowest AIC (and therefore the highest likelihood) to cal‐
culate weighted averages of parameter estimates and the relative 
importance of model predictors (Burnham & Anderson, 2002). We 
report AICc, a modification of AIC that is recommended for small 
sample sizes (Hurvich & Tsai, 1989).

We used variance inflation factors (VIFs) calculated using the 
R package car (Fox & Weisberg, 2011) to test for collinearity be‐
tween environmental variables, using a threshold of >3 to indicate 
unacceptably high collinearity (Zuur, Ieno, & Elphick, 2010). As we 
had categorical variables, we used generalized VIFs (GVIFs; Fox 
& Monette, 1992) transformed with (GVIF1/2df)2 (df = degrees of 
freedom), to calculate a value equivalent to a standard VIF (Fox & 
Weisberg, 2011). When including all variables, every variable except 
ASPECT had VIFs > 3 (collinearity). We sequentially removed vari‐
ables with VIFs > 3 that had the highest AICc scores from single‐
predictor binomial generalized linear models (GLMs) of each variable 
against malaria infection status (Table 2). Variables were removed 
and VIFs recalculated until all variables had VIFs < 3. The remain‐
ing variables were VEGTYPE, ALTITUDE, DISTWATER, DENSITY, 
ASPECT, and DISTPOUL.

Interactions between environmental variables may have biologi‐
cally meaningful influences on malaria risk. For each biologically rel‐
evant pair of variables (Table 3), we tested whether the inclusion of 
an interaction term improved the fit of a binomial GLM with the two 
variables as main effects and malaria infection as the response. The 
interaction DENSITY*DISTWATER gave the largest improvement in 
AICc (main effects only, AICc = 103.3; main effects and interaction, 
AICc = 90.8) and was therefore included in model selection (Table 3).

2.8 | Model selection and model averaging

Fitting all combinations of the six environmental variables and one 
interaction term (see above) as predictors of malaria infection using 
binomial GLMs, we performed model selection and model averaging 
following Grueber, Nakagawa, Laws, and Jamieson (2011) using the 
R package MuMIn (Bartoń, 2018) to obtain the best‐supported mod‐
els for explaining occurrence of malaria infection. Prior to analysis, 
we used the R package arm (Gelman & Su, 2018) to standardize the 
input variables to a mean of zero and a standard deviation of 0.5 

TA B L E  2   Single‐predictor binomial generalized linear models of 
the environmental predictors of Plasmodium strain LK6 infection in 
adult Berthelot's pipits on Porto Santo

Variable Estimate R2a p‐Value AICc

ALTITUDE −0.0160 0.129 <.001 100.0

DISTWATER −0.0013 0.118 <.001 101.2

DIST_URB −0.0014 0.113 <.001 101.8

VEGTYPE — 0.157 .170 103.4

MINTEMP 2.5188 0.080 .005 105.4

SLOPE −0.1569 0.069 .008 106.6

PRECIPITATION −0.0308 0.041 .035 109.7

DISTPOUL −0.0006 0.018 .152 112.2

DISTFARM −0.0005 0.010 .284 113.1

DENSITY 0.0747 0.003 .586 113.9

ASPECT — 0.094 .271 117.2

Note: Environmental variables are ordered by increasing AICc scores. 
Parameter estimates are not included for categorical variables.
aMcFadden pseudo‐R2. 

 Main effect AICc Interaction AICc ΔAICc Retained

DENSITY*DISTWATER 103.3 90.8 −12.5 ✓

DISTPOUL*DISTWATER 103.1 99.6 −3.5  

SLOPE*ALTITUDE 100.2 97.1 −3.1  

ALTITUDE*DISTWATER 92.3 91.2 −1.1  

ALTITUDE*DISTPOUL 101.2 101.3 0.1  

DENSITY*DISTPOUL 114.3 114.7 0.4  

ASPECT*SLOPE 116.4 118.3 1.9  

VEGTYPE*DENSITY 105.6 107.7 2.2  

Note: Binomial generalized linear models were performed with each pair of variables as main 
effects only, or including an interaction term. Where the addition of an interaction resulted in a 
change in AICc (ΔAICc) < −7, that interaction term was included in model selection.

TA B L E  3   The effect of including 
biologically relevant interaction terms 
between environmental variables for 
predicting Plasmodium LK6 infection in 
adult Berthelot's pipits on Porto Santo
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to enable meaningful comparisons of parameter estimates (Gelman, 
2008; Grueber et al., 2011). The model selection process calculated 
ΔAICc, the difference in AICc between each model and the “best” 
model (the model with the lowest AICc), and the Akaike weight, 
which quantifies the likelihood of each model having the best ex‐
planatory power within a set of models (Burnham & Anderson, 
2002). Using the R package DescTools (Signorell, 2018), we calcu‐
lated the McFadden‐adjusted pseudo‐R2 (the likelihood of a logistic 
regression model relative to an intercept‐only model, adjusted to ac‐
count for the number of predictors in the model; McFadden, 1974). 
Values of McFadden R2 between 0.2 and 0.4 represent a strong fit, 
equivalent to a linear regression R2 of 0.7–0.9 (Louviere, Hensher, & 
Swait, 2000).

A threshold of ΔAICc ≤ 7 is recommended to retain models that 
have sufficient support, without dismissing models which still pro‐
vide some explanatory power (Burnham, Anderson, & Huyvaert, 
2011). We applied model averaging over this set of models to 
calculate weighted averages of parameter estimates and the rel‐
ative importance of each predictor (the sum of Akaike weights for 
models which include that predictor). We used the zero method of 
model averaging to avoid biasing results toward predictors with 
low explanatory power (Burnham & Anderson, 2002; Lukacs et al., 
2007).

2.9 | Spatial autocorrelation

We tested for spatial autocorrelation in model residuals as this may 
lead to spurious associations between predictor and response vari‐
ables (Dormann et al., 2007; Lennon, 2000). We created Moran's I 
correlograms at distance class intervals of 750 m and 1,000 m using 
the R package ncf (Bjornstad, 2018), with 1,000 permutations to test 
the significance of Moran's I at each interval. After correcting for 
multiple testing using the Holm correction (Holm, 1979; Legendre 
& Legendre, 2012), there was no evidence of spatial autocorrelation 
in the model residuals (all adjusted p values > .05). Correcting for 
spatial autocorrelation was therefore not required for the estimation 
of malaria risk in Porto Santo.

2.10 | Malaria risk scores

We used the predicted values of the best model identified by 
model selection as a malaria risk score between 0 and 1 for each 
sample location. This represented the probability of an individual at 
that location being infected with malaria, as a result of the environ‐
mental conditions. An earlier study determined that malaria infec‐
tion in Tenerife was best explained by DISTPOUL, DISTWATER, 
MINTEMP, and DISTWATER*MINTEMP (González‐Quevedo et 
al., 2014). As significant spatial autocorrelation was present in 
Tenerife, an autocovariate term was included in all model combina‐
tions during model selection, to account for autocorrelation up to 
1,000 m (see González‐Quevedo et al., 2014). Hence, the predicted 
values from an autologistic model containing these predictors, in‐
teraction, and autocovariate were used as our estimate of malaria 

risk for Tenerife. Malaria risk was logit‐transformed prior to use in 
models.

2.11 | Genetic associations with malaria infection

Genetic variation was classified in three ways: (a) SNP genotype, 
encoded as 1 for heterozygotes and 0 or 2 for each of the homozy‐
gotes; (b) presence (1) or absence (0) of each TLR4 protein haplo‐
type; (c) SNP heterozygosity, with heterozygotes encoded as 1 and 
homozygotes as 0. Each model described below was performed 
three times, using each of the three classes of genetic variants as 
model predictors.

We first tested for associations between genetic variation 
and malaria infection status. We ran separate models for each 
island as the genetic divergence between Berthelot's pipits on 
Tenerife and Porto Santo, along with environmental differences 
in malaria risk patterns between the islands, might otherwise ob‐
scure genetic associations. We tested for genetic associations 
with malaria infection across all years using binomial general‐
ized linear mixed models (GLMMs) with sampling year as a ran‐
dom effect, within Tenerife (2011) or Porto Santo (2016) using 
binomial GLMs. Testing across all years gave the advantage of 
a larger sample size; however, temporal fluctuations in selection 
pressures could interfere with genetic associations with malaria, 
so single‐year models were also performed.

We tested the genetic variables as predictors of malaria risk in 
general linear models (LMs) for Tenerife (2011) and Porto Santo 
(2016). As malaria risk was derived from spatially varying environ‐
mental predictors, genetic variation alone was unlikely to account 
for all spatial autocorrelation in malaria risk. We therefore included 
distance‐based Moran's eigenvector maps (dbMEMs) as spatial 
predictors of malaria risk. dbMEMs are used to identify gradients 
of spatial variation (spatial structure) in a response variable, across 
multiple potential scales from broad to fine, calculated by eigen‐
vector decomposition of distance matrices based on the spatial co‐
ordinates of samples (Borcard & Legendre, 2002; Dray, Legendre, 
& Peres‐Neto, 2006). Hence, the use of dbMEMs as predictors of 
malaria risk accounts for spatially autocorrelated variation in ma‐
laria prevalence that would otherwise be explained by environ‐
mental conditions, transmission dynamics, and/or unmeasured 
genetic gradients. We calculated dbMEMs for each island using 
the R packages adespatial (Dray et al., 2018) and vegan (Oksanen 
et al., 2018), retaining dbMEMs with positive eigenvalues, repre‐
senting positively autocorrelated spatial variation. dbMEMs were 
ranked by descending R2 values in single‐predictor LMs of malaria 
risk and sequentially added into each model of the genetic associa‐
tions with malaria risk outlined above, until additional dbMEMs no 
longer improved AICc. With each iteration, we checked whether 
spatial autocorrelation in model residuals had been controlled for, 
to find the minimum required number of dbMEMs. The inclusion 
of dbMEMs resulted in VIFs < 3, indicating that any collinearity 
between dbMEMs and genetic variants was acceptably low. We 
performed hierarchical partitioning using the “lmg” method in the 
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R package relaimpo (Grömping, 2006) to calculate the proportion 
of variance in malaria risk explained by genetic variants.

3  | RESULTS

3.1 | Sequencing

Malaria was detected in 126 out of 190 individuals (66.3%) 
from Porto Santo and 189 out of 590 individuals (32.0%) from 
Tenerife (Table 4). All infected samples had one of four strains 
of Plasmodium, with no evidence of multiple infection. Between 
2006 and 2010, only LK6 (Ortego et al., 2007) was detected 
(Illera et al., 2008; Spurgin et al., 2012). In samples from Tenerife 
in 2011, where Plasmodium was found in 148 of 388 individu‐
als (38.1%), the majority of infections were LK6 (139 samples; 
93.9%). Strains LK5 (Ortego et al., 2007) and KYS9 (Inci et al., 
2012) were present in seven (4.7%) and two (1.4%) individuals, 
respectively (González‐Quevedo et al., 2014). Out of 129 samples 
collected from Porto Santo in 2016, 97 (75.2%) were infected. Of 
these, 91 (93.8%) had LK6, four (4.1%) had LK5, and a previously 
undocumented strain, PS1530, was found in two (2.1%) individu‐
als. To avoid potential confounding factors arising from selection 
against different Plasmodium strains, we have focused here on the 
predominant LK6 strain.

Excluding sampling years where no juveniles were caught, the 
prevalence of malaria was significantly higher in adults than in ju‐
veniles, both in Porto Santo (test of equal proportions χ2 = 25.6, 
p < 0.001) and in Tenerife (χ2 = 3.1, p = 0.039). As juveniles were 
present in much lower numbers than adults (Table 4), we removed 
juveniles from further analysis. Final sample sizes are shown in 
Table 4.

Sanger sequencing of TLR4 in the 2016 Porto Santo samples 
only detected SNPs which have been previously documented in 
Berthelot's pipits (González‐Quevedo et al., 2015). SNP allele fre‐
quencies differed between the two islands, with different minor al‐
leles found at TLR4_3 and TLR4_4 (Figure 2a). Phasing of the TLR4 
SNPs produced five nucleotide haplotypes (Table 5), all of which 
had been previously detected (González‐Quevedo et al., 2015). 
As amino acid substitutions could potentially alter TLR4 function 
(Schröder & Schumann, 2005), we classified TLR4 variation into 
four protein haplotypes (denoted with the prefix “TLR4_P”; Table 5 
and Figure 2b). TLR4_P2 was translated from two haplotypes dif‐
fering at the synonymous SNP TLR4_3. The TLR4_P3 and TLR4_P4 
haplotypes were absent from Tenerife, and TLR4_P3 was at low fre‐
quency (<0.05) in Porto Santo.

We tested for deviations from Hardy–Weinberg equilibrium at 
each SNP for each combination of island and year, and in each island 
across all years. SNPs 5239s1 (Tenerife 2011 and all years), 7259s1 
(Tenerife 2006 and 2009), and TLR4_1 (Porto Santo 2009) showed 
deviations from Hardy–Weinberg equilibrium at p < .05; however, 
following Holm correction for multiple comparisons, all adjusted 
p values were > 0.05. LD between SNPs TLR4_3 and TLR4_4 (ex‐
cluding the low‐frequency T allele) was high (Porto Santo R2 = 0.99; TA
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Tenerife R2 = 0.62). We found moderate LD in Porto Santo between 
SNPs TLR4_2 and TLR4_3 (R2 = 0.39) and between TLR4_2 and 
TLR4_4 (R2 = 0.37). All other combinations of SNPs had low levels 
of LD (R2 < 0.1).

3.2 | Malaria risk models

Model selection of the environmental predictors of malaria in‐
fection found 17 models with ΔAICc ≤ 7 relative to the “best” 
model, which contained VEGTYPE, ALTITUDE, DISTWATER, 
DENSITY, and DISTWATER*DENSITY (Table 6). ALTITUDE and 
DISTWATER were negatively associated with malaria infection, 
whereas DENSITY was positively associated (Figure 3). A post hoc 
Tukey test of VEGTYPE as a predictor of malaria infection (using 
the R package multcomp; Hothorn, Bretz, & Westfall, 2008) found 
that rock‐associated habitat had a significantly negative effect on 
malaria infection relative to arable (p = 0.015) and grass habitats 
(p = 0.039; Figure 3). These four predictors, and the interaction 
term DISTWATER*DENSITY, had relative importances of 0.63–
0.99 across the top model set (Table 7). We used the predicted 
values from the best model as our estimate for malaria risk for 

F I G U R E  2   Genetic variant frequencies in adult Berthelot's pipits on Porto Santo (PS; blue) and Tenerife (TF; orange). (a) Allele 
frequencies per SNP. In each instance, the allele which is the minor allele in Porto Santo is represented. In addition, the low‐frequency 
T allele of the triallelic SNP TLR4_4 is also shown. (b) Frequencies of TLR4 protein alleles. In both plots, the black dashed line indicates a 
frequency threshold of 0.05; variants below this threshold were excluded from models of genetic associations with malaria risk and infection 
status
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TA B L E  5   TLR4 nucleotide and protein haplotypes in Berthelot's 
pipits on Tenerife and Porto Santo

Haplotype Sequence Protein haplotype
Amino acid 
sequence

1 AGTA TLR4_P1 DGPK

2 AGCC TLR4_P2 DGPT

3 AGTC TLR4_P2 DGPT

4 AACC TLR4_P3 DDPT

5 GGCC TLR4_P4 GGPT
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each sample location (Figure 4). DISTPOUL and SLOPE had low 
relative importance in model averaging (0.33 and 0.29, respec‐
tively), and ASPECT did not feature within the top model set. The 
malaria risk model for Porto Santo had a McFadden‐adjusted R2 
of 0.25 (values of 0.2–0.4 are equivalent to a linear regression R2 
of 0.7–0.9; Louviere et al., 2000), whereas the adjusted R2 for the 
Tenerife malaria risk model was 0.10 (González‐Quevedo et al., 

2014). Distributions of malaria risk differed markedly between the 
islands, with higher malaria risk in Porto Santo (Figure 5).

3.3 | Genetic associations with malaria infection

As we found high levels of LD between TLR4 SNPs, we calculated 
VIFs for models of genetic associations with malaria infection and 

F I G U R E  3   Environmental predictors 
of Plasmodium strain LK6 risk in adult 
Berthelot's pipits on Porto Santo. (a) The 
proportion of samples infected with LK6 
per category of VEGTYPE. * indicates 
significant difference between categories 
in post hoc Tukey tests at p < 0.05. Plots 
b–d show logistic regression models of 
the effect of (b) altitude, (c) distance to 
water sources, and (d) pipit density on the 
probability of LK6 infection. Histograms 
indicate the frequency of uninfected 
(lower) and infected (upper) individuals 
for each (b) 50 m altitude class, (c) 200 m 
distance class, and (d) 0.5 pipits/km2 class. 
Shaded area represents 95% confidence 
intervals
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 Best model Model averaging
Relative 
importance

(Intercept) 2.62 (1.62, 4.04) 2.32 (1.10, 3.55)  

DISTWATER −1.54 (−3.64, 0.67) −1.79 (−3.83, 0.24) 0.99

DENSITY 0.63 (−0.59, 1.91) 0.66 (−0.64, 1.97) 0.98

DENSITY*DISTWATER −5.33 (−9.01, −2.19) −5.02 (−8.72, −1.32) 0.98

ALTITUDE −1.91 (−3.85, −0.54) −1.47 (−3.33, 0.39) 0.87

VEGTYPE + + 0.63

arable −0.56 (−2.97, 2.58) −0.31 (−2.42, 1.80)  

rock −3.77 (−7.55, −1.10) −2.42 (−6.91, 2.06)  

shrub −3.37 (−7.28, −0.00) −1.95 (−6.00, 2.11)  

urban −1.59 (−3.85, 0.80) −0.94 (−3.26, 1.38)  

DISTPOUL  −0.26 (−1.47, 0.94) 0.33

SLOPE  −0.05 (−1.27, 1.16) 0.29

Adjusted R2a 0.25   

Note: Parameter estimates (and 95% confidence intervals) are presented for the “best” model with 
lowest AICc as determined by model selection, and for model averaging across 17 models with 
ΔAICc ≤ 7 relative to the best model. Within VEGTYPE, coefficients of arable, rock, shrub, and 
urban were calculated relative to grass as the reference category.
aMcFadden‐adjusted pseudo‐R2. 

TA B L E  7   Environmental predictors of 
malaria risk in adult Berthelot's pipits on 
Porto Santo
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risk. All VIF scores were <3 in Tenerife. In Porto Santo, TLR4_3 and 
TLR4_4 had elevated VIF scores (>50); however, after removing the 
synonymous TLR4_3 SNP, all VIF scores were <3.

Results from models of genetic variants as predictors of ma‐
laria infection are summarized in Table 8. In Porto Santo, across all 
years, increasing frequency of the T allele in SNP 5239s1 was asso‐
ciated with increased malaria infection (estimate = 0.75, SE = 0.34, 
p = 0.026; Figure 6a). This effect was no longer significant when 
looking only at 2016 (p = 0.099), although the direction of the result 

remained consistent, with the highest probability of malaria preva‐
lence in TT genotype individuals. This may be a power issue (n = 110 
for 2016 vs. n = 136 for all years). No other SNP was significantly 
associated with malaria infection in 2016 or across all years. There 
were no associations between malaria infection and SNP heterozy‐
gosity or TLR4 protein haplotypes in Porto Santo.

TLR4_P1 presence had a negative effect on malaria infection on 
Tenerife in 2011 (estimate = −0.46, SE = 0.23, p = 0.041; Figure 6b). 
We found the same trend across all years, although the association 
was not significant (p = 0.091). The TLR4_P2 haplotype was not as‐
sociated with malaria infection in 2011 or across all years. We found 
no associations with malaria infection for SNP genotypes or SNP 
heterozygosity in Tenerife.

3.4 | Genetic associations with malaria risk

We tested for associations between genetic variants and malaria 
risk on Porto Santo (2016) and Tenerife (2011). The results are sum‐
marized in Table 9. On Porto Santo, increasing numbers of T alleles 
at SNP 5239s1 (estimate = 0.69, SE = 0.27, p = 0.011), and A alleles 
at SNP TLR4_2 (estimate = 1.03, SE = 0.42, p = 0.016), were associ‐
ated with increased malaria risk. However, the residuals of this model 
were highly spatially autocorrelated. To control for this, we included 
seven dbMEMs with high R2 in single‐predictor models of malaria 
risk (Figure 7), chosen from a set of dbMEMs which gave the low‐
est AICc in a multipredictor model of malaria risk. After controlling 
for autocorrelation, SNP 5239s1 was still associated with malaria 

F I G U R E  4   Spatial distribution of 
Plasmodium strain LK6 and environmental 
risk factors in adult Berthelot's pipits 
on Porto Santo. Points indicate location 
of (a) individual infection status and (b) 
infection risk in adult Berthelot's pipits. (c) 
VEGTYPE categories, adapted from the 
CORINE Land Cover inventory (CLC 2012 
v.18.5.1; http://land.coper nicus.eu/pan‐
europ ean/corine‐land‐cover/ clc‐2012). (d) 
Altitude on Porto Santo, calculated from 
Shuttle Radar Topography Mission global 
elevation data (SRTM 90 m; https ://srtm.
csi.cgiar.org). Overlaid blue points indicate 
locations of standing water sources

(a) (b)

(c) (d)

F I G U R E  5   The distribution of Plasmodium strain LK6 infection 
risk in adult Berthelot's pipits on Porto Santo (PS; blue) and Tenerife 
(TF; orange)
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risk (estimate = 0.38, SE = 0.17, p = 0.030; Figure 8) but TLR4_2 was 
not (p = 0.423). We did not find an association between TLR4_4 and 
malaria risk, either before or after controlling for autocorrelation. 
Hierarchical partitioning of the above models (Table 10) found that 
SNP 5239s1 explained 5.2% of the variance in malaria risk before 
controlling for autocorrelation, and 3.3% of the variance after the ad‐
dition of dbMEMs. Despite having a non‐significant association with 
malaria risk in the model containing dbMEMs, TLR4_2 explained a 
greater proportion of the variance in malaria risk compared to 5239s1, 
both before (7.4%) and after (4.3%) controlling for autocorrelation.

Before taking autocorrelation into account, there were no signif‐
icant associations between SNP heterozygosity and malaria risk on 
Porto Santo; however, after including seven dbMEMs to remove spa‐
tial autocorrelation in model residuals, heterozygosity at SNP 5239s1 
was strongly associated with increased malaria risk (estimate = 0.74, 
SE = 0.25, p = 0.004). Heterozygosity at other SNPs was not associated 
with malaria risk.

Prior to controlling for autocorrelation, the presence of pro‐
tein haplotype TLR4_P1 was associated with reduced malaria risk 
on Porto Santo (estimate = −1.32, SE = 0.62, p = 0.037). The same 
seven dbMEMs were used to control for spatial autocorrelation, 
after which there was no longer an effect of TLR4_P1 presence 
(p = 0.318). No other TLR4 protein haplotypes showed associations 
with malaria risk.

To investigate the loss of significance of the associations be‐
tween TLR4_P1 or TLR4_2 and malaria risk on Porto Santo, we 
ran a binomial GLM (TLR4_P1) and LM (TLR4_2) with the seven 
dbMEMs as predictors for the two genetic variants. dbMEM1 
was significantly associated with both TLR4_P1 (estimate = −1.18, 
SE = 0.39, p = 0.003) and TLR4_2 (estimate = 0.16, SE = 0.06, 
p = 0.005).

We did not find any significant associations between SNP gen‐
otype, SNP heterozygosity, or TLR4 protein haplotypes and malaria 
risk on Tenerife. We were unable to remove spatial autocorrela‐
tion in model residuals through the addition of dbMEMs as model 
predictors.

4  | DISCUSSION

We used previously identified candidate SNPs linked to malaria 
infection across populations (from a GWAS analysis performed on 
RAD‐seq SNPs; Armstrong et al., 2018) and TLR4 SNPs (González‐
Quevedo et al., 2015) to investigate the relationship between poten‐
tially adaptive genetic variation and avian malaria within two island 
populations of Berthelot's pipits. In addition to testing for associa‐
tions with infection status, we calculated the malaria risk at each 
sampling location, predicted by modeling fine‐scale environmental 

Island Variant type Variant All years estimate Main year estimate

PS SNP genotype 5239s1 0.75 (0.34)* 0.60 (0.37)

TLR4_2 0.90 (0.51) 1.10 (0.58)

TLR4_4 0.15 (0.40) −0.16 (0.45)

SNP heterozygosity 5239s1 0.53 (0.45) 0.61 (0.52)

TLR4_2 0.94 (0.49) 0.95 (0.55)

TLR4_4 −0.76 (0.47) −0.98 (0.53)

TLR4 protein haplotype TLR4_P1 −1.62 (0.85) −1.57 (0.94)

TLR4_P2 −0.53 (0.52) −0.82 (0.60)

TLR4_P3 0.40 (0.51) 0.24 (0.59)

TF SNP genotype 5239s1 0.08 (0.17) 0.18 (0.18)

7259s1 −0.02 (0.14) −0.03 (0.15)

TLR4_3 −0.10 (0.22) 0.09 (0.26)

TLR4_4 0.31 (0.25) 0.19 (0.29)

SNP heterozygosity 5239s1 0.09 (0.21) 0.25 (0.24)

7259s1 −0.29 (0.20) −0.30 (0.22)

TLR4_3 0.20 (0.25) 0.00 (0.29)

TLR4_4 −0.41 (0.26) −0.40 (0.29)

TLR4 protein haplotype TLR4_P1 −0.34 (0.20) −0.46 (0.23)*

TLR4_P2 −0.07 (0.38) −0.20 (0.43)

Note: Parameter estimates (with standard error in brackets) for each genetic variant were taken 
from multipredictor models with genetic variants coded as SNP heterozygosity, SNP genotype, 
or TLR4 protein haplotype presence/absence. Models were performed in each island across all 
sampling years (“All years estimate”), or in the main sampling year with largest sample size (Porto 
Santo = 2016; Tenerife = 2011; “Main year estimate”). Asterisks next to parameter estimates de‐
note significance of the predictor (*p < 0.05).

TA B L E  8   Summary of general linear 
models of the association between 
genetic variants and malaria infection 
status in Berthelot's pipits on Porto Santo 
(PS) and Tenerife (TF)
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drivers of malaria infection. We found associations between malaria 
infection status and SNP 5239s1 in Porto Santo, and TLR4 protein 
haplotype 1 in Tenerife. Furthermore, the SNPs 5239s1 and TLR4_2 
showed associations with malaria risk in Porto Santo, but not in 
Tenerife, where malaria risk was lower.

4.1 | Genetic associations with malaria

We have previously used RAD‐seq SNPs to detect genetic variants 
that were associated with LK6 infection in Berthelot's pipits in the 
Canary Islands (Armstrong et al., 2018). The strongest association 
was found for SNP 5239s1, ca. 2,000 bp from interleukin‐16, a pro‐
inflammatory cytokine that moderates the expression of other cy‐
tokines associated with malaria infection (Kern, Hemmer, Damme, 
Gruss, & Dietrich, 1989; Lyke et al., 2004; Mathy et al., 2000). In 
the present study, SNP 5239s1 was a predictor of malaria on Porto 
Santo, with the lowest infection and risk found in samples with the 
AA genotype. Remarkably, this was the opposite relationship to 
that found in the Canary Islands (Armstrong et al., 2018), where 
increased incidence of the T allele was associated with reduced 
infection. This may be indicative of pathogen‐mediated balancing 
selection, which can arise from heterozygote advantage (Doherty 
& Zinkernagel, 1975), rare‐allele advantage (Slade & McCallum, 
1992; Takahata & Nei, 1990), and local adaptation to fluctuating 

pathogen selection pressures (Hill et al., 1991). When controlling 
for spatial autocorrelation, we found an association between SNP 
5239s1 heterozygosity and malaria risk on Porto Santo, although 
contrary to the heterozygote advantage model, heterozygotes 
were associated with greater malaria risk than homozygotes (an 
effect which was largely driven by the decline in risk found with 
AA genotypes). Berthelot's pipit populations on the Madeiran and 
Canary Islands archipelagos have been isolated from each other for 
at least 8,500 years (Spurgin et al., 2014). Different populations 
may therefore be undergoing independent coevolutionary cycles 
with the same malaria strain, with alternative alleles conferring an 
advantage between divergent populations (Bonneaud, Pérez‐Tris, 
Federici, Chastel, & Sorci, 2006). Alternatively, undetected genetic 
and phenotypic differences within the LK6 strain could potentially 
drive local adaptation between the archipelagos, with different 
alleles favored in different populations (Alcaide, Edwards, Negro, 
Serrano, & Tella, 2008; Loiseau et al., 2009). We used a single ge‐
netic marker, the mitochondrial cytochrome b locus, to classify the 
malaria strain. Several genes on the Plasmodium genome with rel‐
evance to infection success have shown greater genetic variation 
than at cytochrome b (Jarvi, Farias, & Atkinson, 2008; Lauron et al., 
2014). It is possible that Berthelot's pipits on separate archipelagos 
could be adapting to different malaria strains within LK6, although 
this remains to be tested.

F I G U R E  6   The association between Plasmodium strain LK6 infection status and genetic variants in adult Berthelot's pipits. (a) SNP 
5239s1 genotype association with LK6 in Porto Santo. (b) Protein haplotype TLR4_P1 association with LK6 in Tenerife. 0 = absent, 
1 = present. *Denotes significance at p < 0.05; NS = not significant
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We did not find evidence of associations between SNP 5239s1 
and malaria infection or risk on Tenerife, despite this population being 
included in the previous GWAS (Armstrong et al., 2018). SNPs that 
are related to individual‐level variation in parasite burden do not nec‐
essarily show the same associations at the landscape scale (Wenzel, 
Douglas, James, Redpath, & Piertney, 2016). It is possible that with 
the comparatively low malaria risk in Tenerife, gene flow is overriding 
landscape‐scale associations between SNP 5239s1 and malaria risk 
(Forester, Jones, Joost, Landguth, & Lasky, 2016; Lenormand, 2002). 
The previous GWAS result could have been driven by other popula‐
tions such as Lanzarote and Fuerteventura, where malaria infection 
rates were higher (Illera et al., 2008; Spurgin et al., 2012).

Polymorphisms in immune genes can alter the effectiveness of 
their proteins for detecting and responding to pathogens (Lazarus et 
al., 2002; Sommer, 2005). The TLR4 SNPs sequenced here are situ‐
ated within the ligand‐binding region, which plays a key role in TLR 
pathogen recognition (Werling, Jann, Offord, Glass, & Coffey, 2009). 
Evidence of positive selection in birds or mammals has been detected 
at each of the codons identified as polymorphic in Berthelot's pipits 
(Areal, Abrantes, & Esteves, 2011; Králová et al., 2018; Wlasiuk & 
Nachman, 2010), suggesting that these sites may be important for 
the evolution of pathogen recognition. On Tenerife, the presence of 
the TLR4 protein haplotype TLR4_P1 was associated with decreased 
malaria infection prevalence in 2011, but not across all sampling 

years. In earlier years, approximately half of the samples were col‐
lected from the high‐altitude (>2,000 m above sea level) plateau of 
El Teide. Malaria has not been found in Berthelot's pipits in this lo‐
cation (González‐Quevedo et al., 2014; Illera et al., 2008; Spurgin et 
al., 2012), although a survey of passerine communities on Tenerife 
found malaria at low frequency in high‐altitude habitats (Padilla et 
al., 2017). The relationship seen in 2011 between TLR4_P1 and in‐
fection may be masked in other sampling years by the increase in 
uninfected individuals from areas of low malaria abundance. We did 
not find a relationship between TLR4_P1 presence and malaria risk, 
potentially due to the explanatory power of the Tenerife malaria risk 
model (McFadden‐adjusted pseudo‐R2 = 0.10). On Porto Santo, both 
TLR4_P1 and the SNP TLR4_2 were associated with malaria risk, al‐
though these relationships were no longer significant after including 
dbMEMs to remove autocorrelation. Both of these genetic variants 
showed significant associations with dbMEM1, which itself explained 
22% of the variance in malaria risk, making it difficult to disentangle 
the real effects of these variants from any spurious associations aris‐
ing from residual autocorrelation.

4.2 | Environmental predictors of malaria risk

We modeled the environmental predictors of malaria distributions 
in Porto Santo to understand fine‐scale spatial differences in malaria 

TA B L E  9   Summary of linear models of the association between genetic variants and malaria risk in Berthelot's pipits on Porto Santo (PS) 
and Tenerife (TF)

Island Variant type Variant Estimate dbMEM estimate

PS SNP genotype 5239s1 0.69 (0.27)* 0.38 (0.17)*

TLR4_2 1.03 (0.42)* 0.22 (0.27)

TLR4_4 0.21 (0.36) 0.09 (0.23)

SNP heterozygosity 5239s1 0.79 (0.41) 0.74 (0.25)**

TLR4_2 0.77 (0.42) 0.39 (0.26)

TLR4_4 −0.59 (0.42) −0.36 (0.26)

TLR4 protein haplotype TLR4_P1 −1.32 (0.62)* −0.41 (0.41)

TLR4_P2 −0.36 (0.51) 0.02 (0.33)

TLR4_P3 0.60 (0.47) 0.14 (0.30)

TF SNP genotype 5239s1 0.26 (0.73)  

7259s1 −0.23 (0.60)  

TLR4_3 −0.03 (1.04)  

TLR4_4 0.40 (1.13)  

SNP heterozygosity 5239s1 0.80 (0.96)  

7259s1 −1.08 (0.86)  

TLR4_3 0.48 (1.13)  

TLR4_4 −0.59 (1.14)  

TLR4 protein haplotype TLR4_P1 −0.45 (0.89)  

TLR4_P2 0.22 (1.68)  

Note: Parameter estimates (with standard error in brackets) for each genetic variant were taken from multipredictor models with genetic variants 
coded as SNP heterozygosity, SNP genotype, or TLR4 protein haplotype presence/absence. On Porto Santo, models were performed with just the 
genetic variants, or with the inclusion of dbMEMs to control for autocorrelation in model residuals (“dbMEM estimate”). dbMEMs were unable to ac‐
count for autocorrelation in Tenerife models. Asterisks next to parameter estimates denote significance of the predictor (*p <0 .05; **p < 0.01).
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risk. Higher altitudes were associated with decreased probability of 
malaria infection on Porto Santo, whereas on Tenerife, temperature 
was a predictor of malaria. Collinearity between altitude, temper‐
ature, and precipitation was found on both islands, with the same 
climatic processes likely influencing malaria distributions (González‐
Quevedo et al., 2014). This is perhaps not surprising as malaria vec‐
tor distributions are constrained by thermal requirements, with 

decreased malaria prevalence often reported at high altitudes 
(Eggert et al., 2008; Niebuhr, Poulin, & Tompkins, 2016) and low 
temperatures (Blanford et al., 2013; Craig, Le Sueur, & Snow, 1999; 
Loiseau et al., 2013).

Distance to water sources was an important predictor of malaria 
distributions in both Porto Santo and Tenerife (González‐Quevedo 
et al., 2014). Due to the aquatic larval development of mosquitoes, 

F I G U R E  7   Distance‐based Moran's eigenvector maps (dbMEMs) showing strongest associations with Plasmodium strain LK6 infection 
risk in adult Berthelot's pipits on Porto Santo. R2 values for each dbMEM were calculated from single‐predictor LMs of each dbMEM against 
logit‐transformed LK6 risk. Positive eigenvector scores are indicated by black squares, and negative scores are white. The size of the square 
indicates the magnitude of the score
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higher vector abundance and malaria are found in proximity to 
water (Ferraguti et al., 2018; Ganser et al., 2016; Illera et al., 2017). 
In the present study, distance to urban areas was removed prior to 
model selection due to a positive collinearity with distance to water 
sources. Therefore, we cannot rule out the importance of additional 
sources of standing water that may be associated with urban en‐
vironments. Other studies have found links between urbanization 
and increased malaria and/or vector abundance (Alemu, Tsegaye, 
Golassa, & Abebe, 2011; Li et al., 2014), although this appears to 
vary between vector species, with some favoring more natural hab‐
itats (Ferraguti et al., 2016). Pipit density was positively associated 
with malaria risk on Porto Santo, although the model‐averaged pa‐
rameter estimate was relatively small. There was, however, a strong 
negative interaction between distance to water and pipit density 
on this island, likely due to aggregations of mosquitoes and hosts 
around water sources, which may increase disease transmission 
rates (Begon et al., 2002; Greer, Briggs, & Collins, 2008; Le Menach, 
McKenzie, Flahault, & Smith, 2005; Raghwani et al., 2011).

Vegetation type was associated with malaria prevalence on 
Porto Santo. The highest abundance of malaria was found in ar‐
able and grassland habitats, with lower malaria in rock‐associated 
habitats. However, this result should be interpreted with caution 
due to small sample sizes, as only six pipits were caught on rock‐
associated habitats. While not an important predictor of malaria 
infection in Tenerife (González‐Quevedo et al., 2014), differences 
in malaria and vector abundances between vegetation types have 
been found elsewhere (Clark, Wells, Dimitrov, & Clegg, 2016; 
Ferreira Junior et al., 2017; Rubio‐Palis & Zimmerman, 1997).

Contrary to findings from Tenerife (González‐Quevedo et al., 
2014), distance to poultry was not an important predictor of malaria 
prevalence on Porto Santo. This may be because the effects of poul‐
try farms as disease reservoirs (either due to the poultry themselves 
or due to aggregations of wild birds around them), that are driving 
increased malaria abundance on Tenerife (González‐Quevedo et al., 

2014), do not have an effect at the small scale of poultry farming 
witnessed on Porto Santo.

By testing for associations with malaria infection and risk at TLR4 
and novel malaria‐associated SNPs in divergent populations, we have 
revealed contrasting patterns of malaria risk and potential local adap‐
tation, potentially due to different patterns of coevolution between 
the two populations. In addition, we found genetic associations with 
environmentally driven fine‐scale spatial variation in malaria risk at 
the landscape scale within Porto Santo. A lack of genetic associations 
with malaria risk in Tenerife may indicate the importance of spatial 
scales for assessing local adaptation across landscapes, where fine‐
scale associations may be obscured over larger areas. Understanding 
the processes of local adaptation and the environmental drivers of 
infectious disease will be of additional importance for conservation 
efforts, as future climatic fluctuations alter the prevalence of disease.
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