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Abstract. In this paper we prove several results regarding decidability of

the membership problem for certain submonoids in amalgamated free prod-
ucts and HNN extensions of groups. These general results are then applied

to solve the prefix membership problem for a number of classes of one-relator

groups which are low in the Magnus–Moldavanskĭı hierarchy. Since the pre-
fix membership problem for one-relator groups is intimately related to the

word problem for one-relator special inverse monoids in the E-unitary case

(as discovered in 2001 by Ivanov, Margolis and Meakin), these results yield
solutions of the word problem for several new classes of one-relator special

inverse monoids. In establishing these results, we introduce a new theory of

conservative factorisations of words which provides a link between the pre-
fix membership problem of a one-relator group and the group of units of the

corresponding one-relator special inverse monoid. Finally, we exhibit the first
example of a one-relator group, defined by a reduced relator word, that has an

undecidable prefix membership problem.

1. Introduction

From the early days of combinatorial group theory, algorithmic problems have
occupied a central position in the course of its development, going back to the
pioneering work of Dehn [8]. One of the most celebrated classical results in this
area is the positive solution of the word problem for one-relator groups by Dehn’s
student Magnus [29]. It is based on a previous important result by Magnus [28],
the Freiheitssatz, stating that if w is a cyclically reduced word then any subgroup
of the one-relator group Gp〈X |w = 1〉 generated by a subset of X omitting at
least one letter that appears in w must be free. Magnus’s approach is applicable
to an array of other algorithmic problems for one-relator groups and entails what
is today known as the Magnus method. The modern exposition of this method
stems from the paper of McCool and Schupp [33] (see also the monograph [27]),
and is based on an observation due to Moldavanskĭı [35] that if w is a reduced word
and has exponent sum zero for some letter from X, then Gp〈X |w = 1〉 is an HNN
extension of a one-relator group with a defining relator shorter than w.

Given the vigorous development of combinatorial algebra over a number of
decades, it is quite striking that the following problem still remains open.
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Problem. Is the word problem decidable for all one-relation monoids Mon〈X |u = v〉
(where u, v are words over X)?

This problem has received significant attention, with a number of special cases
being solved. A strong early impetus was given by Adjan [1] who proved that
Mon〈X |u = v〉 has decidable word problem if either one of the words u, v are
empty (this is the case of the so-called special monoids, with presentations of the
form Mon〈X |w = 1〉), or both u, v are non-empty and have different initial and
different terminal letters. For both of these cases, Adjan exhibits a reduction of
the monoid word problem to the word problem of an associated one-relator group,
and then makes an appeal to Magnus’s result. Later on, Adyan and Oganessyan
[2] showed that the word problem for Mon〈X |u = v〉 can be reduced to the case of
monoid presentations of the form Mon〈X | asb = atc〉, where a, b, c ∈ X, b 6= c, and
s, t are arbitrary words over X.

An entirely new approach to the problem was provided by the work of Ivanov,
Margolis and Meakin [19] (which is also the central reference for the present paper).
There, a crucial observation is made that the monoid Mon〈X | asb = atc〉 (arising
from the reduction found in [2]) embeds into the inverse monoid defined by the
inverse monoid presentation Inv〈X | asbc−1t−1a−1 = 1〉; consequently, the decid-
ability of the word problem for special inverse monoid presentations Inv〈X |w = 1〉
(where w is a word over the alphabet X = X ∪X−1) would immediately imply the
positive solution of the word problem for one-relator monoids. This strongly moti-
vates the study of special inverse monoids and their word problems, which is also
interesting in its own right, given the prevalence of inverse semigroups and their
combinatorial and geometric aspects in various areas of mathematics (see [24]).
However, a recent surprising result of Gray [10] shows that the word problem for
one-relator special inverse monoids in complete generality is undecidable.

Given that the word problem for Inv〈X |w = 1〉 is undecidable in general, the
key problem that remains is to determine for which words w ∈ (X ∪ X−1)∗ it is
decidable? In particular, is it decidable if w is (i) a reduced word or (ii) a cyclically
reduced word? A positive answer to the first of these questions would still, as a
consequence of the results from [19] described above, imply a positive answer to
decidability of the word problem for arbitrary one-relator monoids Mon〈X |u = v〉.
This motivates investigating the word problem in the cases that w is reduced or
cyclically reduced.

In the cyclically reduced case, the word problem for the one-relator inverse
monoid Inv〈X |w = 1〉 is closely related to an algorithmic problem in the corre-
sponding one-relator group Gp〈X |w = 1〉 called the prefix membership problem.
For a one-relator group G = Gp〈X |w = 1〉, let Pw denote the submonoid of G
generated by the elements of G represented by all prefixes of w. This is the prefix
monoid of G. Another crucial result from [19] (Theorem 3.1), shows that if the
inverse monoid Inv〈X |w = 1〉 has the so-called E-unitary property (which is e.g.
the case when w is cyclically reduced) then the word problem of Inv〈X |w = 1〉
is decidable whenever the membership problem for Pw in G is decidable. This is
significant because it translates the word problem for a one-relator special inverse
monoids into the realm of one-relator groups and associated decision problems.

The connections between decision problems for monoids, inverse monoids and
groups just described highlight the importance of other, more general, algorithmic
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problems. For example, it is still unknown whether the subgroup membership prob-
lem—also called the generalised word problem—is decidable for one-relator groups.
However, there exist one-relator groups in which the submonoid membership prob-
lem (and thus the more general rational subset membership problem [25]) is un-
decidable [10]. The one-relator group with undecidable submonoid membership
problem given in [10] is an HNN extension of Z×Z with respect to an isomorphism
mapping one of the natural copies of Z to the other. So in general the submonoid
and rational subset membership problems are not well-behaved under the HNN
extension construction, and similarly for free products with amalgamation. On the
other hand, under the assumption of finiteness of edge groups, the decidability of
the rational subset membership problem is preserved under the graph of groups
construction [21], which includes amalgamated free products and HNN extensions.
We direct the reader e.g. to [12, 22, 25, 26] for a sampler of results in this broader
area in which the present topic is couched.

Motivated by the above discussion, both the word problem for one-relator inverse
monoids and the prefix membership problem for one-relator groups, with cyclically
reduced defining relator, have already received a great deal of attention in the
literature; see e.g. [14, 16, 19, 20, 32, 34] and [5, Question 13.10]. In this paper we
will make several new contributions towards resolving these open problems. The
new approaches to these problems that we present in this article naturally divide
into two themes.

Firstly, as mentioned above, the standard modern approach to proving results
about one-relator a one-relator group Gp〈X |w = 1〉 is by induction on the length
of w using the McCool–Schupp [33, 27] Moldavanskĭı [35] approach via HNN ex-
tensions. The inductive step of this approach is based on the fact that the one-
relator group embeds in a certain HNN extension of a one-relator group with a
shorter defining relator. We shall refer to the steps in this induction as levels in
the Magnus–Moldavanskĭı hierarchy. Given its utility in proving other results for
one-relator groups, it is very natural to also attempt to use this approach to inves-
tigate the prefix membership problem for Gp〈X |w = 1〉. If the group happens to
be free then by a theorem of Benois [4] the prefix membership problem is decid-
able (in fact, the more general rational subset membership problem is decidable for
free groups.). So the next natural step in this approach is to investigate the prefix
membership problem for one-relator groups that are one-step away from being free
in this hierarchy. The general results we prove for HNN extensions in this paper are
motivated by this idea, and we will apply them in this paper to prove decidability
of the prefix membership problem for several classes of one-relator groups which
are low in the Magnus–Moldavanskĭı hierarchy.

The second new viewpoint revealed by the results we prove in this paper is
that the word problem in Inv〈A |w = 1〉 can be often be shown to be decidable by
analysing decompositions of the word w ≡ w1w2 . . . wk, where all the wi represent
invertible elements of the monoid. We call this a unital decomposition of the word
w. We shall identify several combinatorial conditions on unital decompositions
which suffice to imply decidability of the word problem for the monoid. This gives
a new approach to the word problem for one-relator inverse monoids which goes
via the group of units, in this sense. Something that makes this approach widely
applicable is that the above decomposition of w does not need to be minimal in
order for our results to apply. That is, provided the words wi satisfying the needed
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combinatorial properties, it is not important whether or not there is a finer decom-
position of w as a product of units. This means that there are situations where we
can show the word problem is decidable without necessarily having an algorithm
to compute the minimal invertible pieces of the defining relator word. Similarly
it means that the word problem can sometimes be shown to be decidable without
having to determine the structure of the group of units of the monoid. To make use
of information about unital decompositions in the inverse monoid presentation to
solve the prefix membership problem in the corresponding group Gp〈A |w = 1〉 we
develop a theory of, so-called, conservative factorisations of relator words in one-
relator groups. This is another key new idea that we introduce in this paper, since
it allows us to transform algebraic information about units in the inverse monoid
into corresponding algebraic information about submonoids of the maximal group
image generated by prefixes of pieces of the relator. This allows us to state our
results entirely in terms of one-relator groups and conservative factorisations, and
then apply them to solve the word problem for various families of one-relator inverse
monoids.

These new approaches give rise to results which, when expressed in their most
general form, prove decidability of the membership problem in certain submonoids
of amalgamated free products of groups and HNN extensions of groups. In this
paper we prove four new general results of this kind. Specifically, we prove two
general theorems for amalgamated free products in Section 4, Theorems A and
B, and then in Section 6 we prove two general theorems for HNN extensions of
groups, namely Theorem C and Theorem D. Then, in Sections 5 and 7, respectively,
we show how, via ideas summarised in the description of the two main themes
above, we can apply these general results to solve the prefix membership problem
for certain one-relator groups and, consequently, to solve the word problem for
some classes of special one-relator inverse monoids. As applications we recover new
proofs of numerous results from the literature [6, 19, 20, 30, 32, 34] (bringing them
under a common framework), and at the same time we prove decidability of the
prefix membership problem for many classes of one-relator groups (and special one-
relator inverse monoids) not covered by previous results. In particular, our work
was inspired by the attempts to solve the word problem for the so-called O’Hare
monoid (see [31, 34] and Example 3.2 below), which is eventually dealt with in this
paper, in Proposition 5.4. Other main applications of our general results include
Theorems 5.1, 5.7, 5.10, 7.2, 7.8 and 7.10.

In the last section of the paper we present a result of a different flavour which
says something about the limits of what we should hope to be able to prove about
the prefix membership problem in one-relator groups. Specifically, by modifying the
construction from [10], we will show in Theorem 8.2 that there is a finite alphabet
X and a reduced word w ∈ (X ∪X−1)∗ such that Gp〈X |w = 1〉 has undecidable
prefix membership problem. Hence if [5, Question 13.10] has a positive answer then
the cyclically reduced hypothesis will need to be used.

The paper is organised as follows. In the next preliminary section we gather the
notation and basic notions, aiming to make the paper reasonably self-contained.
This is followed by Section 3 where we discuss the relationship between two types
of factorisations of a word w appearing as a relator in M = Inv〈X |w = 1〉, namely,
unital ones, decomposing w into pieces representing invertible elements (units) of
the inverse monoid M , and conservative factorisations preserving, in a sense, the
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prefix monoid Pw. When M is E-unitary, these two types of factorisation coincide
(see Theorem 3.3), and that, taken together with the Benois factorisation algorithm
devised by Gray and Ruškuc [11] (producing such factorisations in a manner finer
than the Adjan-Zhang overlap algorithm [1, 42]), is an important pre-requisite for
some of our decidability results. The main body of our results is then presented in
Sections 4–7. We finish the paper by few concluding remarks in Section 8.

2. Preliminaries

We give some background definitions and results from combinatorial group and
monoid theory that will be needed later. For more background we refer the reader
to [27] for groups, [18, 24, 38] for monoids and inverse semigroups, and [15, 39] for
automata and formal languages. In particular we refer the reader to [27] for basic
notions from the algorithmic theory of finitely generated groups.

2.1. Words and free objects. Let X be a finite alphabet. By X∗ we denote
the free monoid on X, consisting of all words over X including the empty word 1.
However, whenever we are concerned with groups and inverse monoids it is more
useful to consider a ‘doubled’ alphabet X = X∪X−1, where X−1 = {x−1 : x ∈ X}
is a disjoint copy of X, with an obvious bijective correspondence between X and

X−1. Now the free monoid X
∗

has a natural involutory operation so that for a word
w = xε11 . . . xεkk , x1, . . . , xk ∈ X, ε1, . . . , εk ∈ {−1, 1}, we have w−1 = x−εkk . . . x−ε11 .

When w ∈ X
∗
, we use the notation w(x1, . . . , xn) to stress that the letters

occurring in w are among x1, . . . , xn, x
−1
1 , . . . , x−1n . In other words, an occurrence

of a letter xi in w can happen either as xi, or as x−1i . Given w(x1, . . . , xn) and a

sequence of (not necessarily distinct) words p1, . . . , pn ∈ X
∗
, we write w(p1, . . . , pn)

to denote the word obtained from w = w(x1, . . . , xn) by replacing each letter xi by
pi and each letter x−1i by p−1i .

Given w ∈ X∗ we denote by red(w) the reduced form of w, which is obtained
from w by the confluent rewriting process of successively removing subwords of the
form xx−1 and x−1x, where x ∈ X. This notation is extended to sets, too, so that

for A ⊆ X∗, red(A) stands for the set of words obtained by reducing each word from
A. As is well known, one can identify the elements of the free group FG(X) on X

with the set of all reduced words from X
∗
, so that the result of the multiplication

of two such words u, v is red(uv), and the inverse of u is simply u−1.
A monoidM is called inverse [24, 38] if for every a ∈M , there is a unique element

a−1 ∈M , called the inverse of a, such that aa−1a = a and a−1aa−1 = a−1. Inverse
monoids form a variety in the sense of universal algebra, so free inverse monoids
FIM(X) exist. A straightforward, albeit implicit description of FIM(X) is given

as a quotient of X
∗

by the so-called Vagner congruence: this is the congruence

of X
∗

generated by all pairs of the form (u, uu−1u) and (uu−1vv−1, vv−1uu−1),

where u, v ∈ X
∗
. Concrete descriptions of FIM(X) (and so the solutions of its

word problem) go back to Scheiblich [40] and Munn [36]: the element of FIM(X)

represented by a word w ∈ X∗ can be identified with a birooted tree today called
the Munn tree of w. This is obtained as a connected subtree of the Cayley tree
of the free group FG(X) which arises by travelling along the path labelled by w.

Hence, u, v ∈ X∗ represent the same element of FIM(X) if and only if they give
rise to the same Munn tree. Clearly, there is a natural surjective homomorphism
FIM(X)→ FG(X).
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2.2. Presentations. We denote by

G = Gp〈X |wi = 1 (i ∈ I)〉

the group presented by generators X and relators wi, i ∈ I; as usual, this is
canonically the quotient of the free group FG(X) by its smallest normal subgroup
N containing all the elements (reduced words) wi, i ∈ I. Similarly, the monoid
defined by a monoid presentation M = Mon〈X |ui = vi (i ∈ I)〉 is the quotient of
the free monoid X∗ by the congruence ρ generated by the pairs (ui, vi), i ∈ I.

In an analogous fashion, inverse monoids can be given by inverse monoid pre-
sentations

M = Inv〈X |ui = vi (i ∈ I)〉,
where M ∼= FIM(X)/ρ for the inverse monoid congruence ρ of FIM(X) generated
by the pairs (ui, vi), i ∈ I. This is equivalent to saying that M as the quotient

X
∗
/ρ′ where ρ′ is the smallest congruence containing the Vagner congruence and

all the pairs (ui, vi), i ∈ I. When one of the sides of each defining relation is
the empty word, say vi is the empty word for all i ∈ I, we get the notion of a
special inverse monoid and special inverse monoid presentations. The maximal
group homomorphic image of M = Inv〈X |ui = 1 (i ∈ I)〉 is the group defined by
the presentation Gp〈X |ui = 1 (i ∈ I)〉.

For a monoid or inverse monoid M , we denote by UM the group of units of M .
So UM is the set of all invertible elements of the monoid M . If G is a group and
A ⊆ G, we denote by Gp〈A〉 the subgroup generated by A, while Mon〈A〉 is the
submonoid of G generated by A.

Throughout the paper, if M is an inverse monoid generated by a set X, given

any two words u, v ∈ X
∗

we say u = v in M to mean that that the two words
represent the same element of the inverse monoid, and write u ≡ v to mean that u

and v are identical as words in X
∗
. The same comments apply in particular when

we are working with a group G generated by a set X. Also, in this situation, given

any subset A of X
∗

by the submonoid of G generated by A, we mean the submonoid
generated by the set of all elements of G represented be words in A (that is, the
image of A in G). We write this as Mon〈A〉 ≤ G. Similarly we talk about the
subgroup Gp〈A〉 of G generated by the set of words A.

2.3. E-unitary inverse monoids. Let M be an inverse monoid and A ⊆M . The
subset A is said to be left unitary if a ∈ A, s ∈ M and as ∈ A imply s ∈ A. The
notion of right unitary subset is defined dually. A subset is unitary if it is both
left and right unitary. As is shown, for example, in [24, Proposition 2.4.3], when A
is E = E(M), the set of idempotents of M , the properties of being left, right and
two-sided E-unitary coincide, thus defining the class of E-unitary inverse monoids.

Each inverse monoid M has the minimum group congruence σ, the smallest
congruence of M such that M/σ is a group (see [24, Theorem 2.4.1]). On the other
hand, on any inverse monoid M one can define the compatibility relation ∼ by

a ∼ b if and only if ab−1, a−1b ∈ E(M).

Whenever M is E-unitary, the relation ∼ is an equivalence relation, and, further-
more, a congruence of M . In general, σ is the congruence generated by the relation
∼. In fact, the following characterisation holds (see [24, Theorem 2.4.6]).

Proposition 2.1. An inverse monoid M is E-unitary if and only if σ =∼.
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Turning to the case of special inverse monoids M = Inv〈X |ui = 1 (i ∈ I)〉, we
have that M/σ = G = Gp〈X |ui = 1 (i ∈ I)〉, and σ is simply the kernel relation of
the natural homomorphism M → G. Therefore, we immediately get the following
well-known result.

Lemma 2.2. Assume that the inverse monoid M = Inv〈X |ui = 1 (i ∈ I)〉 is E-

unitary, and let u, v ∈ X∗ be such that u = v holds in G = Gp〈X |ui = 1 (i ∈ I)〉.
Then u ∼ v holds in M .

Let us repeat the main result of [19], which confirmed a conjecture formulated
earlier in [31].

Theorem 2.3. ([19, Theorem 4.1]) If the word w ∈ X∗ is cyclically reduced then
the inverse monoid M = Inv〈X |u = 1〉 is E-unitary.

In [19] one can find an example of a special inverse monoid with more than one
defining relation, and with both defining relators being cyclically reduced words,
which is non-E-unitary, so the one-relator condition is essential here.

2.4. Decision problems in finitely generated groups, finite state automata,
the Benois Theorem. Let G = 〈X〉 be a finitely generated group with canonical

homomorphism π : X
∗ → G, let A be a finite subset of X

∗
and let M = Mon〈A〉

be the submonoid of G generated by A. The membership problem for M in G is
the following decision problem:

INPUT: A word w ∈ X∗.
QUESTION: wπ ∈M?

In other words, is w equal in G to some product of words from A?
Given a one-relator group G = Gp〈X |w = 1〉 we define the associated prefix

monoid Pw to be the submonoid

Pw = Mon〈pref(w)〉 ≤ G,
where pref(w) denotes the set of all prefixes of the word w. We use suff(w) to
denote the set of all suffixes of w. We stress that the prefix monoid of G actually
depends on the presentation of G—it can happen that two different presentations
define the same group, while the corresponding prefix monoids are different, as
shown in the following simple example.

Example 2.4. Both groups G1 = Gp〈a, b | aba = 1〉 and G2 = Gp〈a, b | baa = 1〉
are infinite cyclic, that is, free groups of rank 1 generated by a. In this sense, these
two presentations define the same group G = G1 = G2. However, the prefix monoid
corresponding to the first presentation is M1 = Mon〈a, ab〉 = Mon〈a, a−1〉 =
G, while the prefix monoid for the second presentation is M2 = Mon〈b, ba〉 =
Mon〈a−2, a−1〉 = Mon〈a−1〉 = {1, a−1, a−2, a−3, . . . }, clearly a proper submonoid
of M1.

Therefore, we are always going to refer to the prefix monoid of a one-relator
group defined by a explicitly stated presentation G = Gp〈X |w = 1〉, or make sure
that the presentation for G is clear from the context. Proceeding in this vein, we
say that the one-relator group G defined by the presentation Gp〈X |w = 1〉 has
decidable prefix membership problem if the membership problem for Pw in G is
decidable. The following crucial connection to the word problem of one-relator
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special inverse monoids was made in [19]. It is an immediate consequence of [19,
Theorem 3.3].

Theorem 2.5. ([19]) Let w ∈ X∗ be a word such that the inverse monoid

M = Inv〈X |w = 1〉
is E-unitary. If the prefix membership problem for G = Gp〈X |w = 1〉 is decidable,
so is the word problem for M .

Let M = Inv〈X |w = 1〉 and let R be the set of right units of M . Then R
is a submonoid, but in general not an inverse submonoid, of M . Clearly, every
prefix of w represents an element of R. Conversely, by the geometric argument
given in the second paragraph of the proof of [19, Proposition 4.2], for every word

u ∈ X∗ representing an element of R there are prefixes p1, . . . , pk of w such that
u = p1 . . . pk holds in M . The statement of this proposition in [19] actually assumes
that w is cyclically reduced; but it is straightforward to check that the correspond-
ing argument does not make use of that assumption. Hence, in general in a special
one-relator inverse monoid M = Inv〈X |w = 1〉 every right unit can be expressed
as a product of prefixes of w. Therefore, the image of R under the natural homo-
morphism M → G = Gp〈X |w = 1〉 is precisely Pw.

We use a standard model for finite state automata (FSA): this is a quintuple
A = (Q,Σ, E, I, T ), where Q is a finite set of states, Σ is the alphabet, I, T ⊆ Q
are the initial and final states, respectively, and E ⊆ Q×Σ×Q are the transitions.
The automaton A accepts the word w ∈ Σ∗ if there is a path from an initial state to
a final state labelled by w; the set of all accepted words L(A) ⊆ Σ∗ is the language
of the FSA. By Kleene’s Theorem [15], the class of languages of FSA is precisely
the class of regular languages.

Given a group G, the class of rational subsets of G is the smallest set containing
all finite subsets of G that is closed with respect to union, product and submonoid
generation. Note that it is immediate from this definition that every finitely gen-
erated submonoid M of G is a rational subset of G. Combining this notion with
Kleene’s Theorem, it is immediate to arrive at the following result.

Proposition 2.6. Let G = Gp〈X〉 be a finitely generated group and let π : X
∗ → G

be the corresponding canonical homomorphism. A subset R ⊆ G is a rational if and
only if there is a FSA A over X such that R = L(A)π.

We note that the empty set is a regular language, and the empty set is a rational
subset of G for any group G.

This proposition shows that FSA are convenient vehicles to define rational sub-
sets in finitely generated groups by a finite amount of data. The rational subset
membership problem [25] for a finitely generated group G = Gp〈X〉 with the canon-

ical homomorphism π : X
∗ → G is the following decision problem.

INPUT: A FSA A over X and a word w ∈ X∗.
QUESTION: wπ ∈ L(A)π?

A particularly pleasant algorithmic properties are enjoyed by free groups, as a
consequence of a key result due to Benois [4] (see also e.g. [3, 6]).

Theorem 2.7. ([4]) If L ⊆ X∗ is a regular language over X then red(L) is also a
regular language.



THE PREFIX MEMBERSHIP PROBLEM FOR ONE-RELATOR GROUPS 9

Corollary 2.8. Let X be a finite set. Then the free group FG(X) has decidable
rational subset membership problem. In particular, FG(X) has decidable submonoid
membership problem and subgroup membership problem. Also, the rational subsets
of FG(X) are closed for intersection and complement.

Note that, in general, rational subsets of (finitely generated) groups need not be
closed under intersection nor complement.

2.5. A theorem of Herbst on rational subsets of subgroups of groups. Let
G be a finitely generated group, let U be a subgroup of G, and let Q be a subset
of U . It is immediate from the definition of rational subset that if Q is a rational
subset of U then Q is also a rational subset of G. The converse is also true, but it is
far less obvious. It was proved by Herbst in [13] that, under the above assumptions,
if Q is a rational subset of G then Q is a also rational subset of U .

In this subsection we will explain and give a proof of an effective version of
Herbst’s theorem which will be of crucial importance for us in this paper.

Let us begin by recalling some basic facts about rational subsets and regular
languages. Let M be a monoid. Just as we did for groups above, we can talk
about the rational subsets of the monoid M . The rational subsets of M are the
sets that can be obtained from finite subsets using the operations of union, product
and submonoid generation. If A is a set of generators for M then a subset of M is
rational if and only if it is accepted by a FSA over A. Here a subset U of M is said
to be accepted by a FSA over A if, with π : A∗ →M the canonical homomorphism,
there is a FSA A such that L(A)π = U . It is a standard fact that a subset U of
the free monoid A∗ is the language of a finite state automaton if and only if U can
be described by a rational expression over A. A rational expression for a subset
U of A∗ is a formal expression which gives a description of a way of constructing
the set U from finite subsets using finitely many operations of union, product and
the Kleene star operation (which is submonoid generating in A∗). For example,
(ab)∗ ∪ (ba)∗ ∪ a(ba)∗ ∪ b(ab)∗, is a rational expression for the regular language of
all words with alternating as and bs. Of course, different rational expressions can
describe the same regular language. It is easy to show that there is an algorithm
which takes any rational expression over A and constructs a FSA recognising the
language that the rational expression defines, and conversely there is an algorithm
which given a FSA A computes a rational expression defining L(A). It follows that
if M is a monoid generated by a set A, then a subset U of M is rational if and only if
there is a rational expression over A which defines U . We will not be working with
regular expressions much in this paper, but we shall need this notion when making
reference to proofs of Herbst below. For a formal definition of rational expression
we refer the reader to Section 2 of the book [39].

Theorem 2.9. Let G be a finitely generated group with finite generating set X,
and canonical homomorphism π : (X ∪ X−1)∗ → G. Suppose further that G has
a recursively enumerable word problem. Let U be a finitely generated subgroup of
G with finite generating set Y and canonical homomorphism σ : (Y ∪ Y −1)∗ → U .
Then for every subset Q of U we have

Q ∈ Rat(G)⇔ Q ∈ Rat(U).

Furthermore there is an algorithm which
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(1) for any FSA A over X ∪ X−1 such that L(A)π ⊆ U computes a FSA B
over Y ∪ Y −1 such that L(B)σ = L(A)π, and there is an algorithm which

(2) for any FSA B over Y ∪ Y −1 computes a FSA A over X ∪X−1 such that
L(A)π = L(B)σ.

Proof. Throughout this proof we make use of the same notation and conventions
as in [13]. From the discussion above we know that there is an algorithm which will
take a FSA A over A recognising Q and use it to compute a rational expression ρ
over A defining L(A).

We now show how the argument used in the proof of [13, Proposition 5.2] can
be used to prove the following claim.

Claim. There is an algorithm which takes as input any rational expression T over
X ∪X−1 such that L(T )π ⊆ U and returns a rational expression T over Y ∪ Y −1
such that σ(L(T )) = π(L(T )) ⊆ U .

Here L(R) denotes the language defined by a rational expression R. It follows
from the discussion preceding the statement of the theorem that once this claim
has been established then (1) will follow. We prove Claim 2.5 by induction on
the starheight, denoted SH(T ). It is important to note that here by SH(T ) we
mean the starheight of the rational expression T , which might well be larger than
the minimum starheight of the language L(T ) defined by this rational expression.
That is, it is possible that there is a rational expression T ′ with SH(T ′) < SH(T )
and with L(T ′) = L(T ).

When SH(T ) = 0 then clearly there is an algorithm which replaces T by an
expression of the form

w1 ∪ w2 ∪ . . . ∪ wm
for a finite set {w1, . . . , wm} ⊆ (X∪X−1)∗ and π(wi) ∈ U for 1 ≤ i ≤ m. So we may
assume that T has this form. Since G is recursive enumerable can apply Lemma 4.4
(see below). By Lemma 4.4 there is an algorithm that computes words w1, . . . , wm ∈
(Y ∪ Y −1)∗ such that σ(wi) = π(wi) for 1 ≤ i ≤ m. Hence σ({w1, . . . , wm}) =
π({w1, . . . , wm}) and this deals with this case.

For the induction step now let us assume SH(T ) > 0. We can write T = τ1 ∪
. . . ∪ τq where each τj is a rational expression of the form

w1T
∗
1w2T

∗
2w3 . . . wnT

∗
nwn+1, (2.1)

where each wi ∈ (X∪X−1)∗ and each Ti is a rational expression over (X∪X−1) with
SH(Ti) < SH(T ) for 1 ≤ i ≤ n. Consider such an expression (2.1) corresponding to
τk. Set

Si = w1w2 . . . wiTiw
−1
i . . . w−12 w−11

for 1 ≤ i ≤ n noting that SH(Si) = SH(Ti) < SH(T ) and, by [13, Lemma 5.1], we
have π(L(Si)) ⊆ U . By induction we can suppose that our algorithm takes Si and
returns a rational expression Si over Y ∪ Y −1 such that π(L(Si)) = σ(L(Si)). It
follows from the argument given in the proof of [13, Proposition 5.2] that

π(L(S∗1S
∗
2 . . . S

∗
nw1w2 . . . wn+1)) = π(L(τk)).

Then we instruct our algorithm to compute

S1
∗
S2
∗
. . . Sn

∗
w1 . . . w2wn+1,
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which is a rational expression over Y ∪ Y −1 such that

σ(L(S1
∗
S2
∗
. . . Sn

∗
w1 . . . w2wn+1)) = π(L(S∗1S

∗
2 . . . S

∗
nw1w2 . . . wn+1)) = π(L(τk)).

Repeating this for all tk in T = τ1 ∪ . . . ∪ τq our algorithm computes a rational

expression T over Y ∪ Y −1 satisfying Claim 2.5. It follows from this argument
that there is a recursive algorithm satisfying the requirements of Claim 2.5. This
completes the proof of part (1).

(2) By the comments preceding the statement of the theorem, there is an algo-
rithm which takes B and computes a rational expression R over Y ∪Y −1 such that
L(R)σ = L(B)σ ⊆ U . For each y ∈ Y let ŷ ∈ (X ∪ X−1)∗ such that yσ = ŷπ in

U . Extend this notation to y ∈ Y −1 where ŷ−1 = ŷ−1, the formal inverse of the
word. Let ξ : (Y ∪ Y −1)∗ → (X ∪X−1)∗ be the unique homomorphism satisfying
yξ = ŷ for all y ∈ Y ∪ Y −1. Let S = Rξ be the expression obtained by replacing
every word w in the rational expression w by the word wξ. Then S is a rational
expression over X ∪X−1 such that L(S)π = L(R)σ. Finally apply the algorithm
that takes S and returns a FSA A over X ∪X−1 such that L(A)π = L(S)π. This
completes the proof. �

Lemma 2.10. Let G be a finitely generated group with finite generating set X, and
canonical homomorphism π : (X ∪X−1)∗ → G. Furthermore suppose that G has a
recursively enumerable word problem. Let A,B ≤ G be finitely generated subgroups
with φ : A → B is an isomorphism. Then there is an algorithm which takes any
FSA A over X ∪X−1 such that L(A)π ⊆ A computes a FSA B over X ∪X−1 such
that L(B)π = (L(A)π)φ.

Proof. Let Y be a finite generating set for A with canonical homomorphism σ :
(Y ∪ Y −1)∗ → A. Apply the algorithm from Theorem 2.9(1) to compute a FSA
Q over Y ∪ Y −1 such that L(Q)σ = L(A)π. Since φ is an isomorphism it follows
that Y is a finite generating set for the group B with canonical homomorphism
σφ. Now apply Theorem 2.9(2) to the pair G, B, with respect to the canonical
homomorphism σφ to compute a FSA B over X∪X−1 such that L(Q)σφ = L(B)π.
This completes the proof since L(B)π = L(Q)σφ = L(A)πφ. �

Remark 2.11. Note that the hypotheses of Lemma 2.10 hold in particular if G has
decidable word problem.

3. Unital and conservative factorisations

Let w ∈ X∗. A factorisation of w is a decomposition

w ≡ w1 . . . wm

where w1, . . . , wk ∈ X
∗

. The words wi (1 ≤ i ≤ k) are called the factors of this
factorisation.

Let u1, . . . , uk be distinct words in X
∗

and let w ∈ X
∗
. If w belongs to the

submonoid of X
∗

generated by u1, . . . , uk, then there is a word w′(x1, . . . , xk) over
the alphabet {x1, . . . , xk} such that

w ≡ w′(u1, . . . , uk).

This expression gives a factorisation of w where each factor is equal to uj for some
1 ≤ j ≤ k.
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A factorisation w ≡ v1 . . . vn is finer than a factorisation w ≡ w1 . . . wm if there
exist 0 ≤ k1 ≤ · · · ≤ km−1 ≤ n such that w1 ≡ v1 . . . vk1 , wm ≡ vkm−1+1 . . . vn and
wi ≡ vki−1+1 . . . vki for all 1 < i < m.

We say that a factorisation w ≡ w1 . . . wm is unital if each of its factors represents
a unit of the inverse monoid M = Inv〈X |w = 1〉. In such a case, w1, . . . , wm are
called invertible pieces. It is an easy exercise to show that there is a unique finest
unital factorisation of w; this is a decomposition into minimal invertible pieces
w ≡ w1 . . . wm, so that no proper prefix of any of the words wi represents an
element of UM . In fact, there is a strong connection between the minimal invertible
pieces of w and the group of units UM .

Proposition 3.1. Let M = Inv〈X |w = 1〉 where w ∈ X
∗
. Then the minimal

invertible pieces w1, . . . , wm of w generate the group UM .

Proof. This follows from the argument given in the proof of [19, Proposition 4.2].
Note that, as already mentioned above, while in the statement of [19, Proposition
4.2] it is assumed that the words in the defining relators are all cyclically reduced,
that assumption is not used anywhere in the proof, and the proposition holds with
that assumption removed. �

We now briefly recall the Adjan overlap algorithm (as presented in [23]). Let
X be an alphabet, and assume W0 is a finite set of words over X. Inductively,
we define a sequence Wi, i ≥ 0, of sets of words as follows. Assuming that Wk is
determined, we let u ∈Wk+1 if one of the following conditions hold:

(i) u ∈Wk and u 6∈ pref(v) ∪ suff(v) for all v ∈Wk \ {u};
(ii) there exist v, v′ ∈ X∗ not both empty such that uv, v′u ∈Wk;
(iii) there exist v, v′ ∈ X∗ such that v is non-empty and uv, vv′ ∈Wk;
(iv) there exist v, v′ ∈ X∗ such that v′ is non-empty and v′u, vv′ ∈Wk.

It is fairly easy to show that the sequence of sets of words Wk stabilises after finitely
many steps, i.e. that there exists k0 such that Wk = Wk0 for all k ≥ k0. Define
Γ = Wk0 .

This algorithm is applied to special monoid presentations by setting W0 to be the
set of relator words in the considered presentation; in particular, for Mon〈X |w = 1〉
we put W0 = {w}. The same algorithm can be applied to special inverse monoid
presentation, and in particular to one-relator special inverse monoids Inv〈X |w = 1〉
by replacing X by X.

It is easy to see that the words from the set Γ generated by the Adjan algorithm
all represent invertible elements of the monoid. Adjan [1] proved that in the case of
one-relator special monoid presentations, this algorithm actually computes the de-
composition of the defining relator word w into minimal invertible pieces. However,
this is no longer true for arbitrary special monoid presentations. In fact, more than
this, for finitely presented special monoids the problem of computing the minimal
invertible pieces is known to be undecidable. Indeed, in [37] it is shown that it is
undecidable whether a finitely presented special monoid is a group, and if there
were an algorithm or computing the minimal invertible pieces then that algorithm
could be used to decide whether a special monoid is a group by testing whether all
the generators appear in at least one relator, and that the minimal invertible pieces
all have size one.

For special inverse monoids the Adjan algorithm fails to compute the minimal
invertible pieces even in the one-relator case. This is illustrated by the following
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example, which appeared first in print in [31] (see also [19]), sometimes known as
the O’Hare example (because it was constructed by Margolis and Meakin while
waiting for a connecting flight at the O’Hare International Airport, Chicago).

Example 3.2. Let

M = Inv〈a, b, c, d | abcdacdadabbcdacd = 1〉.

Applying a geometric method called Stephen’s procedure [41] it was shown in [31]
that

w ≡ (abcd)(acd)(ad)(abbcd)(acd)

is a unital factorisation of the relator word. In fact, the same methods show that
any subword of the relator word representing a unit of M must begin with either
a or d−1 and end with either d or a−1, so it follows that this is the decomposition
of w into minimal invertible pieces. Thus it follows from the previous proposition
that {abcd, acd, ad, abbcd} is a generating set of UM (abbcd can be shown to be
redundant).

On the other hand, this is not something Adjan algorithm would discover, as
Γ = {abcdacdadabbcdacd} in this case. Indeed, this is the reason why the monoid
Mon〈a, b, c, d | abcdacdadabbcdacd = 1〉 has a trivial group of units, in contrast to
the inverse monoid defined by the same presentation which has an infinite group of
units.

To address this, in [11] Gray and Ruškuc devised a new, finer pieces computing
algorithm better suited for special inverse monoid presentations

M = Inv〈X |wi = 1 (i ∈ I)〉,

called the Benois algorithm (because it relies on the Benois theorem and its conse-
quences). Namely, let

U = {pref(wi) : i ∈ I} ∪ {pref(w−1i ) : i ∈ I}.

Observe that all the words in U represent right invertible elements of the inverse
monoid M . Let V = Mon〈U〉 be the submonoid of the free group FG(X) generated
by the words from U viewed as elements of the free group i.e. the submonoid
of FG(X) generated by red(U). Now by Corollary 2.8 of Benois’ Theorem the
free group FG(X) has decidable submonoid membership problem. So, we can
algorithmically test, for each prefix p of some word wi, whether p−1 represents an
element of V . If it does then p−1 is right invertible which implies p is left invertible,
and hence since p is also right invertible being a prefix of wi, it follows that the
word p represents an invertible element of the monoid M . Thus this algorithm gives
a method for finding invertible pieces of relators. The collection of all such prefixes
for which the answer is ‘yes’ naturally gives rise to factorisations

wi ≡ wi,1 . . . wi,ki
for all i ∈ I, such that for every prefix p of wi we have

p−1 ∈ V if and only if p ≡ wi,1 . . . wi,j for some j ∈ {1, . . . , ki}.

It is clear from the definition that for all i ∈ I the decomposition of wi into pieces
computed by the Benois algorithm is unital. In fact, it is shown in [11] that for
each word wi the factorisation computed by the Benois algorithm is a refinement
of the decomposition computed by the Adjan algorithm.
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In the same way as for special monoid presentations, there is no algorithm which
takes finitely presented special inverse monoids and computes the minimal pieces
of the defining relator words. In the particular case of one-relator special inverse
monoids, whether the Benois algorithm computes the minimal invertible pieces is
an open problem. It may be shown (see [11]) that when applied to the O’Hare
monoid the Benois algorithm does compute the minimal invertible pieces of the
defining relator, giving the unital factorisation of the defining relator described
above in Example 3.2. This example shows that there are cases where the Benois
algorithm preforms strictly better than the Adjan algorithm, in the sense that it
gives a decomposition which is a strict refinement of the Adjan decomposition.

While it is not known whether the Benois algorithm computes the minimal in-
vertible pieces for one-relator special inverse monoids, one very important central
theme of the present paper will be that it is often the case that it is sufficient to
find some suitable (not necessarily minimal) unital factorisation of w in order to
prove that the monoid M = Inv〈A |w = 1〉 has decidable word problem. In this
sense, the Benois algorithm will provide a key tool for solving the word problem for
certain examples and classes of one-relator special inverse monoids.

Now we introduce another type of factorisation of a word that makes computing
and handling the prefix monoid of a one-relator group presentation somewhat easier

and more manageable. Let w ∈ X∗. Then for a factorisation

w ≡ w1 . . . wk

let P (w1, . . . , wk) denote the submonoid of G = Gp〈X |w = 1〉 generated by ele-
ments

k⋃
i=1

pref(wi).

It is quite easy to see that we always have Pw ⊆ P (w1, . . . , wk). In the case that
Pw = P (w1, . . . , wk) then we say that the factorisation w ≡ w1 . . . wk is conser-
vative. The next result establishes a connection between unital and conservative
factorisations.

Theorem 3.3. Let w ∈ X∗.
(i) Any unital factorisation of w is conservative.
(ii) If Inv〈X |w = 1〉 is E-unitary (in particular, if w is cyclically reduced) then

every conservative factorisation of w is unital.

Proof. (i) Assume w ≡ w1 . . . wk is a unital factorisation, so that each word wi,
1 ≤ i ≤ k, represents a unit of M = Inv〈X |w = 1〉. Let p be a prefix of wi for
some i. Then

p′ ≡ w1 . . . wi−1p

is a prefix of w and thus in G = Gp〈X |w = 1〉 this word represents an element of
the prefix monoid Pw. Since p′ is right invertible in M and w1 . . . wi−1 is invertible
in M it follows that p is right invertible in M . Thus by the remarks following
Theorem 2.5 it follows that p is equal in M to a product of prefixes of w. Applying
the natural homomorphism from M to its maximal group image, it follows that p
represents in G an element of the prefix monoid Pw. It follows that P (w1, . . . , wk)
must be contained in Pw, so in fact we have an equality of these two submonoids
of G, confirming that the considered factorisation in conservative.
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(ii) Assume that M = Inv〈X |w = 1〉 is E-unitary and let w ≡ w1 . . . wk be a
conservative factorisation of w, so that we have P (w1, . . . , wk) = Pw. Our aim is
to show that w1 represents a unit of M , that is, we want to prove that w1 ∈ UM .

Since w1w2 . . . wk = 1 it is immediate that w1 is a right unit of M . Now we need
to prove that w1 is a left unit which clearly is equivalent to proving that w−11 is a
right unit of M . In G = Gp〈X |w = 1〉 we have

w−11 = w2 . . . wk ∈ P (w1, . . . , wk) = Pw

since the factorisation is conservative. Thus in G we have

w−11 = p1 . . . pm

for some pi ∈ pref(w) for all 1 ≤ i ≤ m. Since M is E-unitary, it follows from
Lemma 2.2 that we have w−11 ∼ p1 . . . pm in M . This implies that w1p1 . . . pm ∈
E(M). Since the only right invertible idempotent in an inverse monoid is the
identity element it follows that w1p1 . . . pm = 1 in M . From this we deduce that
w1p1 . . . pmw1 = w1 and p1 . . . pmw1p1 . . . pm = p1 . . . pm and hence w−11 = p1 . . . pm
in M . We conclude that w−11 represents an invertible element of M . This concludes
the proof that w1 represents an invertible element of the monoid M .

Consequently,

w2 . . . wkw1 = w−11 (w1 . . . wk)w1 = w−11 w1 = 1,

so now we can argue, by repeating the previous argument, that w2 ∈ UM . In this
say we can prove that each factor represents an invertible element of the monoid.
We conclude that the considered factorisation is unital. �

Corollary 3.4. Let w ∈ X∗. Then the Benois algorithm applied to w computes a
conservative factorisation of w.

This importance of this corollary will become in Section 5 where there are theo-
rems whose hypotheses are that the defining relator admits a conservative factori-
sation satisfying certain properties. This corollary will help us verify that these
hypotheses do hold in particular concrete examples.

4. Deciding membership in submonoids of amalgamated free products

As explained in the introduction, our aim in this section is to give two general
decidability results concerning the membership problem for certain submonoids of
free amalgamated products B ∗A C of finitely generated groups. Then in the next
section these results will be applied to the prefix membership problem for certain
one-relator groups.

Let us now fix the notation and conventions that will be in place throughout this
section. We refer the reader to [27] for more background and proofs of standard
results. Throughout this section we use B ∗A C to denote the amalgamated free
product of two groups B and C over a group A. We shall always assume that all
three of these groups are finitely generated by, respectively, the finite sets X, Y and

Z. We formalise this by fixing canonical homomorphisms π : X
∗ → B, θ : Y

∗ → C
and ξ : Z → A.

In addition, we have two injective homomorphisms f : A → B and g : A → C
and B ∗A C is the corresponding pushout in the category of groups. Then the
amalgamated free product B ∗AC is defined by the presentation obtained by taking
the disjoint union of presentations for B and C together with additional defining
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relations zf = zg for all z ∈ Z. To be more precise, let Z = {z1, . . . , zm}. Then

there are words αi ∈ X
∗

and βi ∈ Y
∗
, 1 ≤ i ≤ m, such that the mappings

f : Z → X
∗

and g : Z → Y
∗

defined by zif = αi and zig = βi induce injective
homomorphisms f : A→ B and g : A→ C. Note that f and g are used to denote
both mappings from A into B and C, respectively, and also to define mappings on

words f : Z
∗ → X

∗
and g : Z

∗ → Y
∗
. Consequently,

wf ≡ w(α1, . . . , αm) and wg ≡ w(β1, . . . , βm)

for any w ∈ Z∗. Recall that w(α1, . . . , αm) is the word in X∗ obtained by replacing
zi by αi for each letter zi ∈ Z in the word w. Using this notation, we may speak
about the membership problem for the subgroup A in B and C respectively: the
algorithmic question is whether there is an algorithm which takes as input any word

u over X (resp. Y ) and decides whether or not there exists a word w ∈ Z∗ such
that u = w(α1, . . . , αm) holds in B (resp. u = w(β1, . . . , βm) holds in C). We will
often identify A with its image in B ∗AC. In this way, each of A, B and C is viewed
as a subset of the amalgamated free product B ∗A C and B ∩ C = A. So, for any
b ∈ B by saying that b belongs to A we mean that b ∈ Af , and analogously we talk
about an element c ∈ C belonging to A.

We are now in a position to state the two main general results of this section.

Theorem A. Let G = B ∗A C, where A,B,C are finitely generated groups such
that both B,C have decidable word problems, and the membership problem for A
in both B and C is decidable. Let M be a submonoid of G such that the following
conditions hold:

(i) A ⊆M ;
(ii) both M ∩B and M ∩ C are finitely generated and

M = Mon〈(M ∩B) ∪ (M ∩ C)〉;

(iii) the membership problem for M ∩B in B is decidable;
(iv) the membership problem for M ∩ C in C is decidable.

Then the membership problem for M in G is decidable.

Definition 4.1. (Closed for rational intersections) Let G be a finitely generated
group, generated by a finite set Ω with canonical homomorphism τ : Ω → G, and
let H be a finitely generated subgroup of G. We say that H in G is closed for
rational intersections if R ∩H ∈ Rat(G) for all R ∈ Rat(G). We say that H in G
is effectively closed for rational intersections if it is closed for rational intersections
and moreover that there is an algorithm which given a FSA A over Ω computes a
FSA AH over Ω such that L(AH)τ = (L(A)τ) ∩H.

Theorem B. Let G = B ∗A C, where A,B,C are finitely generated groups. Let
M be a submonoid of G such that both M ∩ B and M ∩ C are finitely generated
and M = Mon〈(M ∩B) ∪ (M ∩ C)〉. Assume further that the following conditions
hold:

(i) B and C have decidable rational subset membership problems;
(ii) A ≤ B is effectively closed for rational intersections;
(iii) A ≤ C is effectively closed for rational intersections.

Then the membership problem for M in G is decidable.
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Comparing these two theorems, Theorem A shows that the membership problem
for suitably nice submonoids in relatively general amalgamated free products is
decidable, while Theorem B shows that under stronger assumptions on the groups
of the amalgamated free product, we get a much broader family of submonoids in
which we can decide membership.

As is well known, see e.g. [27, pp. 186-187], each element g ∈ G = B ∗A C can
be written as

g = b1c1 . . . bncn

with bi ∈ B and ci ∈ C for all 1 ≤ i ≤ n. The above representation is said to be in
reduced form if

• If n > 1 then bi does not belong to A for all i 6= 1, b1 is either equal to 1
or else does not belong to A, ci does not belong to A for all i 6= n, and cn
is either equal to 1 or else does not belong to A.
• If n = 1 then if both b1 and c1 belong to A then exactly one of b1 = 1 or
c1 = 1 holds.

Moreover, a word w ≡ u1v1 . . . ukvk where ui ∈ X
∗

and vi ∈ Y
∗
, 1 ≤ i ≤ k, is said

to be a word in reduced form if and only if (u1π)(v1θ) . . . (ukπ)(vkθ) is a reduced
form. The following result is standard and can be proved e.g. by applying [27,
Theorem IV.2.6].

Lemma 4.2. An equality of two reduced forms

b1c1 . . . bncn = p1q1 . . . pkqk

holds in G = B ∗A C if and only if the following conditions are satisfied:

(i) n = k;
(ii) there exist 1 = a0, a1, . . . , a2n−1, a2n = 1 ∈ A such that for all 1 ≤ i ≤ n we

have
pi = a−12i−2bia2i−1 and qi = a−12i−1cia2i.

Before embarking on the proofs of Theorems A and B, we first collect several
useful lemmas.

Lemma 4.3. Let G = B ∗A C and let M be a submonoid of G such that

M = Mon〈(M ∩B) ∪ (M ∩ C)〉.
Then every element g ∈M can be written in reduced form

g = p1q1 . . . pnqn

where pi ∈M ∩B and qi ∈M ∩ C for 1 ≤ i ≤ n.

Proof. By assumption we can write

g = r1s1 . . . rksk

for some ri ∈ M ∩ B and si ∈ M ∩ C, 1 ≤ i ≤ k. If this is in reduced form we are
done. Otherwise, there is some term, say ri, with ri ∈ A. Since ri ∈ (M ∩B)∩A =
M ∩A ⊆M ∩ C, we have s′i−1 = si−1risi ∈M ∩ C, so upon relabelling r′j = rj+1,
s′j = sj+1 for i ≤ j < k we get

g = r1s1 . . . ri−1s
′
i−1r

′
is
′
i . . . r

′
k−1s

′
k−1,

a shorter alternating product of elements of M ∩B and M ∩C. A similar argument
applies if there is a term si with si ∈ A. At the end of this process we arrive at
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a reduced form p1q1 . . . pnqn for g whose terms alternatively belong to M ∩B and
M ∩ C, completing the proof of the lemma. �

A crucial algorithmic aspect is settled by the following observation. The proof
is routine and so it is omitted.

Lemma 4.4. Let G be a group finitely generated by Ω and suppose that G has a

recursively enumerable word problem. Let w1, . . . , wn ∈ Ω
∗

and

H = Gp〈w1, . . . , wk〉 ≤ G.
Suppose that the membership problem for H in G is decidable. Then there exists

an algorithm which, given any word w ∈ Ω
∗

for which the algorithm for testing

membership in H returns ‘yes’, outputs a word u(t1, . . . , tk) ∈ T
∗
, where T =

{t1, . . . , tk}, such that
w = u(w1, . . . , wk)

holds in G.

The following key lemma identifies conditions under which the process in Lemma
4.3 can be performed algorithmically.

Lemma 4.5. Let G = B ∗A C and assume that the following conditions hold:

• B and C both have recursively enumerable word problem;
• the membership problem for A in B is decidable; and
• the membership problem for A in C is decidable.

Then there is an algorithm which takes as input any word w ≡ u1v1 . . . ukvk where

ui ∈ X
∗

and vi ∈ Y
∗
, 1 ≤ i ≤ k, and returns a word p1q1 . . . pnqn in reduced form

where pi ∈ X
∗

and qi ∈ Y
∗
, 1 ≤ i ≤ k, such that w = p1q1 . . . pnqn holds in G.

Proof. It follows by the assumptions that there is algorithm which decides for each
of the terms ui and vj whether or not that term represents an element of A. If none
of the terms represents an element of A then u1v1 . . . ukvk is a word in reduced form
and the algorithm terminates and outputs this word. Otherwise, suppose that some
ui or vj does represent an element of A. Let ui be the first term that the algorithm
detects as belonging to A. Since B has recursively enumerable word problem and
the membership problem for A within B is decidable, we can apply Lemma 4.4.
This tells us that there is an algorithm which takes any such ui as input and returns

a word u′ ∈ Z∗ such that we have

ui = u′(α1, . . . , αm),

in B, where αi = zif for 1 ≤ i ≤ m. The algorithm then computes the word

vi−1u
′(β1, . . . , βm)vi ∈ Y

∗
. Let vi−1 denote this word. Then, since u′(α1, . . . , αm) =

u′(β1, . . . , βm) in G, it follows that

u1v1 . . . ui−1v
′
i−1u

′
iv
′
i . . . u

′
k−1v

′
k−1,

is equal to w in G, where u′j = uj+1 and v′j = vj+1 for i ≤ j < k. This word has
strictly fewer terms than the input word w. If vi is the first term that the algorithm
detects as belonging to A then a similar argument applies, working within C. In
this way, in a finite number of steps the algorithm eventually terminates outputting
a word in reduced form. �

The following straightforward consequence of Theorem 2.9 will be important for
the proof of Theorem B.
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Lemma 4.6. Let G = B ∗A C where A,B,C are finitely generated groups with
finite generating sets X, Y , and Z respectively, and canonical homomorphisms

π : X
∗ → B, θ : Y

∗ → C, ξ : Z
∗ → A. Then we have the following.

(i) There is an algorithm which takes any FSA P over X such that [L(P)]π ⊆ A
as input and returns a FSA P ′ over Z, and a FSA P ′′ over Y , such that

[L(P ′′)]θ = [L(P ′)]ξ = [L(P)]π.

(ii) There is an algorithm which takes any FSA Q over Y such that [L(Q)]θ ⊆ A
as input and returns a FSA Q′ over Z, and a FSA Q′′ over X, such that

[L(Q′′)]π = [L(Q′)]ξ = [L(Q)]θ.

4.1. Proof of Theorem A. A key ingredient in our proof is summarised in the fol-
lowing auxiliary result, which strengthens Lemma 4.3 under the stronger conditions
of Theorem A.

Proposition 4.7. Assuming all the notation and conditions from Theorem A, let

g = b1c1 . . . bncn

be an element of G = B ∗A C written in reduced form. Then g ∈ M if and only if
bi ∈M ∩B and ci ∈M ∩ C for all 1 ≤ i ≤ n.

Proof. (⇒) By Lemma 4.3, we can write

g = p1q1 . . . pmqm

in reduced form such that pi ∈ M ∩ B and qi ∈ M ∩ C for 1 ≤ i ≤ m. Now, by
Lemma 4.2 we have m = n and

bi = a−12i−2pia2i−1 and ci = a−12i−1qia2i

for some aj ∈ A, 0 ≤ j ≤ 2n, 1 ≤ i ≤ n. But this implies bi ∈ A(M ∩B)A ⊆M ∩B
and ci ∈ A(M ∩ C)A ⊆ M ∩ C, as A ⊆ (M ∩ B) ∩ (M ∩ C) by condition (i) in
Theorem A.

(⇐) This is trivial, as M ∩B and M ∩ C are both subsets of M . �

Proof of Theorem A. To prove the theorem we must show that there is an algorithm
which takes any word w from (X ∪ Y )∗ as input and decides whether or not the
word represents an element of the submonoid M . The hypotheses of Lemma 4.5
are satisfied since by the assumptions B and C both have decidable word problem,
and the membership problem for A in each of B and C is decidable. Applying this
lemma we conclude that there is an algorithm that given such a word w returns a

word p1q1 . . . pnqn in reduced form where pi ∈ X
∗

and qi ∈ Y
∗
, 1 ≤ i ≤ k, such

that w = p1q1 . . . pnqn holds in G. It follows from Proposition 4.7 that w ∈ M if
and only if pi ∈M ∩B and qi ∈M ∩ C for all 1 ≤ i ≤ n, which can be decided by
conditions (iii) and (iv). �

With applications in mind, it is worthwhile to record a consequence of Theorem
A for free products of groups, arising from the case when the amalgamated subgroup
A is trivial.

Corollary 4.8. Let G = B ∗C, where B,C are finitely generated groups such that
both B,C have decidable word problems. Let M be a submonoid of G such that the
following conditions hold:
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(i) both M ∩B and M ∩ C are finitely generated and

M = Mon〈(M ∩B) ∪ (M ∩ C)〉;
(ii) the membership problem for M ∩B in B is decidable;
(iii) the membership problem for M ∩ C in C is decidable.

Then the membership problem for M in G is decidable.

4.2. Proof of Theorem B. The following result which gives necessary and suffi-
cient conditions for an element in reduced form to belong to M , will be essential
for the proof of Theorem B.

Proposition 4.9. Let G = B ∗A C and let M be a submonoid of G such that

M = Mon〈(M ∩B) ∪ (M ∩ C)〉.
Let

g = b1c1 . . . bncn

be an element of G = B ∗A C written in reduced form. For i ∈ {0, . . . , 2n − 1}
define Qi = Qi(b1, c1, . . . , bn, cn) in the following way:

Q0 = {1},
Q2k−1 = (M ∩B)−1Q2k−2bk ∩A, for 1 ≤ k ≤ n,

Q2k = (M ∩ C)−1Q2k−1ck ∩A, for 1 ≤ k ≤ n− 1.

Then g ∈M if and only if

cn ∈ Q−12n−1(M ∩ C).

Proof. (⇒) Assume that g ∈M . Then by assumption the hypotheses of Lemma 4.3
are satisfied and thus the element g can be written in reduced form

g = p1q1 . . . pnqn

such that pi ∈ M ∩ B and qi ∈ M ∩ C, 1 ≤ i ≤ n. Now, by Lemma 4.2, we must
have

b1 = p1a1 c1 = a−11 q1a2,

b2 = a−12 p2a3, c2 = a−13 q2a4,

...
...

bn = a−12n−2pna2n−1, cn = a−12n−1qn,

for some a1, . . . , a2n−1 ∈ A. Solving alternatively for a’s with odd indices from the
first and with even ones from the second column of equations, we obtain

a1 = p−11 b1 ∈ (M ∩B)−1b1 ∩A = Q1,

a2 = q−11 a1c1 ∈ (M ∩ C)−1Q1c1 ∩A = Q2,

a3 = p−12 a2b2 ∈ (M ∩B)−1Q2b2 ∩A = Q3,

...

a2n−1 = p−1n a2n−2bn ∈ (M ∩B)−1Q2n−2bn ∩A = Q2n−1.

Therefore, from the last equation of the second column we conclude that

cn = a−12n−1qn ∈ Q
−1
2n−1(M ∩ C),
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as required.
(⇐) Assume that g = b1c1 . . . bncn is such that cn ∈ Q−12n−1(M ∩ C). Then

cn = ξ−12n−1γn for some ξ2n−1 ∈ Q2n−1 and γn ∈ M ∩ C. The fact that ξ2n−1 ∈
Q2n−1 = (M ∩ B)−1Q2n−2bn ∩ A implies that we can write ξ2n−1 = β−1n ξ2n−2bn
for some βn ∈M ∩B and ξ2n−2 ∈ Q2n−2. Continuing this process yields elements
βn−1, . . . , β1 ∈M ∩B, γn−1, . . . , γ1 ∈M ∩C and ξi ∈ Qi, 0 ≤ i ≤ 2n−1, such that

ξ2j−1 = β−1j ξ2j−2bj

for 1 ≤ j ≤ n (where ξ0 = 1), and

ξ2j = γ−1j ξ2j−1cj

for 1 ≤ j ≤ n − 1. Solving each of these equations for bj and cj , substituting into
the reduced form of g, and cancelling the ξk’s gives

b1c1 . . . bncn = β1γ1 . . . βnγn,

which belongs to M since βj , γj ∈M for all 1 ≤ j ≤ n. �

Lemma 4.10. Under the assumptions of Theorem B, in the statement of Proposi-
tion 4.9 every set Qi (0 ≤ i ≤ 2n− 1) is a rational subset of A.

Proof. By assumption both M ∩B and M ∩C are finitely generated submonoids of
B and C, respectively. Hence (M ∩B)−1 is a rational subset of B, and (M ∩C)−1

is a rational subset of C. The lemma follows from this combined with conditions
(ii) and (iii) in the statement of Theorem B and the definition of Qi. �

It is very important to note that the sequence of rational subsets Qi given in
Proposition 4.9 depends on the reduced form b1c1 . . . bncn.

Proof of Theorem B. Similarly to the proof of Theorem A, to prove the theorem
we must show that there is an algorithm which takes any word w from (X ∪Y )∗ as
input and decides whether or not the word represents an element of the submonoid
M . By assumption (i) it follows that the groups B and C both have decidable sub-
group membership problem, and in particular both have decidable word problem.
Condition (i) also implies that the membership problem for A within B is decidable,
and for A within C is decidable. Hence, the hypotheses of Lemma 4.5 are satisfied.
Applying this lemma we conclude that there is an algorithm that given any such

word w returns a word p1q1 . . . pnqn in reduced form where pi ∈ X
∗

and qi ∈ Y
∗
,

1 ≤ i ≤ k, such that w = p1q1 . . . pnqn holds in G.
Set bi = piπ and ci = qiθ for 1 ≤ i ≤ n, and let g = b1c1 . . . bncn noting

that this is a reduced form for the element g. For each i ∈ {0, . . . , 2n − 1} let
Qi = Qi(b1, c1, . . . , bn, cn) be defined as in the statement of Proposition 4.9. Then
by Lemma 4.10 each of these sets Qi is a rational subset of A, and therefore also a
rational subset of both B and C.

Claim. There exists an algorithm which for each i ∈ {0, . . . , 2n− 1} computes

• a finite state automaton Ai over Z with [L(Ai)]ξ = Qi,
• a finite state automaton Bi over X with [L(Bi)]π = Qi, and
• a finite state automaton Ci over Y with [L(Ci)]θ = Qi.

Proof of claim. The algorithm iteratively constructs the triples (Ai,Bi, Ci) in the
following way. When i = 0 we have Qi = {1} and it is clear that an appropriate
triple (A0,B0, C0) can be computed e.g. by taking automata that accept only the
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empty word in each case. Now consider a typical stage i with i > 0. There are two
cases depending on the parity of i.

First suppose that i is odd, and write i = 2k − 1. Then by definition Qi =
(M ∩ B)−1Qi−1bk ∩ A. Since M ∩ B is assumed to be finitely generated, there
is a fixed FSA (depending only on M) over X, which we denote by B, satisfying
[L(B)]π = (M ∩ B)−1. Using B and Bi−1 the algorithm then produces, in the
obvious way, a FSA B(i) over X such that [L(B(i))]π = (M ∩ B)−1Qi−1bk. The
algorithm given by assumption (ii), in the statement of the theorem, is then applied
to the automaton B(i) which yields an automaton Bi over X satisfying

[L(Bi)]π = (M ∩B)−1Qi−1bk ∩A = Qi.

The algorithm then calls as a subroutine the algorithm given in Lemma 4.6 to
compute automata Ai and Ci the properties given in the statement of the claim.

If i is even the procedure is analogous but with the roles of B and C interchanged.
�

To complete the proof, by Proposition 4.9, we have g ∈ M if and only if cn ∈
Q−12n−1(M ∩ C). Using the automata C2n−1 and C, the algorithm produces, in the

obvious way, a FSA C(w) over Y such that [L(C(w))]θ = Q−12n−1(M ∩ C).
Therefore, in summary we have shown that there is an algorithm which given

any word w ∈ (X ∪ Y )∗ computes a word p1q1 . . . pnqn in reduced form, equal to
w in G, and also computes a FSA C(w) over Y such that w represents an element
of M if and only if qnθ ∈ [L(C(w))]θ. This is decidable by condition (i) of the
theorem. �

Corollary 4.11. Let X and Y be finite alphabets, and let G = FG(X) ∗A FG(Y )
such that A is finitely generated. let M be a submonoid of G such that both M ∩
FG(X) and M ∩ FG(Y ) are finitely generated and

M = Mon〈(M ∩ FG(X)) ∪ (M ∩ FG(Y ))〉.
Then the membership problem of M within G is decidable.

5. Applications of amalgamated free product results to the prefix
membership problem

In this section we present several applications of the general results from the
previous section to the prefix membership problem for one-relator groups and the
word problem for one-relator inverse monoids.

We fix some terminology that will be in place throughout the section. Let v ∈ X∗

and let x ∈ X. We say that the letter x appears in the word v if either v ≡ v1xv2
or v ≡ v1x

−1v2 for some words v1, v2 ∈ X
∗
. Given two words w1, w2 ∈ X

∗
we say

that w1 and w2 have no letters in common if there is no x ∈ X which appears both

in w1 and in w2. Furthermore, let z ∈ X∗ and let x ∈ X. We say that z contains

x if z ≡ z1xz2 for some z1, z2 ∈ X
∗
.

5.1. Unique marker letter theorem.

Theorem 5.1. Let G = Gp〈X |w = 1〉 and let u = u(y1, . . . , yk) ∈ Y
∗
, with

Y = {y1, . . . , yk}, be such that the decomposition w ≡ u(w1, . . . , wk) determines

a conservative factorisation of w, where w1, . . . , wk ∈ X
∗
. Suppose that for all

i ∈ {1, . . . , k} there is a letter xi ∈ X that appears exactly once in wi and does not
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appear in any wj for j 6= i. Then the group G = Gp〈X |w = 1〉 has decidable prefix
membership problem.

Consequently, if the above conditions are satisfied, and the one-relator inverse
monoid Inv〈X |w = 1〉 is E-unitary (in particular, if w is cyclically reduced) then
Inv〈X |w = 1〉 has decidable word problem.

Proof. Denote X0 = {x1, . . . , xk} and set X1 = X \X0. So for each 1 ≤ i ≤ k the
letter xi appears exactly once in the word wi (either as xi or x−1i ) and xi does not
appear in any of the words wj with j 6= i. Therefore, for all 1 ≤ i ≤ k, we can write

wi ≡ pixεii qi

where εi ∈ {1,−1} and pi, qi ∈ X1
∗
. Let us now apply Tietze transformations

to the initial presentation of G by introducing new letters Z = {z1, . . . , zk} with
the aim of replacing the factors w1, . . . , wk. The conditions on the words wi then
allow us to apply further Tietze transformations showing that the generators xi are
redundant and thus can be eliminated giving a presentation just in terms of the
generators X1 ∪ Z. This gives

G = Gp〈X0 ∪X1 ∪ Z | zi = wi (1 ≤ i ≤ k), u(w1, . . . , wk) = 1〉
= Gp〈X0 ∪X1 ∪ Z | zi = wi (1 ≤ i ≤ k), u(z1, . . . , zk) = 1〉
= Gp〈X0 ∪X1 ∪ Z |xεii = p−1i ziq

−1
i (1 ≤ i ≤ k), u(z1, . . . , zk) = 1〉

= Gp〈X1 ∪ Z |u(z1, . . . , zk) = 1〉.

Therefore, G = FG(X1) ∗H, where H = Gp〈Z |u(z1, . . . , zk) = 1〉 is a one-relator
group.

We now turn to considering the prefix monoid Pw = Mon〈pref w〉 ≤ G.
Without loss of generality, we may suppose that the letters of the alphabet

Y = {y1, . . . , yk} are ordered in such a way that the following conditions hold:

• y1, . . . , yr appear in u while none of yr+1, . . . yk appears in u;
• y−1s , . . . , y−1k appear in u while none of y−11 , . . . , y−1s−1 appears in u,

where r ∈ {0, . . . , k} and s ∈ {1, . . . , k + 1} and s ≤ r + 1. The condition s ≤
r + 1 comes from the fact that all of the letters y1, . . . , yk appear in the word
u = u(y1, . . . , yk) either as yj or y−1j .

Since the given factorisation is assumed to be conservative,

Pw = Mon〈pref(w1) ∪ · · · ∪ pref(wr) ∪ pref(w−1s ) ∪ · · · ∪ pref(w−1k )〉.

Clearly, in the group G we have the following equalities of sets

pref(wi) = pref(pi) ∪ pixεii · pref(qi)

= pref(pi) ∪ ziq−1i · pref(qi)

= pref(pi) ∪ zi · pref(q−1i ).

In particular, zi is among the elements represented by prefixes of wi. Similarly,

pref(w−1i ) = pref(q−1i ) ∪ z−1i · suff(p−1i )−1 = pref(q−1i ) ∪ z−1i · pref(pi),

which includes the element z−1i . Thus Pw is equal to the submonoid of FG(X1)∗H
generated by the set

{z1, . . . , zr, z−1s , . . . , z−1k } ∪
⋃

1≤i≤k

(
pref(pi) ∪ pref(q−1i )

)
.
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Next observe that for any 1 ≤ j ≤ r we can write u ≡ u(z1, . . . , zk) ≡ u′zju′′, which

means that z−1j = u′′u′ holds in H, since u(z1, . . . , zk) = 1 in H. But both u′, u′′

are products of letters from {z1, . . . , zr, z−1s , . . . , z−1k }, which shows that z−1j ∈ Pw.

Similarly, zj ∈ Pw for all s ≤ j ≤ k. Since r ≤ s + 1 this proves that Z ⊆ Pw and
hence the entire group H is contained in Pw. Thus Pw is equal to the submonoid
of FG(X1) ∗H generated by the set H ∪Q where

Q =
⋃

1≤i≤k

(
pref(pi) ∪ pref(q−1i )

)
⊆ FG(X1).

To complete the proof it will suffice to show that the conditions of Corollary 4.8 are
satisfied for the submonoid Pw of the group G = FG(X1)∗H. The groups FG(X1)
and H both have decidable word problem by Magnus’ Theorem.

We have Pw ∩H = H which is finitely generated. We claim that Pw ∩ FG(X1)
equal to the submonoid of FG(X1) generated by Q, and hence is finite generated.

Indeed, we have that Pw is equal to the submonoid of FG(X1) ∗H generated by
the set H ∪Q. Let g ∈ Pw ∩FG(X1). Since g ∈ Pw we can write g = h0t1h1 . . . hltl
where hi ∈ H and ti ∈ Mon〈Q〉, and, furthermore, hi 6= 1 for 1 ≤ i ≤ l − 1 and
ti 6= 1 for all i. In the free product FG(X1) ∗ H this is a reduced form. Since
we are assuming that g ∈ FG(X1) it follows by Lemma 4.2 that we must have
g = t1 ∈ Mon〈Q〉. This proves that Pw ∩ FG(X1) is contained in Mon〈Q〉. The
opposite containment is trivial. Hence condition (i) holds.

Condition (iii) holds again since Pw ∩ H = H, while condition (ii) holds by
Benois’ Theorem as Pw ∩ FG(X1) is a finitely generated submonoid of the free
group FG(X1). This completes the proof of the theorem. �

Example 5.2. Let X = {a, b, x, y}, let w = axbaybaybaxbaybaxb and set G =
Gp〈X |w = 1〉 and M = Inv〈X |w = 1〉. Since axb is both a prefix and a suffix
of w it follows that this word represents an invertible element M . It follows that
the word (ayb)aybaxb(ayb) also represents an invertible element of M and hence so
does the word ayb. We conclude that

w = (axb)(ayb)(ayb)(axb)(ayb)(axb)

is a unital factorisation and thus also a conservative factorisation by Theorem 3.3.
Notice that x occurs exactly once in axb but not in ayb, and conversely, y occurs
just once in ayb but not in axb. So, the above factorisation of w satisfies the unique
marker letter condition of Theorem 5.1. Also note that w is a cyclically reduced
word. Therefore applying the theorem we conclude that the group defined by the
presentation

Gp〈a, b, x, y | axbaybaybaxbaybaxb = 1〉
has decidable prefix membership problem and the inverse monoid

Inv〈a, b, x, y | axbaybaybaxbaybaxb = 1〉

has decidable word problem.

Many other similar examples to which Theorem 5.1 can be applied may be
constructed. In the example above in order to deduce that the inverse monoid has
decidable word problem we just used the fact that it is E-unitary since the defining
relator is a cyclically reduced word. It was not important that the defining relator
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was a positive word. For example, in much the same way we can show that the
inverse monoid

M ′ = Inv〈a, b, x, y | a−1xbab−1ayb−1b−1ayb−1a−1b−1x−1ab−1ayb−1a−1xba = 1〉.

has decidable word problem.
Next we shall see that Theorem 5.1 can also be applied in certain situations

where the given defining relator does not immediately satisfy the unique marker
letter condition.

Example 5.3. Let M be the “O’Hare inverse monoid”

Inv〈a, b, c, d | abcdacdadabbcdacd = 1〉.

and let G be the group with the same presentation. Recall in Example 3.2 where
we defined the “O’Hare inverse monoid” we saw that

w ≡ (abcd)(acd)(ad)(abbcd)(acd)

is a unital factorisation and thus also a conservative one. Note that these invertible
pieces do not satisfy the unique marker letter property. However, as we shall now
see, this monoid admits a one relator special inverse monoid presentation such that
the defining relator does satisfy the hypotheses of Theorem 5.1. In fact, we shall
identify an infinite family of examples, which includes the O’Hare monoid, for which
this approach is possible.

Proposition 5.4. Let

M = Inv〈X | aui1daui2d . . . auimd = 1〉,

where a, d ∈ X and uik ∈ Y
∗

is a reduced word for 1 ≤ k ≤ m where Y = X \{a, d}.
Assume further that the following conditions hold:

(i) for some 1 ≤ j ≤ m, uij is the empty word;

(ii) for each x ∈ X \ {a, d} there exist r, s such that x ≡ red(uiru
−1
is

);
(iii) each word auikd represents an invertible element of M .

Then the group defined by the presentation

G = Gp〈X | aui1daui2d . . . auimd = 1〉,

has decidable prefix membership problem, and the inverse monoid M has decidable
word problem.

Proof. By (iii) all of the words auikd with 1 ≤ k ≤ m all represent invertible
elements of M . It follows that the inverse words (auikd)−1 ≡ d−1u−1ik a

−1 with
1 ≤ k ≤ m also all represent invertible elements of M . Since the product of
two invertible elements is invertible, it follows that for all 1 ≤ r, s ≤ m the word
(auird)(d−1u−1is a

−1) represents an invertible element of M .
We then use the following well-known fact from inverse semigroup theory: if bc is

a right invertible element of an inverse monoid, then bcc−1 = b. Since every prefix
of the word (auird)(d−1u−1is a

−1) is right invertible, applying the above general fact
we conclude that

(auird)(d−1u−1is a
−1) = a red(uiru

−1
is

)a−1

holds in M for all 1 ≤ r, s ≤ m.
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By conditions (ii) it follows that for every letter x ∈ Y we have that axa−1

represents an invertible element of M . Also, by condition (i) and (iii) the word ad
represents an invertible element of M .

For each 1 ≤ r ≤ m write

auird ≡ ab1,r . . . btr,rd

where bi,r ∈ Y for 1 ≤ i ≤ tr. Using the observations from the previous paragraph,
and the general observation above about cancelling inverse pairs in right invertible
words we conclude that in M we have

auird = ab1,r . . . btr,rd = (ab1,ra
−1) . . . (abtr,ra

−1)(ad). (5.1)

for all 1 ≤ r ≤ m.
Let vr ≡ (ab1,ra

−1) . . . (abtr,ra
−1)(ad) for all 1 ≤ r ≤ m and then set w′ ≡

v1v2 . . . vk. We claim that the presentations Inv〈X |w = 1〉 and Inv〈X |w′ = 1〉 are
equivalent in the sense that the identity map on X induces an isomorphism between
the inverse monoids defined by these presentations. To prove this it suffices to show
that w′ = 1 holds in the monoid M = Inv〈X |w = 1〉, and, conversely, that w = 1
holds in the monoids M ′ = Inv〈X |w′ = 1〉.

The fact that w′ = 1 holds in M follows immediately from Equation 5.1. Con-
versely, in the inverse monoid M ′ = Inv〈X |w′ = 1〉 each prefix of w′ arising as a
product of factors of the form abj,ra

−1 represents a right invertible element of M ′.
This observation along with the general fact above about cancelling inverse pairs
in right invertible words makes it possible to delete from w′ all factors of the form
a−1a without changing the value of w′ in M ′. In other words, w = 1 holds in M ′.

This shows that the presentations for M and M ′ are equivalent, and in particular
that M and M ′ are isomorphic via the identity map on X. It follows that for any

word γ ∈ X∗ we have that γ represents a right invertible element of M if and only
if γ represents a right invertible element of M ′. Let R be the submonoid of right
invertible elements of M , and let R′ be the submonoid of right invertible elements
of M ′. Let φ : M → G and φ′ : M ′ → G be the maps to the maximal group image
induced by the identity map on X. Then we have

Pw = Rφ = R′φ′ = Pw′ .

However, the relator word w′ from the presentation of M ′ has a unital and thus
conservative factorisation into factors of the form axa−1, x ∈ X \ {a, d}, and ad.
Picking x as the unique marker letter from axa−1, and d from ad, shows that the
inverse monoid M ′ has a presentation which satisfies the conditions of Theorem
5.1. Hence, the membership problem for Pw′ = Pw in G is decidable. Hence the
group presentation Gp〈X |w = 1〉 has decidable prefix membership problem and
the inverse monoid M has decidable word problem. �

In particular the above proposition applies the O’Hare monoid

Inv〈a, b, c, d | (abcd)(acd)(ad)(abbcd)(acd) = 1〉

since, as already observed, the displayed decomposition is unital, and hence in
particular ad represents an invertible element of the monoid, and, moreover, we
clearly have b = red((bc)c−1) and c = red(c1−1). Hence all the hypotheses of the
proposition are satisfied and we conclude that the O’Hare monoid has decidable
word problem.
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Remark 5.5. It was pointed out to us by Jim Howie (Heriot-Watt University, Ed-
inburgh) [17] that the “O’Hare group” Gp〈a, b, c, d | abcdacdadabbcdacd = 1〉 is in
fact a free group of rank 3 (albeit in a rather non-obvious way). Therefore, in this
case Pw has decidable membership in this group as a direct consequence of Benois’
Theorem, and so the word problem for the O’Hare inverse monoid is decidable. On
the other hand, not every group satisfying the hypotheses of Proposition 5.4 is free.

5.2. Disjoint alphabets theorem.

Lemma 5.6. Let G = B ∗A C and let U be a finite subset of B ∪ C such that
M = Mon〈U〉, the submonoid of G generated by U , contains A. Then M ∩ B is
generated by (U ∩ B) ∪ A and M ∩ C is generated by (U ∩ C) ∪ A. Consequently,
if A is finitely generated, then so are the monoids M ∩B and M ∩ C.

Proof. Let g ∈M ∩B. Then, since g ∈M , we may write

g = c0b1c1 . . . blcl

for some bi ∈ Mon〈U ∩B〉 and ci ∈ Mon〈U ∩ C〉 such that ci 6= 1 for 1 ≤ i ≤ l − 1
and bi 6= 1 for all i. This expression is either a reduced form in G, whence l = 1,
c0 = c1 = 1 and g = b1 ∈ Mon〈U ∩B〉 ⊆ Mon〈(U ∩B) ∪A〉 by Lemma 4.2,
or, otherwise, at least one of the terms belongs to A. For example, suppose that
bj ∈ A. Then c′j−1 = cj−1bjcj ∈ Mon〈(M ∩ C) ∪A〉, so upon relabelling b′k = bk
for all 1 ≤ k ≤ j−1, c′k = ck for all 0 ≤ k ≤ j−2, b′k = bk+1 for all j+1 ≤ k ≤ l−1,
and c′k = ck+1 for all j ≤ k ≤ l − 1, we get a new expression

g = c′0b
′
1c
′
1 . . . b

′
l−1c

′
l−1,

where b′k ∈ Mon〈(U ∩B) ∪A〉 and c′k ∈ Mon〈(U ∩ C) ∪A〉 for all k, for which the
previous argument can be repeated. We proceed similarly if cj ∈ A for some j.
Continuing in this fashion, we eventually arrive at a reduced form for g, leading to
the conclusion that g ∈ Mon〈(U ∩B) ∪A〉, as required.

Analogously, if g ∈ M ∩ C we have that g ∈ Mon〈(U ∩ C) ∪A〉, thus proving
the lemma. �

Here is our second application, whose proof makes an appeal to Theorem A.

Theorem 5.7. Let G = Gp〈X |w = 1〉 where w ∈ X∗ is a cyclically reduced word.
Suppose that there is a finite alphabet Y = {y1, . . . , yk} with k ≥ 2 and a word

u ∈ Y
∗

such that w ≡ u(w1, . . . , wk), all letters from Y appear in u (either in
positive or inverted form), and that this determines a conservative factorisation
of w. Suppose that for any pair of distinct i, j ∈ {1, . . . , k} the words wi and wj
have no letters in common. Then the group G = Gp〈X |w = 1〉 has decidable prefix
membership problem and thus Inv〈X |w = 1〉 has decidable word problem.

Proof. For 1 ≤ i ≤ k, let Xi ⊆ X denote the content of wi, namely the set of all
letters x ∈ X that appear in wi. Then the conditions given in the theorem state
that i 6= j implies Xi ∩ Xj = ∅. We also let X0 = X \

⋃
1≤i≤kXi. Notice that

since w is cyclically reduced it follows that u must also be cyclically reduced.
Let t1 6∈ X be a new letter. Then an easy application of Tietze transformations

gives
G = Gp〈X, t1 |w1t

−1
1 = 1, u(t1, w2, . . . , wk) = 1〉.

Let G1 = Gp〈X \X1, t1 |u(t1, w2, . . . , wk) = 1〉 noting that by the assumptions the
word u(t1, w2, . . . , wk) is written over the alphabet (X\X1)∪{t1} and is a cyclically
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reduced word. Since by assumption k ≥ 2, it follows by Magnus’ Freiheitssatz that
the subgroup A′1 = Gp〈t1〉 of G1 generated by t1 is an infinite cyclic group. On

the other hand, since w1 ∈ X1
∗

is a non-empty reduced word, it follows that the
subgroup A1 = Gp〈w1〉 of free group FG(X1) generated by w1 is also infinite cyclic.
Thus we can form the amalgamated free product

FG(X1) ∗A1 G1.

there A1 and A′1 are identified via the isomorphism sending w1 to t1. This gives

G = Gp〈X1, (X \X1), t1 |w1 = t1, u(t1, w2, . . . , wk) = 1〉 = FG(X1) ∗A1 G1.

The same reasoning as above can be then applied to G1: upon introducing a
new letter t2, one can decompose G1 as the free product of FG(X2) and G2 =
Gp〈X \ (X1 ∪X2), t1, t2 |u(t1, t2, w3, . . . , wk) = 1〉 amalgamated over the infinite
cyclic subgroups A2 and A′2 generated by w2 and t2, respectively.

Continuing in this way, after a finite number of steps we obtain the following
tower of amalgamated free products:

G = FG(X1) ∗A1
(FG(X2) ∗A2

(. . . (FG(Xk) ∗Ak
Gk) . . . )),

where Ai is generated by ti = wi and

Gk = Gp〈X0, t1, . . . , tk |u(t1, . . . , tk) = 1〉 = FG(X0) ∗H

where

H = Gp〈t1, . . . , tk |u(t1, . . . , tk) = 1〉.
For each 0 ≤ i ≤ k we shall now define a submonoid Mi of Gi inductively. The

sequence of monoids we define will have the property that for all i we have

Mi+1 = Mi ∩Gi+1,

and also that M0 = Pw. We will prove using Theorem A that the membership
problem for Mi in Gi is decidable for all i, and since M0 = Pw this will suffice to
complete the proof of the theorem.

For all 1 ≤ i ≤ k set

Wi =


pref(wi) if u(t1, . . . , tk) contains ti but not t−1i ,
pref(w−1i ) if u(t1, . . . , tk) contains t−1i but not ti,
pref(wi) ∪ pref(w−1i ) if u(t1, . . . , tk) contains both ti, t

−1
i .

Then set

Mk = Mon〈tεi : 1 ≤ i ≤ k and ε ∈ {1,−1}
such that tεi is contained in u(t1, . . . , tk)〉

which is a submonoid of Gk = FG(X0) ∗H, and define inductively

Mi−1 = Mon〈Mi ∪Wi〉 ≤ Gi−1 = FG(Xi) ∗Ai
Gi

for 1 ≤ i ≤ k.
It may be shown that in fact Mk = H using a similar argument as in the proof

of Theorem 5.1. Indeed, if, for example, ti occurs in u(t1, . . . , tk) but not t−1i , then

one can write u(t1, . . . , tk) ≡ u′tiu
′′. Therefore, in Gk we have t−1i = u′′u′ ∈ Mk.

This shows that ti, t
−1
i ∈Mk for all 1 ≤ i ≤ k, so the required conclusion Mk = H

follows.
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Since the word u defines a conservative factorisation of w, it follows that the
prefix monoid Pw is equal to the submonoid of G = G0 generated by ∪1≤i≤kWi.
Now by definition we have

M0 = Mon〈Mon〈. . .Mon〈Mon〈H ∪Wk〉 ∪Wk−1〉 . . . 〉 ∪W1〉.

From this, using the natural embeddings of Gi−1 into Gi for all i it may be verified
that in G = G0 we have

M0 = Mon〈W1 ∪W2 ∪ · · · ∪Wk〉 = Pw.

So, it remains to argue by induction that the memberhsip problem for Mi withing
Gi is decidable for all i. Clearly, each Mi is finitely generated, say Mi = Mon〈Ui〉 for
some finite subset Ui ⊂Mi. Since both FG(X0) and the one-relator group H have
decidable word problems, the latter by Magnus’ Theorem, and Mk∩FG(X0) = {1}
and Mk ∩ H = H, we can apply Corollary 4.8 to deduce that the membership
problem for Mk in Gk is decidable.

Now assume inductively that the membership problem for Mi+1 in Gi+1 is de-
cidable for some i < k. The latter is a one-relator group, so it has decidable word
problem, as does FG(Xi+1). Furthermore, since FG(Xi+1) is a free group, it fol-
lows from Benois’ Theorem that the membership problem for Ai+1 = Gp〈wi+1〉 in
FG(Xi+1) is decidable. Since ti+1 is one of its generators, it follows by [27, The-
orem IV.5.3] that the membership problem for A′i+1 = Gp〈ti+1〉 in the one-relator
group Gi+1 is decidable.

We claim that Mi ∩Gi+1 = Mi+1. Indeed, we have Gi = FG(Xi+1) ∗Ai+1 Gi+1,
while Mi = Mon〈Mi+1 ∪Wi+1〉 = Mon〈Ui+1 ∪Wi+1〉. Therefore, by Lemma 5.6,
Mi ∩Gi+1 is generated by ((Ui+1 ∪Wi+1) ∩Gi+1) ∪A′i+1 = Ui+1 ∪A′i+1 and thus

Mi ∩ Gi+1 = Mon〈Ui+1 ∪ {ti+1, t
−1
i+1}〉 = Mi+1 because ti+1, t

−1
i+1 ∈ H ⊆ Mi+1.

Similarly, Lemma 5.6 yields that Mi ∩ FG(Xi+1) is finitely generated by Wi+1.
This means that Mi is indeed generated by (Mi ∩Gi+1) ∪ (Mi ∩ FG(Xi+1)), and,
furthermore, the membership problem for Mi+1 = Mi ∩Gi+1 in Gi+1 is decidable
by the inductive hypothesis, while the membership problem for Mi ∩ FG(Xi+1) in
FG(Xi+1) is decidable by by Benois’ Theorem.

Hence the hypotheses of Theorem A are satisfied, and applying this theorem we
conclude that the membership problem for Mi in Gi is decidable. In particular,
the membership problem for M0 = Pw in G0 = G is decidable, so the theorem
follows. �

Example 5.8. Consider the inverse monoid

M = Inv〈a, b, c, d | ababcdcdababcdcdcdcdabab = 1〉.

Then, if we denote α ≡ abab and β ≡ cdcd, the relator word becomes w ≡ αβαββα,
and we conclude, just as in Example 5.2, that both α and β represent invertible
elements of M . Hence,

w ≡ (abab)(cdcd)(abab)(cdcd)(cdcd)(abab)

is a conservative factorisation that satisfies the conditions of Theorem 5.7. It follows
that G = Gp〈a, b, c, d |αβαββα = 1〉 has decidable prefix membership problem and
that the word problem of M is decidable, too. In more detail,

G = FG(a, b) ∗A1
(FG(c, d) ∗A2

Gp〈t, s | tstsst = 1〉) ,
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where A1 and A2 are infinite cyclic groups generated by t = abab and s = cdcd,
respectively, and the prefix monoid is generated by t, t−1 = stsst, s, s−1 = tsstt
(thus containing the whole group Gp〈t, s | tstsst = 1〉) and a, ab, aba, c, cd, cdc (here
aba and cdc are obviously redundant).

Example 5.9. We finish the subsection by a non-example, showing the significance
of the disjoint content condition in Theorem 5.7. Namely, let

M = Inv〈a, b, c | ababbcbcbbababbcbcbbcbcbbababb = 1〉.
Just as in previous examples, it is easy to see that

w = (ababb)(cbcbb)(ababb)(cbcbb)(cbcbb)(ababb)

is a unital factorisation of the relator word, but the pieces do not have disjoint
content (they have the letter b in common). As w is cyclically reduced, the word
problem for M reduces to the prefix membership problem for the group G defined
by the presentation Gp〈a, b, c |αβαββα = 1〉, where α ≡ ababb and β ≡ cbcbb. We
can now replace its sole relation by ababbs−1 = 1 and scbcbbscbcbbcbcbbs = 1 to
obtain the free amalgamated decomposition

G = FG(a, b) ∗A Gp〈c, d, s | scbcbbscbcbbcbcbbs = 1〉,
where A is a joint free subgroup of rank 2 generated by b and ababb = s. (Note
that the second factor satisfies the requirements for applying Theorem 5.7.)

However, the prefix submonoid Pw of G is generated (after removing some obvi-
ous redundancies) by s, s−1, a, ab, c, cb, cbcbb. It also contains (cbcbb)−1 = (scbcbb)2

and thus b−1 = (cbcbb)−1(cb)2. The problem is that we don’t know if A ⊆ Pw: for
this we would need b ∈ Pw (which seems likely not to hold). Therefore, at present
it seems that Theorem A cannot be applied to this case.

5.3. Cyclically pinched presentations. Following e.g. [7, 9] we say that a one-
relator group G is cyclically pinched if it is defined by a presentation of the form

〈X ∪ Y |u = v〉

where u ∈ X∗ and v ∈ Y ∗ are nonempty reduced words, with the alphabets X and
Y disjoint. Clearly, the defining relation is equivalent to uv−1 = 1, and in this sense
we are going to refer to Gp〈X ∪ Y |uv−1 = 1〉 as a cyclically pinched presentation.

Theorem 5.10. The prefix membership problem is decidable for any group defined
by a cyclically pinched presentation

Gp〈X ∪ Y |uv−1 = 1〉.
Consequently, the word problem is decidable for all one-relator inverse monoids of
the form

Inv〈X ∪ Y |uv−1 = 1〉
with u ∈ X∗ and v ∈ Y ∗ both reduced words.

Proof. As is well-known, a cyclically pinched group G is a free product of free
groups FG(X) and FG(Y ) amalgamated over an infinite cyclic group A such that
Af is generated by u and Ag is generated by v. Hence, it suffices to check if the
conditions of Theorem A are satisfied for the prefix monoid Pw where w ≡ uv−1.
Indeed, the latter monoid is generated in G by

pref(u) ∪ u · pref(v−1).



THE PREFIX MEMBERSHIP PROBLEM FOR ONE-RELATOR GROUPS 31

Note that the set u·pref(v−1) is in G actually equal to pref(v). Since the generating
set of Pw contains u (and thus v), the monoid Pw contains the whole amalgamated
subgroup. Since this subgroup is finitely generated, Lemma 5.6 implies that so
are the monoids Pw ∩ FG(X) = Mon〈pref(u)〉 and Pw ∩ FG(Y ) = Mon〈pref(v)〉.
Hence, the conditions (i) and (ii) of Theorem A are satisfied, and the remaining
conditions hold by Benois’ Theorem. Therefore, the membership problem for Pw
in M is decidable. �

Example 5.11. Both the orientable surface group

Gp〈a1, . . . , an, b1, . . . , bn | [a1, b1] . . . [an, bn] = 1〉

and the non-orientable surface group

Gp〈a1, . . . , an | a21 . . . a2n = 1〉

of genus n ≥ 2 are cyclically pinched (e.g. for u ≡ [a1, b1] . . . [an−1, bn−1] and
v ≡ [an, bn]−1 in the orientable case, and for u ≡ a21 . . . a

2
n−1 and v ≡ a−2n for the

non-orientable case). Hence, the corresponding prefix membership problems are
decidable. For the first family of presentations above there are already several proofs
in the literature that the prefix membership problem is decidable; see [19, 32, 34].

6. Deciding membership in submonoids of HNN extensions

Our aim in this section is to give two general decidability results concerning the
membership problem for certain submonoids of HNN extensions of finitely gener-
ated groups. Then in the next section these results will be applied to the prefix
membership problem for certain one-relator groups.

Before stating the main results we first recall some definitions and fix some
notation which will remain in place for the rest of the section. Let G be a group

finitely generated by X with canonical homomorphism π : X
∗ → G. Let A and

B be two isomorphic finitely generated subgroups of G and let φ : A → B be an
isomorphism. Moreover, let Y = {y1, . . . , yk} and Z = {z1, . . . , zk} be, respectively,

finite generating sets for A and B, with canonical homomorphisms θ : Y
∗ → A,

ξ : Z
∗ → B such that yiθφ = ziξ for 1 ≤ i ≤ k. Set ai = yiθ and bi = ziξ for

1 ≤ i ≤ k. Observe that {a1, . . . , ak} is a finite subset of A which generates A, and
similarly {b1, . . . , bk} is a finite subset of B generating B.

We use

G∗ = G∗t,φ:A→B
to denote the HNN extension of G with a stable letter t 6∈ X and associated finitely
generated subgroups A,B. So G∗ is the group obtained by taking a presentation
for G with respect to X, adding t as a new generator, and adding the relations

t−1ait = bi

for 1 ≤ i ≤ k. Formally these relations should be written over the alphabet X ∪ {t},
that is, as t−1uit = vi where ui, vi ∈ X

∗
satisfy uiπ = ai and viπ = bi. Throughout

this section ui and vi will denote words with these properties. Note that for any

word w(u1, . . . , uk) ∈ X∗ representing the element a ∈ A, the word w(v1, . . . , vk) ∈
X
∗

represents the element aφ ∈ B.
We now state the two main results of this section.
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Theorem C. Let G∗ = G∗t,φ:A→B be an HNN extension of a finitely generated
group G such that A,B are also finitely generated. Assume that G has decidable
word problem and that the membership problems of A and B in G are decidable.
Let M be a submonoid of G∗ such that the following conditions hold:

(i) A ∪B ⊆M ;
(ii) M ∩G is finitely generated, and

M = Mon〈(M ∩G) ∪ {t, t−1}〉;

(iii) the membership problem for M ∩G in G is decidable.

Then the membership problem for M in G∗ is decidable.

Theorem D. Let G∗ = G∗t,φ:A→B be an HNN extension of a finitely generated
group G such that A,B are also finitely generated. Assume that the following con-
ditions hold:

(i) the rational subset membership problem is decidable in G;
(ii) A ≤ G is effectively closed for rational intersections.

Then for any finite W0,W1, . . . ,Wd,W
′
1, . . . ,W

′
d ⊆ G, d ≥ 0, the membership prob-

lem for

M = Mon〈W0 ∪W1t ∪W2t
2 ∪ · · · ∪Wdt

d ∪ tW ′1 ∪ · · · ∪ tdW ′d〉

in G∗ is decidable.

Remark 6.1. The conclusion of the previous theorem also holds if we replace t by
t−1 in the generating set of the monoid M . Namely, it is straightforward to see
that

Mon〈W0 ∪W1t
−1 ∪W2t

−2 ∪ · · · ∪Wdt
−d ∪ t−1W ′1 ∪ · · · ∪ t−dW ′d〉

is in fact equal to(
Mon〈W−10 ∪ (W ′1)−1t ∪ (W ′2)−1t2 ∪ · · · ∪ (W ′d)

−1td ∪ tW−11 ∪ · · · ∪ tdW−1d 〉
)−1

,

which enables us to invoke Theorem D.

By standard results on HNN extensions (see e.g. [27, Ch. IV]) every element
g ∈ G∗t,φ:A→B can be written written as

g = g0t
ε1g1t

ε2 . . . tεngn,

where g0, g1, . . . , gn ∈ G and εi ∈ {1,−1} for all 1 ≤ i ≤ n. This expression is
said to be reduced if for all 1 ≤ i ≤ n − 1 we have gi 6∈ A whenever εi = −1
and εi+1 = 1, and gi 6∈ B whenever εi = 1 and εi+1 = −1. Similarly, for words

w1, w2, . . . , wn ∈ X
∗

and εi ∈ {1,−1} (1 ≤ i ≤ n) the word

w0t
ε1w1t

ε2 . . . tεnwn,

is said to be a word in reduced form if and only if (w0π)tε1(w1π)tε2 . . . tεn(wnπ) is
a reduced expression. The following result is standard and can be proved e.g. by
applying [27, Lemma IV.2.3] and Britton’s Lemma.

Lemma 6.2. An equality of two reduced forms

g0t
ε1g1t

ε2 . . . tεngn = h0t
δ1h1t

δ2 . . . tδmhm
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holds in the HNN extension G∗t,φ:A→B if and only if n = m, εi = δi for all
1 ≤ i ≤ n, and there exist 1 = α0, α1, . . . , αn, αn+1 = 1 ∈ A ∪ B such that for all
0 ≤ i ≤ n we have αi ∈ A if εi = −1, αi ∈ B if εi = 1, and

hi = α−1i gi(t
εi+1αi+1t

−εi+1).

Lemma 6.3. Let G∗ = G∗t,φ:A→B and let M be a submonoid of G∗ such that

M = Mon (M ∩G) ∪ {t, t−1}.

Then every element g ∈M can be written in reduced form

g = g0t
ε1g1t

ε2 . . . tεngn

such that gi ∈M ∩G for all 0 ≤ i ≤ n.

Proof. Assume that g ∈M . Then by assumption

g = h0t
δ1h1t

δ2 . . . tδkhk

for some hi ∈M ∩G, 0 ≤ i ≤ k, and δi ∈ {1,−1}, 1 ≤ i ≤ k. By [27, page 184], the
above product, which itself is not necessarily reduced, can be transformed into a
reduced form by applying a finite number of t-reductions. Recall that t-reductions
the following operations

• replace t−1gt, where g ∈ A, by gφ, or
• replace tgt−1, where g ∈ B, by gφ−1.

Hence to prove the lemma it suffices to show that, under our assumptions, applica-
tions of t-reductions to a product of the above form preserves the property of the
G-terms belonging to M .

Consider a product p0t
γ1p1t

γ2 . . . tγmpm, such that pi ∈ M for 1 ≤ i ≤ m, to
which a t-reduction can be applied. Suppose without loss of generality this is a
t-reduction of the first kind listed above. Applying this t-reduction will result in a
product of the form p0t

γ1p1t
γ2 . . . pi−1(piφ)pi+1 . . . t

γmpm, where γi = −1, pi ∈ A
and γi+1 = −1. Since t, t−1 ∈ M by assumption, it follows that piφ = t−1pit ∈ M
and hence pi−1pipi+1 ∈M . Hence the G-terms in the above product still all belong
to M .

The argument when a t-reduction of the second kind is applied is analogous. �

In the following lemma we identify conditions under which the process in Lemma
6.3 can be performed algorithmically.

Lemma 6.4. Let G∗ = G∗t,φ:A→B such that G, A and B are all finitely generated,
G has recursively enumerable word problem, and the membership problems for A
and B within G are both decidable. Then there an algorithm which takes any word
w ∈ (X ∪ {t})∗ as input and returns a word in reduced form

w = w0t
ε1w1t

ε2 . . . tεnwn,

with wi ∈ X
∗

for 1 ≤ i ≤ n.

Proof. This may be proved by combining the comments from [27, pages 184–185]
discussing conditions under which the process of conducting t-reductions is effective,
together with Lemma 4.4. �



34 IGOR DOLINKA AND ROBERT D. GRAY

6.1. Proof of Theorem C. A key ingredient in our proof is given by the following
auxiliary result, which strengthens Lemma 6.3 under the stronger conditions of
Theorem C.

Proposition 6.5. Assuming all the notation and conditions from Theorem C, let

g = g0t
ε1g1t

ε2 . . . tεngn

be an element of G∗ = G∗t,φ:A→B written in reduced form. Then g ∈M if and only
if gi ∈M ∩G for all 0 ≤ i ≤ n.

Proof. (⇒) By Lemma 6.3, since g ∈M there exists a reduced form

g = m0t
µ1m1t

µ2 . . . tµkmk

such that mi ∈ M for all 0 ≤ i ≤ k. By Lemma 6.2, we must have k = n, µi = εi
and

gi = α−1i mi(t
εi+1αi+1t

−εi+1)

for all 0 ≤ i ≤ n and some 1 = α0, α1 . . . , αn, αn+1 = 1 ∈ A ∪B (such that αi ∈ A
whenever εi = −1 and αi ∈ B otherwise). It follows that

gi ∈ (A ∪B)(M ∩G)(A ∪B) ⊆M ∩G.

(⇐) is trivial, since t, t−1 ∈M . �

Proof of Theorem C. To prove the theorem we must show that there is an algorithm
which takes any word w from (X ∪ {t})∗ as input and decides whether or not the
word represents an element of the submonoid M . The hypotheses of Lemma 6.4
are clearly satisfied Applying this lemma we conclude that there is an algorithm
that given any such word w returns a word

w = w0t
ε1w1t

ε2 . . . tεnwn,

with wi ∈ X
∗

for 1 ≤ i ≤ n, that is in reduced form. It follows from Proposition 6.5
that w represents an element of M if and only if wi ∈ M ∩ G for all 0 ≤ i ≤ n.
However, this is decidable by assumption (iii), and this completes the proof. �

Combining Benois’ Theorem and Britton’s Lemma with Theorem C gives the
following result.

Corollary 6.6. Let G∗ = G∗t,φ:A→B where G = FG(X) is a free group of finite
rank, and A and B are finitely generated subgroups of G. Let T be a finitely gen-
erated submonoid of G containing A, and let M be the submonoid of G∗ generated
by T ∪ {t, t−1}. Then the membership problem for M in G∗ is decidable.

This can be applied to show that membership is decidable in certain finitely
generated submonoids of surface groups. It is an open problem whether in general
the submonoid membership problem is decidable for surface groups.

6.2. Proof of Theorem D. The following lemma of combinatorial nature will
turn out to be crucial in what follows.

Lemma 6.7. Let G∗ = G∗t,φ:A→B be an HNN extension of a finitely generated
group G with finitely generated associated subgroups A,B. Let G be finitely gener-

ated by X with canonical homomorphism π : X
∗ → G. Then there is an algorithm
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which takes any finite list of finite subsets W0,W1, . . . ,Wd,W
′
1, . . . ,W

′
d of G and

any integer m ≥ 0 and returns an integer Cm ≥ 1 and a finite set of FSA

{N (j)
m,i : 0 ≤ i ≤ m, 1 ≤ j ≤ Cm}

over X such that with N
(j)
m,i = [L(N (j)

m,i)]π and

Dm =

h0th1t . . . thm : (h0, . . . , hm) ∈
⋃

1≤j≤Cm

(
N

(j)
m,0 × · · · ×N (j)

m,m

) ,

we have

Mon〈W0 ∪W1t ∪W2t
2 ∪ · · · ∪Wdt

d ∪ tW ′1 ∪ · · · ∪ tdW ′d〉 =
⋃
m≥0

Dm.

Proof. We will first describe the algorithm, and then verify that the sets Dm do
indeed satisfy the property claimed in the statement of the lemma.

The algorithm we describe will in fact output rational expressions for the sets

N
(j)
m,i. By the comments in Section 2, this suffices to conclude that there is an

algorithm computing the corresponding FSA N (j)
m,i.

The algorithm is recursive. When m = 0 the algorithm returns C0 = 1 and the

rational expression W ∗0 so that N
(1)
0,0 = Mon〈W0〉. Now consider a typical stage m

of the algorithm with m > 0, assuming that the algorithm already constructed the

integers Cp and rational expressions for sets N
(j)
p,i , 1 ≤ i ≤ p, 1 ≤ j ≤ Cp, for all

values p < m.
The algorithm then proceeds as follows. For any 1 ≤ µ ≤ min(d,m) construct

the following two collections of sequences of subsets of G (all of length m+ 1):

• Mon〈W0〉Wµ, {1}, . . . , {1}︸ ︷︷ ︸
µ−1

, N
(j)
m−µ,0, . . . , N

(j)
m−µ,m−µ,

• Mon〈W0〉, {1}, . . . , {1}︸ ︷︷ ︸
µ−1

,W ′µN
(j)
m−µ,0, . . . , N

(j)
m−µ,m−µ,

where in both cases 1 ≤ j ≤ Cm−µ. Set

Cm =

min(d,m)∑
µ=1

2Cm−µ.

That is, Cm is the total number of sequences constructed above. Then set N
(j)
m,i to

be the set appearing in position i of the jth sequence in the above list, 1 ≤ j ≤ Cm.
The algorithm computes the above sequences, and the number Cm. It is clear
from the definition of these sequences all the sets appearing in these sequences are
rational subsets of G, and the algorithm can be instructed to output the appropriate
corresponding rational expressions.

To complete the proof of the lemma we must now verify that

Mon〈W0 ∪W1t ∪W2t
2 ∪ · · · ∪Wdt

d ∪ tW ′1 ∪ · · · ∪ tdW ′d〉 =
⋃
m≥0

Dm

holds.
Set K = Mon〈W0 ∪W1t ∪W2t

2 ∪ · · · ∪Wdt
d ∪ tW ′1 ∪ · · · ∪ tdW ′d〉. For all m ≥ 0

let Km be the subset of K of all elements that when written in reduced form have
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precisely m occurrences of t. This is well-defined by Britton’s Lemma and K is a
disjoint union of the sets Km with m ≥ 0. Note that it also follows from Britton’s
Lemma that

⋃
m≥0Dm is a union of pairwise disjoint sets.

Hence to finish the proof of the lemma it will suffice to prove that Km = Dm for
all m ≥ 0, which we shall prove by induction on m.

The base case m = 0 holds because K0 = Mon〈W0〉 = D0 where the second
equality follows by the construction of the algorithm.

For the induction step, consider Km and Dm and suppose by induction that
Km = Dm for all 0 ≤ m′ < m.

To see that Km ⊆ Dm, let g ∈ Km be arbitrary. By the definition of K

g = u1 . . . uk,

where each term ur, 1 ≤ r ≤ k, is either of the form wrt
δr for some wr ∈ Wδr , or

of the form tδrwr for some wr ∈W ′δr , where 0 ≤ δr ≤ d.

Since there is no occurrence of t−1 in u1 . . . uk it follows that this is in reduced
form thus, as g ∈ Km, it follows from Britton’s Lemma that δ1 + · · ·+ δk = m.

Let s be the smallest index such that in the above decomposition of g we have
δs = µ > 0. This implies that u1 . . . us−1 ∈ Mon〈W0〉 and µ ≤ min(d,m) because
δ1 + · · · + δk = m. As for us, we have either us ∈ Wµt

µ, or us ∈ tµW ′µ. Finally,
us+1 . . . uk is an element of the monoid K with the property that any of its reduced
forms has precisely m− µ occurrences of t. Therefore, us+1 . . . uk ∈ Km−µ, which
by induction hypothesis implies that us+1 . . . uk ∈ Dm−µ. We conclude that either

g ∈ Mon〈W0〉Wµt
µDm−µ,

or

g ∈ Mon〈W0〉tµW ′µDm−µ.

In both cases, by the description of our algorithm, we have

g ∈ N (j)
m,0tN

(j)
m,1t . . . tN

(j)
m,m

for some 1 ≤ j ≤ Cm, yielding g ∈ Dm.
Conversely, to see that Dm ⊆ Km, let g ∈ Dm. Then there exists an index

j, 1 ≤ j ≤ Cm, such that g ∈ N
(j)
m,0tN

(j)
m,1t . . . tN

(j)
m,m. Now, the sequence of sets

N
(j)
m,0, N

(j)
m,1, . . . , N

(j)
m,m is obtained in one of the two ways as described in the defini-

tion of our algorithm. Therefore, there is an integer µ, 1 ≤ µ ≤ min(d,m), such that
either g ∈ Mon〈W0〉Wµt

µDm−µ, or g ∈ Mon〈W0〉tµW ′µDm−µ. However, by the in-
duction hypothesis, Dm−µ = Km−µ, so we have either g ∈ Mon〈W0〉Wµt

µKm−µ ⊆
Km, or g ∈ Mon〈W0〉tµW ′µKm−µ ⊆ Km. In summary, in either case we conclude
that g ∈ Km, which completes our proof. �

The following result which gives necessary and sufficient conditions for an element
in reduced form to belong to M , will be essential for the proof of Theorem D.

Proposition 6.8. Let G∗ = G∗t,φ:A→B be an HNN extension of a finitely generated
group G with finitely generated associated subgroups A,B. Let

M = Mon〈W0 ∪W1t ∪W2t
2 ∪ · · · ∪Wdt

d ∪ tW ′1 ∪ · · · ∪ tdW ′d〉

for some finite W0,W1, . . . ,Wd,W
′
1, . . . ,W

′
d ⊆ G. In addition, for n ≥ 0, let Cn ≥ 1

and N
(j)
n,i , 0 ≤ i ≤ n, 1 ≤ j ≤ Cn, be the integers and rational subsets of G given

by Lemma 6.7.



THE PREFIX MEMBERSHIP PROBLEM FOR ONE-RELATOR GROUPS 37

Let

g = g0t
ε1g1t

ε2 . . . tεngn,

be an element of G∗ in reduced form where gi ∈ G for 0 ≤ i ≤ n and εj ∈ {1,−1} for

1 ≤ j ≤ n. For i ∈ {0, . . . , n} and 1 ≤ j ≤ Cn define subsets Q
(j)
i = Q

(j)
i (g0, . . . , gn)

of G in the following way:

Q
(j)
0 = {1},

Q
(j)
i+1 = ((N

(j)
n,i )
−1Q

(j)
i gi ∩A)φ, for 0 ≤ i ≤ n− 1.

Then g ∈M if and only if ε1 = · · · = εn = 1 and

gn ∈
⋃

1≤j≤Cn

(Q(j)
n )−1N (j)

n,n.

Proof. (⇒) Assume that g ∈M . By Lemma 6.7 there exist m ≥ 0 and 1 ≤ j ≤ Cm
such that

g = h0th1t . . . hm−1thm

holds for some hi ∈ N
(j)
m,i, 0 ≤ i ≤ m. Since the right-hand side of the pre-

vious equality is in reduced form and g = g0t
ε1g1t

ε2 . . . tεngn is a reduced form,
by Lemma 6.2, it follows that m = n, and ε1 = · · · = εn = 1, and there exist
1 = α0, α1, . . . , αn, αn+1 = 1 ∈ B such that

gi = α−1i hi(tαi+1t
−1)

holds for all 0 ≤ i ≤ n. In particular, we have g0 = h0(tα1t
−1), so

α1φ
−1 = tα1t

−1 = h−10 g0 ∈ (N
(j)
n,0)−1g0 ∩A = (N

(j)
n,0)−1Q

(j)
0 g0 ∩A,

implying α1 ∈ ((N
(j)
n,0)−1Q

(j)
0 g0 ∩A)φ = Q

(j)
1 .

Now we proceed by induction to prove that for all 0 ≤ i ≤ n, αi ∈ Q(j)
i . Suppose

that αk ∈ Q(j)
k for some 0 ≤ k ≤ n and consider αk+1. We have

αk+1 = (tαk+1t
−1)φ = (h−1k αkgk)φ ∈ ((N

(j)
n,k)−1Q

(j)
k gk ∩A)φ = Q

(j)
k+1,

completing the induction step. It follows that gn = α−1n hn ∈ (Q
(j)
n )−1N

(j)
n,n, as

required.
(⇐) Let g = g0t

ε1g1t
ε2 . . . tεngn be an element of G∗ in reduced form such that

εi = 1 for all 1 ≤ i ≤ n and gn ∈ (Q
(j)
n )−1N

(j)
n,n for some 1 ≤ j ≤ Cn. Then we can

write gn = β−1n kn for some βn ∈ Q(j)
n and kn ∈ N (j)

n,n. Therefore

tβnt
−1 = βnφ

−1 ∈ Q(j)
n φ−1 = (N

(j)
n,n−1)−1Q

(j)
n−1gn−1 ∩A,

by definition of Q
(j)
n . So there exist kn−1 ∈ N (j)

n,n−1 and βn−1 ∈ Q(j)
n−1 such that

tβnt
−1 = k−1n−1βn−1gn−1. Rearranging this yields

gn−1 = β−1n−1kn−1(tβnt
−1).

Continuing in this way we obtain for i = n− 1, n− 2, . . . , 0 elements ki ∈ N (j)
n,i and

βi ∈ Q(j)
i (0 ≤ i < n) such that

gi = β−1i ki(tβi+1t
−1).
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Note that β0 = 1 because Q
(j)
0 = {1}. Substituting into the reduced form of g, and

cancelling gives adjacent inverse pairs, we obtain

g = g0tg1t . . . tgn = k0tk1t . . . tkn ∈M
by Lemma 6.7. �

Lemma 6.9. Under the assumptions of Theorem D, in the statement of Proposi-

tion 6.8 every set Q
(j)
i (0 ≤ i ≤ n, 1 ≤ j ≤ Cn) is a rational subset of B.

Proof. Clearly Q
(j)
0 is a rational subset of B. We prove by induction on i (with j

fixed) that Q
(j)
i is rational for 0 ≤ i ≤ n. For the induction step suppose that Q

(j)
k

is rational and consider Q
(j)
k+1. By definition

Q
(j)
k+1 = ((N

(j)
n,k)−1Q

(j)
k gk ∩A)φ.

By Lemma 6.7 the set N
(j)
n,k is a rational subset of G. It then follows from condition

(ii) in Theorem D and the induction hypothesis that

R = (N
(j)
n,k)−1Q

(j)
k gk ∩A

is a rational subset of G. Since R ⊆ A it then follows from Theorem 2.9 that R ∈
Rat(A). Then since φ is an isomorphism it follows that Q

(j)
k+1 = Rφ ∈ Rat(B). �

Proof of Theorem D. Similarly to the proof of Theorem C, to prove the theorem we
must show that there is an algorithm which takes any word w from (X ∪ {t})∗ as
input and decides whether or not the word represents an element of the submonoid
M . By assumption (i) it follows that the membership problems for A in G and B
in G are both decidable, since G has decidable rational subset membership problem
and A and B are both finitely generated. Also, condition (i) implies that G has de-
cidable subgroup membership problem, and hence decidable word problem. Hence,
the hypotheses of Lemma 6.4 are satisfied. Applying this lemma we conclude that
there is an algorithm that given any such word w returns a word

w = w0t
ε1w1t

ε2 . . . tεnwn,

with wi ∈ X
∗

for 1 ≤ i ≤ n, and εi ∈ {1,−1} for 1 ≤ i ≤ n, that is in reduced
form.

At this point, the algorithm calls as a subroutine the algorithm from Lemma 6.7
which will return an integer Cn ≥ 1 and a finite set of FSA

{N (j)
n,i : 0 ≤ i ≤ n, 1 ≤ j ≤ Cn}

over X such that with N
(j)
n,i = [L(N (j)

n,i )]π the conditions in the statement of
Lemma 6.7 are satisfied.

Set gi = wiπ for 0 ≤ i ≤ n. For each i ∈ {0, . . . , n} and j ∈ {1, . . . , Cn} let

Q
(j)
i = Q

(j)
i (g0, . . . , gn) be defined as in the statement of Proposition 6.8. Then by

Lemma 6.9 each of these sets Q
(j)
i is a rational subset of B, and therefore also a

rational subset of G.

Claim. There exists an algorithm which for each i ∈ {0, . . . , n} and j ∈ {1, . . . , Cn}
computes

• a finite state automaton G(j)i over X with [L(G(j)i )]π = Q
(j)
i , and

• a finite state automaton B(j)i over Z with [L(B(j)i )]ξ = Q
(j)
i .
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Proof of claim. For each 1 ≤ j ≤ Cn, the algorithm iteratively constructs the pairs

(G(j)i ,B(j)i ) in the following way. When i = 0 we have Q
(j)
i = {1} and it is clear

that an appropriate pair (G(j)0 ,B(j)0 ) can be computed e.g. by taking automata that
accept only the empty word in each case. Now consider a typical stage i with i > 0.

Then by definition

Q
(j)
i = ((N

(j)
n,i−1)−1Q

(j)
i−1gi−1 ∩A)φ.

The algorithm constructs the automatonM(j)
n,i−1 over X such that [L(M(j)

n,i−1)]π =

(N
(j)
n,i−1)−1 from the automaton N (j)

n,i−1. Using M(j)
n,i−1 and G(j)i−1 the algorithm

then produces, in the obvious way, a FSA D(j)
i over X such that [L(D(j)

i )]π =

(N
(j)
n,i−1)−1Q

(j)
i−1gi−1. The algorithm given by assumption (ii), in the statement of

the theorem, is then applied to the automaton D(j)
i which yields an automaton C(j)i

over X satisfying

[L(C(j)i )]π = (N
(j)
n,i−1)−1Q

(j)
i−1gi−1 ∩A.

The algorithm then calls as a subroutine the algorithm from Theorem 2.9 which

returns a FSA A(j)
i over Y satisfying

[L(A(j)
i )]θ = (N

(j)
n,i−1)−1Q

(j)
i−1gi−1 ∩A.

By replacing each letter yl ∈ Y , 1 ≤ l ≤ k, in the transitions of the automaton A(j)
i

by the corresponding letter zl ∈ Z, the algorithm computes the automaton B(j)i
over Z such that

[L(B(j)i )]ξ = ((N
(j)
n,i−1)−1Q

(j)
i−1gi−1 ∩A)φ = Q

(j)
i .

Finally, the algorithm calls Theorem 2.9 as a subroutine which returns the automa-

ton G(j)i over X satisfying

[L(G(j)i )]π = ((N
(j)
n,i−1)−1Q

(j)
i−1gi−1 ∩A)φ = Q

(j)
i .

This completes the proof of the claim. �

To complete the proof, by Proposition 6.8, we have g ∈ M if and only if ε1 =

· · · = εn = 1 and gn ∈ (Q
(j)
n )−1N

(j)
n,n. Using the automata G(j)n and N (j)

n,n, the
algorithm produces, in the obvious way, a FSAA(w) overX such that [L(A(w))]π =

(Q
(j)
n )−1N

(j)
n,n.

Therefore, in summary we have shown that there is an algorithm which given
any word w ∈ (X ∪ {t})∗ computes a word w0t

ε1w1t
ε2 . . . tεnwn in reduced form,

equal to w in G, and also computes a FSA A(w) over X such that w represents
an element of M if and only if ε1 = · · · = εn = 1 and wnπ ∈ [L(A(w))]π. This is
decidable by condition (i) of the theorem. �

Corollary 6.10. For a finite alphabet X let

G = FG(X)∗t,φ:A→B
be an HNN extension such that A,B are finitely generated. Then for any finite
subsets W0,W1, . . . ,Wd,W

′
1, . . . ,W

′
d of FG(X) the membership problem for

M = Mon〈W0 ∪W1t ∪W2t
2 ∪ · · · ∪Wdt

d ∪ tW ′1 ∪ · · · ∪ tdW ′d〉
is decidable.
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Proof. It will suffice to prove that the hypotheses of Theorem D are satisfied. Since
G is a free group, hypothesis (i) is satisfied by Benois’ Theorem (Theorem 2.7) and
Corollary 2.8, while condition (ii) holds as a consequence of [3, Theorem 3.3 and
Corollary 3.4]. �

7. Applications of HNN extension results to the prefix membership
problem

In this section we present several applications of the results from the previous
section, mainly Theorem D and its Corollary 6.10. These applications include,
among others, some presentations of Adjan type, conjugacy pinched presentations
and, in particular, Baumslag-Solitar groups.

7.1. Exponent sum zero theorem. For a word w ∈ X
∗

and xε ∈ X, where
x ∈ X and ε ∈ {1,−1}, we write |w|xε for the number of occurrences of xε in w.
For t ∈ X, the exponent sum of t in w is the number |w|t − |w|t−1 . We say that t
has exponent sum zero in w if |w|t = |w|t−1 6= 0.

We now describe a well-known method due to McCool and Schupp [33] for ex-
pressing certain one-relator groups as HNN extensions of one-relator groups with a
shorter defining relator. See [27, Page 198].

Let w ∈ X∗ be a word in which the letter t ∈ X has exponent sum zero. We
define a word ρt(w) over the infinite alphabet

Ξ = {xl : x ∈ X \ {t}, l ∈ Z}

obtained from w by first replacing each occurrence of x ∈ X \ {t} by x−i where i
is the exponent sum of t in the prefix of w preceding the considered occurrence of
x, and then deleting every occurrence of t. For each x ∈ X \ {t} let µx and mx be
respectively the smallest and the greatest value of j such that xj actually appears
in ρt(w). For example

ρt(bt
−1at2bt−1a) = b0a1b−1a0,

and µa = 0 and ma = 1.
The following result is originally due to Moldavanskĭı [35]. Its proof can be

extracted from the proof of Freiheitssatz given in [27, Section IV.5] which follows
the approach in [33].

Proposition 7.1. Let w ∈ X∗ be a word in which t ∈ X has exponent sum zero
such that ρt(w) is cyclically reduced. Then the group G = Gp〈X |w = 1〉 is an HNN
extension of the group

H = Gp〈Ξw | ρt(w) = 1〉

where Ξw = {xl : x ∈ X \ {t}, µx ≤ l ≤ mx}. The associated subgroups A and B
in this extension are free groups freely generated by Ξw \ {xmx

: x ∈ X \ {t}} and
Ξw \ {xµx

: x ∈ X \ {t}}, respectively, with the isomorphism φ : xi 7→ xi+1 for all
x ∈ X \ {t} and µx ≤ i < mx.

We say that w is prefix t-positive if |u|t − |u|t−1 ≥ 0 for all prefixes u of w.
Analogously, w is said to be prefix t-negative if |u|t− |u|t−1 ≤ 0 for all prefixes u of
w.
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Theorem 7.2. Maintaining the notation above, let G = 〈X |w = 1〉 be a one-
relator group presentation such that some t ∈ X has exponent sum zero in w and
that ρt(w) is cyclically reduced, and let

H = Gp〈Ξw | ρt(w) = 1〉.
Let A be the subgroup of H generated by Ξw \ {xmx : x ∈ X \ {t}}. Suppose that

(i) the rational subset membership problem is decidable in H, and
(ii) A ≤ H is effectively closed for rational intersections.

(In particular conditions (i) and (ii) both hold in the case that H is a free group.) If
w is either prefix t-positive or prefix t-negative, then the group G defined by the pre-
sentation Gp〈X |w = 1〉 has decidable prefix membership problem. Consequently, if
these conditions hold and the inverse monoid Inv〈X |w = 1〉 is E-unitary, then it
has decidable word problem.

Proof. First of all, the group G = Gp〈X |w = 1〉 is an HNN extension of H by
Proposition 7.1. So, to prove the theorem, it suffices to show that the prefix monoid
Pw ⊆ G has a generating set of the form given in Theorem D.

We consider only the prefix t-positive case, the prefix t-negative case being anal-
ogous. Write

w ≡ u0τ1u1τ2u2 . . . τnun,
where τi ∈ {t, t−1}+ for all 1 ≤ i ≤ n and ui ∈ X \ {t}

∗
, where the words

u1, . . . , un−1 are all non-empty. Set ξi to be the t-exponent sum of τi for all
1 ≤ i ≤ n.

The exponent sum zero condition translates to

ξ1 + ξ2 + · · ·+ ξn = 0,

while it is easy to see that the prefix t-positive condition is implies that the inequal-
ities

σr = ξ1 + · · ·+ ξr ≥ 0

hold for all 1 ≤ r ≤ n. This implies that for any letter x 6= t appearing in w we
have µx,mx ≤ 0 and µx ≤ −σr ≤ mx for all 1 ≤ r ≤ n. In particular, σ1 = ξ1 > 0.

Now we have
ρt(w) ≡ u′0u′1 . . . u′n−1u′n,

where both u′0, u
′
n are obtained from u0, un, respectively, by equipping each of their

letters by the subscript 0, and for all 1 ≤ i ≤ n − 1, the word u′i is obtained from
ui by putting −σi in the subscript of each letter in ui.

The prefixes p of w can be classified into the following three types:

(1) p is a prefix of u0;
(2) p ≡ u0τ1 . . . τiq, where q is a prefix of ui for some 1 ≤ i ≤ n;
(3) p ≡ u0τ1 . . . ui−1θi for some 1 ≤ i ≤ n and prefix θi of τi.

Our aim is to rewrite the elements of G represented by these prefixes with respect
to the generating set Ξw ∪ {t} of the presentation of G given in Proposition 7.1 as
an HNN-extension H∗t,φ:A→B .

Indeed, upon recalling from [27, Page 198] that the generator x−s of H represents
the element tsxt−s in G = H∗t,φ:A→B , we immediately see that the prefixes of u0
translate into prefixes of u′0, a finite subset of H. This deals with the prefixes of
type (1). For prefixes of type (2), in G we have the equality

p = u0(tσ1u1t
−σ1) . . . (tσi−1ui−1t

−σi−1)(tσiqt−σi)tσi ,
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which means that in the presentation for the HNN extension H∗t,φ:A→B we have

p = u′0 . . . u
′
i−1q

′tσi

where q′ is the word obtained by putting the subscript −σi on every letter of q,
and thus q′ is a prefix of u′i. By a very similar argument, prefixes of type (3) are
expressed as

u′0 . . . u
′
i−1t

σi−1θi.

Let αi ∈ Z be the t-exponent sum of θi. By the prefix t-positive condition, σi−1 +
αi ≥ 0. This implies that tσi−1θi ∈ {t, t−1}∗ has non-negative t-exponent sum
and therefore is equal in G to a non-negative power of t. Hence, upon defining
d = max1≤i≤n σi we conclude that the monoid Pw has a generating set of the form

W0 ∪W1t ∪ · · · ∪Wdt
d

for some finite W0,W1, . . . ,Wd ⊆ H. We now see that all the requirements of
Theorem D are satisfied, so we conclude that the membership problem of Pw in G
is decidable. �

Remark 7.3. It is natural to compare the prefix t-positive condition in Theorem 7.2
with of w-strictly positive presentations considered in [19] where it was shown that
groups defined by such presentations have decidable prefix membership problem;
see [19, Theorem 5.1]. In [19, Corollary 5.2] it is shown that if w is a cyclically
reduced word such that Gp〈X |w = 1〉 is a w-strictly positive presentation then the
group of units of Inv〈X |w = 1〉 is trivial. In contrast, the t-positive condition in our
theorem certainly does not imply that the group of units is trivial, and in this way
we see that the class of examples to which Theorem 7.2 applies is distinct from those
dealt with by [19, Theorem 5.1]. For example, the inverse monoid presentation

Inv〈a, b, t | tat−1btat−1 = 1〉

is t-positive and it may be shown the the group of units of this inverse monoid is
the infinite cyclic group. Indeed it may be shown that tat−1 and b are the minimal
invertible pieces of this relator, since it is easily seen that this inverse monoid is
not a group. These pieces satisfy the unique marker letter property, and hence by
results proved in [11] the group of units of this inverse monoid isomorphic to the
group defined by the presentation Gp〈x, y |xyx = 1〉. Hence the group of units of
this monoid is the infinite cyclic group.

Example 7.4. Let

M = Inv〈a, b, c, t | t−1atcbt−2at2cbt−3at3c = 1〉.

Then t has exponent sum zero in the relator word, and, furthermore, this word is
prefix t-negative. The corresponding group

G = Gp〈a, b, c, t | (t−1at)cb(t−2at2)cb(t−3at3)c = 1〉

is an HNN extension of the group

H = Gp〈a1, a2, a3, b0, c0 | a1c0b0a2c0b0a3c0 = 1〉

with A = Gp〈a1, a2〉, B = Gp〈a2, a3〉, and aiφ = t−1ait = ai+1 for i ∈ {1, 2}. The
defining relator in the presentation of H is a positive word and hence is cyclically
reduced. Also, since the generator a1 only appears once in that word, it follows from
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the Freiheitssatz that that H is a free group of finite rank. Hence, by Corollary 6.10
and Theorem 7.2 the group defined by

G = Gp〈a, b, c, t | (t−1at)cb(t−2at2)cb(t−3at3)c = 1〉

has decidable prefix membership problem. Since the monoid M is E-unitary, as
the defining relator word is cyclically reduced, it follows that M has decidable word
problem.

Example 7.5. For a slightly more involved example, let G = Inv〈a, b, c, t |w = 1〉,
where

w ≡ tbcbt8bbct−6ct−3at3bt−3at3ct−2ct−1.
Note that w is not cyclically reduced; however, t has exponent zero in w and it is
t-positive. Furthermore,

ρt(w) ≡ b−1c−1b−1b2−9c−9c−3a0b−3a0c−3c−1
is a cyclically reduced word, so G is an HNN extension of

H = Gp〈a0, b−9, . . . , b−1, c−9, . . . , c−1 | ρt(w) = 1〉.

Note that ρt(w) is a cyclically reduced word. Since the generator b−2 occurs only
once in ρt(w) it follows by the Freiheitssatz that H is a free group of finite rank.
Therefore, Theorem 7.2 tells us that the membership problem for Pw in G is decid-
able.

As in the previous section, we now exhibit an example to which the methods of
this section do not apply.

Example 7.6. Consider the presentation

〈a, b, t | bt−1at2bt−1a = 1〉.

Note that the relator word in this presentation is cyclically reduced and has expo-
nent sum zero for the letter t. However, it is neither prefix t-positive, nor prefix
t-negative. The group G defined by this presentation is an HNN extension of
H = Gp〈a0, a1, b−1, b0 | b0a1b−1a0 = 1〉, which is clearly a free group of rank 3. The
associated subgroups A = Gp〈a0, b−1〉 and B = Gp〈a1, b0〉 are free groups of rank
2. However, upon identifying all the prefixes of bt−1at2bt−1a and expressing them
in terms of the generators of the described HNN extension of H, we see that

Pw = Mon〈W0 ∪W1t ∪W−1t−1〉,

where

W0 = {a0, b0, (b−1a0)−1}, W1 = {a0, (b−1a0)−1}, W−1 = {b0, (b−1a0)−1}.

Now we cannot apply Corollary 6.10 because of the ‘mixed’ nature of the generating
set of Pw which contains both elements with t and with t−1. The underlying
problem now is that when we form an arbitrary product of such elements (that is,
a product representing an element of Pw), we cannot guarantee anymore that such
a product is already in reduced form, as we had in Lemma 6.7 and Proposition
6.8. Also, keeping track of the rationality of subsets containing elements of H
occurring between consecutive instances of t and t−1 in such products becomes
increasingly troublesome as we are forced to make more and more (potentially
nested) t-reductions.
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Example 7.7. In Example 5.11 we have seen that the orientable surface group of
genus n ≥ 2, defined by its standard presentation

Gn = Gp〈a1, . . . , an, b1, . . . , bn | [a1, b1][a2, b2] . . . [an, bn] = 1〉,

has decidable prefix membership problem. Now, by using Theorem 7.2 we can
apply out results to give a new proof of [19, Theorem 5.3(b)] showing that the
prefix membership problem is decidable for all cyclic conjugates of the relator word
in the above presentation.

Indeed, upon denoting u ≡ [a2, b2] . . . [an, bn], we have four cases to consider:

(i) w ≡ a−11 b−11 a1b1u;
(ii) w ≡ b−11 a1b1ua

−1
1 ;

(iii) w ≡ a1b1ua−11 b−11 ;
(iv) w ≡ b1ua−11 b−11 a1.

Case (i) is already resolved in Example 5.11; to illustrate how to deal with the
remaining ones, we consider Case (iii) the other cases being similar. Take a1 to be
the stable letter. The word w is cyclically reduced, a1 is exponent sum zero in w,
and w is a1-positive. We conclude that Gn is an HNN extension of

H = Gp〈(b1)−1, (b1)0, (a2)−1, (b2)−1, . . . | (b1)−1v((b1)0)−1 = 1〉,

where v is obtained from u by replacing each ai, bi, . . . by (ai)−1, (bi)−1, . . . , re-
spectively, for 2 ≤ i ≤ n. So, H is a free group of rank 2n−1 with associated cyclic
subgroups generated by (b1)−1 and (b1)0 = (b1)−1v, respectively. By Theorem 7.2
we obtain that Pw has decidable membership in Gn.

We finish this subsection by presenting yet another application of Theorem 7.2
which concerns the prefix membership problem for one-relator groups defined by
Adjan presentations [16, 32] over a two-letter alphabet. Recall that a one-relator
group, inverse monoid, or monoid presentation is an Adjan presentation if it is of
the form 〈X |u = v〉, where u, v ∈ X∗ are positive words such that the first letters
of u, v are different, and also the last letters of u, v are different. For our purposes,
group presentations of Adjan type will be written as 〈X |uv−1 = 1〉; note that the
given conditions ensure that the word uv−1 is cyclically reduced.

Theorem 7.8. Let G = Gp〈a, b |uv−1 = 1〉 be a group defined by an Adjan presen-
tation such that |u|a = |v|a. Assume that at least one of the following conditions
hold:

(i) one of the words u or v begins with ba;
(ii) one of the words u or v end with ab;
(iii) there exists an integer k, 1 ≤ k < |u|a, such that there is a single b between

the kth and the (k + 1)th occurrence of a in one of the words u, v, while in
the other word the kth and the (k + 1)th occurrence of a are adjacent.

Then the prefix membership problem for G is decidable, as is the word problem for
the inverse monoid Inv〈a, b |uv−1 = 1〉.

Proof. For each of the assumptions (i)–(iii), there are four cases to consider de-
pending upon the first and last letters of u, v. However, all these cases are very
similar, so we consider only one of them in each instance. Let p = |u|a = |v|a.



THE PREFIX MEMBERSHIP PROBLEM FOR ONE-RELATOR GROUPS 45

We begin by assuming that u begins with ba and ends with a. Then v begins
with a and ends with b, so we may write

u = babα2 . . . bαpa,

v = abβ1 . . . abβp+1,

for some integers αi, βi ≥ 0. The word

uv−1 = babα2 . . . bαpab−(βp+1)a−1 . . . b−β1a−1,

has exponent sum zero for a and is prefix a-positive. By considering a as the stable
letter, it follows that G is an HNN extension of the group

H = Gp〈b0, b−1, . . . , b−p | b0bα2
−1 . . . b

αp

−(p−1)b
−(βp+1)
−p . . . b−β1

−1 = 1〉.

The defining relator is a cyclically reduced word, and H is a free group of finite
rank by the Freiheitssatz since the generator b0 arises exactly once in the defining
relator. Hence in this case the result follows by Theorem 7.2.

Similarly, if e.g. v begins with b and ends with ab then u both begins and ends
with a, and so we may write

u = abα1 . . . bαp−1a,

v = bβ0+1abβ1 . . . ab,

for some integers αi, βi ≥ 0. In this case, we conclude that G is an HNN extension
of the group

Gp〈b0, b−1, . . . , b−p | bα1
−1 . . . b

αp−1

−(p−1)b
−1
−p . . . b

−β1

−1 b
−(β0+1)
0 = 1〉.

The defining relator is a cyclically reduced word, and H is a free group of finite
rank by the Freiheitssatz since the generator b−p arises exactly once in the defining
relator. Hence in this case the result follows by Theorem 7.2.

Finally, upon assuming (iii), let us further assume that u begins and ends with
a, while v begins and ends with b. Then, for example,

u = abα1 . . . bαk−1ababαk+1 . . . bαp−1a,

v = bβ0+1abβ1 . . . bβk−1aabβk+1 . . . abβp+1,

or some integers αi, βi ≥ 0. This leads to the conclusion that G is an HNN extension
of the group

Gp〈b0, b−1, . . . , b−p | bα1
−1 . . . b−k . . . b

−(βp+1)
−p . . . b

−βk+1

−(k+1)b
−βk−1

−(k−1) . . . b
−(β0+1)
0 = 1〉.

The defining relator is a cyclically reduced word, and H is a free group of finite
rank by the Freiheitssatz since the generator b−1 arises exactly once in the defining
relator. Hence in this case the result follows by Theorem 7.2. �

Remark 7.9. There are examples to which Theorem 7.8 applies, which are not
handled in [32, Corollary 2.6]. For example, it covers a part of Case 4 from that
corollary for which the decidability of the prefix membership problem is not deduced
there (one of the simplest examples is u ≡ aba, v ≡ baab). This shows that our
results are not consequences of the approach via distortion functions pursued in
[32].
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7.2. Conjugacy pinched presentations. The “HNN analogue” of the class of
cyclically pinched groups are the conjugacy pinched groups: these are one-relator
groups defined by a presentation of the form

Gp〈X ∪ {t} | t−1ut = v〉,

where u, v ∈ X∗ are nonempty reduced words. Again, for our purposes, conjugacy
pinched group presentations will be written in the form

Gp〈X ∪ {t} | t−1utv−1 = 1〉.

Theorem 7.10. The prefix membership problem is decidable for any group defined
by a conjugacy pinched presentation

Gp〈X ∪ {t} | t−1utv−1 = 1〉.

Consequently, the word problem is decidable for all one-relator inverse monoids of
the form

Inv〈X ∪ {t} | t−1utv−1 = 1〉
with u and v both reduced reduced words from X

∗
.

Proof. By the Freiheitssatz, any conjugacy pinched group is the HNN extension of
the free group FG(X) with associated cyclic subgroups A = Gp〈u〉 and B = Gp〈v〉.
Hence, to prove the theorem it suffices to compute the set of prefixes of the word
w ≡ t−1utv−1 (which generate the prefix monoid Pw) and see that it has the form
required by Theorem D. Indeed, we have

pref(w) = t−1 · pref(u) ∪ t−1ut · pref(v−1).

Note that in G we have t−1ut · pref(v−1) = pref(v), so Pw is generated by W0 ∪
t−1W ′1 for W0 = pref(v) and W ′1 = pref(u), whence the required result follows (see
Remark 6.1). �

Example 7.11. As an application of the previous theorem, groups defined by
presentations of the form

B(m,n) = Gp〈a, b | b−1amba−n = 1〉

have decidable prefix membership problems. These are so-called Baumslag-Solitar
presentations. Hence, the inverse monoids

Inv〈a, b | b−1amba−n = 1〉

have decidable word problems (cf. [16, Theorem 4.2] for a highly related result).

8. An undecidability result in the non-cyclically reduced case

In this article the main applications of our results have been to show that the pre-
fix membership problem is decidable for certain groups defined by one-relator pre-
sentations. On the other hand, in the recent paper [10] a word w (over a 3-element
alphabet X) is constructed such that the inverse monoid M = Inv〈X |w = 1〉 has
undecidable word problem. Furthermore, it was proved in Theorem 3.8 of the same
paper that M is actually E-unitary. Combining this fact with [19, Theorem 3.1]
(see Theorem 2.5 for the statement) it follows that there does exists a one-relator
group G = Gp〈X |w = 1〉 with undecidable prefix membership problem. Hence,
the following open problem arises naturally.
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Problem 8.1. Characterise the words w ∈ X
∗

with the property that the prefix
membership problem for Gp〈X |w = 1〉 is decidable. In particular, is the prefix
membership problem decidable when w is a cyclically reduced word?

The latter question was stated in [5, Question 13.10]. By modifying some ideas
and results from [10], we shall now show that if one weakens the hypothesis of
this problem to insisting only that w is a reduced word, then this question has a
negative answer.

Theorem 8.2. There is a finite alphabet X and a reduced word w ∈ X∗ such that
Gp〈X |w = 1〉 has undecidable prefix membership problem.

Proof. Let H = Gp〈a, b | abab−1a−1ba−1b−1 = 1〉. It follows from [10, Theorem 2.4]

that there is a finite set of words u1, u2, . . . , uk ∈ {a, b}
∗

such that the membership
problem for

T = Mon〈u1, u2, . . . , uk〉
in H is undecidable. Set r ≡ abab−1a−1ba−1b−1 and s ≡ a−1b−1abab−1a−1b, and
let

β ≡ (ara−1)(brb−1)(a−1sa)(b−1sb)

and

γ ≡ (tu1t
−1)r(tu−11 t−1)r(tu2t

−1)r(tu−12 t−1)r . . . r(tukt
−1)r(tu−1k t−1),

where t is a new letter not in {a, b}. Now define

w ≡ βγrγ−1β−1.
It is easy to see that w is a reduced word in X

∗
where X = {a, b, t}. We

claim that Gp〈X |w = 1〉 has undecidable prefix membership problem. Let P =
Mon〈pref(w)〉 ≤ G. From the definition of w it follows that r = 1 in the group
G. Since r = 1 and s is a cyclic conjugate of r, it follows that s = 1 in G. Using
the fact that r = 1 and s = 1, by considering the prefixes of β we see that all of
a, a−1, b and b−1 belong to P (meaning that the elements these words represent all
belong to P ). Since β = 1 in P , considering prefixes of γ and using the fact that
r = 1 in G we see that t belongs to P , and tuit

−1 belongs to P for all 1 ≤ i ≤ k.
Since every other prefix of w is clearly expressible as a product of these elements
we conclude that P is equal to the submonoid of G generated by

{a, b} ∪ {t} ∪ {tuit−1 : i ∈ {1, . . . , k}}.

It may be shown (see [10, Lemma 3.6]) that for any word v ∈ {a, b}
∗

we have that
tvt−1 represents an element of P if and only if in H the word v represents an element
in the submonoid T ≤ H. By assumption the submonoid membership problem for
T in H is undecidable, and hence it follows that the membership problem for P
within G is undecidable. Hence Gp〈X |w = 1〉 has undecidable prefix membership

problem, where w ∈ X∗ is a reduced word. �

Remark 8.3. Note that in the proof of Theorem 8.2 the initial presentation

Gp〈a, b | abab−1a−1ba−1b−1 = 1〉
for the group H does have decidable prefix membership problem, and this follows
as a consequence of Theorem 7.2. To see this, note that the letter a has exponent
sum zero in the word r ≡ abab−1a−1ba−1b−1. Furthermore, r is prefix a-positive.
Now following the method described in Proposition 7.1, working with respect to



48 IGOR DOLINKA AND ROBERT D. GRAY

the exponent sum zero letter a, the group H arises as an HNN extension of the
group

H1 = Gp〈b−2, b−1, b0 | b−1b−1−2b−1b
−1
0 = 1〉,

which is just the free group of rank 2 generated by b−2 and b−1. Since H1 is a free
group it follows that the hypotheses (i) and (ii) of Theorem 7.2 are both satisfied.
Hence, Theorem 7.2 can be applied and it follows that the above presentation for
H has decidable prefix membership problem.

We conclude that the question of decidability of the prefix membership prob-
lem depends on the presentation of the considered group; in this remark and in
the previous theorem we have just seen two presentations of the same group H,
one yielding undecidable prefix membership problem, whereas the same problem is
decidable with respect to the other presentation.
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