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Abstract. We introduce the framework of AECats (abstract elementary cat-
egories), generalising both the category of models of some first-order theory

and the category of subsets of models. Any AEC and any compact abstract

theory (“cat”, as introduced by Ben-Yaacov) forms an AECat. In particular,
we find applications in positive logic and continuous logic: the category of

(subsets of) models of a positive or continuous theory is an AECat.
The Kim-Pillay theorem for first-order logic characterises simple theories

by the properties dividing independence has. We prove a version of the Kim-

Pillay theorem for AECats with the amalgamation property, generalising the
first-order version and existing versions for positive logic.
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1. Introduction

For any complete first-order theory, Shelah’s notion of dividing gives a ternary
relation on subsets of models. Stable theories can be characterised by the properties
this relation has. Lieberman, Rosický and Vasey proved a category-theoretic version
of this characterisation in [LRV19]. Similarly, we can characterise simple theories
using the Kim-Pillay theorem, see [KP97]. The main result of this paper is a
category-theoretic version of this theorem (Theorem 1.1).

For a first-order theory T , the category of models of T with elementary em-
beddings forms an accessible category, but accessible categories are more gen-
eral. For example, there is Shelah’s notion of AEC (abstract elementary class,
see e.g. [She09]), which is a class of structures with a choice of embedding, satis-
fying a few axioms. Every AEC can naturally be seen as an accessible category.
Other examples can be found by considering the category of models of some the-
ory in another form of logic, such as positive logic and continuous logic (see e.g.
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[PY18, BY03a, BYBHU08]). There is also the concept of compact abstract theor-
ies, or cats, from [BY03a], which in practice turn out to be accessible categories.
Even then, accessible categories are more general, they are generally the category
of models of some infinitary theory with homomorphisms as arrows, see [AR94,
Theorem 5.35]. We define a specific kind of accessible category, an AECat, which
still covers all the previously mentioned cases.

Even though the framework of AECats is very close to that of AECs, it is still
more general. Some settings are hard to handle as AECs, but naturally fit the
category-theoretic framework of AECats. For example, the class of metric models
of a continuous theory in the sense of [BYBHU08] is not an AEC, but it does form
an AECat (see Example 2.10). Of course, there are metric AECs as introduced in
[HH09], but AECats provide a unifying approach.

Simplicity has already been studied separately for some of the aforementioned
settings. For example, in AECs [HK06] and in positive logic [Pil00], or more gen-
erally, in cats [BY03b] and in homogeneous model theory [BL03]. A few days after
the first preprint of this paper became available online, another preprint appeared
[GMA20], studying different aspects of simple-like independence relations in AECs.

In [LRV19], the concept of an abstract independence relation on a category is in-
troduced. They prove that there can be at most one stable such independence rela-
tion (similar to Corollary 1.3). They define an independence relation as a collection
of commutative squares. This has the benefit that it allows for a more category-
theoretic study of the independence relation. For example, assuming transitivity of
the independence relation, these squares form a category. In our approach we will
define an independence relation as a relation on triples of subobjects (section 6).
We lose the nice way of viewing the independence relation as a category, but the
benefit is that the calculus we get is more intuitive and easier to work with. Under
some mild assumptions both approaches are essentially the same, in the sense that
we can recover one from the other.

Main results. We introduce the concept of an AECat (Definition 2.5), general-
ising both the category of models of some first-order theory T and the category of
subsets of models of T . The framework of AECats can also be applied to posit-
ive logic (Example 2.9), continuous logic (Example 2.10), quasiminimal excellent
classes (Example 2.13), AECs (Example 2.11) and compact abstract theories (Ex-
ample 2.12).

We introduce the notion of isi-dividing (Definition 5.7), which is closely related
to the usual notion of dividing (Remark 5.8 and Remark 5.10). We use this to
prove a version of the Kim-Pillay theorem for AECats.

Theorem 1.1 (Kim-Pillay theorem for AECats). Let (C,M) be an AECat with the
amalgamation property, and suppose that |̂ is a simple independence relation. Let

A,B,C be subobjects of a model M . Then A |̂ MC B if and only if gtp(A,B,C;M)
does not isi-divide over C.

The theorem implies canonicity of simple and stable independence relations.

Corollary 1.2 (Canonicity of simple independence relations). On an AECat with
the amalgamation property there can only be one simple independence relation.

Corollary 1.3 (Canonicity of stable independence relations). On an AECat with
the amalgamation property there can only be one stable independence relation. More
precisely, if |̂ is a stable independence relation and |′^ is a simple independence
relation then |̂ = |′^.

In an AECat we have no syntax, so we consider Galois types instead of syntactic
types (section 3). For first-order logic, positive logic and continuous logic Galois
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types coincide with syntactic types, in the sense that two tuples have the same
Galois type if and only if they have the same syntactic type.

Note that Corollary 1.3 is similar to [LRV19, Corollary 9.4] (see also Remark 6.9),
which is a corollary to their more general canonicity result Theorem 9.1. They only
study independence relations that satisfy Stationarity (“uniqueness” in their
paper), which is of course not satisfied by general simple independence relations.
On the other hand, we rely on what we call Union (which is similar to their
“(< ℵ0)-witness property”).

Overview. We start by setting up the framework of AECats in section 2. The
idea is that any category of models of some theory will fit this framework. In some
applications we would like to have access to the subsets of models, so the framework
is made flexible enough to also fit something like the category of subsets of models.
We provide the motivating examples for AECats, arising from: first-order logic,
positive logic, continuous logic and AECs.

AECats do not have syntax, but we can still make sense of a notion of types
through the idea of Galois types, as we do in section 3. Since we do not have access
to single elements in our category, we instead consider tuples of arrows, keeping in
mind that each arrow can actually represent an entire tuple of elements. From this
perspective, there is no difference between the domain of a type and its parameters.

An interesting property for Galois types is being finitely short, which says that
the Galois type of a tuple is determined by the Galois types of its finite subtuples
(Definition 4.1). We do not need this property in the rest of this paper, but we
mention it and the links it provides to existing frameworks in section 4.

In section 5 we introduce the notion of isi-dividing for Galois types. We also
discuss its connections to the usual notion of dividing.

In section 6 we introduce the notion of an independence relation as a relation on
triples of subobjects. We formulate the properties it can have, and prove some basic
facts about these properties, including how to derive 3-amalgamation from a few
other properties. This allows us to later compare simple and stable independence
relations.

Finally, section 7 contains the proof of the main theorem.

Acknowledgements. I would like to thank my supervisor, Jonathan Kirby, for his
invaluable input and feedback. I would also like to thank Marcos Mazari-Armida
and Sebastien Vasey for their extensive feedback, and the anonymous referees whose
remarks improved the presentation of this paper and provided a stronger connec-
tion with existing frameworks. This paper is part of a PhD project at the UEA
(University of East Anglia), and as such is supported by a scholarship from the
UEA.

2. AECats

Convention 2.1. Throughout, κ, λ and µ will denote regular infinite cardinals.

Our framework is based on the category of models of some theory T , and the
category of subsets of models of T .

Definition 2.2. Given a first-order theory T , we denote by Mod(T ) its category
of models with elementary embeddings. We denote by SubMod(T ) the category
of subsets of models of T . That is, its objects are pairs (A,M) where A ⊆ M and
M is a model of T . An arrow f : (A,M) → (B,N) is then an elementary map
f : A → B. That is: for all ā ∈ A and every formula ϕ(x̄) we have M |= ϕ(ā) if
and only if N |= ϕ(f(ā)).
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There is a full and faithful embedding Mod(T ) ↪→ SubMod(T ), by sending M
to (M,M). So we consider Mod(T ) as a full subcategory of SubMod(T ).

Due to the downward Löwenheim-Skolem theorem, every model can be written
as a union of models of cardinality at most |T |. This motivates the definition of an
accessible category (see [AR94] for an extensive treatment).

Definition 2.3. A category C is called λ-accessible if:

(i) C has λ-directed colimits,
(ii) there is a set A of λ-presentable objects, such that every object in C can

be written as a λ-directed colimit of objects in A.

A category is called accessible if it is λ-accessible for some λ.

We recall that an object X is λ-presentable when Hom(X,−) preserves all λ-
directed colimits. This means that if Y = colimi∈I Yi for some λ-directed diagram
(Yi)i∈I then every arrow X → Y factors essentially uniquely as X → Yi → Y for
some i ∈ I.

This gives us a notion of size. For example, in Mod(T ) we have for λ > |T | that
M is λ-presentable precisely when |M | < λ. Similarly, in SubMod(T ), for any λ,
an object (A,M) is λ-presentable precisely when |A| < λ.

It is well-known that Mod(T ) has directed colimits. In SubMod(T ) directed
colimits also exist: they are calculated by taking unions (in a big enough model).
Thus Mod(T ) and SubMod(T ) are examples of accessible categories. Besides the
existence of directed colimits (instead of just λ-directed colimits), these categories
enjoy some other useful properties. For example, all arrows are monomorphisms
and they have the amalgamation property.

Definition 2.4. We say that a category has the amalgamation property (or AP)

if given any span N1
f1←− M

f2−→ N2, there is a cospan N1
g1−→ U

g2←− N2, called an
amalgam, such that the following square commutes:

U

N1 N2

M

g1 g2

f2f1

The point of considering SubMod(T ) is that we can later apply our results to
arbitrary subsets of models. However, we do need to keep track of which objects
are models.

Definition 2.5. An AECat, short for abstract elementary category, consists of a
pair (C,M) where C and M are accessible categories and M is a full subcategory
of C such that:

(1) M has directed colimits, which the inclusion functor into C preserves;
(2) all arrows in C (and thus in M) are monomorphisms.

The objects in M are called models. We say that (C,M) has the amalgamation
property (or AP) if M has the amalgamation property.

The name “abstract elementary category” was used before in [BR12, Definition
5.3] for a very similar concept. As noted there as well, the name was used even
before that in an unpublished note by Jonathan Kirby [Kir08].

Note that if (C,M) is an AECat then (M,M) is an AECat as well.
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Example 2.6. As seen in the discussion before, both (Mod(T ),Mod(T )) and
(SubMod(T ),Mod(T )) are AECats with AP. These are the prototypical examples
of AECats to keep in mind.

To help with intuition that objects in C play the role of subsets of models, the
reader may assume that for every object A in C, there is an arrow A→M with M
in M. This is in fact true in all examples we consider and any object in C we will
consider in this paper will always come with an arrow into some model anyway.

Remark 2.7. Recall that a chain is a diagram of shape δ, where δ is some or-
dinal. By [AR94, Corollary 1.7] we could equivalently replace “directed colimits”
by “colimits of chains” in (1) in Definition 2.5.

Remark 2.8. If (C,M) is an AECat then C andM may be accessible for different
cardinals. By [AR94, Corollary 2.14] and [AR94, Theorem 2.19] there are arbitrarily
large λ such that both C andM are λ-accessible and the inclusionM ↪→ C preserves
λ-presentable objects.

Other applications of AECats include positive logic, continuous logic, quasimin-
imal excellent classes, AECs and compact abstract theories. We discuss those in
the following examples.

Example 2.9. For an introduction to positive logic, we refer to [PY18] or [BY03a].
The terminology in the latter differs significantly from the former, and we use the
terminology of [PY18] to recall the basics of positive logic. All claims in this example
can be found there. The formulas of interest are the positive existential formulas,
these are of the form ∃x̄ϕ(x̄, ȳ) where ϕ(x̄, ȳ) is positive quantifier-free (i.e. built
from atomic formulas using conjunction, disjunction, > and ⊥). An h-inductive
theory T is then a set of h-inductive sentences. That is, sentences of the form
∀x̄(ϕ(x̄) → ψ(x̄)) where ϕ(x̄) and ψ(x̄) are positive existential. A homomorphism
of structures is a function that preserves truth of positive existential formulas, and
it is called an immersion if it also reflects truth of such formulas. So immersions
are in particular injective. A model M of T is called positively closed if every
homomorphism from M into another model of T is an immersion.

Every first-order theory can be seen as an h-inductive theory through a process
called positive Morleyisation: for each formula ϕ(x̄) we introduce a relation symbol
Rϕ(x̄), and add axioms expressing ∀x̄(¬ϕ(x̄)↔ Rϕ(x̄)). Homomorphisms between
models of such a theory will be elementary embeddings, and thus immersions. So
every model is positively closed. Even though we expand the language in this
process, it is clear that the category of models is not changed. So first-order logic
can be studied as a special case of positive logic, and we will use the same notation.

For an h-inductive theory T , we define Mod(T ) to be the category of positively
closed models of T , with homomorphisms (and thus immersions) as arrows. For
SubMod(T ) we take as objects pairs (A,M), where A ⊆M and M is a positively
closed model of T . An arrow f : (A,M) → (B,N) is then a function f : A → B
that is an immersion on those sets. That is, for all ā ∈ A and all positive existential
ϕ(x̄), we have

M |= ϕ(ā) ⇐⇒ N |= ϕ(f(ā)).

One easily checks that both these categories have directed colimits, which are cal-
culated by taking the union in the usual way. The presentability of objects and
accessibility for these categories is the same as in the first-order case. So we again
get (Mod(T ),Mod(T )) and (SubMod(T ),Mod(T )) as AECats.

We have enough compactness in positive logic to prove the amalgamation prop-
erty. The proof is similar to the first-order case. In fact, the essence of the argument
for positive logic appears in [BY03a, Lemma 1.37], when combined with the method
of diagrams.
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Example 2.10. In this example we consider continuous logic (see [BYBHU08]).
Given a continuous theory T , we can consider its category of models MetMod(T )
with elementary embeddings. We use different notation to emphasise the continuous
setting (even though we can encode first-order theories as continuous theories). We
can also again consider subsets of such models, so we define SubMetMod(T ) to be
pairs (A,M) where M is a model of T and A ⊆M . An arrow f : (A,M)→ (B,N)
will be what is called an elementary map in [BYBHU08, Definition 4.3(3)].

The right notion of size is that of density character : the smallest cardinality of a
dense subset of the space. Denote the density character of a space X by density(X).
We then have for all λ that (A,M) in SubMetMod(T ) is λ-presentable precisely
when density(A) < λ. For MetMod(T ) we have that M is λ+-presentable precisely
when density(M) < λ+, for all λ such that the signature of T has at most cardinality
λ. As before, (MetMod(T ),MetMod(T )) and (SubMetMod(T ),MetMod(T ))
form AECats with AP.

Checking all the properties is straightforward but lengthy. The reason they hold
is due to the same tools (for which there exist a continuous alternative): directed
colimits, Löwenheim-Skolem and compactness.

Example 2.11. Shelah’s AECs are in particular also AECats. That is, given an
AEC K, we can view it as a category by taking as arrows the K-embeddings: maps
f : M → N such that f(M) �K N and f is an isomorphism from M onto f(M).
The Tarski-Vaught chain axioms are saying precisely that K has colimits of chains
(and hence directed colimits, see Remark 2.7). The Löwenheim-Skolem axiom then
guarantees that K is accessible. By definition every arrow in K is a monomorphism,
so (K,K) is an AECat. Of course, an AEC with AP will then be an AECat with
AP.

We can generalise the construction of SubMod(T ) to AECs. Let K be an AEC
with AP. We define a category SubSet(K) as follows. The objects are pairs (A,M)
where A ⊆M and M ∈ K. An arrow f : (A,M)→ (B,N) is then a map f : A→ B
such that there are K-embeddings g : M → U and h : N → U with U ∈ K, making
the following diagram commute:

U

M N

A B

g h

f

The amalgamation property is needed to compose arrows. Now suppose that our
AEC is fully < λ-type short over the empty set, as defined in [Bon14, Definition
3.3]. Let (Ai,Mi)i∈I be a λ-directed diagram in SubSet(K) and suppose that the
obvious cocone (

⋃
i∈I Ai,M) exists for some M ∈ K. Then (

⋃
i∈I Ai,M) is the

colimit of (Ai,Mi)i∈I , where the type shortness is necessary to prove the universal
property. Under these conditions SubSet(K) has λ-directed colimits. It is then
straightforward to verify that for κ ≥ λ an object (A,M) of SubSet(K) is κ-
presentable precisely when |A| < κ. It follows that for κ ≥ λ + LS(K)+, we have
that SubSet(K) is κ-accessible. So (SubSet(K),K) is an AECat with AP.

Note that for λ = ℵ0 we have automatically that the cocone (
⋃
i∈I Ai,M) exists.

This can be seen by following the proofs in for example [BY03a, Remark 2.34] or
[BL03, Lemma 1.3].
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Example 2.12. In [BY03a] the concept of a compact abstract theory, or cat, is
introduced. Although no formal definition is given, it turns out that in practice
such a cat is in fact an AECat with AP. See also Example 4.3.

Example 2.13. In this example we consider Zilber’s quasiminimal excellent classes.
We use the terminology from [Kir10]. Let C be a quasiminimal excellent class, also
satisfying axiom IV. Then C together with strong embeddings is a finitely accessible
category, where M ∈ C is κ-presentable precisely when M has dimension < κ. So
(C, C) is an AECat with AP.

We have now covered how existing frameworks can be placed in the framework
of AECats. In section 4 we will do the converse. There we discuss how, under some
additional assumptions, AECats can be placed in existing frameworks.

3. Galois types

In [She87, Definition II.1.9] types are considered as the orbit of a tuple under
some automorphism group. Later this idea was generalised by replacing the auto-
morphisms by embeddings into a bigger model, and the name Galois type was
introduced (see [Gro02]). We use this idea, replacing elements by arrows.

Definition 3.1. Let M be a model in an AECat. An extension of M is an arrow
M → N , where N is some model.

Convention 3.2. Usually, there will be only one relevant extension of models. So
to prevent cluttering of notation we will not give such an extension a name. Given
such an extension M → N and some arrow a : A → M we will then denote the
arrow A

a−→M → N by a as well.

Definition 3.3. Let (C,M) be an AECat with AP. We will use the notation
((ai)i∈I ;M) to mean that the ai are arrows into M and that M is a model. We
will denote the domain of ai by Ai, unless specified otherwise.

We say that two tuples ((ai)i∈I ;M) and ((a′i)i∈I ;M
′) have the same Galois type,

and write

gtp((ai)i∈I ;M) = ((a′i)i∈I ;M
′),

if dom(ai) = dom(a′i) for all i ∈ I, and there is a common extension M → N ←M ′,
such that, for all i ∈ I, ai and a′i give the same arrow into N . That is, the following
commutes for all i ∈ I:

N

M M ′

Ai

ai a′i

Note that AP ensures that having the same Galois type is an equivalence relation.
For this reason, we will only be interested in AECats with AP in the rest of this
paper.

Fact 3.4. Let M → N be any extension, then for any tuple ((ai)i∈I ;M):

gtp((ai)i∈I ;M) = gtp((ai)i∈I ;N).

This is a good example of Convention 3.2. A more precise statement would be
to give the extension M → N a name, say f , then for any ((ai)i∈I ;M) we have
that gtp((ai)i∈I ;M) = gtp((fai)i∈I ;N).
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Since all arrows in an AECat are monomorphisms, every arrow will represent a
subobject. Later, in section 6, we will work a lot with subobjects. So we extend
our notation to subobjects.

Definition 3.5. Let ((Ai)i∈I ;M) and ((A′i)i∈I ;M
′) be two tuples of subobjects in

an AECat with AP. Then we say that they have the same Galois type, denoted as

gtp((Ai)i∈I ;M) = gtp((A′i)i∈I ;M
′),

if there are extensions M → N ← M ′ such that Ai = A′i as subobjects of N (we
consider them subobjects of N by composing with the relevant extension).

Proposition 3.6. Let ((Ai)i∈I ;M) and ((A′i)i∈I ;M
′) be two tuples of subobjects.

Then
gtp((Ai)i∈I ;M) = gtp((A′i)i∈I ;M

′)

precisely if given any representatives (ai)i∈I of (Ai)i∈I there are representatives
(a′i)i∈I of (A′i)i∈I , such that

gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M
′).

Proof. The right to left direction is trivial. For the other direction, we let M →
N ←M ′ be such that Ai = A′i as subobjects of N for all i ∈ I. Let representatives
(ai)i∈I of (Ai)i∈I be given and pick some representatives (bi : A′i → M ′)i∈I of
(A′i)i∈I . Because Ai = A′i as subobjects of N , there must be an isomorphism
fi : Ai → A′i for each i ∈ I, making the following diagram commute:

N

M M ′

Ai A′i

ai

fi

bi

In particular, bifi also represents A′i as a subobject of M ′. So we can take a′i = bifi
for all i ∈ I. By construction we then have that gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M

′).
�

The following example illustrates why we have to be careful when moving to
representatives of subobjects.

Example 3.7. Consider the category of infinite sets with injective functions. This
is easily seen to be an AECat with AP if we take M to be the entire category.
Alternatively, this is precisely Mod(Tinf), where Tinf is the theory of infinite sets,
and is thus an AECat with AP as discussed in Example 2.6.

Let f : N → N be the bijection that swaps the odd and even numbers. So
f(0) = 1, f(1) = 0, f(2) = 3, and so on. Denote by 2N the set of even numbers
and let e : 2N→ N be the inclusion. So we have the following commuting diagram:

N

N 2Nf

IdN

f

e

We denote by [IdN] the subobject represented by IdN, and likewise for f and e.
Then [IdN] = [f ], so we definitely have

gtp([IdN], [e];N) = gtp([f ], [e];N).

However, we cannot have

gtp(IdN, e;N) = gtp(f, e;N).
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So we cannot just pick any representatives of the subobjects.

The intuition here is that a type cares about the way a certain set is enumerated,
while a subobject only cares about the set itself. So different enumerations of a
certain set may yield incompatible types, while they represent the same subobject.

Proposition 3.8. Suppose we have gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M
′), then:

(i) for any I0 ⊆ I we have gtp((ai)i∈I0 ;M) = gtp((a′i)i∈I0 ;M ′);
(ii) suppose that we also have an arrow bi : Bi → Ai for each i ∈ I, then

gtp((ai)i∈I , (aibi)i∈I ;M) = gtp((a′i)i∈I , (a
′
ibi)i∈I ;M

′)

and thus gtp((aibi)i∈I ;M) = gtp((a′ibi)i∈I ;M
′);

(iii) let b : B → M be some arrow, then there is an extension M ′ → N and
some b′ : B → N such that gtp(b, (ai)i∈I ;M) = gtp(b′, (a′i)i∈I ;N).

Proof. For (i) and (ii) the common extension witnessing the original equality will
also witness the new equality. The last sentence from (ii) follows from applying (i).

For (iii) let M
f−→ N

g←− M ′ be witnesses of gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M
′).

We define b′ = fb, so that:

gtp(b, (ai)i∈I ;M) = gtp(fb, (fai)i∈I ;N) = gtp(b′, (ga′i)i∈I ;N).

Then the result follows directly if we take the extension M ′ → N to be g, so that
we would write the right-hand side as gtp(b′, (a′i)i∈I ;N). �

Proposition 3.9. Suppose we have (a, b;M), such that a = bi for some arrow i.
If then (a′, b′;M ′) is such that

gtp(a, b;M) = gtp(a′, b′;M ′),

then a′ factors through b′ in the same way: a′ = b′i.

Proof. From gtp(a, b;M) = gtp(a′, b′;M ′) we get extensions M → N ← M ′ and
a diagram

N

M B M ′

A

f

b b′

g

a

i

a′

where everything commutes by definition except for possibly the bottom right tri-
angle (i.e. the triangle a′ = b′i). So we have ga′ = fa = fbi = gb′i and so a′ = b′i
because g is a monomorphism. �

Remark 3.10. It is standard in model theory to work with monster models. In
the general category-theoretic setting this would still be possible. For example,
in [LR14] it is shown that such monster objects exist in any accessible category
with directed colimits and the amalgamation property, assuming some additional
set theory. We choose not to work with monster objects. This might come at some
notational cost, but it keeps everything within the standard set theory.

4. Finitely short AECats

In this section we discuss an important property that connects AECats with
existing frameworks. Nothing in this section will be used in the rest of this paper.

This property is to have some locality for Galois types (inspired by [GV06]):
a Galois type of an infinite tuple should be determined by all its finite subtuples.
This can even be used to get some compactness for directed systems of Galois types
(see e.g. [BY03a, Remark 2.34] and [BL03, Lemma 1.3]).
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Definition 4.1. We say that an AECat is finitely short if for any two (infinite)
tuples ((ai)i∈I ;M) and ((a′i)i∈I ;M

′) such that for all finite I0 ⊆ I
gtp((ai)i∈I0 ;M) = gtp((a′i)i∈I0 ;M ′),

we have that
gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M

′).

Example 4.2. The AECats (Mod(T ),Mod(T )) and (SubMod(T ),Mod(T ))
from Example 2.9 are both finitely short (recall that this includes the first-order
case), because Galois types coincide with the usual syntactic types.

For the same reasons, for a continuous theory T , (MetMod(T ),MetMod(T ))
and (SubMetMod(T ),MetMod(T )) from Example 2.10 are finitely short.

An AEC K with AP that is fully < ℵ0-type short over the empty set yields
AECats (K,K) and (SubSet(K),K), as per Example 2.11, which are both finitely
short.

Example 4.3. In Example 2.12 we mentioned cats from [BY03a]. One definition
there allows for a nice comparison to AECats, namely that of an elementary category
(with amalgamation) [BY03a, Definition 2.27]. This is a concrete category C that
satisfies a few additional assumptions, similar to the axioms of an AEC. Every such
elementary category C will form an AECat with AP as (C, C), if we additionally
assume C to be accessible1.

Conversely, given an AECat (C,M) we can make it into a concrete category
using a version of the Yoneda embedding. Let λ be such that C is λ-accessible and
let A be the full subcategory of λ-presentable objects in C. Then there is a fully

faithful canonical functor E : C → SetA
op

that preserves λ-directed colimits, see
[AR94, 1.25 and 2.8]. If (C,M) has AP then taking the image of M under E, we
obtain an elementary category with amalgamation.

In [BY03a, Definition 2.32] a few properties are defined for the Galois types:

• type boundedness: this is always true in an AECat, see Proposition 4.6;
• type locality : this is precisely what we called being finitely short;
• weak compactness: this holds for example in categories obtained from a

first-order, positive or continuous theory.

Note that Example 4.3 does generally not yield an AEC. For example, take
C = M to be the category of infinite sets with injective functions. If we make

this category into a concrete category through the functor E : C → SetA
op

then
E(ω+ω) contains the arrow f : ω → ω+ω where f(n) = ω+n. If this would be an
AEC then E(ω + ω) =

⋃
n<ω E(ω + n), but f is not in E(ω + n) for any n. So the

Tarski-Vaught chain axiom for AECs fails. The point is of course that a directed
colimit can be more than just the union of underlying sets.

In [BR12, Corollary 5.7] a characterisation is given of those accessible categories
that are equivalent to an AEC. It also describes how to construct an AEC from
such an accessible category, through a construction very similar to Example 4.3.

Example 4.4. Let (C,M) be a finitely short AECat with AP. Suppose furthermore
thatM has the joint embedding property. That is, for any two models M1 and M2

there is a third model N with arrows M1 → N ← M2. Then there is a strong
connection with homogeneous model theory [BL03]. We sketch the construction
and would like to thank an anonymous referee for pointing this out.

As discussed in Example 4.3, we can turn M into a concrete category. So using
the usual tools we can build a monster model M, which we will fit in the framework

1Technically, [BY03a, Definition 2.27] does not require the existence of directed colimits but
something slightly weaker called the “elementary chain property”. However, it is likely that
actually directed colimits are meant and in practice this is what we have.
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of [BL03]. The elements in M are arrows in C, and having the same Galois type
corresponds to having the same orbital type in M. For every Galois type of a finite
tuple we add a relation symbol, and we close these under finite conjunctions and
disjunctions. Then two (infinite) tuples of elements are in the same orbit of M iff
they have the same Galois type iff their finite subtuples have the same Galois type
iff the finite subtuples satisfy the same relation symbols.

The constructions in Example 4.3 and Example 4.4 do not change our category,
they only add data to make it into a concrete category. So any notion that is defined
on just the objects and arrows in our category is preserved by this operation. In
particular independence relations, as we define in section 6, are preserved. It would
be interesting to study these connections further, but that is beyond the scope of
this paper.

Definition 4.5. Let (C,M) be an AECat with AP. For a tuple (Ai)i∈I of objects in
C, let S((Ai)i∈I) be the collection of all tuples ((ai)i∈I ;M) such that dom(ai) = Ai.
We define the Galois type set Sgtp((Ai)i∈I) as:

Sgtp((Ai)i∈I) = S((Ai)i∈I)/ ∼gtp,

where ∼gtp is the equivalence relation of having the same Galois type.

An AECat is generally a large category. So S((Ai)i∈I) will generally be a proper
class. Below we prove that Sgtp((Ai)i∈I) is small (i.e. a set), so the name is justified.

The above notation clashes with standard notation where one would expect
(Ai)i∈I to denote the parameters of the types. However, for our Galois types the
difference between domain and parameters fades.

Definition 4.5 allows us to talk about gtp((ai)i∈I ;M) as an object in itself: it is
one of the equivalence classes in Sgtp((Ai)i∈I).

Proposition 4.6. Let (C,M) be an AECat with AP. Then for any tuple (Ai)i∈I
of objects Sgtp((Ai)i∈I) is a set.

Proof. We prove that there is a subset S′((Ai)i∈I) ⊆ S((Ai)i∈I), such that for
every tuple ((ai)i∈I ;M) ∈ S((Ai)i∈I), there is some ((a′i)i∈I ;M

′) ∈ S′((Ai)i∈I)
with gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;M

′).
Let λ be such that every Ai is λ-presentable, λ > |I| and the inclusion functor

M ↪→ C is λ-accessible and preserves λ-accessible objects. Such a λ must exist since
each object in an accessible category is presentable by [AR94, Proposition 1.16],
and by Remark 2.8.

Let Mλ be (a skeleton of) all the models that are λ-presentable. Then Mλ is a
set (see the remark after [AR94, Definition 1.9]). For an object M . We define:

S′((Ai)i∈I) =
∐

M∈Mλ

∏
i∈I

Hom(Ai,M)

We check that S′((Ai)i∈I) has the required property. Let ((ai)i∈I ;M) ∈ S((Ai)i∈I).
Then becauseM is λ-accessible, M is a λ-directed colimit of λ-presentable objects
(Mj)j∈J . That is, objects in Mλ. Since the inclusion functor M ↪→ C preserves
directed colimits, we still have M = colimj∈JMj in C. As Ai is λ-presentable for
each i ∈ I, we have that each ai factors through some Mji . Then since λ > |I|, there

is j ∈ J such that every ai factors through Mj . Write this factorisation as Ai
a′i−→

Mj
mj−−→ M , where mj is the coprojection from the colimit. Then by construction

((a′i)i∈I ;Mj) ∈ S′((Ai)i∈I) and gtp((ai)i∈I ;M) = gtp((a′i)i∈I ;Mj). �
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5. Isi-sequences and isi-dividing

Definition 5.1. A sequence is a tuple ((ai)i∈I ;M) where every ai has the same
domain and I is a linear order.

We will often need to treat an initial segment of a sequence as one object. The
following definition makes sense of this in a category-theoretic setting.

Definition 5.2. A chain (Mi)i<κ is called continuous if for every limit ` < κ we
have M` = colimi<`Mi. A chain of initial segments for a sequence (ai)i<κ in some
M is a continuous chain (Mi)i<κ of models with chain bound M (i.e. we have
arrows mi : Mi → M forming a cocone for (Mi)i<κ). Such that for all i < κ we
have that ai factors through Mi+1.

If an arrow c : C → M factors through the chain (Mi)i<κ, so c factors as
C →M0 →M , then we say that c embeds in (Mi)i<κ.

Convention 5.3. For a chain of initial segments (Mi)i<κ for some sequence (ai)i<κ
in M we will abuse notation and view ai as an arrow into Mj for i < j. Similarly,
if C embeds in (Mi)i<κ, we view c as an arrow into Mi for all i < κ.

Definition 5.4. We call a sequence (ai)i<κ in M , together with a chain of initial
segments (Mi)i<κ, an isi-sequence (short for initial segment invariant) if for all
i ≤ j < κ we have:

gtp(ai,mi;M) = gtp(aj ,mi;M).

For c : C →M we say this is an isi-sequence over c if c embeds in (Mi)i<κ.

Definition 5.5. Suppose we have (a, b, c;M), a sequence (bi)i∈I in N and (c;N).
Then we say that gtp(a, b, c;M) is consistent for (bi)i∈I if there is an extension
N → N ′ and an arrow a′ : A→ N ′ such that

gtp(a, b, c;M) = gtp(a′, bi, c;N
′)

for all i ∈ I. We call a′ a realisation of gtp(a, b, c;M) for (bi)i∈I .

We overloaded the notation for the arrow c: it denotes both an arrow into M and
into N . We want to think of c as some fixed set of parameters, and this notation
supports that. The context should make clear which arrow is meant.

Lemma 5.6. Suppose we have (a, b, c;M), a sequence (bi)i<κ in N together with
a chain of initial segments (Mi)i<κ and (c;N) that embeds in (Mi)i<κ. Then
gtp(a, b, c;M) is consistent for (bi)i<κ if and only if there is some chain bound
N ′ of (Mi)i<κ and an arrow a′ : A→ N ′ such that for all i < κ:

gtp(a, b, c;M) = gtp(a′, bi, c;N
′).

Proof. The left to right direction is direct: an extension N → N ′ together with a
realisation a′ will be the required chain bound and arrow.

For the converse, let N ′ and a′ be as in the statement. Define M ′ = colimi<κMi.
Then we get extensions N ← M ′ → N ′, because N and N ′ are chain bounds of
(Mi)i<κ. Since M ′ is a colimit of of models, it is a model itself and hence an
amalgamation base. We thus find an amalgam N → N∗ ← N ′. Then N → N∗

together with A
a′−→ N ′ → N∗ are the required extension and realisation. �

We introduce the notion of isi-dividing, which is essentially extracted from the
proof of the Kim-Pillay theorem. The goal was to get around the use of compactness
and type locality (which are discussed in section 4).

Definition 5.7. We say that gtp(a, b, c;M) isi-divides over c if there is µ such that
for every λ ≥ µ there is an isi-sequence (bi)i<λ over c in some N with gtp(bi, c;N) =
gtp(b, c;M) for all i < λ. Such that for some κ < λ and every I ⊆ λ with |I| ≥ κ
we have that gtp(a, b, c;M) is inconsistent for (bi)i∈I .
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Remark 5.8. In the setting of first-order logic, positive logic [Pil00, BY03b] and
homogeneous model theory [BL03] we have the usual notion of dividing, which is
defined using indiscernible sequences.

It is not hard to see that dividing of some type p implies isi-dividing of p in
those cases. All these settings have enough compactness to find arbitrarily long
indiscernible sequences that witness dividing. Such an indiscernible sequence can
be turned into an isi-sequence by inductively constructing models over which the tail
of the sequence is indiscernible. So we find an isi-sequence where p is inconsistent
for every infinite subsequence, hence p isi-divides.

In particular, if isi-dividing has local character, then dividing has local character.
So local character of isi-dividing still implies that a first-order theory is simple, and
also for positive theories, in the sense of [BY03b].

The converse of Remark 5.8 is not clear to us. There are some partial answers
in Remark 5.10.

Question 5.9. In settings where dividing has been defined in terms of indiscernible
sequences (first-order, positive logic, homogeneous model theory), does isi-dividing
imply dividing?

Remark 5.10. If there exists a proper class of Ramsey cardinals then Question 5.9
can be answered positively. In that case isi-dividing of some tp(a/Cb) is always
witnessed by an isi-sequence of length some Ramsey cardinal λ > |b|+ |C|. So the
isi-sequence contains an indiscernible subsequence of length λ, which then witnesses
dividing.

In the first-order and positive logic setting, dividing in a simple theory will give
what we call a simple independence relation (see Definition 6.8 and [KP97, Pil00,
BY03b]). Then by Theorem 1.1 this must coincide with the independence relation
given by isi-dividing. So in simple theories dividing and isi-divding will coincide.

Whenever we have some compactness, arguments using Ramsey cardinals can
often be emulated by the usual Erdős-Rado argument (see e.g. [BY03b, Lemma
1.2] or [BL03, Lemma 1.4]). So it seems reasonable to expect a positive answer to
Question 5.9. For settings lacking compactness, the following is a natural question.

Question 5.11. What basic properties does isi-dividing generally satisfy? Can
we prove more properties assuming certain combinatorial properties (e.g. local
character), like we can for dividing?

6. Independence relations

We will define an independence relation as a ternary relation on subobjects. The
idea is similar to [LRV19]. We compare the two further in Remark 6.9.

We recall that the collection of subobjects Sub(X) forms a poset in any (well-
powered) category, and if A ≤ B for A,B ∈ Sub(X), then we may also consider A
to be a subobject of B, that is A ∈ Sub(B). On the other hand, we always have
X ∈ Sub(X) as the maximal element of this poset. So we will use the notation
A ≤ X to mean that A is a subobject of X.

Convention 6.1. We extend Convention 3.2 to subobjects: given an extension
M → N and a subobject A ≤M , we will view A as a subobject of N .

Definition 6.2. In an AECat with AP, an independence relation is a relation on
triples of subobjects of models. If such a triple (A,B,C) of a model M is in the
relation, we call it independent and denote this by:

A
M
|̂
C
B.
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This notation should be read as “A is independent from B over C (in M)”.

Definition 6.3. An independence relation can have the following properties.

Invariance: If A |̂ MC B and gtp(A,B,C;M) = gtp(A′, B′, C ′;M ′) then we also

have A′ |̂ M
′

C′ B′.

Monotonicity: A |̂ MC B and B′ ≤ B implies A |̂ MC B′.

Base-Monotonicity: A |̂ MC B and C ≤ C ′ ≤ B implies A |̂ MC′ B.

Transitivity: A |̂ MB C and A |̂ MC D with B ≤ C implies that there is an

extension M → N and E ≤ N such that A |̂ NB E and C,D ≤ E.

Symmetry: A |̂ MC B implies B |̂ MC A.
Existence: For (a, c;M) and B ≤ M there is an extension M → M ′ with some

a′ : A→M ′ such that A′ |̂ M
′

C B and gtp(a′, c;M ′) = gtp(a, c;M).
Union: Let (Bi)i∈I be a directed system with a cocone into some model M , and

suppose B = colimi∈I Bi exists. Then if A |̂ MC Bi for all i ∈ I, we have

A |̂ MC B.
Stationarity: Let A,B be objects, M a model, and suppose we have corres-

ponding arrows a, b and m into some N and similar arrows a′, b′, m′

into some N ′, such that gtp(a,m;N) = gtp(a′,m′;N ′) and gtp(b,m;N) =

gtp(b′,m′;N ′). Then A |̂ NM B and A′ |̂ N
′

M ′ B′ implies gtp(a, b,m;N) =
gtp(a′, b′,m′;N ′).

Remark 6.4. A few remarks about Definition 6.3.

(1) We will mainly be interested in independence relations satisfying Sym-
metry. So, for example, we can apply Monotonicity to both sides. That
is, if A |̂ MC B and A′ ≤ A, then A′ |̂ MC B. If the independence relation
does not have Symmetry, one would have to distinguish between “left” and
“right” versions (e.g. Left-Monotonicity and Right-Monotonicity).

(2) If we have Invariance, Monotonicity and Transitivity then from

A |̂ MB C and A |̂ MC D we can also conclude A |̂ MB D. Most uses of
Transitivity will actually be of this form, and we will just refer to it as
“by Transitivity”.

(3) The usual extension property is implied by Invariance, Monotonicity,
Transitivity and Existence: see Proposition 6.11(iii).

(4) The Union property is our version of what is usually known as “finite
character”. In a concrete setting it follows directly from finite character,
but this formulation is more suited for our category-theoretic setting. In
the setting of AECs one often sees the name “(< ℵ0)-witness property”,
which implies Union.

(5) In the statement of Union: we can view B as a subobject of M because
the universal property of the colimit guarantees an arrow B → M , which
must be a monomorphism because all arrows are monomorphisms in an
AECat. If every Bi is a model, then the colimit B always exists and is
a model. Throughout the paper, we will only need to apply Union to
directed systems of models.

(6) Stationarity is sometimes also called “uniqueness”.

There are two more key properties: Local Character and 3-amalgamation.
The first one is usually defined on finite objects, but these may not exist in our cat-
egory. So, similar to [LRV19, Definition 8.6], we have to build in some dependence
on the size of the objects involved.

Definition 6.5. An independence relation has Local Character if for every
cardinal λ, there is a cardinal Υ(λ), such that the following holds. Given a model
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M with subobjects A and B, where A is λ-presentable, there is an Υ(λ)-presentable

B′ ≤ B such that A |̂ MB′ B. We call the class function Υ a local character function.

Note that we do not consider a local character function to be part of the data
for an independence relation. Being a local character function is just saying that it
witnesses the Local Character property.

Convention 6.6. For a local character function Υ and an object A we will write
Υ(A) for Υ(λ) where λ is the least cardinal such that A is λ-presentable.

Definition 6.7. An independence relation has 3-amalgamation if the following
holds. Suppose that we have

A
N1

|̂
M
B, B

N2

|̂
M
C, C

N3

|̂
M
A,

so A is the domain of a subobject of N1 and N3, and similar for B and C, while M
is considered a subobject of all three. Suppose furthermore that M is a model and
that

gtp(a,m;N1) = gtp(a,m;N3),

gtp(b,m;N1) = gtp(b,m;N2),

gtp(c,m;N2) = gtp(c,m;N3),

where a, b, c and m are representatives for the subobjects A, B, C and M respect-
ively (overloading notation for subobjects of different models). Then we can find
extensions from N1, N2 and N3 to some N such that the diagram we obtain in that
way commutes:

N1 N

A N3

B N2

M C

Furthermore, these extensions are such that A |̂ NM N2.

Definition 6.8. Let |̂ be an independence relation that satisfies Invariance,
Monotonicity, Base-Monotonicity, Transitivity, Symmetry, Existence,
Union and Local Character. If |̂ also satisfies Stationarity, then we call
|̂ a stable independence relation. If instead |̂ also satisfies 3-amalgamation,

then we call |̂ a simple independence relation.

Remark 6.9. As opposed to [LRV19] we have defined an independence relation
here on triples of subobjects, while they define it as a relation on commuting
squares. Their notion has the advantage of the independent squares forming an
accessible category, and allowing for a more category-theoretic study of the inde-
pendence relation itself (see also [LRV20]). Our approach has the benefit that the
calculus we get from it is more intuitive and easier to work with.

In an AECat of the form (C, C), these two notions are essentially the same. That
is, assuming basic properties on the relevant independence relations, one can be
recovered from the other and vice versa.
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Example 6.10. A natural question would be to ask whether there are examples
that are not finitely short, but where there still is an independence relation satisfy-
ing Union. Quasiminimal excellent classes as discussed in Example 2.13 are such
an example: the pregeometry there yields a stable independence relation.

Other examples can be found in AECs with intersections. For example [Vas17,
Appendix C] discusses how to find a stable independence relation in such AECs.
Also [GMA20, Section 8.2] comes close to giving a simple example, rather than
stable. Although no explicit examples are given and they do not get the full (< ℵ0)-
witness property.

Proposition 6.11. Let |̂ be an independence relation satisfying Invariance,
Monotonicity, Existence and Transitivity, then the following hold:

(i) for any A,B ≤M , we have A |̂ MB B;

(ii) if we have A |̂ MC B, then we can find an extension M → N and D ≤ N

such that B,C ≤ D and A |̂ NC D;

(iii) for (a, b, c;M) such that A |̂ MC B and any B′ ≤ M there is an extension

M → N with some a′ : A → N such that A′ |̂ NC B′ and gtp(a′, b, c;N) =
gtp(a, b, c;M).

Proof. For (i), we use Existence to get an extension M → N and A′ ≤ N such

that A′ |̂ NB B and gtp(A,B;M) = gtp(A′, B;N). Then Invariance yields the
desired result.

For (ii), we use (i) to get A |̂ MC C. Since we have by assumption that A |̂ MC B,
the result now directly follows from applying Transitivity.

Finally, for (iii) we use (ii) to get M → N ′ and B,C ≤ D ≤ N ′ and A |̂ N
′

C D.

Then we use Existence to find N ′ → N and a′ : A→ N such that A′ |̂ ND B′ and

gtp(a′, d;N) = gtp(a, d;N ′). By Invariance then A′ |̂ N
′

C D and thus A′ |̂ NC B′

by Transitivity. Also gtp(a′, b, c;N) = gtp(a, b, c;M), because B,C ≤ D. �

Proposition 6.12. Let |̂ be an independence relation satisfying Local Char-
acter and Base-Monotonicity, with local character function Υ. Let (Mi)i<κ
be a chain of models, with chain bound N , and write Mκ = colimi<κMi. If A is a
subobject of N such that κ ≥ Υ(A), then there is some i0 < κ such that A |̂ NMi0

Mκ.

Proof. There is κ-presentable M ′ ≤Mκ such that A |̂ NM ′ Mκ, by Local Char-
acter. Since Mκ is the colimit of a κ-directed system, M ′ ≤ Mκ must factor as
M ′ ≤Mi0 ≤Mκ for some i0 < κ. By Base-Monotonicity then A |̂ NMi0

Mκ. �

Definition 6.13. Suppose we have an independence relation |̂ . Let (ai)i<κ be a
sequence in M and let c : C → M be an arrow. Let (Mi)i<κ be a chain of initial
segments for (ai)i<κ. Then we say that the (Mi)i<κ are witnesses of independence
for (ai)i<κ, if for all i ∈ I we have

Ai
M
|̂
C
Mi.

Here Ai is the subobject represented by ai : Ai →M , and likewise for Mi →M .
We say that the sequence (ai)i<κ is |̂ C-independent if it admits a chain of

witnesses of independence.

Lemma 6.14. Suppose that |̂ is an independence relation satisfying Invariance,
Monotonicity, Transitivity, Existence and Union. Then given (a, c;M)
and any κ, there is a |̂ C-independent isi-sequence (ai)i<κ over c in some extension
M → N such that gtp(ai, c;N) = gtp(a, c;M) for all i < κ.



THE KIM-PILLAY THEOREM FOR ABSTRACT ELEMENTARY CATEGORIES 17

Proof. We inductively build a chains of models (Mi)i<κ and (Ni)i<κ together with
arrows ai : A → Mi+1, where N0 is an extension of M and C embeds in (Mi)i<κ,
such that:

(i) there is an extension Mi → Ni, and this is natural in the sense that

Nj Ni

Mj Mi

commutes for all j < i;
(ii) A |̂ NiC Mi;
(iii) for successor i = j + 1, we have gtp(aj ,mj ;Ni) = gtp(a,mj ;Ni).

Base case. Apply Existence to find M → N0 and M0 ≤ N0 with gtp(m0, c;N0) =

gtp(m, c;M) and A |̂ N0

C M0.

Successor step. We use the induction hypothesis to apply Proposition 6.11(iii) to

find and extension Ni → Ni+1 and Mi+1 ≤ Ni+1 such that A |̂ Ni+1

C Mi+1 and
gtp(mi+1,mi;Ni+1) = gtp(IdNi ,mi;Ni). Properties (i) and (ii) follow directly. We
had an arrow a : A→ Ni, and Mi+1 is the same object as Ni. So we have an arrow
ai+1 : A→Mi+1. Restricting the equality gtp(mi+1,mi;Ni+1) = gtp(ni,mi;Ni+1)
then shows that property (iii) holds.

Limit step. We let Mi = colimj<iMi and Ni = colimj<iNi. For every j < i we can
compose Mj → Nj with the coprojection Nj → Ni. By property (i) this makes Ni
into a cocone for (Mj)j<i. So the universal property gives us an arrow Mi → Ni,
clearly satisfying property (i). Property (ii) follows from Union.

We set N = colimi<κNi. Then property (iii) ensures that (ai)i<κ with chain of
initial segments (Mi)i<κ is an isi-sequence. Since C embeds in (Mi)i<κ, we also see
that gtp(ai, c;N) = gtp(a, c;M) for all i < κ. Finally, the (Mi)i<κ are witnesses of
independence, which follows from combining properties (ii) and (iii). �

We close out this section with the following corollary, which immediately follows
from Proposition 6.16.

Corollary 6.15. Every stable independence relation is also simple.

Proposition 6.16. If an independence relation |̂ satisfies Invariance, Trans-
itivity, Existence, Symmetry and Stationarity, then it also satisfies 3-
amalgamation.

Proof. Using the equalities gtp(b,m;N1) = gtp(b,m;N2) and gtp(c,m;N2) =
gtp(c,m;N3) we find U1 and U2 as in the diagram below, which then commutes.

N1 U1

A N3 U2

B N2

M C

We label the arrows with domain A as a1 : A→ U1 and a2 : A→ U2.
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By Proposition 6.11(iii) we find an extension U1 → U ′1 and an arrow n′2 : N2 →
U ′1 such that gtp(n′2, b,m;U ′1) = gtp(n2, b,m;U1) and A1 |̂

U ′
1

M N ′2. This means

that B → N1 → U ′1 is the same arrow as B → N2
n′
2−→ U ′1. Similarly we find

n′2 : N2 → U ′2.
Since gtp(n′2,m;U ′1) = gtp(n′2,m;U ′2) we can apply Stationarity to obtain

gtp(a1, n
′
2,m;U ′1) = gtp(a2, n

′
2,m;U ′2). This yields the dashed arrows in the dia-

gram below. We left out the original arrows N2 → U1 and N2 → U2 because they
are no longer relevant.

N1 U1 U ′1 U

A N3 U2 U ′2

B N2

M C

This diagram commutes. So there is only one arrow A → U , and by construction
we have A |̂ UM N2. So U is the required common extension of N1, N2 and N3. �

7. The Kim-Pillay theorem for AECats

This section consists of the proof of our main theorem, a version of the Kim-
Pillay theorem for AECats. The original first-order version of the theorem can be
found as [KP97, Theorem 4.2]. A more modern version appears as [TZ12, Theorem
7.3.13].

Corollary 1.2 follows immediately from the main theorem. Corollary 1.3 follows
directly from the main theorem and Corollary 6.15.

Theorem 1.1, repeated. Let (C,M) be an AECat with the amalgamation prop-
erty, and suppose that |̂ is a simple independence relation. Let A,B,C be su-

bobjects of a model M . Then A |̂ MC B if and only if gtp(A,B,C;M) does not
isi-divide over C.

Proof. Let |̂ and be a simple independence relation, and let Υ be a local character

function. We will show that A |̂ DC B if and only if gtp(A,B,C;D) does not isi-
divide over C. Here D is some model.

Isi-nondividing implies independence. Let a, b and c be representatives
of A, B and C respectively, such that gtp(a, b, c;D) does not isi-divide over c. By
Lemma 6.14 we can construct a |̂ C-independent isi-sequence (bi)i<λ over c in some
M , for arbitrarily large λ > Υ(A), with witnesses of independence (Mi)i<λ, such
that

gtp(bi, c;M) = gtp(b, c;D)

for all i < λ. If we pick the right λ then by definition of isi-dividing there is a set
I ⊆ λ such that |I| ≥ Υ(A) and gtp(a, b, c;D) is consistent for (bi)i∈I . So we may
assume there is a′ : A→M such that for all i ∈ I:

gtp(a′, bi, c;M) = gtp(a, b, c;D)

By possibly deleting a tail segment from I we may assume that I has the order
type of a cardinal ≥ Υ(A). Let MI = colimi∈IMi and consider MI as a subobject
of M . Denote by A′ the subobject represented by a′, and use Proposition 6.12 to
find i0 ∈ I such that A′ |̂ MMi0

MI .
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We denote by Bi0 the subobject of M represented by bi0 . By Monotonicity

A′ |̂ MMi0
Bi0 , because Bi0 ≤MI , and hence

Bi0
M
|̂

Mi0

A′

by Symmetry. Furthermore, the fact that the (Mi)i<λ are witnesses of independ-
ence gives us

Bi0
M
|̂
C
Mi0 .

Then by Transitivity, we find Bi0 |̂
M
C A′ and thus A′ |̂ MC Bi0 by Symmetry.

Since a′ is a realisation of gtp(a, b, c;D) for (bi)i∈I , we have gtp(A′, Bi0 , C;M) =

gtp(A,B,C;D). So by Invariance we find A |̂ DC B, as required.

Independence implies isi-nondividing. We now suppose that A |̂ DC B. Fix
representatives a, b and c of A, B and C respectively. Let λ > Υ(B) and (bi)i<λ be
an isi-sequence over c in some M with chain of initial segments (Mi)i<λ such that
gtp(bi, c;M) = gtp(b, c;D) for all i < λ.

Let Υ(B) ≤ κ < λ. We have Mκ = colimi<κMi, so we can apply Proposi-
tion 6.12 to Mκ and Bκ considered as subobjects of M to find i0 < κ such that
Bκ |̂ MMi0

Mκ. We will show that gtp(a, b, c;D) is consistent for (bi)i0≤i<κ.

Claim: for all i0 ≤ i < κ we have Bi |̂ MMi0
Mi, and thus Bi |̂ Mi+1

Mi0
Mi.

Proof of claim: Since we have Bκ |̂ MMi0
Mκ, it follows from Monotonicity that

Bκ |̂ MMi0
Mi. Then because (bi)i<λ is an isi-sequence we have gtp(bκ,mi, c;M) =

gtp(bi,mi, c;M), so in particular we have gtp(Bκ,Mi;M) = gtp(Bi,Mi;M). As
Mi0 ≤ Mi we actually have that gtp(Bκ,Mi,Mi0 ;M) = gtp(Bi,Mi,Mi0 ;M). The
claim then follows from Invariance.

We will now use the sequence (bi)i0≤i<κ to build a chain of models (Ni)i0≤i<κ,
with monomorphisms a′ : A → Ni0 , b : B → Ni0 and c : C → Ni0 such that
gtp(a′, b, c;Ni0) = gtp(a, b, c;D). So this is really saying that A, B and C are
embedded in the chain (Ni)i0≤i<κ. The reason that we use the same notation for
b and c as monomorphisms into Ni0 and D, while we make a distinction between
a and a′, is because Ni0 will be an extension of D and b and c will just be the
composition with this extension. On the other hand, a′ will not be the composition
of a : A→ D and the extension D → Ni0 .

We construct this chain by transfinite induction, and such that at stage i:

(i) there is an extension m′i : Mi → Ni, and this is natural in the sense that

Nj Ni

Mj Mi

m′
j m′

i

commutes for all i0 ≤ j < i;
(ii) if i is a successor (and is not i0), say i = j + 1, then gtp(a′, b′j , c;Ni) =

gtp(a, b, c;D), where b′j is the composition B
bj−→Mi

m′
i−−→ Ni;

(iii) A′ |̂ NiMi0
M ′i .
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Base case, i = i0. To build Ni0 we first use gtp(bi0 , c;M) = gtp(b, c;D) to find
extensions M → N ← D witnessing this. Then we apply Proposition 6.11(iii) to

find an extension N → Ni0 and an arrow a′ : A → Ni0 such that A′ |̂ Ni0C N and
gtp(a′, b, c;Ni0) = gtp(a, b, c;N). We take m′i0 to be the arrow Mi0 → M → Ni0 ,
so m′i0 = mi0 . The properties in the induction hypothesis are trivial.

There are two more important properties of Ni0 that will be used in the successor

step. The first one is that A′ |̂ Ni0Mi0
B, by Base-Monotonicity and Monoton-

icity. The second one is:

gtp(b,mi0 ;Ni0) = gtp(bi0 ,mi0 ;M) = gtp(bi,mi0 ;M) = gtp(bi,mi0 ;Mi+1). (1)

The first equality follows because by construction bi0 : B →M composed with the
extension M → Ni0 and b : B → D composed with the extension D → Ni0 are the
same arrow. The second equality follows because (bi)i<λ is an isi-sequence. The
last equality follows because the (Mi)i<λ form a chain of initial segments.

Successor step. Suppose we have constructed Ni. By the claim earlier we have

Bi |̂ Mi+1

Mi0
Mi, by construction we have A′ |̂ Ni0Mi0

B and finally we have A′ |̂ NiMi0
M ′i

from the induction hypothesis. We wish to apply 3-amalgamation to this. For
that we need to check that the following Galois types are equal:

• gtp(a′,mi0 ;Ni0) = gtp(a′,mi0 ;Ni), this holds because Ni is just an exten-
sion of Ni0 ;

• gtp(bi,mi0 ,Mi+1) = gtp(b,mi0 ;Ni0), this is just the equality in (1);
• gtp(mi,mi0 ;Mi+1) = gtp(m′i,mi0 ;Ni), follows from the fact that Mi is a

model, so gtp(mi;Mi+1) = gtp(mi;Mi) = gtp(m′i;Ni), and the fact that
mi0 factors through mi and m′i. Here property (i) of the induction hypo-
thesis is important to guarantee that Mi0 → Ni0 → Ni is really the same
arrow as Mi0 →Mi → Ni.

So we can indeed apply 3-amalgamation to find extensions from Mi+1, Ni0 and
Ni to Ni+1:

Ni Ni+1

A Ni0

Mi Mi+1

Mi0 B

a′
a′

m′
i m′

i+1

bi

b

We have to check the three properties of the induction hypothesis.

(i) As a result of 3-amalgamation, the square

Ni Ni+1

Mi Mi+1

m′
i m′

i+1

commutes. Because Mj → Ni+1 will factor through Mi for all j < i, and
the induction hypothesis is satisfied for i, we see that in fact the naturality
condition is satisfied for all j < i+ 1.

(ii) We have gtp(a′, b′i, c;Ni+1) = gtp(a′, b, c;Ni0) = gtp(a, b, c;D).
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(iii) By 3-amalgamation we directly get A′ |̂ Ni+1

Mi0
M ′i+1.

Limit step. We set Ni = colimi0≤j<iNj . By (i) from the induction hypothesis the
arrows m′j composed with the coprojections Nj → Ni form a cocone on (Mj)i0≤j<i.
By the universal property of the colimit Mi = colimi0≤j<iMj we find the required
extension m′i : Mi → Ni. This shows that (i) is satisfied. Property (ii) is vacuous.

And for (iii) we use the induction hypothesis to see that A′ |̂ NiMi0
M ′j for all

i0 ≤ j < i, and so we can apply Union to find A′ |̂ NiMi0
M ′i . This finishes the

inductive construction of (Ni)i0≤i<κ.

Now that we have constructed (Ni)i0≤i<κ we can set Nκ = colimi0≤i<κNi. Then
for each i0 ≤ i < κ we have by (ii) from the induction hypothesis that

gtp(a′, b′i, c;Nκ) = gtp(a′, b′i, c;Ni+1) = gtp(a, b, c;D).

It follows from property (i) of the induction hypothesis that Nκ is a chain bound
for (Mi)i0≤i<κ. So by Lemma 5.6 gtp(a, b, c;D) is consistent for (bi)i0≤i<κ. As
(bi)i0≤i<κ is a subsequence of size κ of an arbitrarily long isi-sequence (bi)i<λ over
c, and κ was arbitrarily large below λ, we conclude that gtp(a, b, c;D) does not
isi-divide. �
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[HK06] T. Hyttinen and M. Kesälä. Independence in finitary abstract elementary classes.
Annals of Pure and Applied Logic, 143(1):103–138, November 2006.

[Kir08] Jonathan Kirby. Abstract Elementary Categories, August 2008. Unpublished.
[Kir10] Jonathan Kirby. On quasiminimal excellent classes. Journal of Symbolic Logic,

75:551–564, 2010.
[KP97] Byunghan Kim and Anand Pillay. Simple theories. Annals of Pure and Applied Logic,

88(2):149–164, November 1997.
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[LRV19] Michael Lieberman, Jǐŕı Rosický, and Sebastien Vasey. Forking independence from

the categorical point of view. Advances in Mathematics, 346:719–772, April 2019.

[LRV20] Michael Lieberman, Jǐŕı Rosický, and Sebastien Vasey. Cellular categories and stable
independence. arXiv:1904.05691 [math], March 2020. arXiv: 1904.05691.

[Pil00] Anand Pillay. Forking in the category of existentially closed structures. 2000.
[PY18] Bruno Poizat and Aibat Yeshkeyev. Positive Jonsson Theories. Logica Universalis,

12(1):101–127, May 2018.

[She87] Saharon Shelah. Universal classes. In John T. Baldwin, editor, Classification Theory,
Lecture Notes in Mathematics, pages 264–418. Springer Berlin Heidelberg, 1987.

Shelah 300.

[She09] Saharon Shelah. Classification Theory for Abstract Elementary Classes. College Pub-
lications, 2009.

[TZ12] Katrin Tent and Martin Ziegler. A Course in Model Theory. Cambridge University

Press, March 2012.
[Vas17] Sebastien Vasey. Shelah’s eventual categoricity conjecture in universal classes: Part

I. Annals of Pure and Applied Logic, 168(9):1609–1642, September 2017.

Email address, Mark Kamsma: m.kamsma@uea.ac.uk

URL: https://markkamsma.nl


	1. Introduction
	2. AECats
	3. Galois types
	4. Finitely short AECats
	5. Isi-sequences and isi-dividing
	6. Independence relations
	7. The Kim-Pillay theorem for AECats
	References

