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A B S T R A C T   

Automated semantic segmentation of multiple knee joint tissues is desirable to allow faster and more reliable 
analysis of large datasets and to enable further downstream processing e.g. automated diagnosis. 

In this work, we evaluate the use of conditional Generative Adversarial Networks (cGANs) as a robust and 
potentially improved method for semantic segmentation compared to other extensively used convolutional 
neural network, such as the U-Net. As cGANs have not yet been widely explored for semantic medical image 
segmentation, we analysed the effect of training with different objective functions and discriminator receptive 
field sizes on the segmentation performance of the cGAN. Additionally, we evaluated the possibility of using 
transfer learning to improve the segmentation accuracy. The networks were trained on i) the SKI10 dataset which 
comes from the MICCAI grand challenge “Segmentation of Knee Images 2010′′, ii) the OAI ZIB dataset containing 
femoral and tibial bone and cartilage segmentations of the Osteoarthritis Initiative cohort and iii) a small locally 
acquired dataset (Advanced MRI of Osteoarthritis (AMROA) study) consisting of 3D fat-saturated spoiled 
gradient recalled-echo knee MRIs with manual segmentations of the femoral, tibial and patellar bone and 
cartilage, as well as the cruciate ligaments and selected peri-articular muscles. The Sørensen–Dice Similarity 
Coefficient (DSC), volumetric overlap error (VOE) and average surface distance (ASD) were calculated for seg
mentation performance evaluation. 

DSC ≥ 0.95 were achieved for all segmented bone structures, DSC ≥ 0.83 for cartilage and muscle tissues and 
DSC of ≈0.66 were achieved for cruciate ligament segmentations with both cGAN and U-Net on the in-house 
AMROA dataset. Reducing the receptive field size of the cGAN discriminator network improved the networks 
segmentation performance and resulted in segmentation accuracies equivalent to those of the U-Net. Pretraining 
not only increased segmentation accuracy of a few knee joint tissues of the fine-tuned dataset, but also increased 
the network’s capacity to preserve segmentation capabilities for the pretrained dataset. 

cGAN machine learning can generate automated semantic maps of multiple tissues within the knee joint which 
could increase the accuracy and efficiency for evaluating joint health.   

1. Introduction 

Osteoarthritis (OA) is a degenerative disease involving the entire 
synovial joint (Goldring et al., 2017; Hunter and Eckstein, 2009; Mar
tel-Pelletier et al., 2016). Important risk factors for the development of 
OA include age, muscle weakness, abnormal joint loading due to joint 

malalignment or overloading (obesity, high impact sport), and injury to 
the menisci and ligaments (Ismail and Vincent, 2017; Lohmander et al., 
2007; Martel-Pelletier et al., 2016). Distinctive hallmarks of OA include 
the progressive destruction of articular cartilage structure and alter
ations in the surrounding joint tissues, including bone, meniscus, liga
ment and peri-articular muscle. Magnetic resonance imaging (MRI) is a 
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commonly used tool to evaluate clinical abnormalities of the knee 
(Blumenkrantz and Majumdar, 2016). Morphological changes due to OA 
are well demonstrated with MRI (Benhamou et al., 2001; Hunter et al., 
2015; MacKay et al., 2018; Neogi et al., 2013; Wise et al., 2018). Tissue 
specific masks of the knee joint can be useful for the analysis of OA, 
especially as automated tools continue to be developed and validated 
(Bindernagel et al., 2011; Deniz et al., 2018; Lee et al., 2014; Liu et al., 
2017; Ng et al., 2006; Patel and Singh, 2018; Seim et al., 2010; Shan 
et al., 2014; Shrivastava et al., 2014; Swanson et al., 2010; Xia et al., 
2013; Zhou et al., 2016). 

For both clinical and research usage, a significant amount of time is 
spent manually segmenting images to designate tissue-specific regional 
masks, also known as regions-of-interest (ROIs). Image masking remains 
a very significant challenge within medical imaging due to heteroge
neity in organ appearance and disease progression and presentation. The 
segmentation of neighbouring soft tissues such as the cruciate ligaments, 
cartilages and muscles in the knee joint which have similar image in
tensities (and therefore poor contrast resolution) is an especially 
demanding task. ROIs can be generated through manual or semi-manual 
delineation by a trained reader, or they may be generated automatically 
using signal thresholding (Swanson et al., 2010), shape (Bindernagel 
et al., 2011; Seim et al., 2010), atlas (Lee et al., 2014; Shan et al., 2014), 
or derive from region based (Ng et al., 2006; Patel and Singh, 2018; 
Shrivastava et al., 2014) approaches, as well as with machine learning 
approaches (Deniz et al., 2018; Liu et al., 2017; Xia et al., 2013; Zhou 
et al., 2016). Machine learning methods include unsupervised learning, 
such as k-means clustering, which segments based on spatial clusters of 
similar signal intensities in an image (Ng et al., 2006; Patel and Singh, 
2018; Shrivastava et al., 2014), or supervised learning by training the 
algorithm on image masks that have been obtained from any previous 
masking technique (Deniz et al., 2018; Liu et al., 2017; Xia et al., 2013; 
Zhou et al., 2016). The number of high-quality label maps for supervised 
learning is typically very small, and the performance of a machine 
learning network trained on a low number of data is limited due to the 
lack of heterogeneity of images presented during training. Transfer 
learning may be used to mitigate this by pretraining a network on a large 
dataset with different but related similarities to the actual task, followed 
by network refinement on the small dataset (Shie et al., 2015). 

Convolutional neural networks (CNNs), in particular U-Nets (Ron
neberger et al., 2015), have demonstrated their capability to automate 
the segmentation of musculoskeletal MRIs (Liu et al., 2017; Norman 
et al., 2018). Nevertheless, a drawback of this approach with CNNs is 
that they usually use pixel-wise measures such as the absolute (L1) or 
square (L2) error loss which can be non-optimal for image data, and, in 
the case of L2, result in blurry boundaries (Pathak et al., 2016). In 
contrast, generative adversarial networks (GANs) (Goodfellow et al., 
2014) learn a similarity measure (feature-wise metric) that adapts to the 
training task by implementing two competing, or adversarial, neural 
networks. During adversarial training, one network focusses on image 
discrimination and guides a second network which focusses on image 
generation to create “real” images that have a data distribution indis
tinguishable from the training data distribution. The generator and 
discriminator are trained simultaneously and competitively in a 
mini-max game while convergence is achieved when the Nash equilib
rium is reached, i.e. no network can improve through further training if 
one remains unchanged (Zhao et al., 2017). 

Conditional GANs (cGANs) modify the GAN approach to learn 
image-to-image mappings (Goodfellow et al., 2014; Isola et al., 2017). In 
comparison to traditional GANs that learn a mapping from random noise 
to a generated output, cGANs learn a mapping from an observed vari
able, for example an image to generate an output, such as a label map 
(Goodfellow et al., 2014; Isola et al., 2017). cGANs have been used to 
produce image labels for neurological (Rezaei et al., 2017), cardiac (Dou 
et al., 2018), abdominal (Huo et al., 2018), respiratory (Chen et al., 
2018) and musculoskeletal imaging (Liu, 2018, Gaj et al., 2019). (Liu, 
2019) used unpaired image-to-image translation with a method called 

cycle-consistent generative adversarial network (CycleGAN) to perform 
semantic image segmentation of femorotibial cartilage and bone of the 
knee joint of unlabelled MRI datasets. The “pix2pix” framework is one 
cGAN approach that has demonstrated segmentation capability (Isola 
et al., 2017). Semantic segmentation with cGANs, particularly those 
combining U-Net generators and Markov Random Field discriminators 
(patch-based discriminators), is relatively unexplored. The method has 
previously been performed for semantic segmentation of the brain 
(Rezaei et al., 2017). In (Gaj et al., 2019), a cGAN was used for semantic 
segmentation of knee cartilage and meniscus but with an image-wise 
discriminator rather than a patch-wise discriminator. 

The aim of this study was to implement and evaluate a cGAN for 
automated semantic segmentation of multiple joint tissues from MR 
images: the femoral, tibial and patellar bones and cartilage surfaces; the 
cruciate ligaments; and two selective muscles, the medial vastus and 
gastrocnemius. Our essential contributions are summarised as followed:  

1 Implementation of a cGAN based on the “pix2pix” framework 
introduced by (Isola et al., 2017) using a U-Net generator and a 
patch-based discriminator for automatic segmentation of multiple 
knee joint tissues. As far as we know, cGANs have not previously 
been used for semantic segmentation of the patellar bone and cru
ciate ligaments, as well as muscles of the knee joint.  

2 Evaluating the segmentation performance of the cGAN with different 
objective functions by combining the cGAN loss with different pixel- 
wise error losses and modifying the weighting hyperparameter be
tween the cGAN loss and pixel-wise error loss.  

3 Assessing the choice of the generator depth and discriminator 
receptive field size on the performance of the cGAN for multi-tissue 
segmentation.  

4 Quantitative comparison of the cGAN approach with the well-known 
U-Net approach.  

5 Exploring the use of transfer learning for improved segmentation 
performance of both cGAN and U-Net. 

2. Material and methods 

2.1. Image datasets 

Three image datasets were used for network training and testing; the 
publicly available SKI10 and OAI ZIB datasets, consisting of 100 and 507 
labelled knee MRs, respectively, and a locally acquired dataset of ten 
segmented knee MRs (Advanced MRI of Osteoarthritis (AMROA) study). 

2.1.1. SKI10 
The “Segmentation of Knee Images 2010′′ (SKI10) dataset (Heimann 

et al., 2010), consists of approximately 90 % 1.5 T and 10 % 3.0 T 
sagittal MR images using multiple system vendors – GE, Siemens, Phi
lips, Toshiba, and Hitachi. The sequences were varied and included both 
gradient echo and spoiled gradient echo sequences, commonly with fat 
suppression. The images were segmented on a slice-by-slice basis by 
experts from Biomet, Inc., initially through intensity thresholds and 
thereafter with manual editing. One hundred 3D image datasets of the 
SKI10 challenge were provided with semi-manual masks of femoral and 
tibial cartilage and bone. In our study, 70 datasets were used for network 
training and 30 for network testing. 

2.1.2. OAI ZIB 
The OAI ZIB dataset (Ambellan et al., 2019) is comprised of seg

mentations of femoral and tibial cartilage and bone of 507 MR imaging 
volumes from the publicly available Osteoarthritis Initiative dataset 
(The Osteoarthritis Initiative, 2020). The MR images were acquired on 
Siemens 3 T Trio systems using a 3D double echo steady state (DESS) 
sequence with water excitation. Outlines of femoral and tibial bone and 
cartilage were generated using a statistical shape model (Seim et al., 
2010) with manual adjustments performed by experts at Zuse Institute 
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Berlin. The OAI ZIB data covers all degrees of OA (KL 0–4), with more 
cases having severe OA (KL ≥ 3) (Ambellan et al., 2019). As with the 
SKI10 dataset, we split the dataset in 70 % (355) for network training 
and 30 % (152) for testing. 

2.1.3. AMROA 
The locally acquired participant cohort consisted of ten subjects: five 

healthy volunteers and five patients with mild-to-moderate OA. The 
patients followed at least one subset of American College of Rheuma
tology criteria for OA and were recruited between April 2017 to April 
2018 (Table 1). The healthy volunteers were approximately matched to 
OA patients for age, sex, and body mass. Network training was per
formed on data from four subjects with OA and four healthy subjects. 
Two individuals (one with OA and one healthy) were used as a unique 
set for test measurements. The number of test individuals was chosen 
such that roughly 80 % of the data could be used for training. Ethical 
approval was obtained from the National Research Ethics Service, and 
all subjects provided written informed consent before participation. 

The source images (Fig. 2A) for each subject were 3D fat-saturated 
spoiled gradient recalled-echo (3D-FS SPGR) images and were ac
quired on a 3.0 T MRI system (MR750, GE Healthcare, Waukesha, WI, 
USA) using an 8-channel transmit/receive knee coil (InVivo, Gainesville, 
FL, USA). The 3D-FS SPGR sequence parameters were: field-of-view =
150 × 128 × 136 mm3, matrix size = 512 × 380 × 136 zero-fill inter
polated to 512 × 512 × 136, voxel size = 0.29 × 0.29 × 1.0 mm3, TR =
12.5 ms, TE = 2.4 ms, flip angle = 25◦, coil acceleration factor (ASSET) 
= 2, partial Fourier phase encoding = 0.5 (half-NEX), bandwidth =
±11.9 kHz, with fat-suppression. 

Semi-manual segmented masks (Fig. 2A) of the patella, tibia, and 
femur bones as well as of their respective surrounding patellar, tibial and 
femoral cartilages (Fig. 2b) were created from the 3D-FS SPGR images 
by a musculoskeletal radiologist with 8 years’ experience, using the 
Stradwin software v5.4a (University of Cambridge Department of En
gineering, Cambridge, UK, now freely available as ‘StradView’ at 
http://mi.eng.cam.ac.uk/Main/StradView/) (MacKay et al., 2020). 
Additionally, masks of the vastus medialis and medial head of gastroc
nemius muscles were created. This semi-manual segmentation pipeline 
consists of sparse manual contour generation (every 2nd-5th sagittal 
image/2− 5 mm) followed by automatic surface triangulation using the 
regularised marching tetrahedra method. Volume preserving surface 
smoothing allows creation of an accurate segmentation from relatively 
sparse manual contours (Treece et al., 1999). Manual segmentations of 
the anterior cruciate ligament (ACL) and posterior cruciate ligament 
(PCL) were created on the 3D-FS SPGR images using ITK SNAP (Yush
kevich et al., 2006) by a radiologist with 3 years’ experience. 

2.2. Training data and masking 

Each of the major structures were given a separate image value, i.e., 
colour, in the segmentation mask, such that the network determined the 
unique weights to generate a similar regional colour-value from an MR 
image. On a 256-bit colour-scale, the three bones were stored in the blue 
colour channel where the femur colour code was 50, tibia was 100, and 
patella was 150. The cartilages were stored in the green colour channel 
where the femoral cartilage colour code was 50, the tibial was 100 and 
the patellar was 150. Additionally, for the AMROA dataset, the muscles 
were stored in the red colour channel with the medial vastus muscle 
code set to 100 and the medial gastrocnemius muscle colour code set to 
200. The ACL mask was stored in the blue colour channel and the PCL in 
the green colour channel with both colour codes set to 200. 

The MRIs and image masks were converted from the DICOM and 
NIFTI formats (Larobina and Murino, 2014), respectively, to a common 
image format (Portable Network Graphics, PNG) before training. 
Noise-only images were not used for training or testing, as training a 
network to fit against zero-valued masks results in a poor constraint. 
After network training, a tissue- / region-specific Boolean mask was 
created on the predicted test images by removing prediction values 
outside of ±20 colour scale units of the tissue specific value. 3D mask 
predictions were obtained by iterating over the 2D segmented slices. 

2.3. Network specifications 

This work uses the “pix2pix” framework of a conditional GAN 

Table 1 
Participant characteristics showing the mean age, number of males/females (M/ 
F), average body-mass-index (BMI), Kellgren-Lawrence (KL) osteoarthritis score 
and the number of training/testing set images of the locally acquired dataset. 
Additionally, the number of participants (N) and training/testing set images of 
the SKI10 and OAI ZIB datasets are given.  

Dataset Variable Training Set Testing Set 

Local N 8 2  
Images 806 171  
Mean Age (years) 53 52  
Sex (M/F) 5/3 0/2  
Mean BMI (kg/m2) 27.8 27.7  
KL (0/2/3) 4/1/3 1/1/0 

SKI10 N 70 30  
Images 6,133 2,626 

OAI ZIB N 355 152  
Images 43,814 18,517  

Fig. 1. Conditional GAN structure. The generator is a U-Net that progressively down-samples / encodes and then up-samples / decodes an input by a series of 
convolutional layers, with additional skip-connections between each major layer. The generated, ’fake’ segmentation image is then fed together with the ground 
truth segmentation image into a discriminator network (PatchGAN (Isola et al., 2017)) that gives its prediction of whether the generated image is a ‘real’ repre
sentation of the ground truth image, or not. A detailed description of the network architecture can be found in the Appendix. 
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(cGAN) described by Nvidia (Isola et al., 2017). The cGAN consists of 
two deep neural networks, a generator (G) and a discriminator (D). For 
our task, G learns to translate sagittal MR images of the knee joint 
(source images x) to semantic segmentation maps (G(x)), while D aims 
to differentiate between the real segmentation map (y) and the syn
thetically generated. 

The structure of a cGAN is illustrated in Fig. 1. The loss function for 
this cGAN is 

L cGAN(G,D) = Ex,y[logD(x, y) ] + Ex
[
log(1 − D(x,G(x))

]
(1) 

The loss function describes how G is minimized against a maximised 
D. Since both optimisation processes are dependent on each other, 
convergence is achieved by reaching a saddle point (simultaneously 
minimum / maximum for both networks’ cost) rather than a minimum. 
The loss also incorporates a L1 distance to reduce image blurring and 
ensure that the generated image from G(x) are not significantly different 
from the target image y (Isola et al., 2017; Regmi and Borji, 2018). This 
L1 loss is given by 

L L1(G) = Ex,y
[
||y − G(x)||1

]
(2) 

The overall objective of the cGAN is to find the optimal solution to 

G ∗ = argmin
G

max
D

L cGAN

(

G,D
)

+ λL L1

(

G
)

(3)  

with λ being a hyper-parameter used for balancing the two losses (Regmi 
and Borji, 2018). 

The cGAN used in this work utilises the U-Net encoder-decoder ar
chitecture for the generator, which is frequently used for image seg
mentation problems (Ronneberger et al., 2015). The generator was 
trained to generate images that are indistinguishable from a target 
image (i.e., the segmented map). Spatial consistency of the data is not 
guaranteed with a U-Net segmented map, which can cause inaccurate 
boundaries (Ronneberger et al., 2015). However, adversarial losses in 
the discriminator regulate and therefore increase the accuracy to higher 
order shapes (Yang et al., 2017). 

We modified the U-Net generator from the “pix2pix” network by 
increasing the input layer to be able to train on 512 × 512 resolution 
images. For this an additional Convolution-BatchNorm-leakyReLU layer 
was inserted in the encoding and a Convolution-BatchNorm-ReLU layer 
in the decoding network part. 

The discriminator is a patch-based fully convolutional neural 
network, PatchGAN (Li and Wand, 2016; Long et al., 2018), which 
models the image as a Markov random field. It performs a convolutional 
patch-wise (N x N) classification with all the outputs in the patch 
averaged and taken as the output of D. D is therefore less dependent on 
distant pixels/voxels beyond a “patch diameter” and is a form of 
neighbouring texture loss. The PatchGAN can be applied to arbitrarily 
large images, due to a fixed size of the patch. 

To analyse the cGANs performance we compared it to the perfor
mance of a U-Net network, which is widely used for image segmentation 
processes. We used the cGAN generator network as the U-Net network to 
maintain an effective comparison. 

The networks were implemented using PyTorch (Torch v1.0.1) and 
all training was performed on a Nvidia P6000 GPU card (3840 CUDA 
cores, 24 GB GDDR5X). The training phase of optimisation was per
formed as described by the “pix2pix” network, using stochastic gradient 
descent to minimise D(x,y) and stochastic gradient ascent to maximise D 

(x,G(x)). The Adam solver was used with a learning rate 0.0002 and 
momentum parameters,β1 = 0.5β2 = 0.999. We introduced random 
noise (jitter) during training by resizing the input images to 542 × 542 
using bi-cubic interpolation followed by random cropping back to 512 ×
512. 

A detailed description of the network architectures can be found in 
the Appendix. 

2.4. Segmentation evaluation metrics 

The Sørensen–Dice Similarity Coefficient (DSC) (Dice, 1945; 
Sørensen, 1948) was used to evaluate the overlap between the generated 
segmentation and the manual segmentation. The DSC ranges between 
0 and 1, with 0 representing no overlap and 1 complete overlap between 
the two sets. DSC is defined as twice the size of the intersect divided by 
the sum of the sizes of two sample sets, given as 

DSC =
2|X ∩ Y|
|X| + |Y|

(4)  

for Boolean metrics. For the experiments involving the SKI10 and OAI 
ZIB datasets, the volumetric overlap error (VOE) and the boundary 
distance-based metric average surfaces distance (ASD) were determined 
to assess segmentation accuracy and allow an appropriate comparison 
with previous studies using these datasets. The VOE can be calculated as 

VOE = 1 −
|X ∩ Y|
|X ∪ Y|

(5)  

with small values for VOE expressing greater accuracy. 
The ASD is expressed in mm and is defined as 

ASD =
1

NX + NY

(
∑NX

i=1
DX(y) +

∑NY

i=1
DY(x)

)

(6)  

where DX(y) = min
x∈X

‖y − x‖ is the distance of a voxel y to a surface X and 

‖∙‖ denotes the Euclidean norm. 

2.5. Evaluation of network characteristics 

This section aims at evaluating and adjusting specific network 
characteristics towards improving overall network performance, for 
both cGAN and U-Net. All networks in this section were trained for 100 
epochs and all cGANs with a 70 × 70 PatchGAN discriminator unless 
otherwise stated. 

2.5.1. Evaluation of network objective function 
We evaluated the cGANs performance with different objective 

functions by combining the cGAN loss with different pixel-wise error 
losses. In this work the cGAN is tasked to output a segmentation map of 
multiple tissues having different features and locations in the input MR 
image. We assessed the shortcomings and strengths of including the 
L L1, L L2 and Smooth L1 (L SmL1) (Girshick, 2015) loss functions in the 
cGAN objective. The L L2 loss and L SmL1 loss are given by 

L L2(G) = Ex,y

[
||y − G(x)||22

]
(7)   

L SmL1(G) =

{

0.5∙Ex,y

[⃒
⃒
⃒

⃒
⃒
⃒y − G(x)

⃒
⃒
⃒|

2
2

]
, if

⃒
⃒
⃒y − G(x)

⃒
⃒
⃒ < 1 Ex,y

[⃒
⃒
⃒
⃒y − G(x)

⃒
⃒|1
]
− 0.5 , otherwise (8)   
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Furthermore, the weighting hyperparameter λ between the cGAN 
loss and pixel-wise error loss was changed to vary the balance between 
the two task losses. λ = 0.01, 1, 100 and 10,000 were investigated. 
Network training with the cGAN loss alone (λ = 0) was additionally 
performed and evaluated. 

We also trained the U-Net with the same three different pixel-wise 
error losses (L L1, L L2 and L SmL1) as the cGAN to maintain an effec
tive comparison. 

2.5.2. Evaluation of altering the loss objective during training 
After obtaining initial results, we observed that the cGAN was unable 

to segment muscle tissues, independent of the objective function trained 
on. Therefore, we decided to explore the effect of varying the loss 
objective during training. For this, we trained a cGAN with L cGAN +

λL L2 loss and a U-Net with L L2 loss for 50 epochs and then changed the 
loss functions for the ensuing 50 epochs to L cGAN + λL L1 and L L1, 
respectively. 

2.5.3. Evaluation of the generator depth 
We analysed the effect of changing the depth of the generator 

network on the cGANs and U-Nets quantitative performance. In addition 
to the generator down-sampling the input through nine convolutional 
networks, we tested a generator consisting of seven and five convolu
tions during down-sampling. Furthermore, we assessed the quantitative 
performance of the generator network with different numbers feature 
channels. We compared networks starting with different minimum 
number of feature channels (16, 32, 64 and 128) and thus end at 
different maximum numbers of feature channels (128, 256, 512 and 
1024). All cGANs were trained with L cGAN + λL L1 loss with λ = 100 
and all U-Nets with the L L1 loss. Detailed descriptions of the generator 
network architectures can be found in the Appendix. 

2.5.4. Evaluation of the PatchGAN receptive field size 
We evaluated the effect of changing the PatchGAN receptive field 

size on the cGANs qualitative (artefact emergence) and quantitative 
(segmentation accuracy) performance. In addition to the 70 × 70 
PatchGAN, we tested a 1 × 1 (PixelGAN), 34 × 34 and 286 × 286 
PatchGAN. All cGANs were trained with L cGAN + λL L1 loss with λ =
100. Detailed descriptions of the discriminator network architectures 
can be found in the Appendix. 

2.5.5. Evaluation of transfer learning 
Since the AMROA dataset only comprises of a low number of subjects 

(N = 8) for training, we assess the influence of transfer learning on 
network performance, by initially training both a cGAN (L cGAN + λL L1) 
and a U-Net (L L1) for 20 epochs on the larger SKI10 and OAI ZIB 
training datasets separately followed by network fine-tuning for 80 
epochs on the smaller AMROA training set. Additionally, a cGAN and a 
U-Net were trained for 20 epochs on the AMROA training dataset fol
lowed by network refinement training for 80 epochs on either the SKI10 
or OAI ZIB training set to analyse the potential segmentation improve
ment of SKI10 and OAI ZIB. Network performance evaluations were 
performed using AMROA, SKI10 and OAI ZIB testing datasets. As 
determined from the previous sections, the cGAN trained with the 
L cGAN + λL L1 loss objective (λ = 100) and a 1 × 1 PixelGAN as well as 
the U-Net trained with the L L1 loss objective achieved the highest 
segmentation accuracies for most knee joint tissues segmented in the 
AMROA dataset and were used in this section. 

Table 2 
Results of the Network Objective Function: cGAN. The influence of mixing the cGAN objective with different pixel-wise error losses and varying their significance by 
changing the weighting hyperparameter λ on the segmentation performance of the proposed cGAN was assessed. Highest DSCs achieved for each tissue are in bold.  

Network Objective Function Results 

cGAN 
Pixel 

Loss 
λ F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

L1 0 0.931 ±
0.020 

0.864 ±
0.008 

0.911 ±
0.036 

0.774 ±
0.030 

0.717 ±
0.108 

0.872 ±
0.030 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000  

0.01 0.900 ±
0.018 

0.890 ±
0.031 

0.912 ±
0.002 

0.727 ±
0.023 

0.715 ±
0.060 

0.850 ±
0.048 

0.000 ±
0.000 

0.000 ±
0.000 

0.509 ±
0.009 

0.171 ±
0.208  

1 0.899 ±
0.014 

0.856 ±
0.010 

0.807 ±
0.060 

0.465 ±
0.037 

0.666 ±
0.022 

0.426 ±
0.098 

0.611 ±
0.181 

0.595 ±
0.054 

0.000 ±
0.000 

0.000 ±
0.000  

100 0.918 ±
0.011 

0.948 ±
0.018 

0.928 ±
0.002 

0.812 ±
0.002 

0.748 ±
0.042 

0.863 ± 
0.043 

0.113 ±
0.085 

0.000 ±
0.000 

0.577 ±
0.020 

0.073 ±
0.103  

10,000 0.968 ± 
0.006 

0.944 ±
0.026 

0.917 ±
0.008 

0.875 ± 
0.021 

0.810 ± 
0.036 

0.840 ±
0.065 

0.879 ±
0.036 

0.793 ±
0.080 

0.432 ±
0.237 

0.338 ±
0.386 

L2 0.01 0.902 ±
0.004 

0.915 ±
0.003 

0.923 ±
0.005 

0.750 ±
0.002 

0.740 ±
0.079 

0.834 ±
0.077 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000  

1 0.902 ±
0.046 

0.902 ±
0.008 

0.902 ±
0.044 

0.741 ±
0.004 

0.736 ±
0.033 

0.838 ±
0.041 

0.000 ±
0.000 

0.000 ±
0.000 

0.149 ±
0.104 

0.002 ±
0.002  

100 0.928 ±
0.015 

0.939 ±
0.007 

0.921 ±
0.022 

0.768 ±
0.016 

0.752 ±
0.049 

0.862 ±
0.039 

0.001 ±
0.001 

0.000 ±
0.000 

0.652 ± 
0.094 

0.101 ±
0.074  

10,000 0.952 ±
0.000 

0.950 ± 
0.015 

0.923 ±
0.001 

0.828 ±
0.043 

0.684 ±
0.092 

0.832 ±
0.054 

0.814 ±
0.145 

0.856 ±
0.121 

0.440 ±
0.084 

0.293 ±
0.358 

SmL1 0.01 0.914 ±
0.034 

0.902 ±
0.003 

0.920 ±
0.011 

0.726 ±
0.007 

0.729 ±
0.042 

0.762 ±
0.068 

0.000 ±
0.000 

0.000 ±
0.000 

0.343 ±
0.066 

0.000 ±
0.000  

1 0.884 ±
0.044 

0.912 ±
0.006 

0.926 ±
0.013 

0.740 ±
0.014 

0.732 ±
0.044 

0.829 ±
0.067 

0.055 ±
0.007 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000  

100 0.903 ±
0.019 

0.944 ±
0.006 

0.936 ± 
0.003 

0.776 ±
0.035 

0.741 ±
0.066 

0.857 ±
0.029 

0.031 ±
0.044 

0.070 ±
0.100 

0.578 ±
0.053 

0.044 ±
0.052  

10,000 0.951 ±
0.002 

0.946 ±
0.018 

0.935 ±
0.015 

0.825 ±
0.035 

0.738 ±
0.047 

0.797 ±
0.088 

0.914 ± 
0.001 

0.837 ± 
0.146 

0.261 ±
0.073 

0.374 ± 
0.341 

Training and testing were performed on the AMROA training and testing datasets, respectively. 
DSCs presented as mean ± standard deviation. 
Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – patellar 
cartilage, VM Muscle - vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate 
ligament, DSC - Sørensen–Dice similarity coefficient. 
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3. Results and discussion 

3.1. Network training and testing 

Semi-manual segmentation of the AMROA images by the reader 
required − 30 min per subject-volume. Segmentation post-training on a 
single slice was processed in ≈0.13 s. A detailed description of all cGAN 
and U-Net training durations for all datasets can be found in the Ap
pendix. The highlights of the upcoming sections are:  

3.2 The U-Net trained with L L1 loss objective outperformed the cGANs and the U- 
Nets trained with different loss objectives in the segmentation performance of 
most knee joint tissues.  

(continued on next column)  

(continued ) 

3.3 Altering the network objective function midway through cGAN and U-Net 
training lead to unanticipated but advantageous results. This variation resulted 
in improved segmentation performances of several tissues and the cGANs 
capability to segment muscle tissue, which previously had not been possible 
with non-altered objective function training. 

3.4 The cGAN and U-Net trained with nine convolutions/transpose convolutions in 
the networks encoding/decoding parts and a minimum feature channel change 
of 64 achieved the highest segmentation accuracies for most knee joint tissues 
annotated. 

3.5 The greatest improvements in segmentation performance of the cGAN was 
achieved by reducing the receptive field size of the discriminator network. This 
resulted in segmentation accuracies equivalent to those of the U-Net. 

(continued on next page) 

Fig. 2. Results of Network Objective Function. Qualitative results of B) training a cGAN with different objective functions by combining the cGAN loss with different 
pixel-wise error losses with varying weightings and C) training a U-Net with different pixel-wise error losses. 
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(continued ) 

3.6 Transfer learning not only increased segmentation accuracy of some tissues of 
the fine-tuned dataset, but also increased the network’s capacity to maintain 
segmentation capabilities for the pretrained dataset. 

3.7 Overall, the cGAN trained with the L cGAN + λL L1 loss objective (λ = 100) and 
a 1 × 1 PixelGAN as well as the U-Net trained with the L L1 loss objective 
achieved comparable and the highest segmentation accuracies for most knee 
joint tissues segmented.   

3.2. Evaluation of network objective function 

The quantitative results of assessing the impact of combining the 
cGAN objective with three different pixel error losses with varying 
weightings λ on the cGANs segmentation performance are in Table 2, 
with the qualitative results depicted in Fig. 2B. The cGANs trained with 
larger values for λ (λ = 100 and 10,000) achieved the highest segmen
tation performance for all tissues and the produced segmentation maps 
were less affected by artefacts compared to the cGANs trained with λ =
0.01 and 1. For instance, the images from the networks trained with 
L cGAN + λL L1 (λ = 0.01), L cGAN + λL L2 (λ = 1) and L cGAN + λL SmL1 
(λ = 1) had artefacts where the networks seem to detect bone or carti
lage structures where there were none in the original MR input image. 
By increasing the weighting hyperparameter λ, more emphasis is put on 
the pixel error losses to guide the network to produce more accurate 
representations of the ground truth segmentation map and reduces these 
artefacts. However, the influence of GAN loss diminishes with very large 

values for λ with the discriminator having minimal effect on generator 
training. 

The qualitative results of training a U-Net with different pixel error 
losses are presented in Fig. 2C while the quantitative results are listed in 
Table 3. The U-Net trained with L L1 loss objective achieves the highest 
accuracy for all tissues compared to L L2 and L SmL1 loss except for the 
muscle tissues. Muscle tissues appeared on the majority of 2D MR knee 
images seen by the network during training, however we only 
segmented two selective medial muscles in the AMROA dataset due to 
time constraints. It is interesting to note that although the U-Net trained 
with L L1 was not able to capture the medial head of gastrocnemius and 
vastus medialis muscles, the cGAN trained with the L cGAN + λL L1 
objective (λ = 10,000) was. Simple absolute difference (L L1) was not 
capable of differentiating lateral muscle textures from medial. The U- 
Nets trained with L L2 and L SmL1 losses were capable of segmenting the 
selective muscles with high accuracies as they are penalised more by the 
squaring term in their loss objectives when the difference between 
ground truth and model predictions are large. Interestingly, although 
the patella bone and cartilage only appear on very few slices in a 3D 
dataset, and ACL and PCL on even fewer, the U-Net with L L1 segmented 
these tissues better than the L L2 and L SmL1 (L L2: DSCP Bone < 0.2 %, 
DSCP Cartilage < 5.3 %, DSCACL < 15.2 %, DSCPCL < 21.3 %; L SmL1 : DSCP 

Bone < 0.4 %, DSCP Cartilage < 6.0 %, DSCACL < 6.9 %, DSCPCL < 17.8 %). 
This could be explained by the cruciate ligament and patellar tissues 

Table 3 
Results of the Network Objective Function: U-Net. The influence of different pixel-wise error losses on the segmentation performance of the U-Net was assessed. 
Highest DSCs achieved for each tissue are in bold.  

Network Objective Function Results 

U-Net 
Pixel 

Loss 
F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

L1 0.972 ± 
0.006 

0.960 ± 
0.001 

0.941 ± 
0.010 

0.886 ± 
0.007 

0.834 ± 
0.010 

0.890 ± 
0.034 

0.000 ±
0.000 

0.000 ±
0.000 

0.643 ± 
0.153 

0.641 ± 
0.008 

L2 0.950 ±
0.007 

0.957 ±
0.009 

0.939 ±
0.003 

0.831 ±
0.020 

0.723 ±
0.068 

0.837 ±
0.051 

0.888 ±
0.000 

0.881 ±
0.021 

0.491 ±
0.136 

0.428 ±
0.196 

SmL1 0.953 ±
0.001 

0.953 ±
0.009 

0.937 ±
0.004 

0.843 ±
0.021 

0.771 ±
0.036 

0.830 ±
0.088 

0.894 ± 
0.002 

0.910 ± 
0.045 

0.574 ±
0.230 

0.463 ±
0.174 

Training and testing were performed on the AMROA training and testing datasets, respectively. 
DSCs are presented as mean ± standard deviation. 
Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – patellar 
cartilage, VM Muscle - vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate 
ligament, DSC - Sørensen–Dice similarity coefficient. 

Table 4 
Results of additionally testing on noise only images. The influence of including noise only images in the testing set on the overall segmentation performance of a cGAN 
trained with L cGAN + λL L1 (λ = 100) loss objective and a U-Net trained with L L1 objective. Training was performed on the AMROA training dataset without noise 
only images.  

Influence of Noise Only Images 

cGAN 
Testing F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 
No Noise 0.918 ±

0.011 
0.948 ±
0.018 

0.928 ±
0.002 

0.812 ±
0.002 

0.748 ±
0.042 

0.863 ±
0.043 

0.113 ±
0.085 

0.000 ±
0.000 

0.577 ±
0.020 

0.073 ±
0.103 

With 
Noise 

0.925 ±
0.012 

0.946 ±
0.017 

0.928 ±
0.004 

0.810 ±
0.003 

0.752 ±
0.045 

0.858 ±
0.054 

0.098 ±
0.114 

0.000 ±
0.000 

0.593 ±
0.028 

0.092 ±
0.131 

%-Diff 0.7 0.2 0.0 0.2 0.4 0.5 1.5 0.0 1.6 1.9  

U-Net 
Testing F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 
No Noise 0.972 ±

0.006 
0.960 ±
0.001 

0.941 ±
0.010 

0.886 ±
0.007 

0.834 ±
0.010 

0.890 ±
0.034 

0.000 ±
0.000 

0.000 ±
0.000 

0.643 ±
0.153 

0.641 ±
0.008 

With 
Noise 

0.968 ±
0.001 

0.957 ±
0.009 

0.938 ±
0.016 

0.885 ±
0.004 

0.833 ±
0.010 

0.894 ±
0.026 

0.000 ±
0.000 

0.000 ±
0.000 

0.620 ±
0.156 

0.643 ±
0.025 

%-Diff 0.4 0.3 0.3 0.1 0.1 0.4 0.0 0.0 2.3 0.2 

DSCs are presented as mean ± standard deviation. 
Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – patellar 
cartilage, VM Muscle - vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate 
ligament, DSC - Sørensen–Dice similarity coefficient, %-Diff – absolute percentage difference. 
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either being present or not on a 2D training image and the network is not 
being constrained to only segment medial tissues. Overall, the U-Net 
with L L1 produced sharper boundaries, especially for the smaller liga
ment structures, as compared to the segmentation maps produced by U- 
Nets trained with L L2 and L SmL1 , in which the boundaries are more 
diffused. 

We decided to assess the model’s performance when including noise- 
only images in the testing dataset as we excluded them during model 
training, and this might limit the models’ use in a clinical setting. This 
effect was only evaluated for a the cGAN trained with the L cGAN + λL L1 
(λ = 100) objective function and the U-Net trained with the L L1 loss 
objective. The quantitative results are listed in Table 4 with qualitative 
results displayed in Fig. 3. Both networks showed comparable segmen
tation performances after testing with noise-only images with percent
age differences (%-Diff) of the DSC for all segmented tissues ≤ 2.3 %. 
Including noise-only images into the testing set had greater effects on 
the cGAN DSC of the medial vastus muscle (VM muscle) (%-Diff = 1.5 
%), the ACL (%-Diff = 1.6 %) and the PCL (%-Diff = 1.9 %) as well as on 
the U-Net DSC of the ACL (%-Diff = 2.3 %). These higher differences 
could be explained by the lower segmentation capability of these 
structures by the cGAN and U-Net models to begin with (cGAN: DSCVM 

muscle: 0.113 vs 0.098, DSCACL: 0.577 vs 0.593; DSCPCL: 0.073 vs 0.092; 
U-Net: DSCACL: 0.643 vs 0.620). Furthermore, the larger %-Diff in the 
DSC of the VM muscle is caused by the cGAN model irregularly seg
menting VM muscle tissues on noise only images (Fig. 3B). 

3.3. Evaluation of altering loss objective during training 

Fig. 4 compares the qualitative results and Table 5 compares the 
DSCs obtained from a cGAN and a U-Net, in which the objective func
tions were changed midway through training to the cGANs and U-Nets 
trained with non-altered objective functions. Training a cGAN with 
varied loss objective (L cGAN + λL L2 → L cGAN + λL L1) notably reduced 
its ability to segment the ACL, however considerably improved its seg
mentation performance on the medial vastus and gastrocnemius mus
cles, as well as PCL, compared to the other cGANs (L cGAN + λL L1 and 

L cGAN + λL L2). The images in Fig. 4B show the improvements in muscle 
segmentation with the cGAN trained with varied loss objective. This was 
a surprising result as neither the cGAN trained with L cGAN + λL L1 nor 
with L cGAN + λL L2 alone were able to segment muscle. Looking at the 
different training epochs of the cGAN trained with varied loss, during 
L cGAN + λL L2 no muscle tissue was being semantically segmented. 
However, when changing to L cGAN + λL L1 and between training 
epochs 50 and 60, the network started segmenting muscle tissue (Fig. 5). 
After the initial 50 epochs of L cGAN + λL L2 training, the cGANs weights 
must have been favourable for continuing training with L cGAN + λL L1 
to additionally semantically segment muscle tissue. 

The U-Net trained with altered objective function (L L2 → L L1) also 
showed notable improvements in the segmentation performance of the 
medial vastus and gastrocnemius muscles while the segmentation scores 
of the other knee tissues remained comparable with those of the other U- 
Nets (L L1 and L L2). Fig. 4C qualitatively compares the results of a U- 
Net trained with altered loss objective to those of the U-Nets trained with 
a single, non-altered loss objective. As mentioned in the corresponding 
method section, this idea came after reviewing a few initial training 
results. While the U-Net trained with the L L1 objective was not able to 
segment the medial vastus and gastrocnemius muscles after training, the 
U-Net with the L L2 loss objective was. However, these images were 
slightly blurrier, and the segmentation accuracy of the remaining tissues 
was poorer than compared to L L1. By varying the loss objective during 
training, the strengths of L L2 and L L1 were combined. We decided to 
first train the network with L L2 loss to capture all tissues and then to 
change to L L1 halfway through training to make the images sharper and 
increase segmentation accuracy. This method created a more proficient 
network capable of segmenting all tissues with higher or comparable 
accuracies to the networks trained with non-altered loss objectives. 

3.4. Evaluation of the generator depth 

The quantitative results of assessing the impact of generator network 
depth on the cGANs and U-Nets segmentation performances are in Ta
bles 6 and 7. 

Fig. 3. Results of testing on noise only images. Assessing the segmentation performance of a cGAN trained with L cGAN + λL L1 (λ = 100) loss objective and a U-Net 
trained with L L1 objective and tested on noise only images. Training was performed on the AMROA training dataset without noise only images. A) and B) are two 
example results of testing the models on noise only source images and comparing to ground truth segmentation maps. 
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The cGAN with a generator down-sampling the input through nine 
convolutional networks achieved the highest DSC scores for tibial and 
patellar bone, as well as for femoral and patellar cartilage. Femoral bone 
and tibial cartilage were best segmented by the cGAN with five convo
lutions/transpose convolutions in the generator encoding/decoding 
parts. The medial vastus and gastrocnemius muscles, as well as ACL and 
PCL were best segmented by the cGAN with seven convolutions. 
Training the cGAN with a minimum feature channel change of 64 
resulted in the highest segmentation scores for most tissues except for 
femoral bone, tibial cartilage and the medial vastus muscle. 

The U-Net trained with nine convolutions/transpose convolutions in 
the networks encoding/decoding parts achieved the highest segmenta
tion accuracies for all but one tissue (femoral cartilage), which was 

slightly better segmented by the U-Net with five convolutions/transpose 
convolutions. Training the U-Net with a minimum feature channel 
change of 64 resulted in the highest DSC scores for most tissues apart 
from patella cartilage and ACL which were segmented best by the U-Net 
trained with a minimum feature channel change of 128. 

It is important to note for this section that increasing the number of 
convolutions and feature channels in the generator network substan
tially increases the overall number of parameters in the network and the 
time per epoch required to train the network (see network architectures 
in the Appendix for details). A considered decision between increase in 
learning time and significant improvement in segmentation accuracy 
has to be made. 

Fig. 4. Results of Altering the Loss Objective during Training. Assessing the influence of varying the objective function halfway during cGAN and U-Net training on 
their segmentation performance with comparison to the respective cGANs and U-Nets trained with constant loss function. 
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3.5. Evaluation of PatchGAN receptive field size 

Fig. 6 shows the qualitative comparison of the effect of using 
different patch sizes in the discriminator network, while the corre
sponding DSCs are listed in Table 8. The cGAN trained with the 1 × 1 
PatchGAN (PixelGAN) achieved the highest segmentation accuracy for 
most tissues except for femoral and tibial cartilage and both muscle 
tissues, which were best segmented by the 34 × 34 PatchGAN. 
Increasing the receptive field size increases the number of parameters in 
the discriminator network and therefore may be more difficult to train. 
Additionally, as in the ‘pix2pix’ paper (Isola et al., 2017), we also 
noticed the repetitive tiling / checkerboard artefact (Fig. 7). However, in 
our instance, the artefacts become more pronounced with every increase 
in patch size instead of the inverse tendency as seen by (Isola et al., 
2017). This could be a result of us assigning the cGANs with the reverse 
task (image to label) compared to the one performed by (Isola et al., 

2017) (label to image). 
Fig. 8 depicts the loss evolution during network training of the cGAN 

trained with the 1 × 1 PatchGAN discriminator. The loss evolutions of 
the cGAN generator (L cGAN and L L1) and discriminator (L real and 
L fake) are shown in Fig. 8A and B, respectively. Fig. 8B highlights how 
the Nash equilibrium was reached for the discriminator network during 
cGAN training. 

3.6. Evaluation of transfer learning 

The quantitative results of this section are presented in Tables 9 and 
10 with qualitative comparisons between single step (one dataset) and 
two step training (transfer learning) displayed in Figs. 9 and 10. 

When comparing the segmentation performances of the proposed 
cGAN and U-Net without and with transfer learning and testing on the 
SKI10 testing dataset (Table 9, Fig. 9A-C), the AMROA-pretrained / 
SKI10-retrained (AMROA → SKI10) U-Net showed the highest DSC 
scores for femoral and tibial bone and the highest boundary accuracy (i. 
e. smallest ASDs) for femoral bone, while the SKI10-only trained U-Net 
segmented the tibial bone with the highest boundary accuracy. Femoral 
cartilage was best segmented by the AMROA-pretrained / SKI10- 
retrained (AMROA → SKI10) cGAN and tibial cartilage by the SKI10- 
only trained cGAN. 

Testing the OAI ZIB testing dataset on the proposed cGAN and U-Net 
without and with transfer learning (Table 9, Fig. 9D-F), the AMROA- 
pretrained / OAI ZIB-retrained (AMROA → OAI ZIB) cGAN showed 
the highest accuracies for tibial bone and femoral cartilage, while the 
OAI ZIB-only trained cGAN segmented the femoral bone and tibial 
cartilage with the highest accuracies. 

When testing the cGANs and U-Nets on the AMROA testing dataset 
(Table 10, Fig. 10), the SKI10-pretrained / AMROA-retrained (SKI10 → 
AMROA) U-Net had the highest DSCs for femoral and tibial bone as well 
as the ACL. Femoral cartilage as well as patellar bone and cartilage was 
segmented most accurately by the OAI ZIB-pretrained / AMROA- 
retrained (OAI ZIB → AMROA) U-Net. The AMROA only trained U-Net 
showed the best segmentation accuracy for tibial cartilages. The SKI10- 
pretrained / AMROA-retrained (SKI10 → AMROA) cGAN provided the 
highest segmentation score for the vastus medialis muscle while the 
medial head of gastrocnemius muscle and the PCL was best segmented 

Table 5 
Results of Altering the Loss Objective during Training. Assessing the influence of altering the loss objective function during training on the segmentation performance 
of the proposed cGAN and U-Net. A cGAN was trained with L cGAN + λL L2 objective and a U-Net with L L2 objective for 50 epochs followed by a further 50 epochs 
training with L cGAN + λL L1 and L L1 objectives, respectively. Segmentation performances are compared with the previously trained cGANs (L cGAN +

λL L1 and L cGAN + λL L2; λ = 100; 100 epochs) and U-Nets (L L1 and L L2;100 epochs). Highest DSCs achieved for each tissue are in bold.  

Altering the Loss Objective during Training Results 

cGAN 
Network Loss Objective F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 
L cGAN + λL L1  0.918 ±

0.011 
0.948 ± 
0.018 

0.928 ± 
0.002 

0.812 ± 
0.002 

0.748 ±
0.042 

0.863 ± 
0.043 

0.113 ±
0.085 

0.000 ±
0.000 

0.577 ±
0.020 

0.073 ±
0.103 

L cGAN + λL L2  0.928 ±
0.015 

0.939 ±
0.007 

0.921 ±
0.022 

0.768 ±
0.016 

0.752 ±
0.049 

0.862 ±
0.039 

0.001 ±
0.001 

0.000 ±
0.000 

0.652 ± 
0.094 

0.101 ±
0.074 

L cGAN + λL L2 → 
L cGAN + λL L1  

0.936 ± 
0.007 

0.938 ±
0.021 

0.884 ±
0.078 

0.800 ±
0.021 

0.760 ± 
0.035 

0.855 ±
0.031 

0.739 ± 
0.010 

0.772 ± 
0.005 

0.115 ±
0.032 

0.392 ± 
0.128  

U-Net 
Network Loss Objective F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 
L L1  0.972 ± 

0.006 
0.960 ±
0.001 

0.941 ±
0.010 

0.886 ± 
0.007 

0.834 ± 
0.010 

0.890 ± 
0.034 

0.000 ±
0.000 

0.000 ±
0.000 

0.643 ± 
0.153 

0.641 ± 
0.008 

L L2  0.950 ±
0.007 

0.957 ±
0.009 

0.939 ±
0.003 

0.831 ±
0.020 

0.723 ±
0.068 

0.837 ±
0.051 

0.888 ±
0.000 

0.881 ±
0.021 

0.491 ±
0.136 

0.428 ±
0.196 

L L2 → L L1  0.970 ±
0.006 

0.961 ± 
0.007 

0.941 ± 
0.003 

0.869 ±
0.016 

0.793 ±
0.021 

0.886 ±
0.027 

0.914 ± 
0.008 

0.933 ± 
0.010 

0.632 ±
0.170 

0.567 ±
0.094 

Training and testing were performed on the AMROA training and testing datasets, respectively. 
DSCs are presented as mean ± standard deviation. 
Abbreviations: FB – femoral bone, TB – tibial bone, PB – patellar bone, FC – femoral cartilage, TC – tibial cartilage, PC – patellar cartilage, VM Muscle - vastus medialis 
muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate ligament, DSC - Sørensen–Dice 
similarity coefficient. 

Fig. 5. Influence of altering the loss objective during cGAN training on the 
segmentation performance of the medial gastrocnemius and vastus muscles. 
The cGAN was trained with a L cGAN + λL L2 loss objective for 50 epochs fol
lowed by a further 50 epochs training with L cGAN + λL L1. 
Abbreviations: VMM - vastus medialis muscle, GMM – medial head of 
gastrocnemius muscle, DSC – Dice Similarity Coefficient 
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by the OAI ZIB-pretrained / AMROA-retrained (OAI ZIB → AMROA) 
cGAN. Compared to the U-Net, the cGAN could successfully segment 
both medial muscles which could promote a strength of the cGAN. A 
further note is that, although the SKI10 and OAI ZIB datasets only 
comprised of segmentations of femoral and tibial bone and cartilage, the 
cGANs and U-Nets initialised with the respective SKI10- and OAI ZIB- 
pretrained network weights and retrained on the AMROA dataset were 
able to recuperate and capture patellar, ligament and muscle tissues. 

A challenge of any machine learning technique is obtaining a 

training set that optimises the amount of variation from the rare 
morphology of pathological conditions or image artefacts. The AMROA 
dataset was highly controlled, with the patients and imaging occurring 
with a single imaging protocol on a single MRI system. The images 
showed a clear bone-cartilage separation and enabled better cartilage 
segmentation scores after training than the SKI10 dataset. The OAI ZIB 
dataset highlights the benefits of training on a very large number of 
images with the cGAN and U-Net (OAI ZIB-only trained) achieving DSC 
≥ 0.984 for bone and DSC ≥ 0.837 for cartilage segmentations. 

Table 6 
Results of Varying Generator Network Depth: Number of Convolutions. The influence of varying the number of convolutions during down-sampling in the generator 
networks of both the cGAN and U-Net was assessed. Highest DSCs achieved for each tissue are in bold.  

Generator Network Depth Results – Number of Convolutions during Down-Sampling 

cGAN 
Down 

Convs 
F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

5 0.928 ± 
0.006 

0.929 ±
0.006 

0.893 ±
0.029 

0.721 ±
0.029 

0.751 ± 
0.039 

0.838 ±
0.042 

0.049 ±
0.069 

0.000 ±
0.000 

0.622 ±
0.042 

0.286 ±
0.189 

7 0.889 ±
0.023 

0.921 ±
0.026 

0.928 ±
0.002 

0.764 ±
0.047 

0.624 ±
0.039 

0.846 ±
0.057 

0.171 ± 
0.226 

0.167 ± 
0.236 

0.626 ± 
0.041 

0.289 ± 
0.408 

9 0.918 ±
0.011 

0.948 ± 
0.018 

0.928 ± 
0.002 

0.812 ± 
0.002 

0.748 ±
0.042 

0.863 ± 
0.043 

0.113 ±
0.085 

0.000 ±
0.000 

0.577 ±
0.020 

0.073 ±
0.103  

U-Net 
Down 

Convs 
F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

5 0.969 ±
0.002 

0.952 ±
0.016 

0.919 ±
0.022 

0.887 ± 
0.018 

0.823 ±
0.001 

0.888 ±
0.031 

0.000 ±
0.000 

0.000 ±
0.000 

0.631 ±
0.125 

0.544 ±
0.249 

7 0.964 ±
0.003 

0.956 ±
0.005 

0.921 ±
0.008 

0.874 ±
0.032 

0.787 ±
0.044 

0.869 ±
0.029 

0.000 ±
0.000 

0.000 ±
0.000 

0.539 ±
0.160 

0.592 ±
0.120 

9 0.972 ± 
0.006 

0.960 ± 
0.001 

0.941 ± 
0.010 

0.886 ±
0.007 

0.834 ± 
0.010 

0.890 ± 
0.034 

0.000 ±
0.000 

0.000 ±
0.000 

0.643 ± 
0.153 

0.641 ± 
0.008 

Training and testing were performed on the AMROA training and testing datasets, respectively. 
DSCs are presented as mean ± standard deviation. 
Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – patellar 
cartilage, VM Muscle - vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate 
ligament, DSC - Sørensen–Dice similarity coefficient. 

Table 7 
Results of Varying Generator Network Depth: Number of Minimum Feature Maps. The influence of starting with different numbers of minimum feature channel maps 
in the generator networks of both the cGAN and U-Net was assessed. Highest DSCs achieved for each tissue are highlighted grey and in bold.  

Generator Network Depth Results – Number of Minimum Feature Channel Maps 

cGAN 
Feature 

Maps 
F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

16 0.774 ±
0.059 

0.903 ±
0.040 

0.858 ±
0.003 

0.547 ±
0.236 

0.473 ±
0.269 

0.771 ±
0.070 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

32 0.899 ±
0.004 

0.937 ±
0.001 

0.875 ±
0.027 

0.750 ±
0.028 

0.720 ±
0.038 

0.831 ±
0.030 

0.414 ± 
0.260 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

64 0.918 ±
0.011 

0.948 ± 
0.018 

0.928 ± 
0.002 

0.812 ± 
0.002 

0.748 ±
0.042 

0.863 ± 
0.043 

0.113 ±
0.085 

0.000 ±
0.000 

0.577 ± 
0.020 

0.073 ± 
0.103 

128 0.925 ± 
0.006 

0.935 ±
0.021 

0.831 ±
0.032 

0.805 ±
0.010 

0.773 ± 
0.081 

0.784 ±
0.061 

0.341 ±
0.256 

0.000 ±
0.000 

0.336 ±
0.219 

0.011 ±
0.016  

U-Net 
Feature 

Maps 
F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

16 0.966 ±
0.000 

0.950 ±
0.021 

0.912 ±
0.028 

0.868 ±
0.011 

0.795 ±
0.001 

0.864 ±
0.028 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.202 ±
0.110 

32 0.969 ±
0.006 

0.946 ±
0.016 

0.914 ±
0.005 

0.875 ±
0.026 

0.795 ±
0.051 

0.878 ±
0.032 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.453 ±
0.039 

64 0.972 ± 
0.006 

0.960 ± 
0.001 

0.941 ± 
0.010 

0.886 ± 
0.007 

0.834 ± 
0.010 

0.890 ±
0.034 

0.000 ±
0.000 

0.000 ±
0.000 

0.643 ±
0.153 

0.641 ± 
0.008 

128 0.968 ±
0.006 

0.960 ±
0.004 

0.929 ±
0.014 

0.884 ±
0.022 

0.823 ±
0.010 

0.897 ± 
0.013 

0.000 ±
0.000 

0.000 ±
0.000 

0.645 ± 
0.053 

0.597 ±
0.025 

Training and testing were performed on the AMROA training and testing datasets, respectively. 
DSCs are presented as mean ± standard deviation. 
Abbreviations: F Bone – femoral bone, T Bone – tibial bone, P Bone – patellar bone, F Cartilage – femoral cartilage, T Cartilage – tibial cartilage, P Cartilage – patellar 
cartilage, VM Muscle - vastus medialis muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate 
ligament, DSC - Sørensen–Dice similarity coefficient. 
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The ability for the network to be used under variable conditions was 
simulated by using three knee datasets (AMROA, SKI10 and OAI ZIB). 
Even without transfer learning, the AMROA training enabled SKI10 and 
OAI ZIB segmentation and vice versa, albeit not with high accuracy, but 
nonetheless indicating the robustness of deep learning methods. 
Transfer learning not only improved the segmentation accuracy for 
some tissues of the local dataset but also enhanced the networks ability 
to segment the SKI10 / OIA ZIB test dataset by introducing more het
erogeneity into the model. Even though the SKI10- and OAI ZIB- 
pretrained networks were then fine-tuned to segment the local 
AMROA dataset, it could segment the SKI10 and OAI ZIB testing dataset 
with an improved performance compared to the AMROA-only trained 
network without pretraining. This effect was seen for both cGANs and U- 
Nets. 

3.7. AMROA: comparison to previous studies 

In this subsection, the results obtained for the different tissues 

semantically segmented in this study are compared to those of previous 
studies. The cGAN and U-Net achieving the highest segmentation ac
curacy on the AMROA dataset for each respective tissue is chosen for this 
purpose. 

3.7.1. Bone 
While cartilage has been traditionally studied for OA, bone shape has 

been under increasing investigations (Ambellan et al., 2019; Felson and 
Neogi, 2004). Bone shape has been linked to radiographic OA (Hunter 
et al., 2015; Neogi et al., 2013; Wise et al., 2018) and associated with 
longitudinal pain progression (Hunter et al., 2015). Segmented bone can 
be used to separate out bone-specific diseases, such as osteochondral 
defects. 

The OAI ZIB-pretrained / AMROA-retrained cGAN trained with the 
L cGAN + λL L1 loss objective (λ = 100) and a 1 × 1 PixelGAN generated 
segmentations of femoral (DSC = 0.972), tibial (DSC = 0.962) and 
patellar (DSC = 0.947) bone with the highest accuracy. The SKI10- 
pretrained / AMROA-retrained U-Net (L L1 loss objective) achieved 

Fig. 6. Results of PatchGAN Receptive Field Size. Assessing the influence of varying the discriminator receptive field size on segmentation performance of cGAN 
when trained and tested on the AMROA dataset. 

Table 8 
Results of PatchGAN Receptive Field Size. Comparison of segmentation performance of the proposed cGAN with different N x N receptive field sizes of the PatchGAN 
discriminator network. Highest DSCs achieved for each tissue are in bold.  

PatchGAN Receptive Field Size Results 

Receptive Field 
Size 

F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

1 × 1 0.971 ± 
0.005 

0.953 ± 
0.012 

0.947 ± 
0.007 

0.849 ±
0.046 

0.804 ± 
0.024 

0.869 ± 
0.053 

0.812 ±
0.066 

0.869 ±
0.069 

0.618 ±
0.140 

0.613 ± 
0.143 

34 × 34 0.968 ±
0.007 

0.952 ±
0.015 

0.941 ±
0.013 

0.849 ± 
0.002 

0.795 ±
0.013 

0.868 ±
0.023 

0.883 ± 
0.007 

0.876 ± 
0.009 

0.621 ± 
0.096 

0.594 ±
0.118 

70 × 70 0.918 ±
0.011 

0.948 ±
0.018 

0.928 ±
0.002 

0.812 ±
0.002 

0.748 ±
0.042 

0.863 ±
0.043 

0.113 ±
0.085 

0.000 ±
0.000 

0.577 ±
0.020 

0.073 ±
0.103 

286 × 286 0.941 ±
0.000 

0.938 ±
0.008 

0.920 ±
0.012 

0.766 ±
0.020 

0.731 ±
0.003 

0.767 ±
0.049 

0.702 ±
0.022 

0.597 ±
0.078 

0.383 ±
0.090 

0.070 ±
0.022 

The cGANs were trained with the L cGAN + λL L1 objective with λ = 100 with training and testing being performed on the AMROA dataset. 
DSCs are presented as mean ± standard deviation. 
Abbreviations: FB – femoral bone, TB – tibial bone, PB – patellar bone, FC – femoral cartilage, TC – tibial cartilage, PC – patellar cartilage, VM Muscle - vastus medialis 
muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate ligament, DSC - Sørensen–Dice 
similarity coefficient. 
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slightly higher segmentation accuracies for femoral and tibial bone tis
sues (femoral: DSC = 0.974; tibial: DSC = 0.965) and the OAI ZIB- 
pretrained / AMROA-retrained U-Net for patellar bone (DSC = 0.948), 
compared to the cGANs. The boundaries of the images, near the top and 
bottom of any 2D slice, did not always segment all bone, which is where 
the MRI radiofrequency (RF) transmit and receive uniformity was poor 
due to characteristics of the MRI coil. Traditional semi-automatic ap
proaches involving signal threshold, region-based or clustering seg
mentation can be similarly sensitive to image non-uniformities 
(Swanson et al., 2010). These non-uniformities are shown as a change in 
signal-to-noise or darkening of the surrounding muscle tissues (see lower 
regions of Fig. 2). These effects from RF transmit or receive 
non-uniformity could be mitigated with a larger training population, as 
more complex modelling of data is possible. Nevertheless, segmentation 
of the patella achieved the lowest accuracy. The patella has the widest 
range of inter-subject variability when compared to the larger tibial and 
femoral bones. The patella bone can vary in both shape and position, 
shifting due to the orientation and bend of the knee. Additionally, due to 
its smaller volume, fewer training images are used for the patella 
segmentation. 

The cGAN and U-Net bone segmentation scores achieved in this 
study are similar to those achieved by a CycleGAN method using un
annotated knee MR images for femoral (DSC = 0.95 – 0.97) and tibial 
(DSC = 0.93 – 0.95) bone segmentation (Liu, 2019), and a convolutional 
encoder-decoder network combined with a 3D fully connected condi
tional random field and simplex deformable modelling for femoral (DSC 
= 0.970), tibial (DSC = 0.962) and patellar (DSC = 0.898) bone seg
mentation (Zhou et al., 2018). 

3.7.2. Cartilage 
For a long time, OA was considered a disease primarily involving 

variations in articular cartilage composition and morphology. There
fore, the attention was predominantly placed on the extraction of OA 
biomarkers from quantitative MR imaging techniques using manual or 
semi-manual segmentation techniques that suffer from intra- and inter- 
observer variability (Pedoia et al., 2016). Deep learning methods can 
provide a fast and repeatable alternative to overcome these 
time-consuming and operator-dependent procedures. 

Fig. 7. Image Artefact due to the choice of PatchGAN Receptive Field Size. Influence of discriminator receptive field size on checkerboard artefact emergence of a 
cGAN trained and tested on the AMROA dataset. 

Fig. 8. Loss Evolution during cGAN Training. The loss evolutions of the A) 
generator (L cGAN and L L1) and B) discriminator (L real and L fake) are shown 
for a cGAN trained with a U-Net generator and a 1 × 1 PatchGAN discriminator 
for 100 epochs. 
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The OAI ZIB-pretrained / AMROA-retrained cGAN trained with the 
L cGAN + λL L1 loss objective (λ = 100) and a 1 × 1 PixelGAN generated 
segmentations of femoral (DSC = 0.875), tibial (DSC = 0.811) and 
patellar (DSC = 0.879) cartilage with the highest accuracy from all 
cGAN trainings. The OAI ZIB-pretrained / AMROA-retrained U-Net (L L1 
loss objective) achieved marginally higher accuracies for femoral (DSC 
= 0.893) and patellar (DSC = 0.898) cartilage segmentations and the 
AMROA-only trained U-Net (L L1 loss objective) achieved a slightly 
higher segmentation accuracy for tibial cartilage (DSC = 0.834) 
compared to the cGAN results. 

The cartilage segmentation performances of both cGAN and U-Net 
are comparable to those attained by a 2D U-Net for femoral, tibial and 
patellar cartilage segmentations on T1ρ-weighted (DSC = 0.632− 0.702) 
and DESS MR images (DSC = 0.767− 0.878) (Norman et al., 2018), a 
CycleGAN method for femoral and tibial cartilage segmentation on 
PD-weighted (DSC = 0.65− 0.66) and T2-weighted FSE images (DSC =
0.81− 0.75) (Liu, 2019), as well as the recently investigated cGAN for 
femoral, tibial and patellar segmentation on DESS MR images (DSC =
0.843− 0.918) (Gaj et al., 2019). 

3.7.3. Muscle 
As muscle weakness and atrophy can be regarded as preceding risk 

factors and resulting pain-related consequences for the development and 
progression of OA, studying morphological changes in knee joint mus
cles has become increasingly important (Fink et al., 2007; Slemenda 
et al., 1997). 

The SKI10-pretrained / AMROA-retrained cGAN and the OAI ZIB- 
pretrained / AMROA-retrained cGAN trained with the L cGAN + λL L1 
loss objective (λ = 100) and a 1 × 1 PixelGAN segmented the medial 
gastrocnemius muscle (DSC = 0.909) and medial vastus muscle (DSC =
0.922) with the highest accuracies, respectively. The U-Net trained with 
altered loss objective (L L2 → L L1) achieved the highest segmentation 

accuracies for both the medial gastrocnemius (DSC = 0.933) and vastus 
(DSC = 0.914) muscles. 

Our results are comparatively lower compared to those of a semi- 
automatic single-atlas (DSC = 0.95− 0.96) and fully-automatic multi- 
atlas (DSC = 0.91 – 0.94) based approach for medial vastus segmenta
tion (Le Troter et al., 2016), and a 2D U-Net for quadriceps (DSC = 0.98) 
segmentation (Kemnitz et al., 2019). A crucial difference between these 
studies and ours is the plane in which segmentation was performed. 
While muscles are typically segmented on axial images as this provides a 
more straightforward task with clearer separation between different 
muscles, our multi-class tissue segmentation approach was performed 
on sagittal images. Segmenting different muscles in the sagittal plane is a 
demanding task, especially in areas of the calf muscles where the 
two-headed gastrocnemius muscle overlaps (medial and lateral) while 
also overlaying the soleus muscle. 

3.7.4. Cruciate ligament 
There has been a growing interest in investigating and understanding 

the mechanism responsible for the post-traumatic development of OA 
following injury to the cruciate ligaments, especially the ACL (Chaud
hari et al., 2008; Messer et al., 2019; Monu et al., 2017). Although ACL 
reconstruction and rehabilitation can help restore patients to normal life 
and previous activities, it cannot prevent the long-term risk of devel
oping OA (Paschos, 2017). Accurate and repeatable segmentations of 
the cruciate ligaments are required when aiming at evaluating longitu
dinal changes in the cruciate ligaments following reconstructive surgery. 

In our study, the OAI ZIB-pretrained / AMROA-retrained cGAN 
trained with the 1 × 1 PixelGAN and L cGAN + λL L1 loss objective (λ =
100) achieved the highest accuracy for ACL (DSC = 0.664) and PCL 
segmentation (DSC = 0.652). The SKI10-pretrained / AMROA-retrained 
U-Net (L L1 loss objective) achieved a similar accuracy for ACL seg
mentation (DSC = 0.665) and the AMROA-only trained U-Net (L L1 loss 

Table 9 
Results of Transfer Learning. Comparison of segmentation performance of the proposed cGAN and U-Net without and with transfer learning and testing on the SKI10 
and OAI ZIB testing dataset. Highest network scores achieved for each tissue are in bold.  

Transfer Learning Results 

SKI10 Testing 
Network Training F Bone T Bone F Cartilage T Cartilage     

DSC ASD DSC ASD DSC VOE DSC VOE 

cGAN 

AMROA 0.929 ± 0.040 3.726 ± 1.758 0.893 ± 0.069 3.368 ± 1.935 0.488 ± 0.093 67.19 ± 8.36 0.465 ± 0.114 69.01 ± 10.00 
SKI10 0.974 ± 0.013 1.445 ± 1.918 0.979 ± 0.007 0.527 ± 0.403 0.736 ± 0.058 41.49 ± 6.99 0.684 ± 0.070 47.58 ± 7.98 
SKI10 → 
AMROA 0.938 ± 0.039 3.229 ± 1.776 0.929 ± 0.041 2.696 ± 2.326 0.544 ± 0.077 62.23 ± 7.45 0.480 ± 0.100 67.86 ± 8.89 

AMROA → 
SKI10 0.974 ± 0.012 1.280 ± 1.484 0.977 ± 0.010 0.802 ± 1.139 0.738 ± 0.059 41.19 ± 7.08 0.675 ± 0.071 48.65 ± 7.94 

U-Net 

AMROA 0.925 ± 0.038 1.856 ± 0.997 0.907 ± 0.055 1.868 ± 1.336 0.545 ± 0.082 62.16 ± 7.62 0.462 ± 0.112 69.26 ± 9.86 
SKI10 0.973 ± 0.015 0.756 ± 0.995 0.978 ± 0.008 0.254 ± 0.340 0.728 ± 0.058 42.42 ± 6.88 0.674 ± 0.066 48.85 ± 7.55 
SKI10 → 
AMROA 

0.943 ± 0.032 1.071 ± 0.682 0.936 ± 0.038 1.436 ± 1.083 0.576 ± 0.078 59.18 ± 7.86 0.456 ± 0.115 69.76 ± 9.93 

AMROA → 
SKI10 0.975 ± 0.013 0.440 ± 0.492 0.979 ± 0.007 0.258 ± 0.288 0.731 ± 0.056 42.08 ± 6.74 0.670 ± 0.070 49.19 ± 7.84 

OAI ZIB Testing 

cGAN 

AMROA 0.939 ± 0.016 4.153 ± 1.962 0.914 ± 0.080 4.681 ± 3.197 0.611 ± 0.068 55.66 ± 7.10 0.601 ± 0.089 56.44 ± 9.14 
OAI ZIB 0.985 ± 0.002 0.328 ± 0.123 0.985 ± 0.003 0.293 ± 0.072 0.895 ± 0.023 18.92 ± 3.64 0.839 ± 0.040 27.55 ± 5.90 
OAI ZIB → 
AMROA 

0.961 ± 0.009 1.786 ± 1.202 0.961 ± 0.018 4.426 ± 2.902 0.641 ± 0.071 52.41 ± 7.87 0.738 ± 0.055 41.23 ± 6.70 

AMROA → OAI 
ZIB 0.985 ± 0.002 0.403 ± 0.268 0.985 ± 0.003 0.293 ± 0.068 0.897 ± 0.022 18.68 ± 3.57 0.837 ± 0.042 27.82 ± 6.19 

U-Net 

AMROA 0.934 ± 0.015 5.424 ± 2.799 0.915 ± 0.094 6.282 ± 3.647 0.643 ± 0.065 52.26 ± 7.03 0.626 ± 0.063 54.12 ± 6.74 
OAI ZIB 0.985 ± 0.002 0.388 ± 0.169 0.984 ± 0.003 0.304 ± 0.079 0.896 ± 0.020 18.83 ± 3.19 0.837 ± 0.038 27.80 ± 5.57 
OAI ZIB → 
AMROA 

0.966 ± 0.006 1.244 ± 0.791 0.961 ± 0.017 1.880 ± 1.133 0.734 ± 0.046 41.83 ± 5.82 0.741 ± 0.058 40.83 ± 6.97 

AMROA → OAI 
ZIB 

0.985 ± 0.002 0.390 ± 0.361 0.985 ± 0.003 0.327 ± 0.127 0.893 ± 0.023 19.24 ± 3.64 0.838 ± 0.037 27.75 ± 5.50 

SKI10/OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10/OAI ZIB dataset followed by network fine-tuning for 80 epochs on the AMROA dataset. 
AMROA → SKI10/OAI ZIB: Pretraining the network for 20 epochs on the AMROA dataset followed by network fine-tuning for 80 epochs on the SKI10/OAI ZIB dataset. 
Results are presented as mean ± standard deviation. 
Abbreviations: FB – femoral bone, TB – tibial bone, FC – femoral cartilage, TC – tibial cartilage, DSC - Sørensen–Dice similarity coefficient, ASD – average surface 
distance, VOE – volumetric overlap error. 
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objective) achieved a marginally lower accuracy for PCL segmentation 
(DSC = 0.641), compared to the best performing cGANs. 

(Lee et al., 2013) proposed a graph cut method for automatic ACL 
segmentation and attained a DSC score of 0.672, while (Paproki et al., 
2016) used a patch-based method for PCL segmentation to achieve a 
DSC score of 0.744. Using a 3D convolutional neural network (CNN), 
(Mallya et al., 2019) achieved DSC scores of 0.40 and 0.61 for ACL and 
PCL segmentations, respectively. When combining their 3D CNN with a 
deformable atlas-based segmentation method, their ACL (DSC = 0.84) 
and PCL (0.85) segmentation accuracies increased substantially. In 
general, 3D networks could provide higher segmentation accuracies 
especially for fine structures such as the cruciate ligaments that only 
appear on a few 2D slices in a 3D dataset. However, 2D segmentation 
techniques are useful for broader applicability, as 2D imaging is often 
faster and currently still more clinically employed than 3D imaging. 

The lower similarity scores achieved in our study compared to the 
other studies could arise from the use of 3D-FS SPGR images as source 
images during training as these are non-optimal for the segmentation of 
the cruciate ligaments due to their less than ideal soft tissue separation 
with surrounding structures and fluid. Fat-saturated proton-density- 
weighted fast spin echo or T2-weighted fast spin echo images are more 
suitable for segmentation purposes as shown by (Mallya et al., 2019) and 
(Paproki et al., 2016), respectively. These sequences are clinically used 
for cruciate ligament assessment due to their dark appearance and clear 
separation from fluid and other surrounding tissues. 

3.8. SKI10 and OAI ZIB: comparison to previous studies 

In this subsection, the segmentation results of the SKI10 and OAI ZIB 

datasets in this study are compared to those of previous studies. The 
cGAN and U-Net achieving the highest segmentation accuracy on these 
datasets is chosen for this purpose. 

3.8.1. SKI10 
The AMROA-pretrained / SKI10-retrained U-Net (L L1 loss objective) 

achieved a comparable ASD score for femoral bone (ASD = 0.44 mm) 
and an improved ASD score for tibial bone (ASD = 0.26 mm) to those 
reported by (Liu et al., 2017) and (Ambellan et al., 2019). However, the 
segmentation accuracies for femoral (VOE ≥ 42.2 %) and tibial (VOE ≥
47.6 %) cartilage achieved by our models were substantially lower. 

3.8.2. OAI ZIB 
The OAI ZIB-only trained cGAN trained with the L cGAN + λL L1 loss 

objective (λ = 100) and a 1 × 1 PixelGAN generated segmentations of 
femoral bone (DSC = 0.985) and tibial cartilage (DSC = 0.839) with the 
highest accuracy. AMROA-pretrained / OAI ZIB-retrained cGAN trained 
with the 1 × 1 PixelGAN and L cGAN + λL L1 loss objective (λ = 100) 
achieved the highest accuracy for tibial bone (DSC = 0.985) and femoral 
cartilage (DSC = 0.897) segmentation. The ASD of both the femoral 
(ASD = 0.33 mm) and tibial (ASD = 0.29 mm) bones were smaller than 
image resolution of the OAI DESS images (0.36 × 0.36 × 0.7 mm3). 
Although we achieve similar DSC scores for all tissues on the OAI ZIB 
dataset compared to those presented in (Ambellan et al., 2019), our ASD 
scores were larger. The pixel-wise error losses (L L1. L L2 and L SmL1) 
used to train the networks in our work were chosen to maintain an 
effective comparison between the cGAN and the U-Net. However, 
training our models with loss functions more traditionally used for 
segmentation purposes such as multi-class Dice similarity or cross 

Table 10 
Results of Transfer Learning. Comparison of segmentation performance of the proposed cGAN and U-Net without and with transfer learning and testing on the AMROA 
testing dataset. Highest DSCs achieved for each tissue are in bold.  

Transfer Learning Results 

AMROA Testing 
Network Training F Bone T Bone P Bone F Cartilage T Cartilage P Cartilage VM Muscle GM Muscle ACL PCL 

cGAN 

AMROA 0.971 ±
0.005 

0.953 ±
0.012 

0.947 ±
0.007 

0.849 ±
0.046 

0.804 ±
0.024 

0.869 ±
0.053 

0.812 ±
0.066 

0.869 ±
0.069 

0.618 ±
0.140 

0.613 ±
0.143 

SKI10 
0.940 ±
0.024 

0.947 ±
0.013  

0.735 ±
0.005 

0.561 ±
0.190      

OAI ZIB 
0.962 ±
0.009 

0.951 ±
0.010  

0.817 ±
0.032 

0.790 ±
0.014      

SKI10 → 
AMROA 

0.970 ±
0.008 

0.961 ±
0.004 

0.940 ±
0.001 

0.871 ±
0.029 

0.774 ±
0.039 

0.858 ±
0.038 

0.922 ± 
0.037 

0.897 ±
0.057 

0.586 ±
0.043 

0.468 ±
0.186 

OAI ZIB → 
AMROA 

0.972 ±
0.003 

0.962 ±
0.001 

0.947 ±
0.001 

0.875 ±
0.026 

0.811 ±
0.042 

0.879 ±
0.022 

0.908 ±
0.053 

0.909 ± 
0.077 

0.664 ±
0.058 

0.652 ± 
0.112 

AMROA → 
SKI10 

0.954 ±
0.015 

0.949 ±
0.005  

0.761 ±
0.025 

0.544 ±
0.085      

AMROA → 
OAI ZIB 

0.960 ±
0.007 

0.951 ±
0.012  

0.821 ±
0.042 

0.815 ±
0.015       

U-Net 

AMROA 0.972 ±
0.006 

0.960 ±
0.001 

0.941 ±
0.010 

0.886 ±
0.007 

0.834 ± 
0.010 

0.890 ±
0.034 

0.000 ±
0.000 

0.000 ±
0.000 

0.643 ±
0.153 

0.641 ±
0.008 

SKI10 0.937 ±
0.031 

0.944 ±
0.026  

0.754 ±
0.009 

0.637 ±
0.044      

OAI ZIB 
0.959 ±
0.003 

0.953 ±
0.010  

0.820 ±
0.026 

0.798 ±
0.012      

SKI10 → 
AMROA 

0.974 ± 
0.003 

0.965 ± 
0.000 

0.947 ±
0.004 

0.879 ±
0.012 

0.815 ±
0.016 

0.896 ±
0.031 

0.000 ±
0.000 

0.000 ±
0.000 

0.665 ± 
0.114 

0.000 ±
0.000 

OAI ZIB → 
AMROA 

0.973 ±
0.004 

0.964 ±
0.005 

0.948 ± 
0.005 

0.893 ± 
0.010 

0.817 ±
0.043 

0.898 ± 
0.011 

0.000 ±
0.000 

0.000 ±
0.000 

0.648 ±
0.104 

0.000 ±
0.000 

AMROA → 
SKI10 

0.950 ±
0.031 

0.959 ±
0.002  

0.758 ±
0.010 

0.681 ±
0.009      

AMROA → 
OAI ZIB 

0.962 ±
0.006 

0.951 ±
0.010  

0.813 ±
0.032 

0.790 ±
0.039      

SKI10/OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10/OAI ZIB dataset followed by network fine-tuning for 80 epochs on the AMROA dataset. 
AMROA → SKI10/OAI ZIB: Pretraining the network for 20 epochs on the AMROA dataset followed by network fine-tuning for 80 epochs on the SKI10/OAI ZIB dataset. 
Abbreviations: FB – femoral bone, TB – tibial bone, PB – patellar bone, FC – femoral cartilage, TC – tibial cartilage, PC – patellar cartilage, VM Muscle - vastus medialis 
muscle, GM Muscle – medial head of gastrocnemius medialis muscle, ACL – anterior cruciate ligament, PCL – posterior cruciate ligament, DSC - Sørensen–Dice 
similarity coefficient. 
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Fig. 9. Results of Transfer Learning: 
SKI10 and OAI ZIB. Assessing the in
fluence of transfer learning on seg
mentation performance of cGAN and U- 
Net when tested on the SKI10 and OAI 
ZIB test datasets. 
SKI10 / OAI ZIB → AMROA: Pretrain
ing the network for 20 epochs on the 
SKI10 / OAI ZIB training dataset fol
lowed by network fine-tuning for 80 
epochs on the AMROA training dataset. 
AMROA → SKI10 / OAI ZIB: Pretrain
ing the network for 20 epochs on the 
AMROA training dataset followed by 
network fine-tuning for 80 epochs on 
the SKI10 / OAI ZIB training dataset.   
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Fig. 10. Results of Transfer Learning: AMROA. Assessing the influence of transfer learning on segmentation performance of cGAN and U-Net when tested on the 
AMROA test datasets. 
SKI10 / OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10 / OAI ZIB training dataset followed by network fine-tuning for 80 epochs on the 
AMROA training dataset. 
AMROA → SKI10 / OAI ZIB: Pretraining the network for 20 epochs on the AMROA training dataset followed by network fine-tuning for 80 epochs on the SKI10 / OAI 
ZIB training dataset. 

D.A. Kessler et al.                                                                                                                                                                                                                               



Computerized Medical Imaging and Graphics 86 (2020) 101793

18

entropy might lead to more comparable results for 
boundary-distance-based metrics. 

3.9. Limitations 

The network performances are depended on the accuracy of the 
ground truth segmentations. Inaccuracies or errors in the segmentation 
maps could result in a less accurate network, especially when trained on 
a low number of image volumes, as done in this study. Additionally, 
training a network on a low number of high-quality images restricts the 
networks applicability to only highly controlled studies with homoge
neous data. Therefore, the networks trained in this study might be 
limited in their application in clinical settings where high image quality 
is not always achievable due to patient conditions and operator 
variabilities. 

Network training on 2D MR image slices is considerably less 
computationally demanding than on 3D volumes. For the purposes of 
this study such as investigating the effects of training with different loss 
objectives and cGAN discriminator networks, it was sufficient to train on 
2D images. Nevertheless, the segmentation of small knee joint struc
tures, such as the cruciate ligaments, could benefit from 3D networks 
that should add spatial continuity along the slice dimension. 

Furthermore, the segmentation results presented in this study are 
from standalone networks without further processing within a pipeline. 
Therefore, the obtained results, especially for cartilage segmentation, 
are not comparable to those from current state-of-the-art pipeline 
methods such as described by (Liu et al., 2017) and (Ambellan et al., 
2019) that initially perform automated segmentation using a CNN fol
lowed by further refinement using deformable or statistical shape 
models, respectively. 

Lastly, additional investigations into varying the network architec
tures and optimisation strategies are warranted, with ever more loss 
functions as well as layer combination and optimisation strategies 
continuously being developed. 

4. Conclusion 

This work demonstrated the usage of a cGAN, using a U-Net gener
ator with a PatchGAN discriminator, for the purpose of automatically 
segmenting multiple knee joint tissues on MR images. While DSC > 0.95 
were achieved for all segmented bone structures and DSC > 0.83 for 

cartilage and muscle tissues, DSC of only ≈0.66 were achieved for cru
ciate ligament segmentations. Nevertheless, this segmentation perfor
mance was attained despite the low number of subjects (N = 8) for 
training on the local dataset. Although the U-Net outperformed the 
cGAN in most knee joint tissue segmentations, this study provides an 
optimal platform for future technical developments for utilising cGANs 
for segmentation tasks. By enabling automated and simultaneous seg
mentation of multiple tissues we hope to increase the accuracy and time 
efficiency for evaluating joint health in osteoarthritis. 
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Appendix A 

Network Description 

Generator: The encoding part of the generator network consists of the repeated application of nine 4 × 4 convolutions with stride 2, down-sampling 
the input by a factor of 2 at each layer. Each convolution is followed by a batch normalisation layer (except the first layer) and a leaky rectified linear 
unit (leaky ReLU) with slope 0.2. During the first encoding step the number of feature channels is changed from 3 to 64. At the subsequent three 
encoding steps, the number of feature channels is doubled (64–512), while the following five are kept at 512. In the ensuing decoding part, the input is 
repeatedly up-sampled by a factor of 2 by nine 4 × 4 transpose convolutional layers with stride 2 and additional skip connections (concatenations) 
between each layer i and 9-i, changing the number of feature channels at each step. The first four decoder convolutions are followed by batch 
normalisation, dropout (50 %) and a ReLU. The next four decoder convolutions are followed by batch normalisation and a ReLU without dropout. 
After the final layer a convolution followed by a Tanh activation layer is applied to generate the segmentation map. 

Total number of parameters: 66.999 M   

Training time (s/epoch): AMROA: 
135 (cGAN with 1 × 1 PixelGAN) 
130 (cGAN with 70 × 70 PatchGAN) 
100 (U-Net) 

SKI10: 380 (cGAN with 1 × 1 PixelGAN) 
210 (U-Net) 

OAI ZIB: 2710 (cGAN with 1 × 1 PixelGAN) 
1530 (U-Net)  

Generator with five convolutions in encoder/decoder: In this generator network, the encoding part consists of the repeated application of five 4 × 4 
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convolutions with stride 2, down-sampling the input by a factor of 2 at each layer. In the ensuing decoding part, the input is repeatedly up-sampled by 
a factor of 2 by five 4 × 4 transpose convolutional layers with stride 2 and additional skip connections between each layer i and 5-i. 

Total number of parameters: 16.659 M   

Training time (s/epoch): AMROA: 110 (cGAN with 70 × 70 PatchGAN) 
90 (U-Net)  

Generator with seven convolutions in encoder/decoder: The encoding part consists of the repeated application of seven 4 × 4 convolutions with 
stride 2, down-sampling the input by a factor of 2 at each layer. In the subsequent decoding part, the input is repeatedly up-sampled by a factor of 2 by 
seven 4 × 4 transpose convolutional layers with stride 2 and additional skip connections between each layer i and 7-i. 

Total number of parameters: 41.829 M   

Training time (s/epoch): AMROA: 120 (cGAN with 70 × 70 PatchGAN) 
100 (U-Net)  

Generator with 16 as minimum number of feature channels: In this network, the number of feature channels is changed from 3 to 16 during the first 
encoding step. During the following three encoding steps, the number of feature channels is doubled (16–128), while the subsequent five are kept at 
128. 

Total number of parameters: 4.191 M   

Training time (s/epoch): AMROA: 105 (cGAN with 70 × 70 PatchGAN) 
70 (U-Net)  

Generator with 32 as minimum number of feature channels: The number of feature channels is changed from 3 to 32 during the first encoding step. 
In the following three encoding steps, the number of feature channels is doubled (32–256), while the subsequent five are kept at 256. 

Total number of parameters: 16.755 M   

Training time (s/epoch): AMROA: 100 (cGAN with 70 × 70 PatchGAN) 
75 (U-Net)  

Generator with 128 as minimum number of feature channels: In the first encoding step the number of feature channels is changed from 3 to 128. In 
the following three encoding steps, the number of feature channels is doubled (128–1024), while the subsequent five are kept at 1024. 

Total number of parameters: 267.953 M   

Training time (s/epoch): AMROA: 245 (cGAN with 70 × 70 PatchGAN) 
220 (U-Net)  

Discriminator: 
70 × 70 PatchGAN: The discriminator network repeatedly down-samples the input by applying three 4 × 4 convolutions with stride 2 followed by 

two 4 × 4 convolutions with stride 1. Each convolution during down-sampling is followed by a batch normalisation layer (except the first and last 
layer) and a leaky ReLU (slope 0.2) (except for the last layer). The number of feature channels are doubled (64–512) during the first four convolutional 
steps. The final convolutional layer is proceeded by a Sigmoid activation layer. 

Total number of parameters: 2.769 M 
1 × 1 PatchGAN (PixelGAN): This PixelGAN discriminator network applies three 1 × 1 convolutions with stride 1, where the first convolution is 

followed by a leaky ReLU (slope 0.2), the second convolution by a batch normalisation layer and a leaky ReLU (slope 0.2) and the final convolution by 
a Sigmoid activation function. The number of feature channels are doubled (64–128) during the first two convolutions. 

Total number of parameters: 0.009 M 
34 × 34 PatchGAN: This network repetitively down-samples the input by using two 4 × 4 convolutions with stride 2 followed by two 4 × 4 

convolutions with stride 1. Each convolution is followed by a batch normalisation layer (except the first and last layer) and a leaky ReLU (slope 0.2) 
(except for the last layer). The number of feature channels are doubled (64–256) during the first three convolutional steps. The final layer is ensued by 
a Sigmoid activation layer. 

Total number of parameters: 0.666 M 
286 × 286 PatchGAN: This discriminator network consists of eight convolutional layers with 4 × 4 spatial filters. The first 6 convolutions have 

stride 2 while the last two have stride 1. Each convolutional layer is followed by a batch normalisation layer (except the first and last layer) and a leaky 
ReLU (slope 0.2) (except for the last layer). The number of feature channels are doubled (64–512) during the first four convolutions and kept at 512 for 
the ensuing layers. A Sigmoid activation layer succeeds the final convolution. 

Total number of parameters: 11.159 M 
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