- 1 Genomic serotyping, clinical manifestations, and antimicrobial resistance of non-typhoidal
- 2 Salmonella gastroenteritis in hospitalized children in Ho Chi Minh City, Vietnam
- 3
- 4 Vu Thuy Duong 1,2,† , Hao Chung The 1,† , Tran Do Hoang Nhu 1 , Ha Thanh Tuyen 1 ,
- 5 James I Campbell¹, Pham Van Minh¹, Hoang Le Phuc², Tran Thi Hong Chau¹,
- 6 Nguyen Minh Ngoc 3 , Lu Lan Vi 4 , Alison E. Mather 5,6 and Stephen Baker 7,*
- 7

8

- ¹ The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University
- 9 Clinical Research Unit, Ho Chi Minh City, Vietnam
- $10~^2$ Children's Hospital No. 1, Ho Chi Minh City, Vietnam
- 11 ³ Children's Hospital No. 2, Ho Chi Minh City, Vietnam
- 12 ⁴ The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- 13 ⁵ Quadram Institute Bioscience, Norwich, United Kingdom
- 14 ⁶ University of East Anglia, Norwich, United Kingdom
- 15 ⁷ Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of
- 16 Cambridge, Cambridge, United Kingdom
- 17 †: These authors contributed equally to the work; authorship position was decided by individual who
- 18 devised the original concept and protocol
- 19 * Corresponding author: Professor Stephen Baker. Cambridge Institute of Therapeutic Immunology &
- 20 Infectious Disease (CITIID) Level 5 Jeffery Cheah Biomedical Centre
- 21 Cambridge Biomedical Campus, Department of Medicine, University of Cambridge
- 22 Cambridge CB2 0AW; United Kingdom Tel:+44 1223 336513 Email: sgb47@medschl.cam.ac.uk
- 23 Running title
- 24 Non-typhoidal Salmonella gastroenteritis in children
- 25 Keywords
- 26 Non-typhoidal Salmonella, Salmonella serovars, genomic serotyping, paediatric diarrhoea,
- 27 antimicrobial resistance, multidrug resistance.

28 Abstract

29	Nontyphoidal Salmonella (NTS) are among the most common aetiological agents of diarrhoeal
30	diseases worldwide and have become the most commonly detected bacterial pathogen in children
31	hospitalised with diarrhoea in Vietnam. Aiming to better understand the epidemiology, serovar
32	distribution, antimicrobial resistance (AMR), and clinical manifestation of NTS gastroenteritis in
33	Vietnam, we conducted a clinical genomics investigation of NTS isolated from diarrheal children
34	admitted to one of three tertiary hospitals in Ho Chi Minh City. Between May 2014 and April
35	2016, 3,166 children hospitalized with dysentery were recruited into the study; 478 (~15%)
36	children were found to be infected with NTS by stool culture. Molecular serotyping of the 450
37	generated genomes identified a diverse collection of serogroups (B, C1, C2-C3, D1, E1, G, I, K,
38	N, O, Q); however, S. Typhimurium was the most predominant serovar, accounting for 41.8%
39	(188/450) of NTS isolates. We observed a high prevalence of AMR to first line treatments
40	recommended by WHO and more than half (53.8%, 242/450) of NTS isolates were multi-drug
41	resistant (MDR; resistant to \geq 3 antimicrobial classes). AMR gene detection positively correlated
42	with phenotypic AMR testing, and resistance to empirical antimicrobials was associated with a
43	significantly longer hospitalization (0.91 days, $p=0.04$). Our work shows that genome sequencing
44	is a powerful epidemiological tool to characterize the serovar diversity and AMR profiles in NTS.
45	We propose a revaluation of empirical antimicrobials for dysenteric diarrhoea and endorse the use
46	of whole genome sequencing for sustained surveillance of NTS internationally.

JCM

2

Journal of Clinical Microbiology

47 Introduction

With an estimated 93.8 million cases (5th-95th percentile, 61.8-131.6 million) of gastroenteritis
recorded globally per annum, Nontyphoidal *Salmonella* (NTS) are among the most common
etiological agents of diarrheal diseases worldwide. This burden disproportionally affects young
children in Asia and Africa, and results in ~155,000 deaths per year (5th-95th percentile, 39,000303,000) (1, 2).

53

54	The Salmonellae are a genus of Gram-negative bacteria belonging to the Enterobacteriaceae
55	family. The genus is classified into two species: Salmonella enterica and Salmonella bongori,
56	with S. enterica comprised of a further six subspecies (3). Salmonella enterica subsp. enterica
57	includes >2,500 serovars, which can cause a wide range of disease in humans and animals. This
58	extensive diversity points to the ancestral origin of this subspecies, with Salmonella being
59	recovered from human remnants dating back >6,500 years ago (4). Infections caused by different
60	NTS serovars can present with differing pathology, epidemiology, clinical presentations, and
61	antimicrobial resistance (AMR) profiles. Clinically, NTS infections are usually observed as acute
62	gastroenteritis with the onset of fever, vomiting, abdominal cramp and diarrhea (5). These
63	symptoms are typically self-limiting and resolve within 5-7 days. Consequently, antimicrobial
64	treatment is deemed unnecessary and is generally not recommended (6, 7). However,
65	salmonellosis can also result in invasive diseases (i.e. bloodstream infection) in immuno-
66	compromised patients, which has a high mortality rate (8, 9). Therefore, antimicrobials remain
67	crucial for the treatment of some Salmonella infections, especially in high-risk patients (7, 10).
68	Currently, the WHO guidelines for treatment of paediatric diarrhoea recommend the use of low
69	osmolarity oral rehydration solution (ORS), zinc, and antimicrobials for all patients with bloody
70	diarrhea, irrespective of their age (11, 12). The drug of first choice is ciprofloxacin or one of the
71	three second-line alternatives: pivmecillinam, azithromycin, or ceftriaxone.
70	

72

Journal of Clinical Microbiology

74	Vietnam has undergone rapid economic transition, with improved sanitation, accelerated
75	urbanization and changes in the food production and supply chains. This development has been
76	followed by a shift in the key causes of bacterial enteric infections; NTS has now become the
77	most common bacterial etiology for children hospitalized with diarrheal illnesses (13, 14). This
78	pattern now more closely resembles the distribution of diarrheal infections in children in high
79	income countries (15, 16). However, despite these apparent changes in the dynamics of enteric
80	bacteria, the epidemiology, serovar distribution, AMR, and clinical manifestation of NTS
81	gastroenteritis have not been characterized at scale in Vietnam. The introduction of whole
82	genome sequencing (WGS) and analysis as a routine methodology in Low- and Middle-Income
83	Countries (LMICs), such as Vietnam, offers an opportunity for highly detailed molecular
84	serotyping and genotyping to infer detailed epidemiological insights. In this study, we employed
85	genomic analysis to describe some epidemiological features of the most common NTS serovars
86	isolated from diarrheal children admitted to one of three tertiary hospitals in Ho Chi Minh City
87	(HCMC), Vietnam.
88	
89	Materials and Methods
89 90	Materials and Methods Ethics approval and consent to participate
90	Ethics approval and consent to participate
90 91	<i>Ethics approval and consent to participate</i> This study was approved by Ethics Committees of participating local hospitals and the University
90 91 92	<i>Ethics approval and consent to participate</i> This study was approved by Ethics Committees of participating local hospitals and the University of Oxford Tropical Research Ethics Committee (OxTREC No. 1045-13), as detailed previously
90 91 92 93	<i>Ethics approval and consent to participate</i> This study was approved by Ethics Committees of participating local hospitals and the University of Oxford Tropical Research Ethics Committee (OxTREC No. 1045-13), as detailed previously (14). Written consent from parents or legal guardians of all participants was obtained prior to
90 91 92 93 94	<i>Ethics approval and consent to participate</i> This study was approved by Ethics Committees of participating local hospitals and the University of Oxford Tropical Research Ethics Committee (OxTREC No. 1045-13), as detailed previously (14). Written consent from parents or legal guardians of all participants was obtained prior to

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

98 Children's Hospital No. 1, Children's Hospital No. 2 and the Hospital of Tropical Diseases in

Accepted Manuscript Posted Online

99	HCMC, Vietnam from May 2014 to April 2016. Children (aged <16 years) hospitalized with
100	diarrhea, defined as \geq 3 passages of loose stools within 24 hours along with at least one loose stool
101	containing blood and/or mucus were recruited into the study (12). Children were not eligible if
102	they had suspected or confirmed intussusception at the time of enrolment. Following enrolment, a
103	short questionnaire (requesting clinical and demographic information) was completed, and a fecal
104	sample was collected and processed within 24 hours. All enrolled patients were provided with the
105	routine standard of care practices, which may have included treatment with antimicrobials.
106	
107	Microbiological culture and antimicrobial susceptibility
108	Fecal specimens were inoculated onto MacConkey agar (MC, Oxoid), xylose-lysine-
109	deoxycholate agar (XLD, Oxoid), and into selenite broth (Oxoid) and incubated at 37°C for 18-24
110	hours. Presumptive Salmonella was detected based on colony morphology on XLD and MC agar,
111	and confirmed using matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF)
112	mass spectrometry (Bruker) (12).
113	
114	Antimicrobial susceptibility testing was performed using the Kirby-Bauer disc diffusion method
115	on Mueller-Hinton agar (Oxoid) for confirmed Salmonella isolates, interpreted using the updated
116	CLSI Guidelines (17). The tested antimicrobial agents (Oxoid) included nalidixic acid (30µg),
117	ciprofloxacin (5µg), trimethoprim-sulfamethoxazole (co-trimoxazole; 1.25/23.75µg), ceftriaxone
118	(30µg), ceftazidime (30µg), ampicillin (10µg), amoxicillin-clavulanate (20/10µg), azithromycin
110	

119 (15µg), chloramphenicol (30µg), gentamicin (10µg), amikacin (30µg) and imipenem (10µg). For

- 120 Salmonella spp., susceptibility to aminoglycosides in vitro does not translate into clinical
- 121 effectiveness, and thus it was not reported (17). Multi-drug resistance (MDR) was defined as non-
- 122 susceptibility to ≥ 1 agent in ≥ 3 antimicrobial categories (14).
- 123

Microbiology

S U

Journal of Clinical

124 Whole genome sequencing and in silico Salmonella serovar typing

127	more genome sequencing and in sinco balmonena serviar typing
125	Total genomic DNA was extracted from retrieved confirmed Salmonella specimen (N=460) using
126	the Wizard genomic DNA extraction Kit (Promega, USA) and sent to the Wellcome Trust Sanger
127	Institute (WTSI) for WGS using the Illumina HiSeq 2500 platform, generating paired end reads
128	(125bp x2) (18). Raw sequences in FASTQ format were subjected to built-in quality checking
129	pipeline at WTSI, as described previously (19), and input into Kraken (v0.10.6) for taxonomic
130	identification by comparison to a pre-set database (20). We performed a de novo sequence
131	assembly using Velvet v1.2.03 and VelvetOptimizer for each isolate (21), and each read set was
132	mapped back to the corresponding assembly to improve assembly accuracy, as performed in the
133	WTSI analysis pipeline (22). The median number of contigs and N50 statistic per assembly were
134	44 (IQR: 30 – 56) and 370,546 (IQR: 283,058 – 576,586), indicating that the assemblies were of
135	sufficient quality to be used for downstream genomic analyses.
136	
137	In silico molecular serotyping for Salmonella was performed for individual genome assembly
138	using the Salmonella In Silico Typing Resource (SISTR) (23). The analysis was based on the
139	Multi-Locus Sequence Typing (MLST) scheme for Salmonella, and serovar prediction was based
140	on identification of genetic elements coding for the O (somatic) and H (flagellar) antigens.
141	Additionally, we performed the read-based serotyping method for Salmonella (SeqSero2) for all
142	sequenced NTS (24), and compare these outputs with those generated by SISTR.
143	
144	Identification of antimicrobial resistance genes
145	AMR genes were predicted from the raw sequencing reads of each isolate using ARIBA (25)
146	(version 0.4.1), which identifies AMR determinants by assembly and alignment. A manually
147	curated input database of known resistance genes in FASTA format, taken from the CARD
148	database (McMaster University; accessed on 21st March 2017), was used as the reference

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

149 database. Resistance determinants were identified if they were predicted to be functional proteins

150	(no truncations or premature stop codons) and fit the criteria of \geq 95% nucleotide identity and
151	≥50% sequence length matching. The output from ARIBA was manually curated to generate a list
152	of high-confidence hits of acquired AMR genes. Chromosomal mutations in the quinolone
153	resistance determining region (QRDR) were manually detected in gyrA, gyrB, parC and parE.
154	
155	Correlation of susceptibility phenotypes and genotypes
156	The presence of AMR determinants, as identified by ARIBA, indicates a non-susceptible
157	genotype to the corresponding antimicrobial. The phenotypic nonsusceptibility to all tested
158	antimicrobials in our Salmonella collection was compiled, with intermediate phenotypes
159	interpreted as non-susceptible. To determine the correlation of antimicrobial susceptibility
160	phenotypes and genotypes, we calculated the sensitivity, specificity, positive predictive value
161	(PPV) and negative predictive value (NPV) of the presence/absence of AMR genes, using the
162	phenotypic data as the gold standard.
163	
164	Demographic and clinical data analysis
165	Clinical and demographic data were collected from all anonymized participants and processed
166	and analyzed using Stata v11 (StataCorp, College Station, TX, USA). The growth status of
167	participants was assessed using the WHO global database on growth and nutrition, and
168	Prevention and Management of Obesity for Children and Adolescents-Healthcare guidelines,
168 169	Prevention and Management of Obesity for Children and Adolescents-Healthcare guidelines, using the "macro" package of Stata v11 developed by WHO (26, 27). Hemoglobin concentration
169	using the "macro" package of Stata v11 developed by WHO (26, 27). Hemoglobin concentration
169 170	using the "macro" package of Stata v11 developed by WHO (26, 27). Hemoglobin concentration cut-off for anemia diagnosis was assessed using the recommended WHO guidelines (28). The
169 170 171	using the "macro" package of Stata v11 developed by WHO (26, 27). Hemoglobin concentration cut-off for anemia diagnosis was assessed using the recommended WHO guidelines (28). The demographic (age, sex, nutritional status, anemia status), clinical (diarrhea type, number of

Journal of Clinica

175 variables). Resulting p-values were corrected for multiple hypothesis testing (Bonferroni

176 correction). Data analysis and visualization were performed using R v3.6.3 (29).

177

178 Availability of data and materials

179 The raw sequence data generated from this study are available in the European Nucleotide

180 Archive (ENA) under the project number PRJEB9121 (ERR1764086 – ERR1764359;

181 ERR1788605 – ERR1788707; ERR1821189 – ERR1821283; ERR1837087 – ERR1837088).

182

183 Results

184 Clinical manifestations of non-typhoidal Salmonella infections

185 Between May 2014 and April 2016, 3,166 children hospitalized with dysentery were recruited

186 into the study (14); 478 (~15%) children were identified to be infected with NTS by stool culture.

187 However, the bacteria were successfully retrieved and subjected to WGS for 460 cases. Three

188 isolates failed during WGS due to low DNA yield. Subsequent quality control showed that

189 additional seven isolates were contaminated with other bacteria (Escherichia coli, Citrobacter,

190 Pseudomonas). Therefore, the downstream analyses were performed on 450 NTS organisms and

associated metadata. More than half of these children were male (272/450; 60.3%), with the age

192 ranging from 1 to 135 months (median 9 months, IQR 6.4-14.9 months); 22.4% (101/450) of

193 children were <6 months of age. These children had a median of 2 days of symptoms (IQR: 2-4

194 days) before hospitalization. One third of this population had an abnormal growth status, with

195 22.2% (100/450) being overweighed/obese and 12.5% (56/450) being wasted/severely wasted

196 (Table 1). Hemoglobin concentrations, according to WHO guidelines, showed that 32.9% of these

197 children were anemic (148/450). Sixty percent (274/450) of these children were hospitalized for

acute bloody diarrhea; the remainder had mucoid diarrhea without visible blood (Table 1).

199 Profuse diarrhea was commonly recorded with an average of 10 episodes in 24-hour period (IQR:

200 6-10 episodes). Other symptoms, including fever (294/450, 65.3%) and vomiting (190/450,

Journal of Clinica

ournal of Clinica

201 42.2%), were also frequent. Most children (except for 25 cases) were assessed not to be

202 dehydrated. No severe sequelae or death were recorded.

203

204 The temporal distribution of Salmonella sequence types

205 Molecular serotyping was performed on each of the 450 assembled genomes, all of which were

206 assigned a serotype (Table 2). Serotyping results were largely consistent between the two

207 employed methods (SISTR and SeqSero2), with mismatch in only 4 isolates (<1%). For

208 consistency, the serotyping results presented herein were derived from the SISTR output. All but

209 two (houtenae and salamae) NTS isolates were identified as subspecies enterica, and comprised

210 of diverse collection of serogroups (B, C1, C2-C3, D1, E1, G, I, K, N, O, and Q). Accounting for

211 41.8% (188/450) of isolates, S. Typhimurium was the most predominant serovar. This serovar

212 was comprised of three sequence types (STs). More than two thirds (133/188) of these S.

213 Typhimurium were ST34, with the majority being monophasic (n=120) based on the presence of Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

214 only one flagellar H antigen gene copy (antigenic formula: 4,[5],12:i:-) (30). The biphasic S.

215 Typhimurium (ST36, ST19 and ST34) were associated with infection in 30, 25 and 13 cases,

216 respectively. Other common serovars included S. Stanley ST29 (62/450, 13.8%), and S.

217 Weltevreden ST365 (34/450, 7.6%). S. Newport (29/450, 6.4%) consisted of four different STs,

218 including ST46 (n=22), ST31 (n=5), ST2366 (n=1) and ST2855 (n=1). Other serovars (with at

219 most 10 cases) included Kentucky (ST198), Bovismorbificans, Rissen, Saintpaul, Virchow, etc.

220 (Table 2). Furthermore, 34 serovars were detected and associated with a limited number of cases 221 (1-5 cases).

222

223 The eight most common STs (≥ 10 cases) accounted for ~73% of all NTS and were comprised of

224 ST34, ST29, ST36, ST365, ST19, ST46, ST11, and ST198. The temporal distribution of the

225 diarrheal cases caused by these eight STs is shown in Figure 1. In 2015, the absolute number of

226 NTS cases increased from March and peaked in May and September, followed by a rapid decline.

229	genotypes, with S. Typhimurium
230	investigational period. The eight
231	S. Enteritidis (ST11) and S. Kentu
232	
233	High concordance between antim
234	The majority of NTS were suscept
235	over half of the collection exhibit
236	ciprofloxacin was comparatively
237	to this antimicrobial. Corresponde
238	Resistance against trimethoprim-
239	and azithromycin (18%) were con
240	more than half (53.8%, 242/450)
241	
242	We exploited in silico methods to
243	in all the NTS genomes. The prev
244	corresponding antimicrobial class
245	detected AMR genes (classified b
246	(Table 3).
247	
248	Quinolone resistance is mediated
249	(QRDR; gyrA-83, gyrA-87 and po
250	resistance genes (PMQR) (31). A
251	(Table S2) leading to palidivic a

227 This pattern coincides with the duration of the rainy season in Southern Vietnam (from April to 228 October). Over time, there was no apparent change in the proportional distribution of NTS 229 genotypes, with S. Typhimurium (ST34) dominating the epidemiological landscape during our most common STs could be detected throughout the study, with tucky (ST198) more apparent during periods with more cases. nicrobial resistance genotype and phenotype ptible to imipenem (445/450) and amikacin (447/450); whereas ted resistance to ampicillin and chloramphenicol. Resistance to low (39/450), but 221 isolates exhibited reduced susceptibility lingly, ~58% of the NTS were non-susceptible to ciprofloxacin. sulfamethoxazole (38%), 3rd generation cephalosporins (13%), mparatively low. Consistent with a high prevalence of resistance, of NTS isolates were determined to be MDR. o detect the AMR determinants (acquired genes and mutations) valence of all detected AMR genes alongside with their ses is shown in Table S1. Subsequently, we assessed how

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

by antimicrobial class) could predict phenotypic resistance

by mutations in the quinolone resistance determining region

parC-80) and/or the acquisition of plasmid-mediated quinolone At least one QRDR mutation was detected in 38 isolates (8.4%)

251 (Table S2), leading to nalidixic acid resistance. PMQR were present in around half the collection,

252 with qnrS1 identified in 47.8% of the isolates (215/450), followed by aac(6')-lb-cr, qnrS2, qnrB6,

253	qnrD1, oqxAB and patA. The carriage of QRDR mutations and/or PMQR predicted nalidixic acid
254	resistance with a sensitivity of 96.2% and the specificity of 73.4%. Seven different QRDR
255	mutations were identified; 11 isolates harbored triple mutations associated with resistance to
256	ciprofloxacin (Table S2). These organisms included 10 S. Kentucky ST198 (gyrA-S83F, gyrA-
257	D87N, and parC-S80I) and one S. Indiana ST17 (gyrA-S83F, gyrA-D87G, and parC-S80R).
258	Additionally, ciprofloxacin resistance was associated with the presence of PMQR in either a
259	single QRDR mutation (n=7) or no mutation (n=20) background (Table S2). The presence of
260	QRDR mutations and/or PMQR could explain non-susceptibility to ciprofloxacin with 90.8%
261	sensitivity and 93.2% specificity.
262	
263	The most commonly identified β -lactamases were $bla_{\text{TEM-95}}$ (58.7%, 264/450) and $bla_{\text{CTX-M-55}}$
264	(11.6%, 52/450). The presence of β -lactamases corresponded with resistance to different β -
265	lactams, including ampicillin (97.2% sensitivity, 99.4% specificity), and 3 rd generation
266	cephalosporins (91.2% sensitivity, 99.2% specificity). Resistance to the latter was associated with
267	bla _{CTX-M} extended-spectrum beta-lactamases (ESBLs) (present in 55/450 isolates). The
268	carbapenemase <i>bla</i> _{NDM-1} was present in one <i>S</i> . Typhimurium ST34, but phenotypic testing found
269	it susceptible to imipenem. Resistance to azithromycin has been reported previously in
270	Salmonella, and is chiefly attributed to the presence of the macrolide inactivation gene cluster
271	(mphA-mrx-mphR) within a Salmonella genomic island (SARGI) (32). Herein, 58 NTS isolates
272	carried the mphA-mrx construct, followed by other less common macrolide resistance genes such
273	as ermF, ermT, ermB and mefB. A genotype-phenotype comparison demonstrated that the
274	presence of these genes was in high concordance with macrolide resistance (98.1% specificity).
275	
276	Sulphonamide resistance was conferred by sul2, sul3 and sul1, which were present in 237, 116
277	and 33 of 450 NTS isolates respectively. Resistance to trimethoprim could be explained by

278

270	universities (universities) with universities (universities) and universities (universities) being the most
279	common. Genotypic prediction for trimethoprim-sulfamethoxazole resistance was calculated by
280	combining the presence of both <i>sul</i> and <i>dfr</i> genes in each isolate, resulting in high sensitivity
281	(94.2%) and specificity (98.6%). A large number of aminoglycoside resistance genes was
282	prevalent, including the <i>aac(3), aac(6), aph</i> and <i>aad</i> families. Each of these is known to confer
283	resistance to a distinct class of aminoglycosides (Table S1). We observed a high concordance in
284	genotype-phenotype prediction for gentamicin (Table 3). However, in some instances, the
285	presence of these genes did not translate to phenotypic resistance. For example, $aac(6')$ -Iy is
286	chromosomally encoded and specific to Salmonella, but it is not usually transcribed due to the
287	absence of an upstream promoter (33). This resulted in the observed genotype-phenotype
288	mismatch in resistance to amikacin.
289	
290	Antimicrobial resistance differs between the major Salmonella sequence types
291	We proceeded to compare the AMR profiles of the eight most common STs (Figure 2A) in order
292	to gain insights into potential broader treatment strategies. There was significant variation in the
293	AMR profile of these major STs. Nearly 80% (149/188) of S. Typhimurium were MDR, with the
294	majority of the biphasic ST19 and ST36 exhibiting non-susceptibility to four antimicrobial
295	classes (ampicillin/amoxicillin-clavulanate, chloramphenicol, ciprofloxacin, and co-trimoxazole).
296	This profile was due to the acquisition of the corresponding <i>bla</i> _{TEM-95} , <i>floR</i> , <i>qnrS1</i> , and <i>dfrA12-sul</i>
297	(Figure 2B). S. Typhimurium ST34 displayed a more variable AMR profile, with 33.8%, 30.8%
298	and 14.3% of these organisms non-susceptible to three, four and five antimicrobial classes,
299	respectively. Noticeably, the presence of <i>bla</i> _{CTX-M} or <i>mphA-mrx</i> was more frequent in ST34
300	(~25%), resulting to marked increase in the resistance to ceftriaxone and azithromycin,
301	respectively. A high proportion of MDR was also evident in S. Newport ST46 (59.1%, 13/22) and
302	S. Kentucky ST198 (70%, 7/10). Half of ST46 (n=11) were non-susceptible to all five classes of
303	tested antimicrobials, owing to the presence of <i>bla</i> _{TEM-95} , <i>bla</i> _{CTX-M-55} , <i>aac</i> (3)-IIa, <i>aph</i> (6)-Id,
	10

dihydrofolate reductase (dfrA) variants, with dfrA12 (97/450) and dfrA14 (69/450) being the most

304	aph(3')-Ia, aadA22/24, mphA-mrx, qnrS1, dfrA14-sul3, floR, linG, and arr2/arr3 (Figure 2). S.
305	Stanley ST29 and S. Weltevreden ST365 were generally susceptible to all classes of
306	antimicrobials. No AMR determinants were detected in S. Weltevreden ST365, except for two
307	isolates carrying the chromosomally encoded <i>aac(6)-Iy</i> and <i>qnrS1</i> .
308	
309	To explore some additional features of the major NTS genotypes, we sought to compare the
310	demographic and clinical data associated within the six most prevalent STs. Age was the only
311	variable with a significant difference among these STs (Kruskal-Wallis test, adjusted $p=0.0057$),
312	the median age of children infected with S. Weltevreden ST365 was 4.52 months [IQR 3.48 -
313	9.4], the lowest among the compared STs. Disease severity factors such as duration of
314	hospitalization, frequency of diarrhea, and blood neutrophil count were not significantly different
315	between these six STs (Figure S1). However, we identified two cases in which imipenem was
316	given as the last resort after unsuccessful recovery with other antimicrobials, and both infections
317	were caused by MDR S. Newport ST46. The first case was a 7.5-month-old male, who was
318	treated initially with macrolides and then fluoroquinolones. Imipenem was later administered, and
319	the patient was hospitalized for 19 days. The second case was a 3-month-old male who was
320	treated initially with intravenous ceftriaxone and hospitalized for nine days.
321	
322	Resistance to first line antimicrobials correlates with disease severity
323	Treatment regimens was recorded for all enrolled patients, which included ORS, intravenous
324	rehydration, zinc, probiotics, and antimicrobials. More than 90% of patients were administered
325	with ORS and zinc supplementation (Table 1). Antimicrobials were also frequently prescribed,
326	with 92.4% (423/450) of patients receiving empirical antimicrobial treatment following
327	admission to the hospital and prior to obtaining a microbiological susceptibility test result. Most
328	of the infected children recovered or had their symptoms improved after three days of enrolment;
329	the children were discharged from the hospital after a median of five days (IQR 3-7 days) (Table

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

Journal of Clinical	Microbiology

330	1). Fluoroquinolones were most commonly used for primary treatment (299/423; 70.7%),
331	followed by 3 rd generation cephalosporins (85/423), and macrolides (32/423). These initial
332	treatments may be changed to a different (secondary or tertiary) antimicrobial, dependent on the
333	patient's clinical progression. Such changes occurred in 12.3%, 11.8% and 25% of the
334	corresponding fluoroquinolone, 3 rd generation cephalosporin, and macrolide initial treatments.
335	For all three scenarios, a change in antimicrobial therapy was significantly associated with a
336	prolonged hospital stay (Wilcoxon signed-ranked test, $p < 0.05$), possibly reflecting the patients'
337	worsening illness or as required for parenterally administered antimicrobial (i.e. ceftriaxone).
338	
339	We have previously reported that the NTS MDR status was not associated with hospitalization
340	duration or clinical outcome (14). As salmonellosis is frequently treated with either
341	fluoroquinolones, 3 rd generation cephalosporins, or macrolides, we stratified the NTS cases by
342	resistance to these antimicrobials only. For all patients, cases caused by NTS non-susceptible to
343	more than one of these drug classes had a small but significantly longer hospitalization (pairwise
344	mean difference: 0.91 day; Wilcoxon signed-rank test, $p=0.04$) (Figure 3A). This effect was
345	observed throughout the major NTS STs (Figure 3B). We next sought to understand how the non-
346	susceptibility to the treating agent influences disease recovery (Figure 3C). For patients receiving
347	initial fluoroquinolone treatment, non-susceptibility to ciprofloxacin was not associated with a
348	difference in hospitalization time. However, non-susceptibility to ceftriaxone was significantly
349	associated to a longer hospital stay in children treated with 3 rd generation cephalosporins
350	(Wilcoxon signed-rank test, $p=0.028$). This effect was also observed with macrolide treatment but
351	was not significantly different. These observations were not confounded by age as there was no
352	significant difference in the age of patients receiving these different antimicrobial treatments
353	(Kruskal-Wallis test, p >0.05). Additionally, we performed the same statistical analyses on the
354	original full dataset (478 NTS diarrhea cases), which produced analogous results, demonstrating
355	the robustness of our observations despite the sample size reduction.

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

Journal of Clinica

356

357 Discussion

358 Our study combined a wealth of clinical, microbiological and genomic data to uniquely detail the 359 characteristics of NTS infections in Southern Vietnam. We found that Salmonella gastroenteritis 360 exhibits clear seasonality, with the prevalence of disease increasing in May-September. This 361 pattern has also been recapitulated in NTS surveillance studies in Guangdong, China (34) and 362 Bangkok, Thailand (35). The incidence rate of dysentery was previously found to be significantly 363 higher between May and October in Vietnam, particularly for the Southeast region where our 364 study was conducted (36). This period coincides with the rainy season, with higher precipitation 365 and humidity, which could grant higher survival and transmissibility of bacterial pathogens in the 366 environment. This stands in contrast with the seasonal pattern of viral diarrhea, of which the 367 burden is highest in January to March in Southern Vietnam (13, 37).

368

369 We observed a great diversity of circulating Salmonella, with the monophasic S. Typhimurium 370 ST34 dominating the NTS epidemiological landscape. This observation resonates with recent 371 findings elsewhere in Asia, including China (34). The monophasic ST34 is strongly associated 372 with swine food production (38) and has risen to prominence in Europe and globally during the 373 last two decades (39). Genomic and phenotypic investigations have suggested that this variant is 374 ecologically successful due to its extensive repertoire of antimicrobial and heavy metal resistance 375 genes (30, 40). Indeed, the ST34 isolated from our study show elevated resistance to several 376 antimicrobials of first line treatments, especially ceftriaxone and azithromycin. We also recently 377 discovered a novel biphasic, MDR ST34 clone causing invasive diseases in HIV-infected patients 378 in Vietnam (9, 41). It is therefore of epidemiological interest how this invasive clone is 379 genetically related to the diarrheagenic ST34 described herein, and such genomic analysis is 380 being conducted. Other major STs, such as S. Weltevreden ST365, S. Stanley ST29 and S. 381 Kentucky ST198, have been frequently reported in Asia (34, 42). Similarly to previous reports,

382

383

000	
384	ciprofloxacin and are likely to belong to the Asian expansion of the internationally disseminating
385	ST198 (43). While S. Enteritidis is predominant in previous surveillances in Greece (44), China
386	(45), Tunisia (46), USA, and is emerging in Australia, we only documented 17 cases attributed to
387	this serovar. This discrepancy is explicable due to the younger age of our cohort (median of 9
388	months-old), as S. Enteritidis has been mainly reported in infections of children > 3 years-old
389	(34).
390	
391	More than half of the isolated NTS were classified as MDR, with particular high non-
392	susceptibility occurrence to commonly prescribed antimicrobials, such as ciprofloxacin. The
393	major genetic mechanism for resistance was the widespread carriage of qnrS1, which could be
394	maintained by the sustained use of the antimicrobial locally. Nevertheless, this does not preclude
395	the importation and local propagation of a pandemic resistant clone, as likely in the case of
396	ciprofloxacin-resistant ST198 S. Kentucky, or as proven previously for S. sonnei in Vietnam (47).
397	The high concordance between AMR genotype and phenotype was observed in our collection,
398	with sensitivity and specificity surpassing 90% for all classes of antimicrobials tested, except for
399	imipenem, nalidixic acid and azithromycin. Such high genotype-phenotype agreement has been
400	noted in the Salmonella collection housed in Public Health England, UK (48). However, this
401	study did not report testing for the aforementioned three antimicrobials. The low sensitivity in
402	azithromycin non-susceptibility prediction indicates that other resistance mechanisms, such as the
403	recently determined mutations in acrB (49), remained uncharacterized. Alternatively, the low
404	specificity in the case of nalidixic acid is likely due to the non-functionality or insufficient
405	expression of the genetic determinants. These discrepancies warrant further research to improve
100	

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

the majority of S. Stanley (ST29) and S. Weltevreden (ST365) were susceptible to all tested

antimicrobials (19, 34). In contrast, all S. Kentucky (ST198) isolated displayed resistance to

406 the accuracy in inferring AMR phenotypes using sequencing data, which is applicable in public

407 health surveillances or culture-independent multiplex molecular assay (50).

Journal of Clinical Microbiology

408

409	Differing Salmonella STs were not associated with the clinical outcome in our patient cohort.
410	Clinical severity also did not differ among patients infected with different NTS serogroups in
411	Thailand (35). However, two patients infected with MDR S. Newport ST46 had to be treated with
412	the last resort antimicrobial imipenem, showing that tailored antimicrobial treatment remains
413	crucial in certain scenarios. S. Newport ST46 is infrequently described in Asia and has been
414	linked to reservoir in reptiles (51). Its pan-resistance and epidemiological ambiguity require
415	further investigations. Additionally, our analysis indicated that disease recovery may take longer
416	if the NTS organism was non-susceptible to the treating antimicrobial, particularly for ceftriaxone
417	and likely azithromycin. Here, NTS infections most commonly occurred in young age group,
418	particularly children under 1 years-old. These patients presented with many severe clinical
419	symptoms, including high bloody fecal output, fever, and vomiting, suggesting the highly
420	infectious and severe nature of this disease. Updated guidelines advise that antimicrobials should
421	not be used routinely in NTS infections, except for the immunocompromised, the neonates and
422	the elderly (6, 7, 10). However, antimicrobial treatment should be considered carefully to both
423	benefit patients with moderate-severe symptoms and to limit the chances of developing
424	resistance.
425	
426	Our observational study was limited to the description of hospitalized cases with mucoid/bloody
427	diarrhea, NTS was the most common pathogen confirmed by microbiological culturing.
428	Therefore, other pathogens or cases of co-infection were not analyzed. Also, the burden of NTS
429	causing milder or acute watery diarrhea was not accounted. As we did not record detailed
430	epidemiological data (i.e. diet, animal contact, household cases), it was not possible to identify
431	the possible source of infection. NTS are widely distributed in humans, animals and
432	environmental reservoirs, so the transmission route may differ case by case. The infections
433	reported in our study could be either associated with zoonotic transmissions (through the food

434	chain/contact with animals) or via sustained human-to-human transmissions distinct from the
435	animal NTS reservoirs (52, 53). For instance, NTS isolated from asymptomatic close contacts
436	have been shown to be closely related to ones causing invasive diseases in children in Africa (54).
437	Our study relied on molecular serotyping (SISTR), without conducting phenotypic serotyping due
438	to the shortage of trained personnel and dedicated resources. This approach has become attractive
439	for its high throughput and accurate performance, and produces high concordance between
440	genotyping and phenotypic serotyping in Shigella flexneri (55). Recently, the web-based
441	application EnteroBase has independently employed serotype prediction from Salmonella
442	genomes, which largely produces congruent results with the SISTR outputs (56).
443	
444	Conclusions
445	NTS has become the most common bacterial pathogen detected in children hospitalized with
446	bloody or mucoid diarrheal diseases in HCMC. S. Typhimurium was the predominant serovar in
447	this setting and associated with a variety of AMR genes leading to a high rate of MDR in this
448	serovar. We observed an increasing trend of AMR, especially against the first- and second-line
449	antimicrobial classes recommended by WHO, i.e. ciprofloxacin, ceftriaxone, azithromycin.
450	Multi-resistance could lead to prolonged hospitalized duration and the difficulty of choosing
451	empirical antimicrobials for dysenteric diarrhea. Our work shows that WGS is a powerful method
452	to characterize the serovar diversity and AMR profiles in NTS. A phylogenetic investigation of
453	these NTS isolates in the context of global and/or invasive collections is the next step to better
454	understand transmission dynamics and the evolutionary processes underpinning the circulation of
455	these organisms.

456

457 Acknowledgments

Journal of Clinical Microbiology

> M N N

458	We would like to send our thanks to the enrolled children and their parents who participated in
459	this study. We would like to acknowledge the study teams at Children's Hospital 1
460	(Gastrointestinal Ward), Children's Hospital 2 (Gastrointestinal Ward), and Hospital for Tropical
461	Diseases (Infectious Pediatric Ward B), who have helped operated the study. Importantly, we
462	thank all members of the Enteric infections group at Oxford University Clinical Research Unit
463	(OUCRU) and collaborators in the Wellcome Trust Sanger Institute (Hinxton, UK) for all
464	bacteriology and sequencing work.
465	
466	Competing interests
467	The authors declare no competing interests.
468	
469	Funding
470	This work was supported by a Wellcome senior research fellowship to Stephen Baker to
471	(215515/Z/19/Z). Whole genome sequencing was funded by a Biotechnology and Biological
472	Sciences Research Council (BBSRC) Anniversary Future Leader Fellowship to AEM
473	(BB/M014088/1). AEM is a Food Standards Agency Fellow and is supported by the Quadram
474	Institute Bioscience BBSRC Strategic Programme: Microbes in the Food Chain (project number
475	BB/R012504/1) and its constituent project BBS/E/F/000PR10348 (Theme 1, Epidemiology
476	and Evolution of Pathogens in the Food Chain). HCT is a Wellcome International Training
477	Fellow (218726/Z/19/Z). The funders had no role in the design and conduct of the study;
478	collection, management, analysis, and interpretation of the data; preparation, review, or approval
	concerton, management, anarysis, and interpretation of the data, preparation, review, or approval
479	of the manuscript; and decision to submit the manuscript for publication.

480

Journal of Clinica

481 References

World Health Organization. 2015. WHO estimates of the global burden of foodborne 482 1. 483 diseases. 484 2. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, Jones TF, Fazil 485 A, Hoekstra RM. 2010. The Global Burden of Nontyphoidal Gastroenteritis. Clin Infect

486 Dis 50:882-889.

- 487 3. Ryan MP, O'Dwyer J, Adley CC. 2017. Evaluation of the Complex Nomenclature of the 488 Clinically and Veterinary Significant Pathogen Salmonella. Biomed Res Int.
- 489 4. Key FM, Posth C, Esquivel-Gomez LR, Hübler R, Spyrou MA, Neumann GU,
- 490 Furtwängler A, Sabin S, Burri M, Wissgott A, Lankapalli AK, Vågene ÅJ, Meyer M,
- 491 Nagel S, Tukhbatova R, Khokhlov A, Chizhevsky A, Hansen S, Belinsky AB,
- 492 Kalmykov A, Kantorovich AR, Maslov VE, Stockhammer PW, Vai S, Zavattaro M,
- 493 Riga A, Caramelli D, Skeates R, Beckett J, Gradoli MG, Steuri N, Hafner A,
- 494 Ramstein M, Siebke I, Lösch S, Erdal YS, Alikhan NF, Zhou Z, Achtman M, Bos K,
- 495 Reinhold S, Haak W, Kühnert D, Herbig A, Krause J. 2020. Emergence of human-
- 496 adapted Salmonella enterica is linked to the Neolithization process. Nat Ecol Evol 4:324-497
 - 333.
- 498 Chen HM, Wang Y, Su LH, Chiu CH. 2013. Nontyphoid Salmonella infection: 5.
- 499 Microbiology, clinical features, and antimicrobial therapy. Pediatr Neonatol 54:147-152.
- 500 6. World Health Organization. 2017. Salmonella (non-typhoidal).
- 501 7. Onwuezobe I a, Oshun PO, Odigwe CC. 2012. Antimicrobials for treating symptomatic 502 non-typhoidal Salmonella infection. Cochrane Libr issue 11:1-50.
- 503 Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. 2012. Invasive 8.
- 504 non-typhoidal salmonella disease: An emerging and neglected tropical disease in Africa.

505 Lancet **379**:2489–2499.

506	9.	Phu Huong Lan N, Le Thi Phuong T, Nguyen Huu H, Thuy L, Mather AE, Park SE,
507		Marks F, Thwaites GE, Van Vinh Chau N, Thompson CN, Baker S. 2016. Invasive
508		Non-typhoidal Salmonella Infections in Asia: Clinical Observations, Disease Outcome
509		and Dominant Serovars from an Infectious Disease Hospital in Vietnam. PLoS Negl Trop
510		Dis 10 :1–13.
511	10.	Wen SCH, Best E, Nourse C. 2017. Non-typhoidal Salmonella infections in children:
512		Review of literature and recommendations for management. J Paediatr Child Health
513		53 :936–941.
514	11.	World Health Organization. 2005. Guidelines for the control of shigellosis, including
515		epidemics due to Shigella dysenteriae type 1World Health Organization.
516	12.	World Health Organization. 2005. The Treatment of Diarrhoea: a manual for physicians
517		and other senior health workersWorld Health Organization.
518	13.	Thompson CN, Phan MVT, Hoang NVM, Minh P V., Vinh NT, Thuy CT, Nga TTT,
519		Rabaa M a., Duy PT, Dung TTN, Phat V V., Nga TVT, Tu LTP, Tuyen HT,
520		Yoshihara K, Jenkins C, Duong VT, Phuc HL, Tuyet PTN, Ngoc NM, Vinh H, Chinh
521		NT, Thuong TC, Tuan HM, Hien TT, Campbell JI, Chau NV V., Thwaites G, Baker
522		\mathbf{S} . 2015. A Prospective Multi-Center Observational Study of Children Hospitalized with
523		Diarrhea in Ho Chi Minh City, Vietnam. Am J Trop Med Hyg 92:1045–1052.
524	14.	Duong VT, Tuyen HT, Minh P Van, Campbell JI, Phuc H Le, Do T, Nhu H, Thi L,
525		Tu P, Thi T, Chau H. 2018. No Clinical Benefit of Empirical Antimicrobial Therapy for
526		Pediatric Diarrhea in a High-Usage, High-Resistance Setting. Clin Infect Dis 66.
527	15.	Scallan E, Mahon BE, Hoekstra RM, Griffin PM. 2012. Estimates of Illnesses,
528		Hospitalizations, and Deaths Caused By Major Bacterial Enteric Pathogens in Young

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

52	9	Children in the United States. Pediatr Infect Dis J 32:1.
53	0 16.	Zhang H, Pan F, Zhao X, Wang G, Tu Y, Fu S, Wang J, Pan J, Song J, Wang W, Jin
53	1	Z, Xu H, Ren Y, Li Y, Zhong N. 2015. Distribution and antimicrobial resistance of
53	2	enteric pathogens in Chinese paediatric diarrhoea: a multicentre retrospective study, 2008-
53	3	2013. Epidemiol Infect 1–8.
53	4 17.	The Clinical and Laboratory Standards Institute. 2016. M100S Performance Standards
53	5	for Antimicrobial Susceptibility TestingClinical and Laboratory Standards Institute,
53	6	Wayne, PA.
53	7 18.	Quail M, Kozarewa I, Smith F, Scally A. 2008. A large genome center's improvements
53	8	to the Illumina sequencing system. Nat Methods 5:1005–1010.
53	9 19.	Makendi C, Page AJ, Wren BW, Le Thi Phuong T, Clare S, Hale C, Goulding D,
54	0	Klemm EJ, Pickard D, Okoro C, Hunt M, Thompson CN, Phu Huong Lan N, Tran
54	1	Do Hoang N, Thwaites GE, Le Hello S, Brisabois A, Weill FX, Baker S, Dougan G.
54	2	2016. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar
54	3	Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions. PLoS Negl
54	4	Trop Dis 10 :1–19.
54	5 20.	Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification
54	6	using exact alignments. Genome Biol 15:R46.
54	7 21.	Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using
54	8	de Bruijn graphs. Genome Res 18 :821–9.
54	9 22.	Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Otto TD, Harris SR, Keane JA.
55	0	2016. Robust high-throughput prokaryote de novo assembly and improvement pipeline for
55		Illumina data. Microb Genomics 2 :1–7.
55	2 23.	Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VPJ, Nash JHE,

Journal of Clinical Microbiology

JCM

Journal of Clinical Microbiology Journal of Clinica

553

554

PLoS One **11**:1–17. 555 556 24. Zhang S, Yin Y, Jones MB, Zhang Z, Kaiser BLD, Dinsmore BA, Fitzgerald C, 557 Fields PI, Deng X. 2015. Salmonella serotype determination utilizing high-throughput 558 genome sequencing data. J Clin Microbiol 53:1685-1692. 559 25. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, Harris SR. 560 2017. ARIBA: Rapid antimicrobial resistance genotyping directly from sequencing reads. 561 Microb Genomics **3**:1–11. 562 26. de Onis M, Onyango AW, Borghi E, Garza C, Yang H. 2007. Comparison of the World 563 Health Organization (WHO) Child Growth Standards and the National Center for Health 564 Statistics/WHO international growth reference: implications for child health programmes. 565 Public Health Nutr **9**:942–7. 566 27. Fitch A, Everling L, Fox C, Goldberg J, Heim C, Johnson K, Kaufman T, Kennedy 567 E, Kestenbaun C, Leslie D, Newell T, O'Connor P, Slusarek B, Spaniol A, Stovitz S, 568 Webb B. 2013. Prevention and Management of Obesity for AdultsInstitute for clinical 569 systems improvement. 570 28. World Health Organization. 2011. Haemoglobin concentrations for the diagnosis of 571 anaemia and assessment of severityWorld Health Organization. 572 29. R Core Team. 2016. R: A language and environment for statistical computing. R 573 Foundation for Statistical Computing, Vienna, Austria. 574 Petrovska L, Mather AE, Abuoun M, Branchu P, Harris SR, Connor T, Hopkins 30. 575 KL, Underwood A, Lettini AA, Page A, Bagnall M, Wain J, Parkhill J, Dougan G, 576 Davies R, Kingsley RA. 2016. Microevolution of monophasic Salmonella typhimurium

Taboada EN. 2016. The salmonella in silico typing resource (SISTR): An open web-

accessible tool for rapidly typing and subtyping draft salmonella genome assemblies.

577		during epidemic, United Kingdom, 2005-2010. Emerg Infect Dis 22:617-624.
578	31.	Redgrave LS, Sutton SB, Webber MA, Piddock LJ V. 2014. Fluoroquinolone
579		resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends
580		Microbiol 22 :438–445.
581	32.	Nair S, Ashton P, Doumith M, Connell S, Painset A, Mwaigwisya S, Langridge G, de
582		Pinna E, Godbole G, Day M. 2016. WGS for surveillance of antimicrobial resistance: a
583		pilot study to detect the prevalence and mechanism of resistance to azithromycin in a UK
584		population of non-typhoidal Salmonella. J Antimicrob Chemother 15:dkw318.
585	33.	Magnet S, Courvalin P, Lambert T. 1999. Activation of the Cryptic aac (6 ') -Iy
586		Aminoglycoside Resistance Gene of Salmonella by a Chromosomal Deletion Generating a
587		Transcriptional Fusion Activation of the Cryptic aac (6 J) -Iy Aminoglycoside Resistance
588		Gene of Salmonella by a Chromosomal De. J Bacteriol 181:6650–6655.
589	34.	Liang Z, Ke B, Deng X, Liang J, Ran L, Lu L, He D, Huang Q, Ke C, Li Z, Yu H,
590		Klena JD, Wu S. 2015. Serotypes, seasonal trends, and antibiotic resistance of non-
591		typhoidal from human patients in Guangdong Province, China, 2009-2012. BMC Infect
592		Dis 15.
593	35.	Vithayasai N, Rampengan NH, Hattasingh W, Jennuvat S, Sirivichayakul C. 2011.
594		Clinical features of gastrointestinal salmonellosis in children in Bangkok, Thailand.
595		Southeast Asian J Trop Med Public Health 42:901–911.
596	36.	Lee HS, Ha Hoang TT, Pham-Duc P, Lee M, Grace D, Phung DC, Thuc VM,
597		Nguyen-Viet H. 2017. Seasonal and geographical distribution of bacillary dysentery
598		(shigellosis) and associated climate risk factors in Kon Tam Province in Vietnam from
599		1999 to 2013. Infect Dis Poverty 6 :1–11.

Thompson CN, Zelner JL, Nhu TDH, Phan MV, Hoang Le P, Nguyen Thanh H, Vu

Journal of Clinical Microbiology

600

37.

Journal of Clinica

601

602

- Heai **ippi** 3. Sa a Em noph **S**, Le arativ opha: y **S**, C HT, **HT**, **T HT**, **A NT Compared Set 1 Co**
- 2015. The impact of environmental and climatic variation on the spatiotemporal trends of
 hospitalized pediatric diarrhea in Ho Chi Minh City, Vietnam. Health Place 35:147–154.

Thuy D, Minh Nguyen N, Ha Manh T, Van Hoang Minh T, Lu Lan V, Nguyen Van

Vinh C, Tran Tinh H, von Clemm E, Storch H, Thwaites G, Grenfell BT, Baker S.

60538.Elnekave E, Hong S, Mather AE, Boxrud D, Taylor AJ, Lappi V, Johnson TJ,

606 Vannucci F, Davies P, Hedberg C, Perez A, Alvarez J. 2018. Salmonella enterica

- 607 Serotype 4,[5],12:i:-in Swine in the United States Midwest: An Emerging Multidrug-
- 608Resistant Clade. Clin Infect Dis 66:877–885.
- Sun H, Wan Y, Du P, Bai L. 2020. The Epidemiology of Monophasic Salmonella
 Typhimurium. Foodborne Pathog Dis 17:87–97.
- 40. Mastrorilli E, Pietrucci D, Barco L, Ammendola S, Petrin S, Longo A, Mantovani C,
 Battistoni A, Ricci A, Desideri A, Losasso C. 2018. A comparative genomic analysis
 provides novel insights into the ecological success of the monophasic Salmonella serovar
 4,[5],12:i:-. Front Microbiol 9:1–18.
- 615 41. Mather AE, Phuong TLT, Gao Y, Clare S, Mukhopadhyay S, Goulding DA, Do
- 616 Hoang NT, Tuyen HT, Lan NPH, Thompson CN, Trang NHT, Carrique-Mas J, Tue
- 617 NT, Campbell JI, Rabaa MA, Thanh DP, Harcourt K, Hoa NT, Trung NV, Schultsz
- 618 C, Perron GG, Coia JE, Brown DJ, Okoro C, Parkhill J, Thomson NR, Chau NVV,
- 619 Thwaites GE, Maskell DJ, Dougan G, Kenney LJ, Baker S. 2018. New variant of

620 multidrug-resistant Salmonella enterica serovar typhimurium associated with invasive

- 621 disease in immunocompromised patients in Vietnam. MBio **9**:1–11.
- 622 42. Mahindroo J, Thanh DP, Nguyen TNT, Mohan B, Thakur S, Baker S, Taneja N.
- 623 2019. Endemic fluoroquinolone-resistant Salmonella enterica serovar Kentucky ST198 in
- 624 northern India. Microb Genomics **5**:1–5.

625	43.	Hawkey J, Le Hello S, Doublet B, Granier SA, Hendriksen RS, Florian Fricke W,
626		Ceyssens PJ, Gomart C, Billman-Jacobe H, Holt KE, Weill FX. 2019. Global
627		phylogenomics of multidrug-resistant salmonella enterica serotype kentucky ST198.
628		Microb Genomics 5.
629	44.	Maraki S, Papadakis IS. 2014. Serotypes and antimicrobial resistance of human
630		nontyphoidal isolates of salmonella enterica from crete, Greece. Interdiscip Perspect Infect
631		Dis 2014 .
632	45.	Li Y, Xie X, Xu X, Wang X, Chang H, Wang C, Wang A, He Y, Yu H, Wang X, Zeng
633		M. 2014. Nontyphoidal salmonella infection in children with acute gastroenteritis:
634		prevalence, serotypes, and antimicrobial resistance in Shanghai, China. Foodborne Pathog
635		Dis 11:200–6.
636	46.	Abbassi-Ghozzi I, Jaouani a., Aissa RB, Martinez-Urtaza J, Boudabous a., Gtari M.
637		2011. Antimicrobial resistance and molecular analysis of non-typhoidal Salmonella
638		isolates from human in Tunisia. Pathol Biol 59 :207–212.
639	47.	Chung The H, Boinett C, Pham Thanh D, Jenkins C, Weill FX, Howden BP, Valcanis
640		M, De Lappe N, Cormican M, Wangchuk S, Bodhidatta L, Mason CJ, Nguyen TNT,
641		Ha Thanh T, Voong VP, Duong VT, Nguyen PHL, Turner P, Wick R, Ceyssens PJ,
642		Thwaites G, Holt KE, Thomson NR, Rabaa MA, Baker S. 2019. Dissecting the
643		molecular evolution of fluoroquinolone-resistant Shigella sonnei. Nat Commun 10:4828.
644	48.	Neuert S, Nair S, Day MR, Doumith M, Ashton PM, Mellor KC, Jenkins C, Hopkins
645		KL, Woodford N, de Pinna E, Godbole G, Dallman TJ. 2018. Prediction of phenotypic
646		antimicrobial resistance profiles from whole genome sequences of non-typhoidal
647		Salmonella enterica. Front Microbiol 9:1–11.
648	49.	Hooda Y, Sajib MSI, Rahman H, Luby SP, Bondy-Denomy J, Santosham M,

JCM

Journal of Clinical Microbiology ournal of Clinica

674	55.	Gentle A, Ashton PM, Dallman TJ, Jenkins C. 2016. Evaluation of Molecular Methods
675		for Serotyping Shigella flexneri. J Clin Microbiol 54:1456–1461.
676	56.	Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. 2018. A genomic overview of the
677		population structure of Salmonella. PLoS Genet 14:1-13.
678		
679	Fion	re legends
	_	-
680	Figu	re 1. Monthly hospitalization incidence of non-typhoidal Salmonella
681	Only	the eight most common sequence types are visualized. Sequence types that caused fewer
682	than	10 incidences are grouped together as 'Other'.
683		
684	Figu	re 2. Antimicrobial resistance in major non-typhoidal Salmonella sequence types
685	(A) H	leat map of antimicrobial resistance phenotype of the eight most common Sequence types.
686	The l	eft panel displays the proportion of non-susceptibility to 7 classes of tested antimicrobial
687	agent	ts, including ampicillin/amoxicillin-clavulanate (AMP/AMC); ceftriaxone/ceftazidime
688	(CRO	D/CAZ); imipenem (IMP); azithromycin (AZM); ciprofloxacin (CIP); trimethoprim-
689	sulfa	methoxazole (SXT) and chloramphenicol (CHL). The right panel displays to proportion of
690	non-s	susceptibility to the number of tested antimicrobial classes, including β -lactam
691	(AM	P/AMC/CRO/CAZ); IMP; AZM; CIP; SXT and CHL. Isolates were classified as non-
692	susce	eptible to an antimicrobial class if they were non-susceptible to any agent of that class. The
693	color	ir intensity in a cell is proportional to the percentage of non-susceptible NTS isolates to the
694	tested	d antimicrobial class. The STs are arranged in decreasing order of prevalence (from top to
695	botto	m). (B) The prevalence of antimicrobial resistance determinants in the eight most common
696	Sequ	ence types. These determinants are classified by antimicrobial classes, including 3 rd
697	gene	ration cephalosporin (<i>bla</i> _{CTX-M-14} , <i>bla</i> _{CTX-M-15} , <i>bla</i> _{CTX-M-55}), quinolone (<i>qnrS1</i> , <i>qnrS2</i> , <i>qnrB6</i> ,
698	qnrD	1, oqxAB, patA, aac(6)-Ib-cr, QRDR mutations), azithromycin (ermB, ermF, ermT, mefB,

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

Journal of Clinical Microbiology Journal of Clinical

700 denotes the proportion of isolates carrying any of these determinants, classified by antimicrobial 701 class and sequence type. 702

mphA), and co-trimoxazole (*sul1/sul2/sul3* + *dfrA1/dfrA12/dfrA14/dfrA17/dfrA5*). Each bar graph

703 Figure 3. Resistance to first line antimicrobials correlated with clinical severity

704 (A) The hospitalization duration (in days) of all 450 children infected with non-typhoidal

- 705 Salmonella, classified by the number of first- and second-line antimicrobials (ciprofloxacin,
- 706 ceftriaxone, azithromycin) to which the pathogen was phenotypically non-susceptible, and (B)
- 707 further classified by the eight most common sequence types. (C) The hospitalization duration of
- NTS infected children who received initial treatment of fluoroquinolone (CIP), 3rd generation 708
- 709 cephalosporin (CRO), or macrolide (AZM), stratified by the pathogen's non-susceptibility to the

Downloaded from http://jcm.asm.org/ on October 14, 2020 at University of East Anglia

- 710 corresponding treating agent (ciprofloxacin, ceftriaxone, azithromycin). The asterisk indicates
- 711 statistical significance in the pairwise comparison (Wilcoxon signed-rank test, p< 0.05).

712

699

S

Table 1. Demographic and clinical manifestations of diarrheal pediatric patients infected with non-

typhoidal Salmonella (N=450).

Characte	ristics	n	%
Socio-de	mographic		
	Male	271	60.2
	Age in months, median [IQR]	9	6.4-14.9
Growth ^a			
	Obese / Overweight / Risk of overweight	100	22.2
	Normal	271	63.5
	Wasted / Severely wasted	56	12.5
Clinical s	symptoms		
	Bloody diarrhea	274	60.9
	Mucoid diarrhea	167	37.1
	Number of episodes per day, median [IQR]	10	6-10
	Dehydration, ^b	25	5.6
	Abdominal pain	115	25.6
	Fever ($\geq 37.5^{\circ}$ C) at enrolment	294	65.3
	Vomit	190	42.2
Hematol	ogy		
	Anemia (Hemoglobin level=70-109g/L) ^c	148	32.9
	Neutrophil count (10 ³ /µL), median [IQR]	4.9	3.2-7.2
	C-reactive protein (mg/L), median [IQR]	29	11.0-50
Treatmer	nt		
	Low-osmolarity oral rehydration solution	418	92.9
	IV Rehydration	31	6.9
	Antimicrobials	423	94.0
	Fluoroquinolones (initial treatment), n (%)	299	70.7
	Zinc	412	91.6
	Probiotics	300	66.7
Outcome	,		
	Hospital stay in days, median [IQR]	5	3-7
	Recovered / Improved after 3 days ^d	393	87.3
	Not improved / worse after 3 days	57	12.7

^aObese: weight for length z score >3SD in children age < 24months; BMI for age z score >3SD in children age ≥24months; Overweight: weight for length z score >2SD in children age < 24months; BMI for age z score >2SD in children age ≥24months, Wasted: weight for length z score <-2SD in children age < 24months; BMI for age z score <-2SD in children age ≥24months, Severely wasted: weight for length z score <-2SD in children age < 24months; BMI for age z score <-2SD in children age ≥24months, Severely wasted: weight for length z score <-3SD in children age < 24months); BMI for age z score <-3SD in children age < 24months); BMI for age z score <-3SD in children age ≥24months age ≥24

^c Hemoglobin level cut-off according to World Health Organization guidelines ¹⁹

^d Defined as "recovered" if patient had <3 passages of loose stool in the 24 hours or "improved" if patient had less episodes of diarrhea and less mucus and/or bloody in comparison to the condition of the patient at enrolment.

Table 2. Non-typhoidal *Salmonella* predicted serovars isolated from children with diarrheal diseases in

 three tertiary hospitals in Ho Chi Minh City (n=450). Antigenic formula are given in parentheses.

O-antigen group	Serovar	ST	N	Serovar	ST	N
O:4 (B)	Typhimurium (4,[5],12:i:-)*	34	120	Agona (4:f,g,s:-)	13	4
		36	30	Indiana (4:z:1,7)	17	2
	Typhimurium (4:i:1,2)	19	25		343	1
		34	13	Chester (4:e,h:e,n,x)	2063	1
	0, 1, (4,1,1,0)	29	62		1578	1
	Stanley (4:d:1,2)	2615	1	Schleissheim (4:b:-)	2397	1
	Denstruch: Dense Jame (Arb.)	423	7	Saintraul (112 hel 2)	50	6
	Paratyphi B var. Java (4:b:-)	135	1	Saintpaul (4:e,h:1,2)	27	2
	Sandiego (4:e,h:e,n,z15)	20	1			
	Rissen (7:f,g:-)	469	9	- Thompson (7:k:1,5)	26	1
O:7 (C ₁)	Virchow (7:r:1,2)	359	5	Thompson (7.k.1,5)	2417	1
	viicilow (7.1.1,2)	197	1	Ohio (7:b:l,w)	329	1
		203	4	Mbandaka (7:z10:e,n,z15)	1602	1
	Bareilly (7:y:1,5)	909	1			
	Newport (8:e,h:1,2)	46	22	Albany (8:z4,z24:-)	292	2
		31	5	Hadar (8:z10:e,n,x)	33	1
O:8 (C ₂ -C ₃)		2366	1	Emek (8:g,m,s:-)	76	1
		2855	1	Litchfield (8:1,v:1,2)	214	1
	Kentucky (8:i:z6)	198	10	Muenchen (8:d:1,2)	2424	1
	Bovismorbificans (8:r:1,5)	1499	9	Brunei (8:y:1,5)	2809	1
	Corvallis (8:z4,z23:-)	1541	4			
		11	13	Javiana (9:1,z28:1,5)	2494	3
O:9 (D ₁)	Enteritidis (9:g,m:-)	74	4	Javialia (9:1,228:1,5)	1547	4
	Panama (9:1,v:1,5)	48	1	Dublin (9:g,p:-)	74	1
0.010	Weltevreden (3,10:r:z6)	365	34	Anatum (3,10:e,h:1,6)	64	2
O:3,10 (E ₁)	London (3,10:1,v:1,6)	155	5	Lexington (3,10:z10:1,5)	1542	1
	Give (3,10:1,v:1,7)	516	5	Meleagridis (3,10:e,h:l,w)	3248	1
Other (G, I, K, N, O, Q)	Kedougou (13:i:l,w)	1543	3	Johannesburg (40:b:e,n,x)	512	1
	Agbeni (13:g,m:-)	2606	1	Alachua (35:z4,z23:-)	1298	1
	Hvittingfoss (16:b:e,n,x)	446	2	Wandsworth (39:b:1,2)	1498	3
	Orientalis (16:k:e,n,z15)	558	1	subsp. houtenae (43:z4,z23:-)	958	1
	Cerro (18:z4,z23:-)	367	1	subsp. salamae (48:d:z6)	3200	1

(*): monophasic

	Antimicrobial resistance genes		Phene	otype	·	•	
Antimicrobials			Non- Susceptible Susceptible		Sensitivity e(%[95%CI])	Specificity (%[95%CI])	PPVNPV
ampicillin	bla _{TEM-95} /bla _{OXA-1} / bla _{CARB-3} / bla _{SHV-66} /bla _{CMY} /	yes		1	97.2 ^{(94.6-} 98.8)	99.4 ^{(96.6-} 100)	99.6 95.3
	bla _{CTX-M-55} / bla _{CTX-M-14} / bla _{CTX-M-15}	no	8	162			
ceftriaxone/ ceftazidime	<i>bla</i> _{CTX-M-55} / <i>bla</i> _{CTX-M-14} /	yes	52	3	91.2 ^{(80.7-} 97.1)	99.2 ^{(97.8-} 99.8)	94.5 98.7
centaziunne	bla _{CTX-M-15}	no	5	390			
imipenem	bla _{NDM-1}	yes	0	1	$\begin{array}{c} 0.0 \\ 52.2 \end{array} $	99.8 ^{(98.8-} 100)	0.0 98.9
		no	5	444			
gentamicin	aa(3)-IIa / aac(3)-IV / aac(6)-IIa	yes	89	2	$100 \begin{array}{c} (95.9-\\ 100) \end{array}$	99.4 $(98.0-99.9)$	97.8 100
		no	0	358			
azithromycin	mphA / mefB / ermT / ermF / ermB	yes	59	7	72.8 $\frac{(61.8-82.1)}{(61.8-82.1)}$	98.1 ^{(96.1-} 99.2)	89.4 94.3
•		no	22	362			
ciprofloxacin	QRDR ^{\$} mutation and/or	yes	236	13	90.8 $\frac{(86.8-94.0)}{94.0}$	93.2 ^{(88.6-} 96.3)	94.8 88.1
1	PMQR [#] genes	no	24	177			
nalidixic acid	QRDR mutation and/or PMQR genes	yes	179	70	96.2 ^{(92.4-} 98.5)	73.4 (67.6- 78.6)	71.9 96.5
		no	7	193			
trimethoprim- sulfamethoxazole	$e^{dfr + sul}$	yes	163	4	94.2 ^{(89.6-} 97.2)	98.6 ^{(96.3-} 99.6)	97.6 96.5
sunametnoxazole		no	10	273			
chloramphenicol	catA1 / catB3 / floR	yes	224	2	93.3 ^{(89.4-} 96.1)	99.0 ^{(96.6-} 99.9)	99.1 92.9
•		no	16	208			

Table 3. The performance of whole genome sequencing in determine the antimicrobial susceptibility of non-typhoidal *Salmonella*

(*): Fully resistance and intermediate resistance are included as non-susceptible.

(\$): Quinolone resistance determining region (QRDR): gyrA-83 + gyrA-87 + parC-80

(#): Plasmid-mediated Quinolone Resistance genes (PMQR): *qnrB6/ qnrD1/ qnrS1/ qnrS2/ oqx_AB/ patA/ aac*(6)-*Ib-cr*

Α

5

