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ABSTRACT The inspection of thickness thinning defects and corrosion defects is greatly significant for 

the health prediction of plate structures. The main aim of this research is to propose a novel and effective 

approach to achieve the accurate and rapid detection of arbitrary defects using shear horizontal (SH) guided 

waves, particularly for large-depth and complex defects. The proposed approach combines the quantitative 

detection of Fourier transform (QDFT) with a reference model-based strategy to improve the accuracy of 

large-depth defect detection. Since the shallow defect profile is theoretically constructed by inverse Fourier 

transform of the product of reflection coefficients and integral coefficients of reference models, the 

unknown large-depth defect can be initially assessed using the relevant information from a predefined 

reference model. By iteratively updating the integral coefficients of reference models, the accuracy of 

reconstruction of large-depth defects is much improved. To achieve the converged defect profile, a 

termination criterion, the root mean square error (RMSE), is applied to guarantee the construction of 

defects with a high level of accuracy. Moreover, the hybrid finite element method (HFEM) is used to 

simulate the propagation of SH guided waves in plates for calculating the reflection coefficients of plates 

with defects. Finally, to demonstrate the capability of the developed reconstruction method for defect 

detection in terms of accuracy and efficiency, three types of large-depth defect profiles, i.e., a rectangular 

flaw, a double-rectangular flaw, and a complex flaw, are examined. Results show that the discrepancy 

between the predicted defect profile and the real one is quite small, even in the largest-depth defect case 

where the defect depth is equal to 0.733 times the plate thickness, the minimal difference is observed. It is 

noted that the fast convergence of the proposed approach can be achieved by no more than ten updates for 

the worst case. 
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1. Introduction 

    Detecting surface corrosion defects in plate structures is a meaningful topic. Accurately quantifying the 

thickness loss and greatly enhancing the efficiency of detection are of growing importance. Traditional 

ultrasonic detection methods always involve some assumptions, such as the Born approximation (BA), to 

approximately evaluate the wave fields in the defect areas or near the defect boundaries. Using the low-

frequency guided wave diffraction tomography [1] to detect defects, finite element simulations of a plate 

were performed for the accurate thinning reconstruction. Based on the Born approximation and the far-field 

approximation, the depth of plate thinning can be expressed as a function of the horizontal coordinate by 

performing the inverse Fourier transform of the reflection coefficients at various frequencies [2]. 

Furthermore, the reflection full-waveform inversion (FWI) has been recently utilized to improve the 

accuracy of imaging the Earth interior by separating the tomographic gradient from the reflectivity gradient 

using the Born approximation during forward modeling [3]. However, it is certain that the Born 

approximation is more valid for weakly scattered sources rather than defects of arbitrary sizes mentioned in 

[4, 5]. 

    In order to improve the quality of defect reconstruction and enhance the universality of detection 

methods, various improved approaches have been proposed. A modified extended Born approximation 

(MEBA) was presented for efficient three-dimensional simulations and inversion of geophysical frequency-

domain electromagnetic (EM) data caused by a targeted object lodged in a layered half-space [6]. A new 

decomposition of the forward scattering map was derived to reveal a previously unknown approximate 

bilinear forward scattering relation. Results indicated that the new linear inverse scattering approach could 

be more broadly applicable than the classical Born-approximation-based imaging [7]. A novel method 

based on the matrix completion (MC) paradigm was exploited to image the weak and sparse scatters in 

heavy noise conditions [8]. A modified Born iterative method (BIM) by which magnetic fields were 

analyzed and processed was investigated to retrieve more accurate images within the medical emergency 

time frame [9]. The Bayesian approximation error approach was used to partially recover the error structure 

induced by the Born approximation [10]. A new non-linear Born iterative reconstruction method with US-

guided depth-dependent 𝓁1 sparse regularization was proposed to improve diffuse optical tomography 

(DOT) reconstruction by incorporating a priori lesion depth and shape information from the co-registered 

US image [11]. To obtain the non-linear tomographic radar imaging, Sorsa et al. [12] introduced and 

numerically evaluated a multigrid solver, which enabled the fast and robust inversion of sparse time-
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domain data with a mathematical full-wave approach utilizing a higher-order Born approximation. 

Summarily, the usage of the modified Born approximation and aforementioned assumptions can improve 

the imaging precision and efficiency. 

    Experimentally, guided waves have been widely explored as a promising inspection tool for non-

destructive evaluation [13-17]. From the computational point of view, the hybrid finite element method 

(FEM), as a fast modeling instrument of guided waves scattering, were introduced in [18, 19]. This method 

was also adopted to simulate ultrasonically generated waves propagating in an infinitely long pipe that 

included a notch [20]. Then, a combined analytical finite element model approach (CAFA) was proposed 

for the accurate, efficient, and versatile simulation of 2D Lamb wave propagation and interaction with 

damage [21]. For the inverse algorithm, the iterative technique, as an effective means that ensures the 

reliability of detection results, has been applied to the acoustic tomography [22-27]. In the thickness maps 

of guided wave tomography, the iterative hybrid algorithm for robust breast ultrasound tomography 

(HARBUT) was used to improve the accuracy of reconstructions of defects [28]. An iterative S-wave 

velocity inversion method guided by image registration was developed by Yang [29]. A guided wave 

tomography method based on full waveform inversion (FWI) was considered to discretize the frequency 

components from low to high frequencies [30]. 

     In this paper, a more accurate reconstruction method, which integrates the numerical modeling of 

forward guided wave problems using the hybrid FEM with the algorithm for defect reconstruction, has 

been proposed to improve the efficiency of defect detection and increase the accuracy of imaging. For 

forward problems, the developed hybrid FEM technique in Section 2.1 has been applied to obtain the 

reflected coefficients of shear horizontal (SH) waves induced by the same mode of incident waves. For 

inverse problems, the quantitative detection of Fourier transform (QDFT) approach has been briefly 

introduced as an efficient inspection method for 2D structures in Section 2.2. To address the reconstruction 

of large-depth defects, a modified QDFT method, called the QDFTU, has been proposed in Section 3. 

Finally, numerical experiments using QDFTU have been examined and discussions on reconstruction 

results have been presented in Section 4. Following that, the conclusion has been drawn in Section 5. 

2. Numerical Modeling and Algorithm for Defect Reconstruction 

2.1. Numerical Modeling of Scattered Waves Using Hybrid FEM 
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    The hybrid FEM (HFEM) is adopted to develop the numerical model for the calculations of scattered 

fields in plates, where the finite element analysis is only performed in the region surrounding the defect 

(see Fig. 1). Both the incident and reflected waves propagate through 𝑆2 , whilst the transmitted waves 

travel through 𝑆1. Nodal displacements and forces on the two cross-sections, 𝑆1 and 𝑆2, consist of infinite 

components induced by different wave modes with unknown amplitudes, which can be formulated by the 

semi-analytical finite element [32, 33]. Obviously, most of the non-propagating modes will quickly die off, 

and only the propagating and a few non-propagating modes will be used to calculate the scattered fields.  

 

Fig. 1. Scattered fields in plates are calculated by the hybrid FEM and the incident SH waves propagating 

along the minus direction of the 𝑥2-axis. The red line represents the defect boundary, and the blue line 

means the non-defective region.  𝑆1 and 𝑆2 denote the cross sections on which the incident waves transmit 

and reflect, respectively. 

According to the conventional FEM, the matrix equation of motion is written as: 

δ([𝒒]H)𝑺𝒒 = δ([𝒒]H)𝑷 (1) 

where  

𝑺 = 𝑲 − 𝜔2𝑴 (2) 

𝑲 and 𝑴 are the global stiffness and mass matrices, 𝜔 represents the circular frequency, and 𝒒 and 𝑷 are 

nodal displacements and force vectors, respectively. The superscript ‘H’ means conjugate transpose, and ‘δ’ 

denotes the first variation. 

δ ([
𝒒I

𝒒B
]
H

) [
𝑺II 𝑺IB

𝑺BI 𝑺BB
] [

𝒒I

𝒒B
] = δ ([

𝒒I

𝒒B
]
H

) [
𝑷I

𝑷B
] (3) 

where 𝑷I = 𝟎. The nodal displacement vector 𝒒B = {
𝒒𝑆1

𝒒𝑆2
} and force vector 𝑷B = {

𝑷𝑆1

𝑷𝑆2

} at cross sections 𝑆1 

and 𝑆2 contain incident, reflected and transmitted waves as below: 

𝒒𝑆1
= 𝒒𝑆1

inc + 𝒒𝑆1
tra (4) 

𝒒𝑆2
= 𝒒𝑆2

inc + 𝒒𝑆2
ref (5) 

and 

1S
2S

Incident waves

Reflected wavesTransmitted waves
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𝑷𝑆1
= 𝑷𝑆1

inc + 𝑷𝑆1
tra (6) 

𝑷𝑆2
= 𝑷𝑆2

inc + 𝑷𝑆2
ref (7) 

where the superscripts ‘ inc ’, ‘ tra ’ and ‘ref ’ indicate the incident, transmitted and reflected waves, 

respectively. They can be expressed by the modal expansion of the wave functions of the undamaged 

waveguide [32]. 

    The matrix equation is simplified as 

𝑮[
𝒒I

�̃�
] = 𝑻 (8) 

where 𝑮 = {[
𝑰 𝟎

𝟎 [�̃�]
H] [

𝑺II 𝑺𝐼𝐵

𝑺BI 𝑺BB
] [

𝐈 𝟎
𝟎 �̃�

] − [
𝐈 𝟎

𝟎 [�̃�]
H] [

𝟎 𝟎
𝟎 �̃�

]}, 

𝑻 = [
𝐈 𝟎

𝟎 [�̃�]
H] {[

0
�̃�1] − [

𝑺II 𝑺IB

𝑺BI 𝑺BB
] [

0
�̃�1]} , �̃� =

[
 
 
 
 
 
 
�̃�01

tra

⋮
�̃�0M̃

tra

�̃�01
ref

⋮

�̃�0M̃
ref

]
 
 
 
 
 
 

， �̃� = [�̃�01
tra ⋯ �̃�0M̃

tra �̃�01
ref ⋯ �̃�0M̃

ref] ，

�̃�1 = [
�̃�0𝑚

1

�̃�0𝑚
2

]，�̃�1 = [
𝒕0𝑚
1

𝒕0𝑚
2 ]，�̃� = [�̃�01

tra ⋯ �̃�0�̃�
tra �̃�01

ref ⋯ �̃�0�̃�
ref ]，𝑰 is an identity matrix, the subscripts I 

and B mean interior nodes and boundary nodes, respectively, 𝒒I is the displacement vector of the interior 

nodes, �̃�  is the total number of non-propagating waves and guided waves corresponding to different 

frequencies, �̃� is the modified coefficients for scattered fields. �̃� and �̃�, respectively, denote the nodal 

displacements and forces induced by a unity amplitude of reflected and transmitted waves propagating 

through the cross sections 𝑆1 and 𝑆2. And �̃�1 and �̃�1, respectively, represent the nodal displacements and 

forces inducted by incident waves through the cross sections. For more details about the calculation of 

scattered fields using HFEM, refer to our previous paper [31]. 

 

2.2. A Brief Review of QDFT for Reconstruction of Defects 

    According to the reciprocal theory [34], the simple relationship between the reflected displacement at the 

monitoring point caused by the defect profile and the total field at the defect boundary can be established as: 

∫[𝑢𝑖
total(𝒙)�̃�𝑖𝑗

𝛼(𝒙 − 𝑿)]𝒏𝑗d𝑆(𝒙)
 

𝑆

= 𝑢𝛼
ref(𝑿)  ( 𝑿 ∉ 𝑉;  𝑖, 𝑗, 𝛼 = 1,2) (9) 
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where the field and source point (or monitoring point) are defined by the coordinates (𝑥1, 𝑥2) and (𝑋1, 𝑋2), 

respectively. The superscripts ‘total’ and ‘ref’ represent the total field and reflected field, respectively. 

�̃�𝑖𝑗
𝛼(𝒙 − 𝑿) indicates the stress field calculated by Green’s function of the current structure, where 𝛼 is the 

direction of a unit load at the source point. 𝑢𝑖
total(𝒙) represents the displacement vector, 𝒏𝑗  denotes the 

normal vector of the defect boundary 𝑆(𝒙), and ‘𝑉’ depicts the defect area. It is noted that the source point 

𝑿 locates in the reflected region, and the traction-free boundary condition is omitted. 

    To facilitate the theoretical analysis, the separation of variables is utilized as follows: 

�̃�𝑖𝑗
𝛼(𝒙 − 𝑿) = �̃�𝑖𝑗

𝛼(𝑥1 − 𝑋1)e
−i𝜉(𝑥2−𝑋2);  𝑢𝛼

ref(𝑿) = 𝐴𝛼
ref(𝑋1)e

i𝜉𝑋2; 𝑢𝑖
total(𝒙) ≈ 𝐴𝑖

inc(𝑥1)e
−i𝜉𝑥2  (10) 

where 𝜉 is the wavenumber, i denotes √−1, �̃�𝑖𝑗
𝛼, 𝐴𝑖

inc(𝑥1) and 𝐴𝛼
ref represent amplitudes of waves. e−i𝜉𝑥2 , 

e−i𝜉(𝑥2−𝑋2) and ei𝜉𝑋2 are terms of wave propagation. And the total field 𝑢𝑖
total(𝒙) is approximately replaced 

by the incident field due to the assumption of Born approximation. In this paper, the time harmonic term is 

omitted. 

Applying Gauss’s divergence theorem, Eq. (2) can be further rewritten as:  

  

∫ e−2i𝜉𝑥2ei𝜉𝑋2 ∫ {[𝐴𝑖
inc(𝑥1)�̃�𝑖1

𝛼(𝑥1 − 𝑋1)],1 + 𝑄} d𝑥1

ℎ

ℎ−𝜂(𝑥2)

d𝑥2

+∞

−∞

≈ 𝐴𝛼
ref(𝑋1)e

i𝜉𝑋2 

𝑄 = −2i𝜉𝐴𝑖
inc(𝑥1)�̃�𝑖2

𝛼(𝑥1 − 𝑋1) . 

(11) 

where the subscript ‘ , 1’ represents 
∂

∂𝑥1
,  ℎ  and 𝜂(𝑥2)  signify the plate thickness and the defect depth, 

respectively. 

    Furthermore, using the modes of the incident guided wave, the reflected waves can be formulated as  

𝑢𝛼
ref(𝑿) = 𝐴𝛼

ref(𝑋1)e
i𝜉𝑋2=𝐶ref(𝜉)𝐴𝛼

inc(𝑋1)e
i𝜉𝑋2  (12) 

where the reflection coefficients are given by 𝐶ref(𝜉) =
𝐴𝛼

ref(𝑋1)

𝐴𝛼
inc(𝑋1)

. 
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    In the equations above, the source point is far from the defect region 𝑉, and the integrand 

[𝐴𝑖
total(𝑥1)�̃�𝑖1

𝛼(𝑥1 − 𝑋1)],1 and 𝑄 have no singularity in the interval of integration. Therefore, there exists 

the original function as follows: 

�̃�(𝑥1, 𝜉)|ℎ−𝜂(𝑥2)

ℎ
= ∫ {[𝐴𝑖

total(𝑥1)�̃�𝑖1
𝛼(𝑥1 − 𝑋1)],1 + 𝑄} d𝑥1

ℎ

ℎ−𝜂(𝑥2)

 (13) 

Substituting Eqs. (3), (5) and (6) into Eq. (4), one has: 

∫ e−2i𝜉𝑥2ei𝜉𝑋2𝜂(𝑥2) lim
𝜂(𝑥2)→0

�̃�(ℎ, 𝜉) − �̃�(ℎ − 𝜂(𝑥2), 𝜉)

ℎ − (ℎ − 𝜂(𝑥2))
d𝑥2

+∞

−∞

≈ ∫ e−2i𝜉𝑥2ei𝜉𝑋2𝜂(𝑥2)
d�̃�(𝑥1, 𝜉)

d𝑥1

|
𝑥1=ℎ

d𝑥2

+∞

−∞

≈ 𝐶ref(𝜉)𝐴𝛼
inc(𝑋1)e

i𝜉𝑋2 
(14) 

Replacing 𝑅(𝑘) with 
d�̃�(𝑥1,𝜉)

d𝑥1
|
𝑥1=ℎ

in Eq. (7), the defect function is derived using the inverse Fourier 

transform, and one has 

𝜂(𝑥2) ≈
1

2π
∫ 𝐶ref(𝑘)𝐵(𝑘)ei𝑘𝑥2d𝑘

+∞

−∞

 (15) 

where 𝐵(𝑘) =
𝐴𝛼

inc(𝑋1)

𝑅(𝑘)
 and 𝑘 = 2𝜉. 

3. The Modified QDFT for Reconstruction of Large-depth Defects 

    According to the QDFT described in Section 2, Eq. (8) illuminates that the function 𝐵(𝑘) only depends 

on the wavenumber 𝑘 when defects can be considered as weak scattering sources. For the plate with large-

depth defects, a predefined reference model can be chosen to initially approximate 𝐵(𝑘) of the inspected 

plate using 𝐵0(𝑘) obtained from the given reference model. Therefore, Eq. (8) can be rewritten as 

𝜂1(𝑥2) ≈
1

2π
∫ 𝐶ref(𝑘)𝐵0(𝑘)ei𝑘𝑥2d𝑘

+∞

−∞

 (16) 

where the 𝐶ref(𝑘) is obtained by simulations or experiments for the specimen plate.  

    It is noted that there always exists the discrepancy between the predicted result by the QDFT and a real 

defect, because the defect in the reference model cannot be selected exactly the same as the unknown flaw 

in the specimen plate. Therefore, it is extremely difficult to achieve the accuracy of defect reconstruction 
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merely by a single simulation of QDFT, especially for the case of large-depth defects. To address this issue, 

an improved QDFT with the updating strategy for 𝐵𝑖(𝑘), called the QDFTU, is proposed in this section. 

The QDFTU has the ability to predict the large-depth defect profile with higher levels of accuracy and 

efficiency throughout iterative calculations of 𝐵𝑖(𝑘) obtained from the reference model. The update of 

𝐵𝑖(𝑘) will terminate until a convergence criterion for two consecutive reconstructions is satisfied. The 

developed approach works towards the converged large-depth defect profile and guarantees the reliability 

of the reconstruction result. Obviously, the remarkable advantage of QDFTU has been demonstrated by 

avoiding the derivation of closed-form Green’s functions and facilitating the detection of complex large-

depth defects. This leads to quantitative defect detection with a high level of accuracy. 

    The details of the QDFTU approach include five steps as follows: 

 Step 1: To choose a pre-defined reference model with the defect profile of 𝜂0(𝑥1); 

 Step 2: To calculate the reflection coefficients 𝐶0
ref(𝑘) of the reference model in Step 1 by HFEM, and 

obtain 𝐵0(𝑘) by inverse operation of Eq. (9), i. e., 𝐵0(𝑘) ≈ [∫ 𝜂0(𝑥2)e
−i𝑘𝑥2d𝑥2

+∞

−∞
] 𝐶0

ref(𝑘)⁄ ; 

 Step 3: To reconstruct the defect profile 𝜂1(𝑥1) using Eq. (9); 

 Step 4: To judge whether the difference between 𝜂1(𝑥1) and 𝜂0(𝑥1) satisfies the convergence condition. 

If the result meets the condition, the final result is achieved; otherwise, to update 𝜂0(𝑥1) of the 

reference model with 𝜂1(𝑥1); 

 Step 5: To repeat Steps 2 to 4 until the convergence condition is satisfied. 

The flowchart for the QDFTU approach has been given in Fig. 2. The reflection coefficients 𝐶0
ref(𝑘) and 

𝐶𝑖
ref(𝑘) of the reference models ( 𝜂0 and 𝜂𝑖) are calculated by the HFEM, and the 𝐶 

ref(𝑘) of the inspected 

structure is obtained from ultrasonic experiments. 𝐵0(𝑘)  and 𝐵𝑖(𝑘)  denote the integrands of initial 

reference model and the ith reference model, respectively. When the difference ∆ε between 𝜂
𝑖+1

(𝑥1) and 

𝜂
𝑖
(𝑥1) is less than or equal to 𝑀, the final result 𝜂

𝑖+1
(𝑥1) is achieved. Otherwise, 𝜂

𝑖+1
(𝑥1) in the (i+1)th 

iteration will replace 𝜂
𝑖
(𝑥1), and the loop continues. The red lines represent the flow path of the initial 

reconstruction, and the blue lines express the flow path of the iterations. 
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Fig. 2. The flowchart of QDFTU. 𝜂0 and 𝜂𝑖 represent the initial reference model and the ith reconstructed 

result, respectively, where 𝑖 = 1,2,3,⋯.  

    In the process of large-depth defect reconstruction, it is emphasized that the formulation of the 

convergence criterion ∆ε ≤ 𝑀 is critically important to the accuracy and efficiency of the reconstruction, 

because the convergence criterion directly determines the number of iterations and the validity of 

convergence. In this paper, the formulation of the convergence criterion is defined as follows,  

∆ε =
√

∑ [(𝜂𝑖+1(𝑥1
(𝑚)

) − 𝜂𝑖(𝑥1
(𝑚)

))
2

]𝑁
𝑚=1

𝑁
   (𝑖 = 1,2,3,⋯ ) 

(17) 

where 𝑁 denotes the number of sampling points at the defect boundary, the subscript 𝑖 indicates the number 

of iterations, ∆ε means the root mean square error (RMSE), to which 𝑀 is assigned as a threshold value. 

𝜂𝑖+1(𝛼1), 𝜂𝑖(𝛼1), and 𝜂0(𝛼1) denote the current, previous and initial reference defect profiles, respectively. 

If ∆ε ≤ 𝑀, the current result will be considered as the final profile. Otherwise, the current defect profile 

𝜂𝑖+1(𝑥) will replace the previous defect profile 𝜂𝑖(𝑥) until the convergence criterion is satisfied. In this 

paper, the value of ∆ε is suggested to be 0.08h (h means the plate thickness). It is certain that the smaller 

the value M is, the more the iterations are. However, due to some factors, such as the resolution of guided 

waves, the density of meshing grids, the adopted digital signal processing technique, etc., the threshold 

value M is typically chosen empirically. 

4. Numerical Experiments 

𝜂0(𝑥1) 

HFEM 

𝐶0
ref(𝑘) 

𝐶𝑖
ref(𝑘) 

𝐵0(𝑘) 

𝐵𝑖(𝑘) 

𝐶 
ref(𝑘) 

𝜂
𝑖
(𝑥1) 

∆ε ≤ 𝑀 

 

𝜂(𝑥1) 

Yes 

No 

𝑖 = 𝑖 + 1 

𝜂
𝑖
(𝑥1) 
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Two examples have been examined for reconstructions of large-depth defects in plate structures using the 

developed QDFTU. The defect profiles shown in Fig. 3 are described as: (a) d=0.20h, w=1.216h; (b) 

d=0.733h, w=1.337h, where h represents the plate thickness. It is noted that the initial reference model with 

a rectangular defect has been adopted in this paper. The material properties of the plates include density 

𝜌 = 7.9320 × 103 kg m3⁄ , Lame constants λ = 1.1320 × 1011Pa  and μ = 8.4302 × 1010Pa , and the 

thickness of plates ℎ = 9 × 10−4m. The first-order mode of SH guided wave (short for SH0) is adopted as 

the incident wave. The frequency range of incident SH0 is from 1.8005 × 104Hz to 3.9939 × 106Hz. 

 

Fig. 3. A plate with a single rectangular defect. d and w indicate the defect depth and width, respectively. 

 

 

Fig. 4. The reconstruction results of a single rectangular defect by QDFTU. (a) the real shallow defect 

parameters: d=0.20h, w=1.216h; (b) the real large-depth defect parameters: d=0.733h, w=1.337h. In 

example (a), three numbers of reconstructions have been required to achieve the converged defect profile 

due to two iterations. For example (b), eight iterations have been executed before the convergence criterion 

is satisfied.  
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 To reconstruct a shallow defect shown as Fig. 4(a), a satisfied result can be achieved only within two 

iterations. When the defect depth d is increased from 0.20h to 0.733h, the reflection signal gets stronger, 

which means the current defect should not be viewed as a weak source. Therefore, it can be observed that 

the first reconstruction result is rather poor, as shown in Fig. 4(b). However, as the number of iterations 

increases, the final result (the ninth reconstruction) converges to the real defect. By comparison of the 

results obtained from these two examples, the developed QDFTU method has the ability to efficiently 

reconstruct defects with a high level of accuracy for strongly scattered structures, i.e. a plate flawed by a 

large-depth defect. It is concluded that the QDFTU can effectively correct the error introduced by the Born 

approximation (assumption of weak scattering) for reconstruction of large-depth defects. It is certain that 

the deeper the defect depth is, the more the required iterations are. 

 

Fig. 5. The double-rectangular and triple-rectangular defects. (a) 𝑑1 = 0.30ℎ, 𝑤1 = 1.333ℎ, 𝑑2 = 0.50ℎ, 

𝑤2 = 1.070ℎ; (b) 𝑑1 = 0.333ℎ, 𝑤1 = 1.333ℎ, 𝑑2 = 0.20ℎ, 𝑤2 = 2.367ℎ, 𝑑3 = 0.533ℎ, 𝑤3 = 1.366ℎ. 

 

 

Fig. 6. The reconstruction results of double-rectangular and triple-rectangular defects. (a) the final result is 

obtained within three iterations; (b) the final result is obtained within six iterations. 
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    A more challenging problem has been considered in this example. When the number of defects increases 

and the defect depth reaches more than one half of the plate thickness, the converged result can be obtained 

within three iterations for reconstruction of a large-depth, double-rectangular defect, as shown in Fig. 6(a). 

It is noted that the first iteration result regarding the left rectangular defect is obviously less accurate than 

the real one in Fig. 6(a), because the incident wave propagates from right to left and the monitoring point 

locates at the right, thus the reflection signal owing to the left defect becomes weak. This phenomenon 

generally exists in the inspection where the reflection signal of a single direction is received. However, 

utilizing QDFTU, the left profile can be gradually improved and finally converges to the real one. Similarly, 

the same conclusion can be observed in Fig. 6(b). For the large-depth, triple-rectangular defect shown in 

Fig. 6(b), six iterations are executed until the convergence criterion is satisfied. Although the reconstruction 

result for the middle defect shows a slight discrepancy from the real second defect profile, the entire curve 

precisely predicts the two main peaks and the defect locations by QDFTU. It is concluded that QDFTU has 

demonstrated remarkable advantages in reconstructing large-depth defects in plate structures in terms of 

accuracy and efficiency throughout two challenging examples. For the large-depth defect reconstruction, 

more iterations are necessary than those required by the shallow defect reconstruction. Obviously, for 

reconstruction of complex defects, such as the large-depth, triple-rectangular defect, QDFTU needs more 

iterations to obtain the defect profile with a high level of accuracy, which shows good agreement with the 

real defect. 

5. Conclusion 

    In this paper, a QDFTU method has been proposed to achieve more accurate reconstruction for large-

depth defects in plate structures using SH guided waves. To achieve this goal, an updating strategy has 

been introduced to ensure the accuracy of defect detection. The root mean square error (RMSE) measured 

by the difference between two consecutive reconstruction profiles is introduced as a convergence criterion 

for the convergency result. The effectiveness and correctness of the developed QDFTU has been verified 

by examples of the large-depth flaws and complex defects. It is concluded that the more complex the defect 

is, the more iterations for reconstruction are required. Also, the defect depth is the most significant factor 

affecting the number of iterations during the process of reconstruction. It is noted that the limitation of the 

current work lies in the lack of experimental tests, which will be carried out in the future to further enhance 

this research work. In summary, QDFTU can compensate for the limitation of the Born approximation and 

enhance the accuracy of defect profiles, especially for the case that the reflection signal along one single 
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direction is received during the inspection. Therefore, the proposed QDFTU has the ability to accurately 

and efficiently reconstruct large-depth, complex defects in plates using SH guided waves and demonstrates 

its potential for a wide variety of inspection applications. 
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