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Abstract: Symmetry principles of several distinct kinds are revealingly engaged in an analysis
focussing on third harmonic scattering, a current focus of research on nonlinear optics in chiral
media. Analysis in terms of irreducible Cartesian tensors elucidates the detailed electrodynamical
origin and character of the corresponding material properties. Considerations of fundamental
charge, parity and time reversal (CPT) symmetry reveal the conditions for an interplay of transition
multipoles to elicit a chiral response using circularly polarised pump radiation, and the symmetry
of quantised angular momentum underpins the associated selection rules and angular distribution.
The intrinsic structural symmetry of chiral scatterers determines their capacity to exhibit differential
response. Exploiting permutational index symmetry in the response tensors enables quantitative
assessment of the boundary values for experimentally measurable properties, including circular
intensity differentials.

Keywords: irreducible tensors; angular momentum; multipole expansion; CPT symmetry; conservation
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1. Introduction

Third harmonic scattering (THS) is an optical process by means of which monochromatic laser
light undergoes frequency conversion, producing an output with three times the optical frequency
of the input, and accordingly one third of the input wavelength. The efficiency of the conversion
varies with the cube of the input intensity, and as such requires intense light for its observation.
Unlike the much stronger third harmonic generation (THG) that commonly accompanies this process
and is observable in the forward beam direction, the THS process is incoherent, distributing the
third harmonic output across a full range of angular deflections, with an angle-dependent intensity.
Third harmonic scattering can occur in individual molecules or nanoparticles, often in regular liquids
or suspensions. Although the prospect and character of a THS effect were established relatively early
in the development of laser science [1,2], the topic has recently acquired new interest [3,4], as the
requisite high intensities have now become routinely available in commercial systems. Symmetry
principles of several entirely distinct kinds are involved in the mechanism and selection rules for all
forms of optical nonlinearity [5,6], and they come powerfully into play in optical frequency conversion.
These principles concern both the properties of the input light (known as the pump) and the medium
in which conversion to the harmonic takes place. In the case of THS, additional symmetry aspects
are elicited when the scattering medium is chiral. To understand the route to those features, and to
ascertain the interplay of parameters that determine the experimental observables, the operation of
symmetry principles in the general sphere of harmonic conversion should first be appreciated.

2. Harmonic Frequency Conversion

The process by means of which laser light undergoes instantaneous conversion to a multiple
of its optical frequency ω is identifiable in two distinguishable forms: as harmonic generation or
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harmonic scattering. No excitation of the medium is involved. At the level of individual photons,
the fundamental process in each case engages the cooperative annihilation of an integer number n of
input photons, coupled to photon emission at frequency nω. One immediately significant distinction
that can be drawn between the very different characters of harmonic production is that harmonic
generation propagates onwards in the “forward” direction, similar to the direction of the pump,
whereas harmonic emission is widely distributed over other angles.

In harmonic generation, the emission can be strong and as laser-like as the input (the pump).
The reason is that the quantum amplitudes for conversion events at different sites within the conversion
medium add coherently, which is made possible by the radiation field as a whole conserving energy,
linear momentum and angular momentum. Such processes are termed optically parametric. As an
obvious corollary of Noether’s theorem [7], the same three properties are conserved by the material,
due to the isotropy of space and the invariance of the system as a whole to translation in space
or time. The conservation of energy in each component, radiation field and matter, identifies the
harmonic process as elastic. The conservation of linear momentum requires wave-vector matching
to minimise ∆k, the difference between the harmonic output wave-vector and the sum of the
pump inputs, |∆k| ≡

∣∣∣k′ − nk
∣∣∣, strongly favouring emission in the forward direction—subject to

small deviations to compensate any mismatch of the refractive indices at the input and output
optical wavelengths. The distance over which coherence is sustained, and the harmonic signal is
additive, is ∼ |∆k|−1

� λ′, where λ′ is the wavelength of the emitted harmonic. Any circumstances
that compromise the achievement of wave-vector matching blur the distinction between harmonic
generation and scattering [8].

For coherent harmonic generation, the conservation of angular momentum by the radiation field
is a condition that must be fulfilled by the axial components of photon spin in the input and output.
Circularly polarised light is the only case where the axial angular momentum of each photon has
a sharp value of ±1 [9]. From this it emerges that for systems such as liquids or gases, for which
isotropy applies over macroscopic distances � λ′, the symmetry of the full rotation group SO(3)
applies, and harmonic generation is accordingly forbidden for circularly polarised input [10]. This is
because the input photon spin angular momenta add to (±n)}, as determined by the handedness,
whereas the harmonic photon can convey away only one unit }. Equally, if one considers any other
state of input polarisation, necessarily expressible as a linear combination of states with +1 and −1
angular momentum (since the left and right circular polarisations constitute a complete basis set) it is
clear that no combination of any even number of these states can lead to a sum of unity. The result
is that the coherent generation of even optical harmonics is therefore forbidden in isotropic media,
irrespective of pump polarisation. By other (isotropic tensor) methods, both conditions have also been
proven to apply without constraint on any multipolar nature in the photon–matter interaction [11].
In non-isotropic media, such as solids of much lower symmetry than SO(3), harmonic generation
with circularly polarized input is allowed and then follows rules governed by the residual degree of
rotational symmetry—see for example reference [12] and references therein.

The other manifestation of optical frequency multiplication, the case of non-forward harmonic
scattering, is again necessarily elastic—there being no transfer of energy to or from the medium—but
linear and angular momentum are no longer conserved by the radiation or matter alone, only in the
entire matter + radiation system. Each harmonic conversion event is therefore discrete, additivity
applying to only the frequency conversion rates for the individual atoms, molecules, nanoparticles or
unit cells—not their quantum amplitudes: in the ensemble average all cross-terms involving separate
conversion sites vanish. In the study of molecules the scatterers are commonly randomly oriented.
Regular gases and liquids are both suitable media, but to secure a decent measurable signal the
latter is experimentally more viable; randomly oriented nanocrystals are also amenable to study
(see references [3,4], for example).

The symmetry principles that now determine the selection rules are therefore those applicable
to the constituents over a scale of distance, generally � λ′. Indeed, these rules apply to both
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incoherent harmonic scattering and coherent harmonic generation. No further constraints emerge for
the emission of harmonics of any odd order—essentially because the number of photons involved in each
fundamentally complete frequency conversion event, (n + 1), is an even number, and the corresponding
nonlinear response tensor (the nonlinear susceptibility, see below) is universally allowed. However,
the non-forward emission of even harmonics is only possible for non-centrosymmetric (and therefore
potentially polar) materials. Amongst the significantly populated symmetry classes, such materials
have to possess a structural symmetry belonging to one of these Schoenflies designations: S4, C3h, C3,
C4, C6, D2, D3, D4, D6, D3h, D2d, T, Td, O and I [13]. This rule, clearly broken at any surface, underpins
the use of second harmonic generation as a surface-specific probe [14]. Equally, if the rate of any
order of harmonic scattering is to exhibit a differential response according to the handedness of the
input radiation, the material cannot contain any elements of inversion, mirror, or rotation-reflection
symmetry, reducing the list to simply the pure rotation groups C3, C4, C6, D2, D3, D4, D6, T, O and I.

In the following sections these broad principles are specifically developed and applied in the
analysis of third harmonic scattering, a current focus of research on nonlinear optics [15]. With striking
chiroptical effects having recently been demonstrated in optical second harmonic scattering [16],
the focus here, too, is on circularly polarised pump input, for which case important new symmetry
rules are established for the specific case of chiral media. Notably, for liquid or randomly oriented
media, for the reasons identified above, having a circularly polarised input obviates any possible
competition from a process of coherent third harmonic generation followed by conventional scattering,
a scenario recently explored by Shelton [17]. Pursuing the analysis in a formulation cast in terms
of irreducible Cartesian tensors facilitates the elucidation of the detailed electrodynamical origin,
also eliciting the character of the salient material properties. It is shown how considerations of
fundamental charge, parity and time reversal (CPT) symmetry reveal the conditions for an interplay of
transition multipoles to elicit a chiral response from a circularly polarised pump, and here again it
is observed how the symmetry of quantised angular momentum underpins the associated selection
rules and angular distribution. As already observed, the intrinsic structural symmetry of chiral media
determines their capacity to exhibit differential response. It is also shown how exploiting permutational
index symmetry in the response tensors enables quantitative prediction of experimentally prominent
properties, including circular intensity differentials.

3. Formulation of Third Harmonic Scattering

In the traditional representation of nonlinear optics, the origin of the third harmonic signal that
may be produced on irradiating a suitable material with highly intense laser light is cast in terms
of a “nonlinear polarisation” P of the medium, oscillating at three times the input optical frequency.
A scalar response might be simply written as:

P(3ω) = χ(3)(−3ω;ω,ω,ω)E(ω)3 (1)

where χ(3) is the relevant nonlinear optical susceptibility and E is the electric field of the input light
with optical frequency ω. In general, the harmonic field need not be collinear with the input field,
and a more accurate form of the relation must engage directional dependence. Casting the input and
the nonlinear polarisation as vector quantities, the nonlinear susceptibility is accordingly a fourth rank
tensor, and we have:

P(3ω) = χ(3)(−3ω;ω,ω,ω) �3 (E(ω)E(ω)E(ω)) (2)

where �3 denotes a tensor inner product. The nonlinear polarisation is strictly an inferred quantity;
the true observable in the process is a scalar signal that may represent the conversion efficiency, or the
rate of third harmonic production. In the case of incoherent harmonic emission, i.e., where third
harmonic scattering, THS, occurs in anything other than the forward direction (which constitutes
a very different, coherent case of third harmonic generation, THG) the observable emerges from the
scalar product of P (3ω) with its complex conjugate.
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In the full quantum optical picture, where the input and output radiations are correctly represented
in terms of photons, it is simpler and more appropriate to directly deal in terms of a scalar quantum
amplitude, or matrix element, Mfi—the conventional subscripts denoting progress from an initial system
state i to a final system state f. This matrix element essentially represents the entirety of the frequency
conversion events in the form:

M f i ∼ E(3ω) � χ(3)(−3ω;ω,ω,ω) �3 (E(ω)E(ω)E(ω)) (3)

where E(3ω) is the emitted harmonic field and the overbar denotes complex conjugate; the observable
THS is related by simple factors to the modulus square of Mfi. It is then more appropriate—especially
where distinct molecules or scatterers are involved—to cast the electromagnetic fields and material
properties in terms of local fields and the microscopic measure of third harmonic propensity, the “second
hyperpolarizability” tensor γ, as follows:

M f i ∼ E
′

� γ�3 E3
∼ e′iγi jkle jekel (4)

where the optical fields now acquire the status of quantum operators for the relevant modes, and the
second expression on the right is further simplified to an expression written in terms of the input
and output polarization vectors e and e’, respectively, here adopting the Einstein convention of
implied summation over repeated tensor indices—the latter representing components in 3D space.
For simplicity, the output field is sufficiently denoted by the prime, and an overbar signifies a complex
conjugate. Choosing any specific polarization state for the harmonic allows for determination of the
signal detected through corresponding resolving optics.

In the above expressions, the microscopic nonlinear susceptibility (or hyperpolarizability) is
formulated in terms of electric dipole (E1) interaction with each optical field—indeed by far the major
part of nonlinear optics is based on this often implicit assumption. This accords with the simple
appearance of the electric field operator for each of the four photons involved in each distinct frequency
conversion interaction, which it will be convenient to represent as E14. The mathematical formulation
of the tensor, which comprises four terms, is readily derivable from time-dependent perturbation
theory by the use of the Feynman diagrams shown in Figure 1.
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to the interchange of the corresponding three tensor indices can be manifest in THS observations. It 
is expedient to denote the correspondingly index-symmetric part of γijkl as γi(jkl), the subscript brackets 

Figure 1. Feynman diagrams for the four distinct leading orders, each of which is fourth order in
electric dipole (E1) coupling, i.e., E14, which generate the full set of contributions to the third harmonic
scattering (THS) tensor γi( jkl). Time progresses upwards, the scatterer progressing from the ground
electronic state g through the virtual intermediate states r, s, t, before resuming the ground state.

Notably, since the three input photons are identical, only the part of γijkl that is symmetric with
respect to the interchange of the corresponding three tensor indices can be manifest in THS observations.
It is expedient to denote the correspondingly index-symmetric part of γijkl as γi(jkl), the subscript
brackets encompassing the three indices with permutational symmetry. It is not assumed that this
tensor has only real components; it is treated as a potentially complex quantity in order to accommodate
any damping effects that arise under near-resonance conditions.
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The general form of γijkl as a fourth-rank tensor in 3D space, comprising in general 34 independent
components, is reducible as a sum of individual tensors that individually transform under irreducible
representations of the full rotation group SO(3) [18,19]. This is notwithstanding any axial degeneracies
that may arise for scatterers of particular physical shape, such as x, y degeneracy in a particle with
a z-axis of threefold or higher rotational symmetry. Here, the irreducible parts of the susceptibility take
the form of natural tensors (tensors whose angular momentum eigenvalues are identically equal to
their rank J, each comprising (2J + 1) independent components) of order J ∈ {0, . . . , 4}, embedded in
fourth-rank tensor space. Thus, we may write:

γi( jkl) =
∑

J

γ
[J]
i( jkl)

(5)

Crucially, the decomposition of γi(jkl) comprises non-vanishing tensors of all permissible weights J,
all but the highest of these being represented with a multiplicity QJ > 1; the decomposition arises
from the outer coupling of four vectors. This reduction simplifies when the triple-index symmetry is
introduced, according to the outer product of a vector with an index-symmetric third rank tensor. The
number of independent components then reduces to

∑
J

QJ(2J + 1) = 30. Full details can be found in

Appendix 4 of [13].

4. CPT Symmetry and Multipole Interactions

Before proceeding further, it will be helpful to record the signature properties of the susceptibility
with respect to fundamental CPT symmetry (conjoining the operations of charge, parity and time
inversion) [20,21]. This will prove especially valuable when later identifying the unique features of
chiral behaviour. The entire realm of optics satisfies CPT symmetry. In all circumstances the E14 third
harmonic susceptibility is a tensor of even parity under each of these three operations, and hence under
the product CPT. In practice, since replacing all charges with their antiparticle counterparts is of no
practical relevance within this sphere of application—as discussed in a recent review—it will suffice
here and below to focus exclusively on PT symmetry.

It is well known that in the multipolar representation of electrodynamics, which becomes exact
when all terms in its rapidly converging series are accommodated [22], the leading E1 coupling
term is derivable as a highly accurate first approximation to the linear “p.a” term in the alternative
“minimal coupling” form; p denotes momentum and a denotes the vector potential. At the next level
of approximation to the minimal coupling, accommodating linear field gradients, the corresponding
corrections to E1 feature both M1 (magnetic dipole) and E2 (electric quadrupole) forms of interaction.
While E1 is odd in spatial parity P, M1 and E2 are both even. Equally, while E1 and E2 are even with
respect to time inversion, M1 is odd. The latter difference plays into effects that involve electron spin,
but it is the spatial parity differences that are crucial in connection with physical structures that are
spatially chiral over sub-wavelength, nanoscale dimensions.

At any level of approximation—for any order of perturbation and any kind of multipole—it
is clear that, as an energy operator, the interaction Hamiltonian must be even under both P and T.
Therefore in each contribution to the quantum amplitude, the parity signatures of each type, P and
T, have to be the same for both the field and the multipole with which it engages. For example in
a magnetic dipole interaction term, the dipole is odd in time and even in space; exactly the same
applies to the temporal and spatial parities of the magnetic field. To observe a symmetry-breaking
chiral effect it is then evident that any observable must entail multipoles of opposite parity, connecting
the same initial and final states—which is possible only in materials lacking a centre of symmetry.
Again, the equivalent condition applies to the electromagnetic fields, being most clearly satisfied by
changes of photon number in states of circular polarisation.

Returning to the specific case of third harmonic scattering, it will now be clear that spatially
chirally differential effects can result from the quantum interference of the leading E14 term with
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any other contribution for which the material tensor has of opposite spatial parity. The two leading
and quantitatively most significant terms are evidently of E13M1 and E13E2 form. The former are
illustrated by the diagrams in Figure 2. Here, the magnetic dipole interaction can be associated with
the single emitted photon, or with one of the three annihilated input photons. If a chirally sensitive
response to the optical input is sought, as would most readily be revealed in a difference in the
harmonic conversion rates for left- and right-handed circularly polarised pumps, then clearly only
the latter is relevant for further discussion; one may assume the harmonic output is not resolved
for polarisation. Here, the appropriately symmetrized tensor γ

(m)

i j(kl)(the superscript (m) denoting the
inclusion of a magnetic moment) comprises twelve terms. Their sum again reduces into irreducible
tensors spanning all weights J = 0 . . . 4, though with greater multiplicity accounting for 54 (=3 × 3 × 6)
independent components. The analogous counterpart E13E2 tensor with the quadrupole engaging the
input is a rank 5 tensor γ

(q)

i( jkl)m with all weights J = 0 . . . 5 present and 90 (=3 × 10 × 3) independent

components. Both the γ
(m)

i j(kl) and γ
(q)

i( jkl)m tensors are supported only by chiral molecules.
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Figure 2. Feynman diagrams for the sixteen distinct E13M1, contributions to THS. The four at top left,
wherein the M1 (magnetic dipole) interaction is associated with the harmonic photon emission, does
not (at this order of approximation) significantly contribute to effects that discriminate the handedness
of a circularly polarised input. The remaining twelve terms, with two E1 and one M1 interactions with

the pump, all contribute to the tensor γ(m)

i j(kl)
.

The form of the E13M1 and E13E2 contributions to the matrix element, representing corrections to
the right-hand side of Equation (4) are:

e′iγ
(m)

i j(kl)

(
k̂× e

)
j
ekel; ie′iγ

(q)
i( jkl)m

e jekelkm (6)

where the k = |k|k̂ is the wave-vector of the input light, whose magnetic polarization vector is cast
as k̂ × e. The factor of i in the second expression, with the km factor, results from the operation of
the gradient operator on the optical phase factor exp(ik.r), associated with quadrupolar coupling.
For convenience a factor of c (speed of light) in the former of the expressions in (6) is here assimilated
into the definition of γ(m)

i j(kl)
.
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5. Third Harmonic Signal from Fluid Media

The various contributions to the quantum amplitude for THS examined above add together to
produce an expression of considerable complexity when expressed explicitly. In principle, the harmonic
signal intensity, or conversion efficiency, is determined from the modulus square of this sum, leading
to over 30,000, i.e., (30 + 54 + 90)2, terms. However, the virtues of implementing the irreducible tensor
decomposition come powerfully into play when the response from any kind of fluid medium is derived.
Such media include not only liquids or solutions comprising intrinsically chiral molecules, but also
suspensions of helical or other chirally formed nanoparticles, as in recent experimental studies. It is
readily proven from the rules of angular momentum coupling that only products of identical weight
can contribute to the signal; all cross-terms between irreducible tensors of different weights vanish [23].
Essentially this is because the result has to be a product of scalars, one for the material response and
the other for the product of radiation field components.

The leading terms relevant to a chiral observable are now developed in the following form:

S ∼

∣∣∣∣∣e′iγi( jkl)e jekel + e′iγ
(m)

i j(kl)

(
k̂× e

)
j
ekel + ie′iγ

(q)
i j(klm)

k jekelem

∣∣∣∣∣2
=

∑
J

(
e′iγ

[J]
i( jkl)

e jekel + e′iγ
(m)[J]
i j(kl)

(
k̂× e

)
j
ekel + ie′iγ

(q)[J]
i( jkl)m

e jekelkm

)
×
∑
J′

(
e′nγ

[J′]
n(opq)

eoepeq + e′nγ
(m)[J′]
no(pq)

(
k̂× e

)
o
epeq − ie′nγ

(q)[J′]
n(opq)r

eoepeqkr

)
⇒

4∑
J=0

[
e′iγ

[J]
i( jkl)

e jekele′nγ
[J]
n(opq)

eoepeq + 2Re
{
e′iγ

[J]
i( jkl)

e jekel

(
e′nγ

(m)[J]
no(pq)

(
k̂× e

)
o
epeq − ie′nγ

(q)[J]
n(opq)r

eoepeqkr

)}]
+ . . .

(7)

Here, the upper limit on the summation in the bottom line is introduced to highlight the fact that

the γ(q)[J
′]

no(pqr)
contribution with J = 5 vanishes identically, for the reason given above. We can now take

advantage of the fact that for L/R (left/right) circular polarization the following relation holds:

k̂× e(L/R) = ∓ie(L/R) (8)

affording a simplification of the leading terms shown in Equation (7) into:

S(L/R)
∼

4∑
J=0

[
e′i e
′
nγ

[J]
i( jkl)

γ
[J]
n(opq)

e jekeleoepeq + 2Re
{
e′i e
′
nγ

[J]
i( jkl)

(
±inγ

(m)[J]
no(pq)

− iγ(q)[J]
n(opq)r

kr

)
e jekeleoepeq

}]
≡ Re

4∑
J=0

[
γ
[J]
i( jkl)

γ
[J]
n(opq)

+ 2
{
γ
[J]
i( jkl)

(
±inγ

(m)[J]
no(pq)

− iγ(q)[J]
n(opq)r

kr

)}]
e′i e
′
ne jekeleoepeq

(9)

Use is made of the fact that all three input photons are identical, and when the input beam is circularly
polarised they should all have the same circular polarization—either all left, or all right, according
to the choice of polarising optics in the path of the input beam. At this juncture, using the ergodic
theorem, a result for the fluid average can be secured by performing a rotational average on the
system. The result can be expressed in several ways; two of them in particular invite pursuit using
very different methods.

The first method further exploits the irreducible tensor approach by breaking the radiation vector
products into terms that correlate with the irreducible weights of the material tensors with which they
are inner-product contracted, leading to:

〈
S(L/R)

〉
∼ Re

4∑
J=0

(2J + 1))−1
[
γ
[J]
i( jkl)

(
γ
[J]
n(opq)

± 2inγ
(m)[J]
no(pq)

)(
e′neoepeq

)[J]
−2iγ[J]

i( jkl)
γ
(q)[J]
n(opq)r

(
e′neoepeqkr

)[J]](
e′i e jekel

)[J] (10)
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As again shown by Andrews and Blake, all cross-terms involving unequal values of J vanish [23].
The simplicity of the above expression occludes the complexity of identifying the various weight-J
elements of the polarisation vector products in (10). In particular, the general decomposition of

a fifth-rank Cartesian tensor into irreducible parts, as is required for evaluating the term
(
e′neoepeqkr

)[J]
,

appears not yet to be known; explicit results are known to be available only up to the fourth-rank
case [24,25].

The second method inviting attention follows from casting Equation (9) as follows, without
separating out the irreducible parts of the polarisation products:

〈
S(L/R)

〉
∼ Re

4∑
J=0

[
γ
[J]
i( jkl)

(
γ
[J]
n(opq)

± 2inγ
(m)[J]
no(pq)

)〈
e′i e
′
ne jekeleoepeq

〉
− 2iγ[J]

i( jkl)
γ
(q)[J]
n(opq)r

〈
e′i e
′
ne jekeleoepeqkr

〉]
(11)

Here, the complexity shifts to the evaluation of the eighth and ninth rank rotational averages indicated
by the angular brackets on the right. The former has long been known, cast in terms of 105 individual
isotropic tensor isomers [26,27]; an explicit and general result for the latter, which entails 1260 isotropic
tensor isomers, has only been derived much more recently [28].

In the present, symmetry-focused analysis, it is expedient to dwell more substantively on the first

terms in (11). In fact, there is a good physical reason to neglect the γ[J]
i( jkl)

γ
(q)[J]
n(opq)r

term. As noted earlier,
this term specifically involves a quadrupole interaction with an input photon, which, as noted earlier,
lends it a km factor, through operation of the gradient operator on the optical phase factor exp(ik.r).
Whilst the E2 and M1 forms of coupling are often considered broadly comparable in significance, it is
commonly the case in linear spectroscopies that the former plays a smaller role. However, in the
present application a much more substantial difference can be expected to arise, because the third
harmonic is generally studied with comparatively long-wavelength light, λ = 2π/k, and hence a small
wavenumber k, in order that the third-wavelength output λ′ be in an amenable region of the visible
spectrum. Any quadrupole interaction with the input is three times less significant than it would be for
the emission, but we know the latter plays no part in the chiral resolution of the pump. Accordingly,

for both these reasons, it can be anticipated that the γ[J]
i( jkl)

γ
(q)[J]
n(opq)r

term will play only a comparatively
modest role in modifying the results delivered by the leading terms, and we can proceed on this basis.

It is evident from Equation (11) that the angular distribution of both the E14-E14 and E14-E13M1
terms are in fact the same. This follows from the magnetic field of a circularly polarised beam being
merely π/2 different in phase from the corresponding electric field, and any such axial shift in phase
will not be experimentally resolvable in the perpendicular direction of harmonic emission. The results
therefore take the following form, for right-angled scattering and unresolved polarisation in the
harmonic (secured by adding the intensity results for two independent output polarisations—any two
states with diametrically opposite representations on a Poincaré sphere):

〈
S(L/R)

〉
∼ Re

[
144γ[2α] �4

(
γ[2α] ∓ 2γ′(m)[2α]

)
+ 1800γ[2α] �4

(
γ[2β] ∓ 2γ′(m)[2β]

)
+900γ[2β] �4

(
γ[2β] ∓ 2γ′(m)[2β]

)
+ 225γ[3] �4

(
γ[3] ∓ 2γ′(m)[3]

)
+ 725γ4

�
4
(
γ[4] ∓ 2γ′(m)[4]

)] (12)

This follows from the sum of Equations (29) and (30) in recent work [15], focused exclusively on E14

interactions. In Equation (12), inner products are now denoted in the explicit form γ�4 γ ≡ γi( jkl)γi( jkl);
the prime on a tensor denotes its imaginary part (recalling that whereas E1 moments are real, M1
are imaginary), i.e., γ′ = iγ, and the definitions of the separated γ[2α] and γ[2β] parts of the weight-3
tensor are as given in Appendix B of that work. In each irreducible tensor product, the γ′(m) tensor is
symmetrised in its indices relating to the input photon interactions through the inner products with γ.
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It follows that the rotationally averaged differential harmonic intensity, i.e., the change in the
harmonic intensity on changing the input from left- to right-handed circular polarisation, is given by:

∆S ≡
〈
S(R)

〉
−

〈
S(L)

〉
∼

2Re
[
144γ[2α] �4 γ′

(m)[2α]
+ 1800γ[2α] �4 γ′

(m)[2β]
+ 900γ[2β] �4 γ′

(m)[2β]
+ 225γ[3] �4 γ′

(m)[3]
+ 725γ4

�
4 γ′

(m)[4]
] (13)

Notably, there are no contribution from weights J = 0 or 1. This feature is readily explicable, and
consistent with the rules of quantum angular momentum coupling, running from |Jω − Jω′ | . . . Jω + Jω′ .
Finally, we can ascertain that the relative circular differential—i.e., the fractional change in harmonic

intensity compared to the mean for left- and right-handed input, S
(L/R)

≡
1
2

[〈
S(R)

〉
+

〈
S(L)

〉]
—is simply

expressible as the following:

gTHSCD ≡
S(R)
− S(L)

S
(R/L)

= 4Re
γγ′

m[4]
+ aγγ′m[3]

+ bγγ′m[2αα]
+ cγγ′m[2αβ]

+ dγγ′m[2ββ]

γγ[4] + aγγ[3] + bγγ[2αα] + cγγ[2αβ] + dγγ[2ββ]
(14)

serving to define the THS circular differential ratio gTHSCD in the same manner as the well-established
counterpart differential for linear (i.e., Rayleigh) scattering [29]. Here, a simple adaptation of the
concise notation of [15] is adopted, in which, for example γγ′m[2αβ]

≡ γ[2α] �4 γ′
(m)[2β]. In Equation

(14), the numerical coefficients have the values a = 0.31, b = 0.20, c = 2.48 and d = 1.24. The numerator
of this expression, and hence the whole differential, vanishes if the constituent molecules are achiral.
Moreover, whereas the denominator is the same for any pair of chirally opposite enantiomers, all γγ′(m)

terms in the numerator change their sign in enantiomerically opposite materials (since for inverse
structures all electric dipole moments have opposite signs, but the magnetic dipoles are the same).
Thus gTHSCD has an opposite sign for each material. This satisfies the necessity for invariance of the
whole radiation + matter system under the space inversion operation P.

6. Discussion

The main aim of this paper has been to both exemplify and harness a range of symmetry principles
in tackling a system of intrinsic interest in the sphere of modern nonlinear optics. It is well established
that the use of irreducible tensor methods proves greatly advantageous in the characterisation of
nonlinear molecular media, often through the study of second harmonic scattering [30]. There is
additional value and many further advantages to accrue from the use of circularly polarised light
as a probe of nonlinear optical systems, generally optimising the amount of information that can be
determined [31]. Here considering specific application to the process of third harmonic scattering we
have seen how CPT symmetry, quantised angular momentum, irreducible tensors, Cartesian index
permutations, conservation laws and structural symmetry all come into play. Moreover, the major
simplifications that are thereby brought into effect, mostly without significant approximation, enable
new, quantitatively applicable results to be secured.

It is not the purpose here to pursue detailed quantitative results, primarily because in any
application the exact values will depend on the material through the ten independent tensor products
in Equation (14), and their values will in turn depend on the optical frequency of the pump radiation,
as determined by the choice of laser source. However, it is instructive to identify a ballpark figure
for the degree of sensitivity to opposite circular polarisations of the pump. A traditional means of
estimating typical relative magnitudes for electrodynamic couplings involving M1 and E1 moments
takes as its premise the notion that electric dipoles are of the order of ea0, where e is the electron
charge and a0 is the Bohr radius, while magnetic dipoles are of the order of e}/me, where me is the
electron mass. From this it emerges that the relative magnitudes of M1/E1 couplings (not the moments
themselves, which have different physical dimensions) is of the order of α, the universal fine structure
constant whose value is ~1/137. Now each E13M1 γ′(m) tensor has three times as many contributions
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as its E14 counterpart γ (compare Figures 1 and 2), and so with the additional factor of 4 at the front
of Equation (14) it follows that a gTHSCD value of around 10% is not unreasonable. Moreover, it may
be recalled that the explicitly neglected E13E2 γ(q) terms also have a capacity to add to this result,
albeit most likely to a much smaller extent, but still suggesting that gTHSCD values in excess of 10% are
distinctly possible. This encouraging result will be a spur to experimental efforts to determine circular
differential THS effects in real chiral systems.

Finally, it is interesting to briefly contemplate potential application of the methods described here
to other nonlinear optical processes involving chirality. The most directly similar arise in the same,
fourth order of time-dependent perturbation theory; they too entail four photons in each light–molecule
interaction. However, departing from the third harmonic focus of the present study—three input photons
and one output per interaction—these entail two photons in, and two out. This four-wave mixing
(FWM) allows simultaneous inputs from two separate, individually tailored beams, often considered
pump and probe. The net input thus comprises two differently polarized fields; either one or both
input photons may have circular polarization. Some early “field dressing” approaches considered
one such circularly polarized beam to confer chirality on the system probed by the other [32]. As was
shown by Craig et al. [33], a molecule can exhibit a circular differential in its response to the secondary
beam, not requiring interference of the E14 term with any E13M1 or E13E2 terms of lower magnitude.
While the details depend on the relative optical frequencies and polarizations, the theory thus becomes
simpler though the molecular tensor γFWM

i jkl may lack index symmetry, retaining all five weights 0–4.
The coherent, wave-matching geometry commonly used enhances the signal, providing signals that can
be deployed analytically for optically enhanced detection [34].
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