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Efficient Strategies for Constrained Black-box
Optimization by Intrinsically Linear Approximation
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Abstract In this paper, a novel trust-region based surrogate-assisted
optimization method, called CBOILA (Constrained Black-box Optimization by
Intrinsically Linear Approximation), has been proposed to reduce the number of
black-box function evaluations and enhance the efficient performance for solving
complex optimization problems. This developed optimization approach utilizes
an assembly of intrinsically linear approximations to seek the optimum with
incorporation of three strategies: (1) extended-box selection strategy (EBS), (2)
global intelligence selection strategy (GIS) and (3) balanced trust-region
strategy. EBS aims at reducing the number of function evaluations in current
iteration by selecting points close to the given trust region boundary. Whilst,
GIS is designed to improve the exploration performance by adaptively choosing
points outside the trust region. The balanced trust-region strategy works with
four indicators, which will be triggered by the quality of the approximation, the
movement direction of the search, the location of the sub-optimum, and the
condition of the termination, respectively. By modifying the move limit of each
dimension accordingly, CBOILA is capable of attaining a balanced search
between exploitation and exploration for the optimal solutions. To demonstrate
the potentials of the proposed optimization method, three widely used
benchmark problems have been examined and the results have also been
compared with solutions by other metamodel-based algorithms in published
works. Results show that the proposed method can efficiently and robustly solve
constrained black-box optimization problems within an acceptable computational
time.
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1 Introduction

Due to the tremendous advances in computing power by supercomputers,
numerical simulations performed by Finite Element (FE) analysis or coupled
multidisciplinary analysis prove to be the most helpful, valuable and general
technique to take the place of expensive experiments across engineering subjects,5

such as civil, structural, aerospace and automotive engineering. Meanwhile, to
maximize the benefits brought from products, design optimization has also been
applied in engineering to seek optimal solutions. However, there are three major
challenges for optimization techniques applied to high-fidelity simulation models.
First of all, numerical simulations in practical engineering are typically10

computationally expensive. For example, the single run of a whole-vehicle impact
simulation that might involve one million finite elements usually takes more than
10 hours, even using a high-performance quad-core computer [1]. As a result,
evolutionary methods such as particle swarm optimization (PSO) [2] and genetic
algorithms (GAs) [3, 4] used to seek optimal designs are not suitable15

optimization techniques because they need lots of evaluations which are
unaffordable and unrealistic in terms of computational time for solving
real-world engineering design problems. Secondly, to the users the analysis of
such numerical models by commercial software is like a black box problem. The
derivative information is unavailable, unreliable, or impractical to obtain because20

little or no use of such computations is required in most finite differences-based
methods. Last but not the least, real-world optimization problems usually have
various complex properties including nonlinearity, non-convexity and
multi-modality. As well documented in No Free Lunch theorem [5], without a
knowable priori, it is difficult to choose an appropriate optimization algorithm25

with well configured parameters. In literature, substantial efforts have been
devoted into tackling these challenges.

To alleviate the computational overhead, a metamodel-assisted technique
proves to be a promising approach by replacing the expensive simulation calls
with several simple forms of approximations. Generally, methods for metamodel30

building include polynomial response surface (PRS) [6], radial basis function
(RBF) [7], kriging [8] and support vector regression (SVR) [9]. Based on each
metamodel’s predominant characteristics, Kriging and RBF belong to
interpolation methods that are more appropriate for solving non-convex or
multi-modal problems. Specifically, with the increased sampling points, kriging35

will be superior to RBF with regard to the accuracy of the approximation. PRS
and SVR are regression methods that have advantages in dealing with convex
problems [10]. PRS is much easier to implement than SVR but SVR outperforms
PRS in fitting high dimensional responses.

A popular approach for solving black-box optimization problems is the40

surrogate-assisted evolutionary algorithm. Initially, surrogates were widely used
for solving unconstrained problems [11–13]. However, this technique was still
rarely used to approximate constraint functions [14]. Araujo [15] et al.
implemented quadratic models in GAs to approximate the objective and
constraint functions. Regis [16] used a trust-region-like RBF metamodel to refine45

the best solution for each generation in the Evolutionary Programming (EP)
algorithm.
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As demanded from various subjects to solve constrained black-box
optimization (CBO) problems, metamodel-based iterative algorithms have
gradually been developed. Brekelmans [17] applied linear approximations within50

sequential trust regions and used a filter method to select current iterates.
Basudhar et al. [18] enhanced the ability of Efficient Global Optimization (EGO)
for solving constrained problems by using SVR to approximate the boundary of
the feasible domain. Koch et al. [19] proposed a new mechanism for Constrained
Optimization by Radial Basis Function Approximation (COBRA) to repair55

violated designs and this technique was further developed by Bagheri [20].

The present work is motivated from the intrinsically linear interpolation
[21–25], which are employed for metamodel-based optimization problems.
However, little work has been studied to enhance the efficiency and stability of
intrinsically linear approximation with the focus on the development of60

optimization framework to solve a constrained black-box optimization problem.
Hence, a new optimization method called constrained black-box optimization by
intrinsically linear approximation (CBOILA) has been proposed in this paper.
With metamodeling and three effective strategies, this developed approach
replaces the original complex optimization problem by a succession of simpler65

mathematical sub-problems. The solution of an individual sub-problem becomes
the starting point for the next iteration and then, the move limits are changed
and the optimization loop is repeated until the optimum is reached. In order to
achieve the balance of exploitation and exploration during the entire
optimization process, there are several important aspects addressed in CBOILA,70

namely:

– The plan of numerical experiments including the sampling and selection
strategies (Section 3.2).

– The specific structure of intrinsically linear expressions for metamodel building
(Section 3.3).75

– The trust region strategy to balance the search between exploitation and
exploration for the optimal solution (Section 3.4).

To demonstrate the capability of CBOILA for constrained black-box design
optimization, the brief introduction of constrained black-box problem is
described in Section 2 and the overview of the method is presented in Section 3.1.80

Comparisons with other state-of-the-art algorithms for solving three benchmark
problems is shown in Section 4, and a final discussion is given in Section 5.

2 Constrained black-box optimization (CBO) problem

The main characteristic of a CBO problem is that there are no algebraic
expressions for both the objective and the constraint functions. In other words,85

the functional relationships between design variables and responses are implicit.
Generally, solving the black-box problem is computationally expensive.
Moreover, the derivative information is also unavailable or impractical to obtain
when the function evaluation is time-consuming. It is quite common in
engineering to use simulation models for prediction of responses of the interests.90

In Fig 1, a set of design variables x ∈ Q ⊆ Rd are inputted to the black-box, e.g.,
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Output F (x)

Fig. 1: Black-box optimization.

a simulation tool, and a certain set of responses F (x) ⊆ Rm+1 are the outputs
predicted by the unknown relationships between the variables and responses.

The CBO problem addressed in this paper can be formulated as follows:

min
x∈Q

f(x)

s.t. gj(x) ≤ 1 (j = 1, . . . ,m)

Ai ≤ xi ≤ Bi (i = 1, . . . , d)

(1)

where x refers to the vector of design variables; Q is the design space bounded by95

[A,B], Ai and Bi are the given lower and upper bounds for the design variable xi;
d is the total number of design variables; f(x) is the objective function; gj(x) is
the constraint function and m is the total number of constraint functions.

In this paper, only minimization problems are considered because it is
straightforward to convert maximization to minimization problems. It is worth100

noting that the constraints in Eq. 1 should be well normalized by multiplying or
dividing by a certain factor based on the response values at the initial stage.
Thus variations of constraint violations near the optimum can be ranged at the
same level.

3 Constrained black-box optimization by intrinsically linear105

approximation (CBOILA)

3.1 Overview

CBOILA is a trust-region based metamodel-assisted optimization method, which
attempts to solve a sequence of constrained optimization sub-problems in a series
of trust regions using intrinsically linear approximations for evaluations of the110

objective function and constraints . The solution of an individual sub-problem
becomes the starting point for the next iteration, then the trust region is adaptively
panned or zoomed. This procedure is repeated until the search space is shrunk
into a sufficiently small trust region that contains the current iterate as its interior
point under the condition that the approximations are reasonably good. Each115

approximation is defined as a function of design variables as well as a number
of tuning parameters. Tuning parameters are determined by the weighted least
squares surface fitting, in which metamodels are built using the sampling points.
Some of the sampling points are generated in the current trust region, and the
others are taken from the pool of points utilized in the previous iterations.120
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In order to reduce the number of calls for evaluations required in the black-box
optimization problem, CBOILA replaces the optimization problem (Eq. 1) by a
series of approximate optimization problems like Eq. 2:

min
x∈Qk

f̃k(x)

s.t. g̃kj (x) ≤ 1 (j = 1, . . . ,m)

Aki ≤ xi ≤ B
k
i , A

k
i ≥ Ai, B

k
i ≤ Bi (i = 1, . . . , d)

(2)

where k is the iteration number, f̃k(x) and g̃kj (j = 1, ...,M) are approximations for
objective and constraint functions, which are adequately constructed in a current125

search sub-domain, i.e., a trust region defined by the side constraints Aki and Bki .
Fig. 2 displays graphically how the trust regions are adaptively resized and moved
towards the optimum in a 2D optimization problem.

The framework of CBOILA can be described in Algorithms 1-4. Details of the
main steps in CBOILA for solving CBO problems are introduced in the following130

sections.

3.2 Design of Experiments (DOE)

In order to build a metamodel, a dataset of inputs (a vector set of design variables)
and corresponding outputs (response values) are required. Design of Experiments
(DOE) is applied to determine the distribution of sampling points across the design135

space in order to predict the best possible information from metamodels built with
these experimental data.

As described in Section 3.1, CBOILA constructs metamodels within
sequential trust regions, each of which is centered on the successive
sub-optimum. During this process, the trust region of the interest adaptively140

moves or zooms and evaluations of new numerical experiments are performed at
each iteration. Moreover, previous information of objectives and constraints is
valuable and would not be abandoned during the optimization progression. In
this paper, three efficient strategies including Maxmin Stochastic Sampling
(MSS) for generating new experimental designs, Extended-box Selection (EBS)145

for taking full advantage of previous information, and Global Intelligence
Selection (GIS) for attaining a balance of the search capability between
exploitation and exploration, have been developed to enhance the accuracy of
metamodels used in CBOILA. Details of these strategies are discussed
respectively in the following subsections.150

3.2.1 Maxmin Stochastic Sampling (MSS)

MSS is a variant of stochastic sampling technique and applies an additional
constraint on the distance between any two points. Analytical tests [23] have
shown that the MSS could improve the quality of approximations and as a result,
the solution of the defined subproblem will be much accurate. The pseudocode of155

MSS is described in Algorithm 2.
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Algorithm 1: CBOILA Framework

Input:
(1) Starting point x0 ∈ Q
(2) The default number of required sampling points np (d+5)
(3) The relative size of initial trust region ∆0 (0.25)
(4) The relative size of the extended box δ (1.5)
(5) The range of adaptive enlargement or reduction εe, εr ([1.1,1.75])
(6) The maximum iteration number K (30 · d)
(7) The minimum relative size of trust region ∆min (0.0005)
Output:
The best point xopt encountered through the optimization process.

for k in range(0,K) do
Step 1. Design of Experiments (DOE)

if k = 0 then
Xk = MSS(x0, np, Ak, Bk)

else
nδ, Xδ = EBS(x0, δ, np, Ak, Bk)
Xs = MSS(x0, np − 0.5 · nδ, Ak, Bk)
Xg = GIS(x0, ng , Xall, Qδ)
Xk = Xδ ∪Xs ∪Xg

Step 2. Black-box Evaluations
Objective: f(Xk) ⊆ Rnk .
Constraints: gj(Xk) (j = 1, . . . ,m) ⊆ Rnk .

Step 3. Metamodel Building
Build approximations using intrinsically linear function.
Approximate objective function: f̃k(x).
Approximate constraint function: g̃kj (x) (j = 1, . . . ,m).

Step 4. Solve the subproblem
Use Sequential Quadratic Programming (SQP) method to solve the
approximate problem.
Find the optimal point xk+1 within current trust region.

Step 5. Trust Region Strategy
if ∆k > ∆min then

Define the next trust region Qk+1 using the trust region strategy.

else
Traverse all the possible points for the global optimum.
Output xopt.
Break

Algorithm 2: Maxmin Stochastic Sampling (MSS)

Function MSS(x0, ns, xl, xu):
Input:
(1) x0: Starting point.
(2) ns: The number of sampling points needed.
(3) xl: Lower bounds on x.
(4) xu: Upper bounds on x.
Output:
The set of sampling points Xs.

Put x0 in the sampling pool Xs.
Diag = ‖xu − xl‖2.
for i in range (0, ns − 1) do

Generate a point x satisfied:
Dist
Diag

≥ r. // The initial value of r is 0.9

/* Dist is the minimum distance between x and points in Xs. */

/* r will be reduced after a certain number of generations. */

Put x in the sampling pool Xs.

Return Xs
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Algorithm 3: Extended-box Selection (EBS)

Function EBS(x0, δ, np, xl, xu):
Input:
(1) x0: Starting point
(2) δ: The relative size of the extended box
(3) np: The default number of required sampling points
(4) xl: Lower bounds on x
(5) xu: Upper bounds on x
Output:
The set of sampling points Xk.

Define the extended box =⇒ Qδ = δ ·Box(xl,xu).
Choose nδ points inside Qδ =⇒ Xδ ⊆ Rnδ×d.
Return nδ,Xδ

Algorithm 4: Global Intelligence Selection (GIS)

Function GIS(x0, ng , Xall, Qδ):
Input:
(1) x0: Starting point
(2) ng : The number of global points needed
(3) Xall: The database of all sampling points
Output:
The set of points Xg selected by GIS.

for xi in Xall do
if xi /∈ Qδ then

Disti = ‖x0 − xi‖2.

According to Dist, choose ng points which are close to x0.
Xg ⊆ Rng×d.
Return Xg

x1

x
2

Fig. 2: A typical optimization search path by CBOILA
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Fig. 3: Three effective strategies for selection of sampling points during the
metamodel building process

3.2.2 Extended-box Selection (EBS)

When initial responses become available after the first iteration in CBOILA, a
strategy called Extended-box Selection (See Alg. 3) is applied to select some
points located in the neighborhood of the current starting point as alternatives160

to new points required in current iteration. As is shown in Fig. 3, this selection is
reasonable because the size of this extended box is just 1.4 to 1.6 times larger
than that of current trust region and it is possible that points in the extended
box are also useful for building metamodels. Furthermore, to avoid deterioration
of the approximation accuracy by overusing previous information, only half of165

the number of points selected by EBS (0.5 · nδ) is deemed to be qualified for the
alternatives. In other words, the number of new points required in current
iteration is nk = np − 0.5 · nδ. If nδ ≥ np, the generation of new points is not
required in this iteration because existing points in the extended box are
adequate for providing the approximations of responses with an acceptable level170

of accuracy in current trust region. Summarily, EBS can save the simulation cost
without degrading the quality of the metamodel, which is constructed in an
economical and practical way, especially when the computational budget is very
limited.

3.2.3 Global Intelligence Selection (GIS)175

To efficiently seek the global optimal solution, Global Intelligence Selection (GIS)
is developed in CBOILA. The strategy for GIS shown in Algorithm 4 is applied
to find the points which are close to the starting point and positioned outside of
the extended box. These points depicted as the cross-shaped points in Fig. 3 are
of global intelligence for two reasons. First, as compared with the current starting180

point, their locations are outside of the extended box. Second, they are selected
from a set of the most nearest points to the current starting point. By achieving a
balance in distance, points chosen by GIS can enhance the adaptive search ability
of CBOILA. Without global information provided by GIS, CBOILA will possibly
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trap into the local optima as the local points within the trust region could only185

support local exploitation. In addition, these global intelligence points could refine
the approximation within the current trust region, resulting in efficiently moving
the trust region along the most promising direction. It is worthwhile to note here
that the number of global points should not be more than the number of points
inside the extended box, otherwise, the quality of metamodel within the trust190

region can not be guaranteed. In general, the number of global intelligence points
ng is defined by Eq. 3 and will be rounded down during the entire optimization
process.

ng = Int[(0.5 +
0.5

k
K) · np] (3)

where k is the current iteration number and K is the maximum iteration number.

3.3 Metamodel building using intrinsically linear functions195

In the present work, the process of constructing metamodels is based on combining
different approximate models {ϕ`(x)} into one metamodel using Eq. 4 (note that
the indices j and k are suppressed to simplify the notation).

F̃ (x) =
NF∑
`=1

b` · ϕ`(x) (4)

where NF is the number of regressors in the model bank {ϕ`(x)} and b` is
corresponding regression coefficient to each approximate model ϕ`(x).200

This proposed assembly approach consists of two subsequent steps. In the first
step, a single surrogate ϕ` is identified using the weighted least squares method as
follows:

n∑
s=1

ws [F (xs)− ϕ`(xs,aj)]
2 → min (5)

where the coefficient ws denotes the weight, in other words, the inequality of
different sampling points, aj indicates the tuning parameter associated with the205

specific surrogate and xs is the sampling point. The simplest case of ϕ` is the
first order polynomial metamodel and more complex ones are intrinsically linear
functions (ILF) [26] that have been successfully applied for solving various design
optimization problem [23–25]. ILF are nonlinear but they can be led to linear ones
by simple transformations. Currently, five functions are considered in the regressor210
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pool {ϕ`(x)} as

ϕ1(x) = a0 +
d∑
i=1

aixi

ϕ2(x) = a0 +
d∑
i=1

aix
2
i

ϕ3(x) = a0 +
d∑
i=1

ai/xi

ϕ4(x) = a0 +
d∑
i=1

ai/x
2
i

ϕ5(x) = a0

d∏
i=1

xaii

(6)

Generally, the optimal solution of a generic optimization problem lies on a
boundary of the feasible region. In other words, there is at least one constraint to
be activated at the optimum. Therefore, it is reasonable to adaptively formulate
the weighting coefficient ws so that the approximation function F̃ (x) could be
improved in terms of the accuracy near the promising region. Taking into account
the above situation, ws is defined as follows:

ws = wos · wjs (j = 1, ...,m)

wjs =

{
gαj (x) if gj(x) ≤ 1

g−αj (x) if gj(x) ≥ 1
(7)

wos = [
f(x1)

f(xs)
]β

where x1 is the starting point, α = 4 and β = 1.5 by default. wos is the objective
factor and wjs is the constraint factor. In the second step, different approximation
models are assembled into one metamodel shown in Eq. 8, which is built in the
same manner as Eq. 5. It should be noted here that the same DOE is applied when215

different approximation models ϕ` are constructed.

n∑
s=1

ws
[
F (xs)− F̃ (ϕ` (xs) , b`)

]2 → min (8)

Finally, applying this two-step metamodel building technique, a linear system
of NF equations with NF unknowns b` is solved.

3.4 Trust region strategy

Once the approximation functions have been constructed, the optimization220

problems (Eq. 2) can be solved using any mathematical or metaheuristic
optimization techniques. During the entire optimization process, a strategy for
updating the sub-region of the design space including its current dimensions and
locations must be specified in each iteration for efficiently seeking the optimum.
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To achieve this goal, four indicators have been formulated to help enhance the225

search capability as follows:

The first indicator is to evaluate the quality of the metamodel and focus on
the accuracy of the constraint approximations at the obtained sub-optimal point
xk. This is based on the following equation:

Ek = Max

(
| g̃(xk)− g(xk)

g(xk)
|
)

(9)

where g̃(xk) and g(xk) are normalized functions of the approximate and true230

constraints at the sub-optimal point xk, respectively. In this way, a single maximal
error quantity between the explicit approximation and the implicit simulation is
defined. Then, the quality of the metamodel can be labeled as “Bad”, “Reasonable”
or “Good” as shown below.

Ek ⇒


≥ 0.25 · Sk ⇒ “Bad”

≤ 0.01 · Sk ⇒ “Good”

Else ⇒ “Reasonable”

(10)

where Sk is a measure of the present trust region defined by235

Sk = Max

(
Bki −A

k
i

Bi −Ai

)
(11)

The second indicator indicates the location of the current iterate xk in the
present search subregion. For each dimension, if none of the current move limits
(Aki or Bki ) is active, that dimension is considered as “internal”, otherwise it is
denoted as “boundary”. Unless xk is actually inside the current trust region, i.e.,
none of the move limits (Ak,Bk) is active, this solution is regarded as “Internal”,240

otherwise it is viewed as “Boundary”.

The third indicator reflects the movement history for the entire optimization
process. For this purpose, the angle between the last two move vectors in each
dimension is calculated. The formulation of this measure θki is given below:

θki =
xki − x

k−1
i

|xki − x
k−1
i |

·
xk−1
i − xk−2

i

|xk−1
i − xk−2

i |
(i = 1, ..., d) (12)

If θki > 0 holds, the movement in this dimension i will be denoted as “forward”,245

while θ ≤ 0 is denoted as moving “backward”.

The forth indicator, as a termination criterion, is triggered by the size of the
current search subregion. It can be marked as “Small” or “Large” according to
the quality of the metamodel determined by the first indicator. When the
approximations are “Bad” and Sk ≤ 2 · ∆min(0.0005), the present search250

subregion is considered as “Small”. When the approximations are “Reasonable”
or “Good”, the trust region is denoted as “Small” if Sk ≤ ∆min(0.0005).

A summary of these indicators is shown in Table 1.
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Table 1: Indicators for trust region strategy

1st indicator
The quality of approximation.

Good Reasonable Bad

2nd indicator

For each dimension,
the location of xki with respect to Aki , B

k
i .

boundary internal

The location of x with respect to Ak,Bk

Boundary Internal

3rd indicator

For each dimension,
the angle between the last two move vectors.

backward forward

4th indicator
Termination criterion: the size of Qk.

Small Large

Based on the indicators above, the next trust region will be a “box” centered
at xk with an adaptive resizing of current subregion by using

Bk+1
i −Ak+1

i = τ ·
(
Bki −A

k
i

)
(13)

Reduction: τ =
1

τr
(14)

Enlargement: τ = τe (15)

where τr and τe are the resizing coefficients in the range of [1.1, 1.75] dependent
on the improvement of the objective function, which is formulated as255

I =
f (xk−1)− f (xk)

f (xk−1)
· 100% (16)

The relationships between the reduction coefficient τr and the enlargement
coefficient τe are defined as

τr =


1.1 I > 1%

1.75 I < 0.5%

2.1− 100 · I 0.5% ≤ I ≤ 1%

(17)

τe =


1.75 I > 1%

1.1 I < 0.5%

0.6 + 100 · I 0.5% ≤ I ≤ 1%

(18)

The strategy applied for resizing the trust region is described in Fig. 4. Note
that some processes will only be executed when the indicators have the same260

superscript. For example, the process can only be aborted and outputs the final
optimum when the approximations are “Good” (with superscript 1) or “Bad”
(with superscript 3). If the quality of the metamodel is “Reasonable” with the
superscript “2”, the 4th indicator will never be triggered and a reduction of the
current trust region is performed directly.265
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Inputs:
xk,Ak,Bk,∆min, τr, τe

1st Indicator

2nd Indicator

For each dimension i

3rd Indicator

Keep size EnlargeReduce4th Indicator

Output: xk Next iteration

Good1Reasonable2

Boundary

backward forward1

boundary1

else

Small1,3

else

Internal

Bad3

Fig. 4: Schematic description of trust region strategy

4 Benchmark examples

CBOILA was implemented in Sypder 3.6.7, which is a scientific python
development environment. All numerical runs were executed on a desktop
machine with an AMD Ryzen CPU 1800X.

To solve constrained black-box optimization problems, various optimization270

methods and techniques have been proposed by researchers. V (µ+ 1) − ES [27],
co-evolutionary particle swarm optimization (CPSO) [28], and genetic algorithm
based augmented lagrangian method (GAAL) [29] belong to nature-inspired
algorithms, which have been developed to tackle this class of problems.
Meanwhile, metamodel-based optimization methods, alternative to evolutionary275

algorithms, have also been investigated, such as COBYLA [30], EOAS [31],
SBPSO [32], COBRA [33], MSSR [34], KCGO [35], and SCGOSR [36]. COBYLA
is an iterative method using linear interpolation to replace original objectives
and constraints. EOAS is a hybrid evolutionary algorithm that uses the nearest
neighborhood regression. SBPSO employs a hybrid surrogate, which is280

constructed using response surface method, to assist the particle swarm
optimization for the global optimum. Meanwhile, the residual error is formulated
by radial basis function. COBRA, developed by Regis, uses radial basis function
interpolation technique to solve expensive black-box optimization problems.
MSSR, KCGO and SCGOSR are three kriging-based global optimization285

methods.
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To demonstrate the robustness and efficiency of CBOILA, results have been
compared with solutions from the aforementioned state-of-the-art algorithms.

4.1 Case 1: Welded Beam Design

Fig. 5: Schematic of the welded beam structure

As shown in Fig. 5, the beam is welded to a rigid support and is designed290

for the minimum cost, considering constraints on shear stress (τ), bending stress
(σ), buckling load (pc), and end deflection (δ). The design variables comprise the
thickness of the weld h (x1), the length of the welded joint l (x2), the width of the
beam t (x3) and the thickness of the beam b (x4). The problem can be formulated
mathematically as follows:295
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min f(x) = 1.10471x
2
1x2 + 0.04811x3x4(14 + x2)

s.t. g1(x) = τ(x)− τmax ≤ 0

g2(x) = σ(x)− σmax ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = [0.10471x
2
1 + 0.04811x3x4(14 + x2)]− 5 ≤ 0

g5(x) = 0.125− x1 ≤ 0

g6(x) = δ(x)− δmax ≤ 0

g7(x) = p− pc(x) ≤ 0

where P = 6000 lb, L = 14 in, E = 30× 10
6
psi, G = 12× 10

6
psi,

τmax = 13600 psi, σmax = 30000 psi, δmax = 0.25 in
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36

)
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x3

2L

√
E
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)
0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

(19)

To demonstrate the robustness of CBOILA, 10 independent simulations have been
conducted to examine its stability and the results have been compared with the
published data by seven methods. As shown in Table 2 and Table 3, CBOILA
has the ability to find the best result. It is noted that evolutionary algorithms
without using surrogates such as CPSO and V (µ+ 1) − ES, can obtain a good300

solution but the number of function evaluations (NFEs, > 20000) is one order
larger than the number of simulations by other surrogate-assisted methods. In
Table 2, it is observed that both SCGOSR and CBOILA can obtain the similar
solutions. From statistic point of view, the average searching quality of CBOILA
is the best of all, which has been shown in Table 3. Moreover, the average NFEs305

required by CBOILA is 94.5 and standard deviation is 2.10e−7, which are smaller
than results obtained by other algorithms. This confirms that CBOILA is able to
solve the problem with high levels of efficiency and robustness.

During the entire optimization progress, the average of the objective values of
iterates (xk) in 10 tests have been plotted in Fig. 6. The error bars describe the310

standard deviations of the average. According to the plot, the objective value of
each run xk varies a lot during the beginning but the standard deviation decreases
sharply as the optimization proceeds. When the NFEs is over 85, the standard
deviation of the objective value is smaller than 0.01, which means most runs have
found the optimum and stopped. Summarily, CBOILA presents a robust search315

ability no matter whether the initial point is feasible or infeasible.
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Table 2: Comparison of present optimized designs with literature for the welded
beam.

Methods x1 (h) x2 (l) x3 (t) x4 (b) f

CPSO [28] 0.202369 3.544214 9.04821 0.205723 1.728024
V (µ+ 1)− ES [27] 0.199742 3.612060 9.037500 0.206082 1.737300

SBPSO [32] 0.2294 6.3054 8.8475 0.2294 2.3497
COBRA-Local [33] N.A. N.A. N.A. N.A. 1.7250

MSSR [34] 0.2056902 3.4683028 9.0445203 0.2056904 1.7256
KCGO [35] N.A. N.A. N.A. N.A. 2.3230

SCGOSR [36] 0.2057 3.4705 9.0366 0.2057 1.7249
CBOILA 0.205730 3.470487 9.036618 0.205729 1.724852

Table 3: Statistical results from different optimization methods for the welded
beam design problem.

Methods Best Mean Worst S.D. NFEs

CPSO [28] 1.728024 1.748831 1.782143 0.012926 200000
V (µ+ 1)− ES [27] 1.737300 1.813290 1.994651 0.070500 25,000

SBPSO [32] 2.3497 N.A. N.A. N.A. 582
COBRA-Local [33] 1.7250 N.A. N.A. N.A. 164.57

MSSR [34] 1.7256 N.A. N.A. N.A. 156
KCGO[35] 2.3230 N.A. N.A. N.A. 115

SCGOSR [36] 1.7249 N.A. 1.7888 N.A. 101.9
CBOILA 1.724852 1.724852 1.724852 2.10e-07 94.5
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Fig. 6: Mean of the objective values of iterates (xk) in 10 trials obtained by
CBOILA for welded beam design problem. Error bars are standard deviations
about the mean.

4.2 Case 2: The tension/compression spring design

The spring design example ([37],[38]) has been widely used as a benchmark for
solving constrained optimization problems. As shown in Fig. 7, the design
variables include the wire diameter d (x1), the mean coil diameter D (x2), and320
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Fig. 7: Schematic of the spring structure

the number of active coils N (x3). The design objective is to minimize the weight
of the spring subject to constraints on the minimum deflection g1, shear stress
g2, surge frequency g3 and the limits on the outside diameter g4. The
mathematical description of this problem is given as follows:

min f (x) = x21x2 (x3 + 2)

s.t. g1(x) = 1− x32x3
71785x41

≤ 0

g2(x) =
4x22 − x2x1

12566 (x2x31 − x41)
+

1

5108x21
− 1 ≤ 0

g3(x) = 1− 140.45x1
x22x3

≤ 0

g4(x) =
x2 + x1

1.5
− 1 ≤ 0

where 0.05 ≤ x1 ≤ 1; 0.25 ≤ x2 ≤ 1.3; 2 ≤ x3 ≤ 15.

(20)

As illustrated in Table 4, CBOILA could find the best solution with the325

smallest objective value (0.0126652). According to the statistical results obtained
from Table 5, it is evident that CBOILA has strong stability in searching the
global optimal solution because the standard deviation is just 4.83e− 8, which is
much smaller than results obtained by other methods. Although KCGO used
just 38 function evaluations, it can only find a feasible point, but not the optimal330

solution. SCGOSR completed the optimization process with average 75.7
function evaluations. As described in Section 3.4, CBOILA keeps on searching
for the optimum until the trust region is relatively small and the solution is just
located in this region. In Fig. 8, it can be observed that CBOILA is able to find
the near-optimal solution using approximately one-quarter of the total number of335

function evaluations and the rest of simulations is used to perform the search for
the actual global optimum. Again, evaluation based optimization methods, such
as KCGO and SCGOSR, have to use more NFEs than the number of simulations
by metamodel based algorithms for the global optimum. It is evident that
CBOILA is demonstrated to be a robust and comparably efficient algorithm for340

solving this benchmark problem.
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Table 4: Statistical results from different optimization methods for the spring
design problem.

Methods x1 (d) x2 (D) x3 (N) f

CPSO [28] 0.051728 0.357644 11.244543 0.0126747
V (µ+ 1)− ES [27] 0.355360 0.051643 11.397926 0.012698

SBPSO [32] 0.0517 0.3568 11.3027 0.012689
KCGO[35] N.A. N.A. N.A. 0.0135

SCGOSR [36] 0.0516 0.3550 11.3904 0.0126653
CBOILA 0.0517108 0.357240 11.25837 0.0126652

Table 5: Statistical results from different optimization methods for the spring
design problem.

Methods Best Mean Worst S.D. NFEs

CPSO [28] 0.0126747 0.012730 0.012924 5.20e-5 200000
V (µ+ 1)− ES [27] 0.012698 0.013461 0.016485 9.66e-4 25,000

SBPSO [32] 0.012689 N.A. N.A. N.A. 558
KCGO[35] 0.0135 N.A. N.A. N.A. 38

SCGOSR [36] 0.01267 N.A. 0.01278 N.A. 75.7
CBOILA 0.0126652 0.0126653 0.0126654 4.83e-8 207.4
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Fig. 8: Mean of the objective values of iterates (xk) in 10 trials obtained by
CBOILA for spring design problem. Error bars are standard deviations about
the mean.

4.3 Case 3: Mathematical optimization problem—G10

This problem was one of the nonlinear constrained benchmark problems
introduced in 2006 IEEE Congress on Evolutionary Computation. The
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mathematical description is shown below:345

min f (x) = x1 + x2 + x3

s.t. g1(x) = −1 + 0.0025 (x4 + x6) ≤ 0

g2(x) = −1 + 0.0025 (x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01 (x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where

100 ≤ x1 ≤ 10000
1000 ≤ xi ≤ 10000 (i = 2, 3)
10 ≤ xi ≤ 1000 (i = 4, ..., 8)

(21)

This has been reported as a challenging example because it belongs to a class
of non-uniform scaling problems [29], i.e., highly varied ranges for different
constraints. As can be observed from the above mathematical expressions, only
the first three constraints are normalized. Regis [33] proposed a logarithmic
transformation for the constraints with large values. However, the algorithm
could not guarantee the robust optimal solution. To demonstrate the superiority
of CBOILA in terms of efficiency and robustness in seeking the optimum, the
obtained results have been compared with the solutions by other methods shown
in Table 6. In cooperation with three developed strategies described in Section
3.4, CBOILA has the capability of finding the robust optimal solution by simply
diving constraints with the factor (103 ∼ 105). The values of eight design
variables for the best solution are

x =(579.311703, 1359.97245, 5109.96387, 182.018119

295.601445, 217.981881, 286.416674, 395.601445)

and the optimization objective is f = 7049.2480.

As shown in Table 6, the best result of 7049.2480 is the global optimum
found by CBOILA and the worst result obtained among 10 independent runs is
7049.2483. This remarkable performance of CBOILA owes to the very small
standard deviation (1.14e− 4) for 10 independent runs. GAAL could also find350

the global optimum while the number of function evaluations is approximately 18
times more than what CBOILA requires. COBRA and KCGO can obtain a
feasible solution efficiently while the obtained optimal solution is far away from
the global optimum. The iterative history of results by CBOILA has been given
in Fig. 9. The objective value varies significantly within the first 200 iterations,355

and then steadily converges to the optimum because the global optimal solution
has been achieved with small standard deviations (S.D.) in the remaining
optimization process. In summary, CBOILA has ability to alleviate the difficulty
imposed by the larges ranges of different design constraints and find the global
optimum with high levels of efficiency and robustness.360
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Table 6: Statistical results from different optimization methods for G10.

Methods Best Mean Worst S.D. NFEs

COBYLA [30] 7050.3 8085.5 11259.7 1.90e+3 270840
EOAS [31] 7049.404 7082.227 7258.540 4.20e+1 304066
GAAL [29] 7049.2480 7049.2480 7049.2480 N.A. 10578

COBRA [33] 8238.78 17498.57 25086.88 892.28 100
KCGO[35] 7180.35 N.A. N.A. N.A. 51
CBOILA 7049.2480 7049.2481 7049.2483 1.14e-4 574.4
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Fig. 9: Mean of the objective values of iterates (xk) in 10 trials obtained by
CBOILA for G10 problem. Error bars are standard deviations about the mean.

5 Conclusions

In this work, a new framework called CBOILA has been developed for solving
real-world optimization problems with expensive black-box objectives and
constraints. The enhanced trust-region strategy is the corner stone of‘ the
established framework to deal with such class of optimization problems. With365

the integration of the developed EBS (extended-box selection) and GIS (global
intelligence selection) strategies, CBOILA can identify the global optimal
solution with far fewer number of function evaluations and more robust
performance as compared against other state-of-the-art methods through three
well-known benchmark problems. Results show that CBOILA has great370

potentials to efficiently and robustly solve constrained black-box optimization
problems and this framework provides a useful insight to find the global
optimum of complex large-scale engineering structural designs within an
acceptable computational time.
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