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ABSTRACT
The focus of this work is on a microscopic quantum electrodynamical understanding of cumulative quantum effects in resonance energy
transfer occurring in an isotropic and disordered medium. In particular, we consider quantum coherence, defined in terms of interferences
between Feynman pathways, and analyze pure-amplitude and phase cross terms that appear in the Fermi golden rule rate equation that
results from squaring the matrix element for mediated energy transfer. It is shown that pure-amplitude terms dominate in the near-zone
when chromophores are close in proximity to one another (within a few nanometers), and phase cross terms dominate toward the far-zone
when phase differences between different Feynman pathways begin to emerge. This can be understood in terms of physical attributes of the
mediating photon, whose character becomes more real at long distances, coinciding with vanishing longitudinal components of the field, as
transverse components begin to dominate.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0011562., s

I. INTRODUCTION

Recently,1 we presented a microscopic quantum electrodynam-
ical (QED) theory describing damping and decoherence in con-
densed phase resonance energy transfer (RET). Whereas in open sys-
tem density matrix approaches, coherences are typically defined as
complex off-diagonal elements,2 in our treatment, coherence arises
from interference effects between Feynman pathways connecting the
initial state to the final state. Consequently, damping in RET systems
can be understood to take two physical manifestations: (i) energy
conserving phase damping, which occurs as a result of geometric
and dispersive distortions within the system, and (ii) dissipative
amplitude damping in which the virtual photons mediating the RET
process are lost to the environment through alternative quantum
channels, namely, loss due to vibrational damping and absorption
through a material medium with a complex refractive index. Both of
these result in a rapid quantum decoherence in the condensed phase.
Full details are described in Ref. 1.

An important aspect of decoherence in RET that emerges
from this microscopic picture is the central role of the molecular
polarizability. This quantity dictates how mediating virtual photons

are scattered from intervening chromophores situated between or
in the vicinity of the donor, D, and the acceptor, A. The scatter-
ing of photons by passive chromophores can significantly enhance
the rate of RET, but the polarizability is also responsible for ampli-
tude damping at the molecular centers. It is well known that deco-
herence occurs much more rapidly in a more disordered envi-
ronment. Our focus is on understanding how quantum coherence
occurs via randomly oriented mediating chromophores, as would
be the case of RET in an isotropic fluid. This can be understood
in terms of the efficiency with which mediators scatter virtual
photons.

Rigorously accounting for the effects of a bath on inter-particle
interactions, such as those occurring in RET, is a challenging
undertaking. At its heart RET, such as other forms of coupling
between material particles, is a manifestation of the Coulomb inter-
action between the charged particles associated with each center.
To accurately treat RET in a medium, a number of different cou-
plings need to be accounted for. These include the very process by
which energy migrates from D to A, the interactions amongst the
particles comprising the bath if the environment is described micro-
scopically, and the coupling between these two subsystems. This
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leads to different possibilities for the introduction of the refrac-
tive index, depending on how the medium is to be described,
and the role played by the chromophores.3,4 Factors such as the
fluorescence and absorption rates, the distance and orientational
dependence of the transition dipole moments, and the properties
of the bath (local field and screening corrections) will all affect the
strength of the coupling between the pair exchanging energy and,
consequently, modify the rate. A common macroscopic approach
to deal with the surrounding environment, widely employed in
quantum chemical computations, is to place the quantum system
of interest in a cavity of finite volume, which in turn resides in
a medium with a prescribed frequency dependent dielectric con-
stant. A variety of approaches have been developed, ranging from the
primitive Onsager dipole model to more sophisticated polarizable
continuum methods, to describe the change in the polarization char-
acteristics of one or more particles and their surroundings. Together,
these come under the general banner of self-consistent reaction field
methods.5,6

Microscopic treatments of the bath, in which its particulate
character is manifest, have previously been considered. One funda-
mental attempt involved describing the electromagnetic field and
the atoms or molecules making up the environment as consti-
tuting the reservoir, which is quantized.7,8 Initially, the particles
of the medium were taken to be two-level species, but in later
work, this was extended to realistic many-level systems. A quan-
tum mechanical particle is embedded in such a bath and may
undergo absorption or emission of light, or couple to other atoms
or molecules not comprising the medium. An early application of
this construct to an elementary interaction occurred with RET.8–12

In vacuum, the acquisition of electronic and/or vibrational exci-
tation by an acceptor moiety initially in its ground state from
an excited donor molecule is well understood, thanks to a num-
ber of QED13–17 calculations that have been performed over the
years of the probability for the migration of energy between the
pair.18–31 We build on this framework by accounting for the com-
plex refractive index of the medium, whose real part gives rise to
dispersion and whose imaginary part describes absorption, with the
latter commonly represented by the Beer–Lambert law. It is also
worth mentioning recent efforts by Hsu and co-workers,32–34 who
employed macroscopic QED to treat RET in an inhomogeneous
absorbing and dispersive medium whose relative permeability is
one, with a particular focus on plasmonic structures. Accurate elec-
tromagnetic field amplitudes are computed using finite difference
time domain methods, while material properties are obtained via
time-dependent density functional theory (TD-DFT). In combina-
tion, these led to time domain electrodynamics being applied to
RET (TED-RET).

As a starting point, we briefly re-consider the transfer of exci-
tation energy arising from the exchange of a single virtual pho-
ton between transmitter and receiver entities in the absence of a
medium. For a freely tumbling donor–acceptor system, the Fermi
golden rule migration rate is given by14

⟨Γ⟩ = η
36πε2

0
̵hρ6 ∣μ⃗0m(D)∣2∣μ⃗m0(A)∣2[k4

m0ρ
4 + k2

m0ρ
2 + 3], (1)

with the angular brackets surrounding Γ, denoting that a rotational
average has taken place, as would be applicable for molecules in

a solution or, more generally, in the fluid phase. ρ⃗ = R⃗A − R⃗D is
the distance between the donor and the acceptor, which is beyond
the orbital overlap for D and A positioned at R⃗D and R⃗A, respec-
tively. The transition electric dipole moments are given by μ⃗0m(ξ)
= ⟨0ξ ∣μ⃗(ξ)∣mξ⟩, for ξ = D, A. For decay of excitation associated with
the downward transition occurring in the emitter, the energy is given
in wavenumber units as km0 = (Em−E0)/h̵c, with the density of states
being η.

Equation (1) is a consequence of the unified theory of
RET.21,25,28,29 It encompasses the inverse sixth power dependence
of the rate on inter-particle separation distance well known from
Förster theory, and it also includes the inverse square behav-
ior indicative of exchange of energy via a radiative mechanism.
Each functional form may be obtained from Eq. (1) on taking
near- and far-zone asymptotic limits, respectively. Furthermore, the
intermediate-zone represented by the ρ−4 term needs to be included
when ρ ∼ λ/2π.

The introduction of the dielectric medium, which is character-
ized by a complex refractive index n, turns free-space virtual photons
into bath-dressed virtual photons or polaritons, and the rate for-
mula [Eq. (1)] is modified as a result (see Sec. II and Refs. 8, 10,
and 12). Terms dependent upon ρ−3 and ρ−5 appear in addition to
the near-, intermediate-, and far-zone terms, as well as contribu-
tions proportional to Re(n) and/or Im(n). Screening and local field
factors are also contained in the expression for the transfer rate.
Furthermore, because the surroundings may be absorbing, the cor-
rect exponential decay factor proportional to Im(n) scales the rate
formula.

In previous work,1 we considered the influence of a polarizable
third molecule, T, on modifying the resonant exchange of energy
between D and A, in a medium, when all three chromophores are
maintained in a fixed geometry, as may be the case for a crystal
lattice, for example. The focus of that study was on understand-
ing to what extent RET could be enhanced by quantum coherence,
defined as arising from interferences between Feynman pathways.
Furthermore, we showed that there are distinctly different decoher-
ence mechanisms, some involving energy conserving (phase) damp-
ing and others due to dissipative (amplitude) damping. Other studies
have also considered the effects of a medium on pair and third-
body mediated RET, but without considering the explicit role of
damping in a quantitative way.34–39 We note that there are a num-
ber of other processes in which energy is transferred amongst three
particles which have also previously been examined, in addition to
the prototypical transfer between D, A, and T in a medium.40–43

Some of these include energy pooling schemes such as twin-donor
energy migration, cooperative and accretive mechanisms that facili-
tate upconversion, downconversion, and sensitization in rare-earth
doped systems, as well as cavity enhanced three-body upconver-
sion.44–48 A few publications have even dealt with RET involving
four bodies.49–52

In this work, we seek to understand the relative contribu-
tion of pure-amplitude and phase interference cross terms to the
overall rate of RET in an isotropic and disordered fluid. It is
well known that quantum decoherence occurs rapidly in liquid
solutions; however, several years ago, there were a number of sur-
prising experimental results indicating that coherences of quan-
tum origin may occur in photosynthetic systems.53–55 Although not
fluids, these biological systems are thought to be highly mobile with
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significant levels of disorder in their native states at ambient tem-
peratures. However, we note that the nature of these coherences
is now thought to be “emergent,” rather than genuine quantum
coherences.56 Nevertheless, genuine quantum coherence in molec-
ular systems can be maintained in cavities that are free from
significant environmental noise.57,58 Consequently, in this work,
we also seek to understand spatial distances over which pure-
amplitude and phase interference cross terms may dominate. This
is carried out by examining such effects occurring in an isotropic
system involving third-body mediated RET over a range of sep-
aration distances between the chromophores. As detailed below,
rotational averaging is used to calculate analytical expressions for
rates of RET, and computer simulations are used to quantify the
relative contributions of different coherence effects to the overall
rate.

The paper is organized as follows: Sec. II briefly describes pair
RET in a medium occurring via polariton exchange, before the third
body is introduced and the QED theory is developed, and the total
transfer rate arising from direct and all indirect pathways is eval-
uated. In Secs. III and IV, we derive analytical results for third-
body mediated RET in a fluid, and finally, we model the analytical
solutions computationally in Sec. V, before concluding and looking
forward in Sec. VI.

II. PAIR RET IN A FLUID
Before considering the effect of a third body in mediating the

transfer rate in a medium using the polariton model, we briefly re-
examine the change in the form of the matrix element and Fermi
golden rule rate when a bath-dressed photon is exchanged between
a donor, D, and an acceptor, A. The chromophores are taken to be
chemically identical, although the theory can be easily extended to
energetically non-degenerate systems. With the donor initially in
the excited electronic state ∣mD⟩ and the acceptor in the ground
state ∣0A⟩, the initial state for the total system, in which there are
no polariton modes occupied, is

∣i⟩ = ∣mD, 0A⟩. (2a)

On de-excitation, D ends up in its lowest level ∣0D⟩, while after trans-
fer of energy, A is excited to state ∣mA⟩, with the total final state
expressed as

∣ f ⟩ = ∣0D, mA⟩. (2b)

For a system comprising two molecules, the radiation field,
the interaction between them, and the total QED Hamiltonian is
written as13,14

HTotal = Hmol(D) + Hmol(A) + Hrad + Hint(D) + Hint(A), (3)

where Hmol(ξ), ξ = D, A are molecular Hamiltonians for the donor
and acceptor composed of a sum of kinetic and intra-molecular
potential energies for the charged particles that are grouped into dis-
tinct species ξ. In QED theory, the electromagnetic field is treated
at the same level as the material particles, so an explicit Hamilto-
nian term is included from the very beginning. One form in which

Hrad may be written is in terms of microscopic transverse electric
displacement and magnetic fields, d⃗�(r⃗) and b⃗(r⃗), respectively, as

Hrad =
1
2 ∫ [ε

−1
0 d⃗�2(r⃗) + ε0c2b⃗2(r⃗)]d3 r⃗, (4)

and represents the total energy of the electromagnetic field, which is
viewed as a sum of independent simple harmonic oscillators.

Fourier series mode expansions are employed for the Maxwell
field operators, whose free-space functional forms are

d⃗�(r⃗) = i∑
⃗k,λ

( h̵ckε0

2V
)

1/2

[e⃗(λ)(k⃗)a(λ)(k⃗)ei⃗k⋅⃗r

− e⃗
(λ)(k⃗)a†(λ)(k⃗)e−i⃗k⋅⃗r] (5)

and

b⃗(r⃗) = i∑
⃗k,λ

( h̵k
2ε0cV

)
1/2

[b⃗(λ)(k⃗)a(λ)(k⃗)ei⃗k⋅⃗r

− b⃗
(λ)
(k⃗)a†(λ)(k⃗)e−i⃗k⋅⃗r], (6)

where the sum is executed over all modes of the radiation field spec-
ified by the wave vector k⃗ and the index of polarization λ, whose
circular frequency is ω = ck, for light in a box of volume V. The
complex unit electric and magnetic polarization vectors are given
by e⃗(λ)(k⃗) and b⃗(λ)(k⃗) = k̂ × e⃗(λ)(k⃗) for k⃗, λ-mode radiation, with
an overbar signifying the complex conjugate. The characteristic of
the second quantized approach is the photon lowering and raising
operators a(λ)(k⃗) and a†(λ)(k⃗), which, respectively, decrease and
increase the number of light quanta in the free radiation field by
unity. A state of the field in which the number of quanta is equal
to zero for each and every mode corresponds to the vacuum elec-
tromagnetic field. These individual bosonic shift operators obey the
equal time commutator,59

[a(λ)(k⃗), a†(λ′)(k⃗′)] = 1
8π3V δλλ′δ(k⃗ − k⃗′), (7)

with all other commutator brackets involving these operators van-
ishing.

On taking the leading term in the multipolar expansion16 of the
charge and current density distributions of the atoms or molecules
results in the coupling between matter and radiation being given
by the electric dipole approximated form of the interaction
Hamiltonian,

Hint(ξ) = −ε−1
0 μ⃗(ξ) ⋅ d⃗�(R⃗ξ), (8)

where μ⃗(ξ) is the electric dipole moment operator of species ξ.
For the situation in which D and A are embedded in a dielec-

tric medium composed of individual microscopic particles other
than the emitter and absorber, quantization of the bath Hamiltonian
results in the free-space electric displacement field operator [Eq. (5)]
being modified to8
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d⃗�(med)(r⃗) = i∑
p⃗,η

⎛
⎝

h̵ω(ν)p v(ν)g ε0

2cn(ν)V
⎞
⎠

1/2
⎛
⎝
(n(ν))2

+ 2
3

⎞
⎠

× [e⃗(η)(p⃗)P(η)ν (p⃗)ei⃗p⋅⃗r − e⃗
(η)(p⃗)P†(η)

ν (p⃗)e−i⃗p⋅⃗r], (9)

where the mode of the polariton is p⃗,η. In expression (9), ν is an
index that specifies the polariton dispersion branch, v(ν)g is the group
velocity of radiation propagating in the medium whose refractive
index is n(ν), and P(η)ν (p⃗) and P†(η)

ν (p⃗) are annihilation and creation
operators, respectively, for a polariton of mode p⃗,η.

As in the free-space molecular QED calculation of the trans-
fer matrix element,29 two time-ordered diagrams contribute to
the probability amplitude, each depicting the directed exchange
of a single virtual polariton between the donor and the acceptor.
Using the second-order formula of time-dependent perturbation
theory for the probability amplitude, the matrix element is found
to be

MDA(med)
fi = μ0m

i (D)V(med)
ij (km0, ρ⃗)μm0

j (A), (10)

where μ0m
i (ξ) is the transition electric dipole moment between states

∣0ξ⟩ and ∣mξ⟩ of particle ξ. Note that the Einstein summation con-
vention has been adopted in Eq. (10) for indices of Cartesian ten-
sor components that repeat. In addition, appearing in Eq. (10)
is the retarded electric dipole–electric dipole coupling tensor in a
medium,8

V(med)
ij (p, R⃗) = n−2(n2 + 2

3
)

2

V(vac)
ij (np, R⃗), (11)

which is expressed in terms of the tensor coupling two elec-
tric dipoles separated by a vector displacement, R⃗, in free space,
Vvac

ij (p, R⃗), whose functional form is13,14

V(vac)
ij (p, R⃗) = − 1

4πε0
(−∇2δij +∇i∇j) eipR

R

= eipR

4πε0R3 [(δij − 3R̂iR̂j)(1 − ipR) − (δij − R̂iR̂j)p2R2].

(12)

It is worth noting that due to the effect of an environment, the wave
vector argument in the coupling tensor is scaled by n = n′ + in′′,
the complex refractive index of the surrounding medium. This
last quantity also appears in two explicit pre-factors of Eq. (11).
The first is the screening factor and the second is the local field
effect.

In the weak-coupling regime, the rate of resonant excitation
energy transfer is given by the Fermi golden rule formula,

Γ = 2π
h̵
∣Mfi∣

2η, (13)

where η is defined after Eq. (1). For a freely tumbling D–A pair, the
rate in a medium is given by8,10,12

⟨ΓDA(med)⟩ = 4πη
9h̵
∣n

2 + 2
3n
∣
4

(4πε0ρ3)−2∣μ⃗0m(D)∣2∣μ⃗m0(A)∣2e−2n′′kρ

× [3 + 6n′′kρ + (n′2 + 5n′′2)k2ρ2

+ 2(n′2 + n′′2)n′′k3ρ3 + ∣n∣4k4ρ4], (14)

where k = km0 is the wavenumber of the downward transition in
the donor particle. Equation (14) applies for all separations outside
the orbital overlap region. Environmental effects such as screen-
ing and local field corrections are properly accounted for, as are
dissipative effects in the medium via the exponential factor, whose
argument displays a negative dependence on n′′. On setting n′ = 1
and n′′ = 0, the result [Eq. (14)] expectedly reduces to its free-space
form, Eq. (1).

The form and features of the rate expression [Eq. (14)] are a
direct consequence of RET being viewed as due to the exchange of a
virtual polariton between the emitter and the absorber within micro-
scopic QED theory. It is interesting to note that within the frame-
work of radiationless or Förster theory in a medium, the origin of the
introduction of the refractive index has taken on a couple of different
forms. One involves n describing the intervening space between the
two chromophores, in a localized picture. The Coulomb interaction
is modified by an effective dielectric constant, which serves to screen
the interaction. The other is the solvent picture, in which n appears
in the medium corrected emission intensity of D and the absorption
cross section of A. In this case, the relevant transition electric dipole
moments are those for the chromophores within the medium, and
not their free-space values.3,4

III. THIRD-BODY MEDIATION OF RET IN A FLUID

We now examine the role of a neutral, polarizable but oth-
erwise passive third body, T, in modifying the rate of resonance
energy transfer between D and A in a medium with a com-
plex refractive index n. We can think of these three molecules
as forming a quantum subsystem within a randomly oriented
fluid environment; the latter comprises the “bath,” which is fully
described by its refractive index. We take all three molecules to
be chemically identical; however, this can be relaxed if desired for
generality.

With the introduction of the third particle, transfer of energy
between D and A may occur indirectly via the mediator in addi-
tion to direct transfer. Overall, there are four possible energy trans-
fer mechanisms comprising direct migration from D to A and
three routes involving T. To maintain consistency with previous
studies,1,41–43 we use the same convention; one route is designated
DTA, in which T serves as a bridging species between D and A,
and the other two are denoted as TDA and DAT, in which the
mediator couples only to D or only to A, respectively. For these
last two possibilities to manifest, T must have a non-vanishing
ground state permanent electric dipole moment, μ⃗00(T); namely,
the mediator is polar. As a consequence of this property, it is inter-
esting to note that no net transfer of energy occurs between T
and D in the TDA mechanism, or between A and T in the DAT
route.
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Accounting for the four migration mechanisms when a third
body is present means that the total probability amplitude for RET
may be written as

MTotal
fi =MDA + MTDA + MDAT + MDTA. (15)

Fourth-order diagrammatic time-dependent perturbation theory
may be employed to calculate the matrix element for each of the
contributions dependent upon T. Coupling between any pair of
interacting particles is viewed as arising from the propagation of a
single virtual polariton between the respective centers so that each
mechanism involving the third body requires summation over 24
separate time-ordered sequences of (virtual) emission and absorp-
tion events. A representative graph for each of the three mech-
anisms is shown in Figs. 1(b)–1(d) of Ref. 1, from which the
labeling of configurations either as TDA, DAT, or DTA becomes
clear.

To account for the fact that the mediator T remains in its
ground electronic state before and after the transfer process and to
accurately represent the new total system, the initial and final states
in Eq. (2) are modified by the inclusion of ∣0T⟩ in their specification.
During the transfer process, the mediator may undergo virtual elec-
tronic transitions to an arbitrary state ∣rT⟩. As for pair transfer in a
medium, the total system is assumed to be closed so that no energy
is lost to the surroundings.

Because transfer is resonant and the chromophores are chem-
ically equivalent, A’s final state is also ∣mA⟩. It is worth noting that
when D and A are chemically different, the requirement for transfer
of energy to occur resonantly is that the emitter and absorber have
overlapping energy spectra. However, in the present case, matrix
elements taken over the same electronic states of the three species
ensure that equal magnitudes of the electric dipole moment and
polarizability operators ensue.

Formulae for the individual contributions to the total matrix
element [Eq. (15)] that depend on T are computed using standard
techniques of molecular QED theory,13,14 yielding

MTDA = μ00
i (T)Vmed

ij (0, R⃗)α0m
jk (D;−k, 0)Vmed

kl (k, ρ⃗)μm0
l (A), (16)

MDAT = μ0m
i (D) Vmed

ij (k, ρ⃗) αm0
jk (A; 0, k) Vmed

kl (0, R⃗′) μ00
l (T), (17)

and

MDTA = μ0m
i (D) Vmed

ij (k, R⃗) α00
jk (T;−k, k) Vmed

kl (k, R⃗′) μm0
l (A).

(18)

Environmental effects are included through the coupling ten-
sor appropriate to a dielectric medium, Eq. (11). The separation
distances between coupled particles are defined by the vectors
R⃗ = R⃗D − R⃗T and R⃗′ = R⃗A − R⃗T so that ρ⃗ = R⃗′ − R⃗ is consistent
with its definition given earlier. The appearance of a polarizability
tensor in the expression for each amplitude is due to the scatter-
ing of a virtual polariton by the species which shuttles energy: a
transition polarizability is associated with D and A, respectively, in
the case of the TDA and DAT mechanisms, and the ground state

counterpart for T in the case of the DTA route. For any two-photon
allowed molecular process taking place between states ∣i⟩ and ∣ f ⟩,
the general functional form of the dynamic transition polarizability
of particle ξ is written as

αfi
ij(ξ;−p, p′) =∑

r

⎡⎢⎢⎢⎢⎣

μfr
i (ξ)μ

ri
j (ξ)

Eri + h̵cp + ih̵cγ(r)
+

μfr
j (ξ)μ

ri
i (ξ)

Eri − h̵cp′ + ih̵cγ(r)

⎤⎥⎥⎥⎥⎦
,

(19)

where the sum is executed over all intermediate states ∣rξ⟩, and the
damping of the molecule in this state is denoted by γ(r). It is impor-
tant to point out that of the three polarizabilities featuring in the
matrix elements Eqs. (16)–(18), only the ground state polarizability
tensor of T is symmetric in its indices. The inverse length featur-
ing in the arguments of the interaction tensor and polarizability
correspond to the quantity of transferred energy, Em0 = Em − E0
= h̵ckm0, with km0 = k chosen to simplify the notation. Performing
the sum in Eq. (19) in a two-level approximation, the three relevant
polarizabilities are found to be

α0m
ij (D;−k, 0) =

μ00
i (D)μ0m

j (D)
Em0 + ih̵cγ(0)

+
μ00

j (D)μ0m
i (D)

ih̵cγ(0)

+
μ0m

i (D)μmm
j (D)

ih̵cγ(m)
+
μ0m

j (D)μmm
i (D)

−Em0 + ih̵cγ(m)
, (20a)

αm0
ij (A; 0, k) =

μm0
i (A)μ00

j (A)
Em0 + ih̵cγ(0)

+
μm0

j (A)μ00
i (A)

ih̵cγ(0)

+
μmm

i (A)μm0
j (A)

ih̵cγ(m)
+
μmm

j (A)μm0
i (A)

−Em0 + ih̵cγ(m)
, (20b)

α00
ij (T;−k, k) =

μ00
i (T)μ00

j (T)
Em0 + ih̵cγ(0)

+
μ00

j (T)μ00
i (T)

−Em0 + ih̵cγ(0)

+
μ0m

i (T)μm0
j (T)

ih̵cγ(m)
+

μ0m
j (T)μm0

i (T)
−2Em0 + ih̵cγ(m)

. (20c)

Since the three particles taken together are situated in the medium,
it is appropriate to employ the vacuum polarizability of the media-
tor. The dispersion behavior of the environment, characterized by its
refractive index, may be described via the Clausius–Mossotti relation
and the bulk polarizability of the medium.

For coupling of polar T, through its ground state permanent
electric dipole moment in the TDA and DAT mechanisms, no net
energy is relayed. Hence, the wavenumber argument appearing in
Vmed

ij and the polarizability is zero in Eqs. (16) and (17), correspond-
ing to the static or frequency-independent versions of these two
quantities. Introducing the shorthand notation ηr⃗(t)

ij ≡ δij − tr̂i r̂j for
the orientational factors featuring in the right-hand side of Eq. (12),
the five relevant coupling tensors present in the matrix elements
(16)–(18) are
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Vmed
ij (0, R⃗) = 1

4πε0R3 (
n2 + 2

3n
)

2

ηR⃗(3)
ij , (21)

Vmed
ij (k, ρ⃗) = 1

4πε0ρ3 (
n2 + 2

3n
)

2

ein′kρe−n′′kρ

× [ηρ⃗(3)ij + n′′kρηρ⃗(3)ij + (n′′2 − n′2)k2ρ2ηρ⃗(1)ij

− in′kρηρ⃗(3)ij − 2in′n′′k2ρ2ηρ⃗(1)ij ], (22)

Vmed
ij (0, R⃗′) = 1

4πε0R′3
(n2 + 2

3n
)

2

ηR⃗′(3)
ij , (23)

Vmed
ij (k, R⃗) = 1

4πε0R3 (
n2 + 2

3n
)

2

ein′kRe−n′′kR

× [ηR⃗(3)
ij + n′′kRηR⃗(3)

ij + (n′′2 − n′2)k2R2ηR⃗(1)
ij

− in′kRηR⃗(3)
ij − 2in′n′′k2R2ηR⃗(1)

ij ], (24)

Vmed
ij (k, R⃗′) = 1

4πε0R′3
(n2 + 2

3n
)

2

ein′kR′e−n′′kR′

× [ηR⃗′(3)
ij + n′′kR′ηR⃗′(3)

ij + (n′′2 − n′2)k2R′2ηR⃗′(1)
ij

− in′kR′ηR⃗′(3)
ij − 2in′n′′k2R′2ηR⃗′(1)

ij ]. (25)

Inserting the total matrix element [Eq. (15)] into the Fermi golden
rule rate formula [Eq. (13)] results in ten contributory terms,

ΓTotal = 2πη
h̵
[∣MDA∣2 + 2Re(MDAMTDA) + ∣MTDA∣

2

+ 2Re(MDAMDAT) + 2Re(MTDAMDAT) + ∣MDAT ∣
2

+ 2Re(MDAMDTA) + 2Re(MTDAMDTA)

+ 2Re(MDATMDTA) + ∣MDTA∣
2
], (26)

with the first term, corresponding to pair transfer in a medium,
given by Eq. (14) for isotropic donor and acceptor molecules. An

analysis of the dependence of the total rate on various contributions
of Eq. (26) as well as the effect of interference of phase amplitudes,
decoherence, and damping for a three-body system in a fixed rela-
tive orientation was recently given in Ref. 1. Below, we consider the
case of isotropic species that may be situated arbitrarily relative to
one another.

Before doing so, it is worth mentioning that interference effects
for a process such as phonon mediated electronic excitation trans-
fer that may occur directly between initial and final states, or via
a third state or site, have been considered.60 A process is said to
be sequential if the direct and third-state mediated routes are con-
sidered independent of one another, and their respective proba-
bilities are summed in a “classical” fashion. This corresponds to a
rapid thermalization of the bath. If thermalization is slow, how-
ever, then the probability is given by the modulus square of the
sum of the amplitudes for the two routes. This is categorized as a
“super-exchange” mechanism with coherence giving rise to a non-
classical interference term. Incidentally, we also note that there are
a number of studies showing that interference effects are critically
important when considering through-bond electron transfer, which
also occurs via the super-exchange mechanism.61,62 In the present
study, calculation of the total matrix element, Eq. (15), is carried
out quantum electrodynamically. Furthermore, three different cou-
pling mechanisms arise from taking proper account of the elec-
tronic properties of the mediator. There are interferences not only
between different Feynman pathways from the various amplitudes
associated with distinct third-body mediated mechanisms but also
between direct and indirect processes. All of these contributions
arise automatically in the present treatment and are contained in the
result, Eq. (26).

We first evaluate diagonal (pure amplitude) contributions to
the third-body mediated rate, Eq. (26), namely, those arising solely
from the TDA, DAT, and DTA routes. To obtain results which hold
for freely tumbling D, A, and T, an orientational average63 is per-
formed over the molecular quantities present in the rate formula.
For averaging of the dipoles, we use the well-known result

⟨μpq
i (ξ)μ

qp
j (ξ)⟩ =

1
3
δij∣μ⃗pq(ξ)∣2, (27)

while for the rotationally averaged polarizability, we employ the
expression63

⟨αrs
kl(ξ)αrs

k′ l′(ξ)⟩ =
1

30
{δklδk′ l′[4αrs

λλ(ξ)αrs
μμ(ξ) − αrs

λμ(ξ)αrs
λμ(ξ) − αrs

λμ(ξ)αrs
μλ(ξ)]

+ δkl′δk′ l[−αrs
λλ(ξ)αrs

μμ(ξ) − αrs
λμ(ξ)αrs

λμ(ξ) + 4αrs
λμ(ξ)αrs

μλ(ξ)]
+ δkk′δll′[−αrs

λλ(ξ)αrs
μμ(ξ) + 4αrs

λμ(ξ)αrs
λμ(ξ) − αrs

λμ(ξ)αrs
μλ(ξ)]}, (28)

where the Greek subscripts signify Cartesian tensor components in the body-fixed (laboratory) frame of reference. We also require the result
for the orientational average of a third-rank Cartesian tensor,63 Tijk,

⟨Tijk⟩ =
1
6
εijkελμνTλμν, (29)

as occurs in the product of a permanent electric dipole and a transition polarizability of a particular molecule. These tensors are then
contracted with the retarded coupling tensors. The ensuing isotropic rate for the TDA mechanism is then
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⟨ΓTDA⟩ = πη
135̵h

1
(4πε0)

4
1

(ρR)6 ∣( n2+2
3n )

2
∣
4
∣μ⃗00(T)∣2∣μ⃗m0(A)∣2e−2n′′kρ

×{[3α0m
λλ (D;−k, 0)αm0

μμ (D;−k, 0) − 2α0m
λμ (D;−k, 0)αm0

λμ (D;−k, 0) + 3α0m
λμ (D;−k, 0)αm0

μλ (D;−k, 0)]
× ([9[1 + (ρ̂ ⋅ R̂)2][1 + i(n − n)kρ + ∣n∣2k2ρ2] − [5 − 3(ρ̂ ⋅ R̂)2][(n2 + n2)k2ρ2 − i(nn2 − nn2)k3ρ3 − ∣n∣4k4ρ4)])
+ 12[−α0m

λλ (D;−k, 0)αm0
μμ (D;−k, 0) + 4α0m

λμ (D;−k, 0)αm0
λμ (D;−k, 0) − α0m

λμ (D;−k, 0)αm0
μλ (D;−k, 0)]

× [3 + 3i(n − n)kρ + (3∣n∣2 − n2 − n2)k2ρ2 + i(nn2 − nn2)k3ρ3 + ∣n∣4k4ρ4]}. (30)

The rate result for the DAT mechanism may be obtained from expression (30) on replacing R by R′, R̂ by R̂′, μ⃗m0(A) by μ⃗m0(D), and
α0m
ρσ (D;−k, 0) by α0m

ρσ (A; 0, k). A lengthier expression is obtained for the isotropic rate due to the DTA route. It is given by

⟨ΓDTA⟩ = πη
135̵h

1
(4πε0)

4
1

(RR′)6 ∣( n2+2
3n )

2
∣
4
∣μ⃗0m(D)∣2∣μ⃗m0(A)∣2e−2n′′k(R+R′){[3α00

λλ(T;−k, k)α00
μμ(T;−k, k) + α00

λμ(T;−k, k)α00
λμ(T;−k, k)]

× ([1 + (R̂ ⋅ R̂′)2][9 + 9i(n − n)k(R + R′) + 9∣n∣2k2(R2 + R′2) − 9(n − n)2k2RR′ + 9i(n − n)∣n∣2k3RR′(R + R′)

+ 9∣n∣4k4R2R′2 + (n2 + n2)2k4R2R′2 − i(n2 + n2)(nn2 − nn2)k5R2R′2(R + R′) − (nn2 − nn2)2k6R3R′3

− (n2 + n2)∣n∣4k6R2R′2(R2 + R′2) + i(nn2 − nn2)∣n∣4k7R3R′3(R + R′) + ∣n∣8k8R4R′4]

+ [5 − 3(R̂ ⋅ R̂′)2][(n2 + n2)k2(R2 + R′2) + i(n − n)(n2 + n2)k3RR′(R + R′) − i(nn2 − nn2)k3(R3 + R′3)

+ (n − n)(nn2 − nn2)k4RR′(R2 + R′2) + ∣n∣2(n2 + n2)k4R′2(R2 + R′2) − ∣n∣4k4(R4 + R′4)

− i(n − n)∣n∣4k5RR′(R3 + R′3) − i∣n∣2(nn2 − nn2)k5R2R′2(R + R′) − ∣n∣6k6R2R′2(R2 + R′2)])

+ 4[−α00
λλ(T;−k, k)α00

μμ(T;−k, k) + 3α00
λμ(T;−k, k)α00

λμ(T;−k, k)][9 + 9i(n − n)k(R + R′) + 3(3∣n∣2 − n2 − n2)k2(R2 + R′2)

− 9(n − n)2k2RR′ + 3i(nn2 − nn2)k3(R3 + R′3) + 3i(n − n)(3∣n∣2 − n2 − n2)k3RR′(R + R′)

+ 3∣n∣4k4(R4 + R′4) − 3(n − n)(nn2 − nn2)k4RR′(R2 + R′2) + (3∣n∣2 − n2 − n2)2k4R2R′2 + 3i(n − n)∣n∣4k5RR′(R3 + R′3)

+ i(3∣n∣2 − n2 − n2)(nn2 − nn2)k5R2R′2(R + R′) + (3∣n∣2 − n2 − n2)∣n∣4k6R2R′2(R2 + R′2) − (nn2 − nn2)2k6R3R′3

+i(nn2 − nn2)∣n∣4k7R3R′3(R + R′) + ∣n∣8k8R4R′4]}. (31)

Near- and far-zone limiting forms of the bridge-mediated transfer rate are readily obtained from Eq. (31), displaying characteristic inverse
sixth and inverse square dependences on respective relative displacements; the former is indicative of a Förster type of radiationless energy
migration, while the latter corresponds to a radiative transfer mechanism. Similar interpretations apply to the asymptotes of the other two
pure contributions to the three-body rate.

Using Eqs. (10) and (16)–(18), the various interference terms contributing to the total rate [Eq. (26)] may be calculated. For the sake of
completeness, these are explicitly given below. Of the six terms, only the 2ReMDAMDTA and 2 Re MTDAMDAT contributions survive orienta-
tional averaging; the other four terms vanish. It is worth noting that the 2ReMTDAMDAT contribution vanishes when all three molecules are
identical. On defining the direction cosines formed from products of the unit displacement vectors as u = ρ̂ ⋅ R̂, v = ρ̂ ⋅ R̂′, and w = R̂ ⋅ R̂′, the
first of these non-vanishing interference terms is

⟨ΓDA−DTA⟩ = 4πη
33̵h

1
(4πε0)

3
1

(ρRR′)3 Re∣( n2+2
3n )

2
∣
2
( n2+2

3n )
2
∣μ⃗0m(D)∣2∣μ⃗m0(A)∣2α(T;−k, k)eink(R+R′)e−inkρ

×{[6 − 9(u2 + v2 + w2) + 27uvw](1 − inkR)(1 − inkR′)(1 + inkρ)

+ [−4 + 3(u2 + v2 + 3w2) − 9uvw](1 − inkR)(1 − inkR′)n2k2ρ2

+ [−4 + 3(3u2 + v2 + w2) − 9uvw](1 − inkR)n2k2R′2(1 + inkρ)
+ [−4 + 3(u2 + 3v2 + w2) − 9uvw]n2k2R2(1 − inkR′)(1 + inkρ)

− [−2 + 3u2 + v2 + 3w2 − 3uvw](1 − inkR)n2k2R′2n2k2ρ2

− [−2 + u2 + 3v2 + 3w2 − 3uvw]n2k2R2(1 − inkR′)n2k2ρ2

− [−2 + 3u2 + 3v2 + w2 − 3uvw]n2k2R2n2k2R′2(1 + inkρ)

+ [u2 + v2 + w2 − uvw]n2k2R2n2k2R′2n2k2ρ2}. (32)
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Asymptotic limits readily follow from Eq. (32). In the near-zone, we obtain

⟨ΓDA−DTA⟩
NZ
= 4πη

9̵h
1

(4πε0)
3

1
(ρRR′)3 Re∣( n2+2

3n )
2
∣
2
( n2+2

3n )
2
∣μ⃗0m(D)∣2∣μ⃗m0(A)∣2α(T;−k, k)[2 − 3(u2 + v2 + w2) + 9uvw], (33)

which exhibits inverse cube dependence on each of the distances. For the far-zone limit, the last line within braces of expression (32) is kept
to yield the asymptote,

⟨ΓDA−DTA⟩
FZ
= 4πη

27̵h
1

(4πε0)
3

k6

ρRR′ Ren4n2∣( n2+2
3n )

2
∣
2
( n2+2

3n )
2
∣μ⃗0m(D)∣2∣μ⃗m0(A)∣2α(T;−k, k)eink(R+R′)e−inkρ[u2 + v2 + w2 − uvw], (34)

which displays inverse dependence on each displacement variable. On inserting n = 1, results [(33) and (34)] reduce to previously obtained
limiting forms.42

The other non-vanishing interference term arises from the TDA and DAT mechanisms and is obtained from matrix elements (16) and
(17), and using Eq. (29), yielding

⟨ΓTDA−DAT⟩ = 4πη
108̵h Re∣ n2+2

3n ∣
8 1
(4πε0)

4
1

R3R′3ρ6 ∣μ⃗00(T)∣2ελμνερστμ0m
λ (D)αm0

μν (D;−k, 0)μ0m
ρ (A)α

m0
στ (A; 0, k)

×{18[−1 + u2 + v2 + w2 − 3uvw](1 + i(n − n)kρ + ∣n∣2k2ρ2 + ∣n∣4k4ρ4) + 18w2(3[1 + i(n − n)kρ + ∣n∣2k2ρ2] + ∣n∣4k4ρ4)
+ 2{19 − 21[u2 + v2 + w2] + 36uvw}(n2k2ρ2 + in2nk3ρ3) + 2{13 − 12[u2 + v2 + w2] + 36uvw}

× (n2k2ρ2 − inn2k3ρ3) − 30w2[(n2 + n2)k2ρ2 + inn(n − n)]}eik(n−n)ρ. (35)

IV. QUANTUM COHERENCE IN A FLUID
There are two material parameters that directly influence RET

efficiency, independent of the positions and orientations of the
three molecules: polarizability damping γ(r) and the imaginary
part of refractive index n′′ (i.e., opacity). The damping may be
physically attributed to vibronic coupling, that is to say, while in
some electronically excited state |r⟩, a molecule is able to exchange
energy through its vibrational degrees of freedom, with energy car-
ried away from the system as polaritons. Within the QED frame-
work, which is formally closed, this appears as non-Hermitian
terms in the Hamiltonian. The imaginary part of the refractive
index n′′ also gives rise to non-Hermiticity and can be understood
physically as virtual polaritons becoming absorbed by the solvent
bath.

It is interesting to consider how amplitude and phase coher-
ences are manifested in a fluid such as a liquid, compared to ori-
ented systems, such as static crystal lattices or quasi-static architec-
tures as in natural light-harvesting systems. Noting the index non-
symmetry properties of the transition polarizabilities of the donor
and acceptor, while the ground state polarizability of the mediator,
T, is index symmetric [see Eq. (20) and the Appendix], the TDA–
DTA and DAT–DTA cross terms vanish on orientational averag-
ing. Moreover, the DA–TDA and DA–DAT cross terms do not
survive rotational averaging because the I-1 average of the ground
state permanent electric dipole moment of T vanishes. The DA–
DTA interference term on the other hand survives isotropic aver-
aging (rank 2 average for transition dipole-squared of D and A and
rank 4 average of polarizability of T) and is given by Eq. (32). Fur-
thermore, the orientational average of the TDA–DAT cross term
is non-vanishing: matrix elements are given by Eqs. (16) and (17);
a rank 2 average features for permanent dipoles squared of T,
along with a product of two rank 3 averages for the transition
dipole and the transition polarizability for each of the donor and

the acceptor species, which does not vanish because the transi-
tion polarizabilities are not index symmetric (see the Appendix).
This term is given by Eq. (35). In summary, of the ten rate terms,
the four pure terms and two of the cross terms (DA–DTA and
TDA–DAT) survive orientational averaging, and four cross terms
do not.

V. COMPUTATIONAL SIMULATIONS
In this section, we compute the isotropic rates for the TDA and

DAT mechanisms obtained from Eq. (30) and the isotropic rates for
the DTA, DA–DTA, and TDA–DAT mechanisms from Eqs. (31),
(32), and (35), respectively, for a series of model systems in order
to understand the role of the different pure-amplitude and inter-
ference cross terms appearing in Eq. (26), which have both phase
and amplitude components. All codes were developed in Python
3.5 employing the usual NumPy and SciPy libraries. In the sim-
ulations, we assume a transition frequency of 6.32 × 10−19 J and
that all three species are identical with permanent and transition
dipole moments of magnitude of 3.33 × 10−29 Cm, but with the
permanent dipoles parallel to the x-axis with the unit vector (1.0,
0.0, 0.0) and the transition dipoles having a unit vector of (0.33,
0.33, 0.33). A refractive index of n = 1.1 + 0.1i was used for the
medium, and all damping factors correspond to a magnitude of
0.2 of the mediating wave vector appearing in the polarizability
equations.

Figure 1 shows the four different configurations for mediated
RET. The dashed lines represent the coordinates varied as indicated
by the abscissa axes in Figs. 2–4.

Figures 2–4 give quantitative insight into the roles that different
pure-amplitude and interference terms play in mediated RET within
an isotropic fluid. Figure 2 displays the total rate and the individ-
ual contributions from Eq. (26) for RET in the case of a linear DTA
system, as shown in Fig. 1(a). The subplot in Fig. 2(a) displays the
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FIG. 1. Geometries of the DTA configura-
tions that we employ for our model sys-
tem. (a) The mediating chromophore T is
between D and A, with all three species
collinear, (b) DTA takes on a triangu-
lar geometry with T being moved down
the vertical y-axis, and [(c) and (d)] with
the mediator, T outside DA. The dashed
lines represent the variable coordinate.

FIG. 2. Total relative rate and individual contributions to the relative rate from
Eq. (26) for the collinear model system in Fig. 1(a), for (a) RDA = 2 nm (near-zone)
and (b) RDA = 20 nm (far-zone), normalized to the direct (DA) rate of RET.

FIG. 3. Contributions to the relative rate from Eq. (26) for the model system with a
triangular geometry in Fig. 1(b) for (a) RDA = 2 nm (near-zone) and (b) RDA = 20 nm
(far-zone), normalized to the direct (DA) rate of RET.
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FIG. 4. Total relative rate and individual contributions to the relative rate from
Eq. (26). (a) Model system in Fig. 1(c). (b) Model system in Fig. 1(d). RDA = 2 nm
in both cases, with terms normalized to the direct (DA) rate of RET.

dependencies of the rate contributions in the near-zone, where D
and A are 2 nm apart, and the relative distance D–T is varied. As
can be seen, the dominant contribution to the rate is the pure-DTA
term, where T directly mediates the transfer from D to A. In the far-
zone, where D and A are 20 nm apart, Fig. 2(b), the interference cross
term DA–DTA is the only one that contributes (albeit obviously at a
much-reduced magnitude because of the increased distance between
the chromophores). This is also reflected in the triangular model sys-
tem, Fig. 1(b), where both the DTA and the DA–DTA interference
terms make significant contributions to the isotropic rate equations,
as can be seen in Fig. 3. The third model system we consider is a
collinear one, but with the third chromophore outside the DA pair.
In this case, we can see that the pure-TDA and pure-DAT terms
dominate in a symmetric way, depending on whether the mediator is
adjacent to the donor or the acceptor. This aspect is nicely illustrated
in Fig. 4.

VI. DISCUSSION AND CONCLUSIONS
In this work, we considered RET of a donor, acceptor, and

third-body mediated system within an isotropic and disordered
fluid. We used analytical rotational averaging techniques to con-
sider how individual contributions of pure-amplitude terms and

interference cross terms of the matrix element affected the rate of
RET for this particular scenario. On orientational averaging, four
of the cross terms vanish, including TDA–DTA, DAT–DTA, DA–
TDA, and DA–DAT contributions. This highlights the fact that
disordered environments give rise to strong quantum decoherence.
Nevertheless, two cross terms survive, namely, DA–DTA, which
involves both direct and mediated RET, where T bridges the donor
and the acceptor, and one isotropic third-body mediated cross term,
the TDA-DAT component, where T is on the outer side of the
coupled DA pair.

Through computer simulations, we are able to gain quantita-
tive insight into the relative contributions of the pure-amplitude and
the phase cross terms to the total rate, for a series of distances. This
enables a deeper understanding to be gained regarding radiation-
less and radiative energy transfer mechanisms, which are associated
with near- and far-zone separation distance limits in the QED the-
ory of RET. Within the quantum field description of RET adopted
in the present study, both the chromophores and mediating fields
(i.e., photons/polaritons) are treated quantum mechanically. Impor-
tantly, the nature of the mediating photon changes as the distance
between the chromophores becomes larger. It is well known that,
within a Coulomb gauge description of QED,13,14,16 at short dis-
tances (i.e., in the near-zone), the mediating photon has virtual
character and, hence, has ill-defined physical properties, such as
wavelength. Furthermore, in this distance regime, the photonic fields
have significant longitudinal as well as transverse components. As
the distance between chromophores increases, the photon becomes
more real, and the longitudinal contributions to the field disappear
leaving its transverse part to dominate. These aspects, coupled to the
fact that phase offsets will begin to appear after several nanometers,
explain why phase cross terms dominate at large distances, while
pure-amplitude terms do so in the near-zone.

This work highlights how quantum coherence in RET arises
via interference both between direct and indirect pathways, and also
within the mediated mechanism. It is only through the existence of
different pathways that this microscopic description of coherence
can be understood in the same context as prototypical examples
of quantum coherence, such as the quantum variant of the Young
double-slit experiment. In this experiment, the existence of differ-
ent trajectories through alternative slits allows for the emergence
of interference between Feynman pathways.64 By understanding the
origin of coherence in RET systems in this way, we can start to inves-
tigate mechanisms of decoherence for both amplitude and phase
damping, going beyond standard phenomenological models.
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APPENDIX: SYMMETRY PROPERTIES
OF THE POLARIZABILITY TENSOR

As detailed in Sec. VI, the TDA–DAT rate contribution does
not in general vanish; however, it is very close to zero in the
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above simulations, due to the fact that the chromophores are chem-
ically identical and because of the symmetry imposed on them
geometrically.

In this appendix, we examine the index symmetry properties of
the polarizability tensor. The general form of the dynamic electric
dipole transition polarizability, including damping, is

αts
ij(ξ;±p,±p′) =∑

r
{ μtr

i (ξ)μ
rs
j (ξ)

Ers∓hcp+i̵hcγr +
μtr

j (ξ)μ
rs
i (ξ)

Ers∓hcp′+i̵hcγr }. (A1)

The transition polarizability appearing in the matrix element for the
TDA mechanism is

α0m
jk (D;−k, 0) =∑

r
{ μ0r

j (D)μ
rm
k (D)

Erm+hck+i̵hcγr +
μ0r

k (D)μ
rm
j (D)

Erm+i̵hcγr }. (A2)

For an arrangement of dipole moments such as that used in Sec. V,
this polarizability is not symmetric in j and k; i.e., interchanging j
and k does not produce the same tensor.

The transition polarizability appearing in the matrix element
for the DAT mechanism is

αm0
jk (A; 0, k) =∑

r
{ μmr

j (A)μ
r0
k (A)

Er0+i̵hcγr +
μmr

k (A)μ
r0
j (A)

Er0−
̵hck+i̵hcγr }. (A3)

This is also not symmetric in j and k.
The polarizability featuring in the matrix element for the DTA

mechanism is a ground state polarizability of the form

α00
jk (T;−k, +k) =∑

r
{ μ0r

j (T)μ
r0
k (T)

Er0+hck+i̵hcγr +
μ0r

k (T)μ
r0
j (T)

Er0−hck+i̵hcγr }, (A4)

which is symmetric in j, k.
Let us now examine the case of zero damping and insert γr = 0

in Eq. (A4). Then,

FIG. 5. A zoomed-in version of the TDA–DAT contribution to the rate from Fig. 2(a).

α00
jk (T;−k, +k) =∑

r
{ μ0r

j (T)μ
r0
k (T)

Er0+hck +
μ0r

k (T)μ
r0
j (T)

Er0−hck }

=∑
r
μ0r

j (T)μr0
k (T){ 1

Er0+hck + 1
Er0−hck}

= 2∑
r

Er0μ0r
j (T)μ

r0
k (T)

E2
r0−(
̵hck)2 , (A5)

confirming the j, k-index symmetry, using μ⃗0r = μ⃗r0.
Hence, the isotropic rate for the TDA–DAT cross term,

Eq. (35), is non-vanishing as it contains both polarizabilities
Eqs. (A2) and (A3). However, if either one or both of these are
symmetric in their indices, then the rate is zero because of the
anti-symmetric epsilon tensors that appear. In Fig. 5, we show the
small, but finite magnitude for TDA–DAT for the linear case of
chromophores displayed in Fig. 1(a).
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