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Commonly, thermal transport properties of one-dimensional systems are found to be anomalous. Here,
we perform a numerical and theoretical study of the β-Fermi-Pasta-Ulam-Tsingou chain, considered a
prototypical model for one-dimensional anharmonic crystals, in contact with thermostats at different
temperatures. We give evidence that, in steady state conditions, the local wave energy spectrum can be
naturally split into modes that are essentially ballistic (noninteracting or scarcely interacting) and kinetic
modes (interacting enough to relax to local thermodynamic equilibrium). We show numerically that the
well-known divergence of the energy conductivity is related to how the transition region between these two
sets of modes shifts in k space with the system size L, due to properties of the collision integral of the
system. Moreover, we show that the kinetic modes are responsible for a macroscopic behavior compatible
with Fourier’s law. Our work sheds light on the long-standing problem of the applicability of standard
thermodynamics in one-dimensional nonlinear chains, testbed for understanding the thermal properties of
nanotubes and nanowires.
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Deriving equations for the macroscopic observables
from microscopic dynamics is the core of statistical
physics. Often, such “reduction” passes through an inter-
mediate stochastic model for the mesoscopic scale, c.f. the
celebrated Boltzmann equation for a rarefied gas [1], used
to derive the hydrodynamic equations (e.g., Euler, or
Navier-Stokes) [2]. Linear response theory is a sound
framework to compute the macroscopic transport coeffi-
cients [3–5]. In a solid rod whose ends are kept at not
excessively different temperatures one expects Fourier’s
law of heat conduction to hold and the Green-Kubo formula
to yield the conductivity as an integral of the time
correlation of the heat current at equilibrium [3]. This
program has been pursued for one-dimensional (1D)
systems [6–8], typically modeled as lattices of point
particles interacting via springlike forces. In fact, 1D
structures such as nanowires and nanotubes have become
available in lab experiments, with widespread applications
in industry and technology [9–13], making an understand-
ing of 1D transport of primary importance. Thus, harmonic
[6] as well as anharmonic lattices have been widely studied
[8,14]. Nevertheless, establishing the macroscopic equa-
tions for low-dimensional structures results challenging
[8,14]; the dimensional constraints imply a slow decay of
correlations that may prevent the convergence of the Green-
Kubo integral. The approach based on the wave kinetic
equation, i.e., the phonon Boltzmann equation of solid state
physics and main object of wave turbulence theory [15],
has recently opened an important perspective in this field

[16–19]. The wave kinetic equation concerns phonons that
interact with each other through resonant n-wave collisions,
providing an effective relaxation mechanism toward
thermodynamic equilibrium [19–22]. Although the heat
conductivity can be computed rigorously [17,18,23] when a
pinning onsite potential is introduced, for unpinned anhar-
monic lattices energy conduction appears nontrivially
anomalous [8,14,16,24–26]. The usual procedure is to
introduce a heuristic cutoff in the Green-Kubo integral
based on the sound speed [14,18], but a rigorous justifi-
cation is still lacking [8]. Moreover, there is no clear
interpretation of the Green-Kubo formula in cases where
the deviations from local thermodynamic equilibrium are
significant [27–33]. Mainly due to these difficulties, the
derivation of proper macroscopic equations for such
systems remains a long-standing open problem.
In this Letter, we use concepts of wave-kinetic theory to

investigate the low-temperature regime of the β Fermi-
Pasta-Ulam-Tsingou model (β-FPUT) [34–37], paradig-
matic anharmonic 1D lattice. In the thermodynamic limit,
the mechanism of thermalization at the mesoscopic scale is
related to four-wave resonant interactions [22]. We give
evidence from direct numerical simulations that the system
splits into two independent sets of modes: the low-kmodes,
with the mean free path exceeding what we call the
“mesoscopic” scale λ, and the remaining modes that,
interacting resonantly, relax to local thermodynamic equi-
librium. We show that the high-k modes transport energy
diffusively, hence the anomalous-transport scaling is due to
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how the wave numbers associated with the transition modes
(not diffusive but also not perfectly ballistic) scales with L.
More precisely, we give evidence that (i) our scaling of the
transition between ballistic and kinetic modes dictates
the scaling of the energy conductivity with the size L;
(ii) the conductivity restricted to the kinetic modes con-
verges, as in standard heat conduction; and (iii) the energy
density is dominated by the locally thermalized kinetic
modes, implying an apparently regular Fourier temperature
profile. Results are supported by extensive numerical
simulations and a dimensional argument applied on the
wave kinetic equation.
The β-FPUT system is defined by the Hamiltonian

H ¼ Hh þHa with

Hh ¼
XN
j¼1

1

2
p2
j þ

1

2
ðqj − qj−1Þ2;

Ha ¼
β

4

XN
j¼1

ðqj − qj−1Þ4: ð1Þ

Let Je be the (harmonic) energy current per particle,

Je ¼
1

N

XN
j¼1

1

2
ðpj þ pj−1Þðqj − qj−1Þ; ð2Þ

T� ¼ T̄ � ΔT=2 the temperatures of the thermostats at the
two ends of the β-FPUT chain, where N is the number of
particles of unitary mass and unitary lattice spacing
(N ¼ L). Let us assume ΔT ≪ T̄ and consider the low-
temperature regime, so that the ratio of the anharmonic
and the harmonic parts of the Hamiltonian is small,
Ha=Hh ≃ βT̄ ≪ 1. For lattices, it is standard to define
the thermal conductivity as

κe ¼ hJeiN=ΔT; ð3Þ
where h·i indicates canonical ensemble average, assuming
that the system is close to equilibrium at temperature T̄. For
normal heat conduction κe tends to a constant as N → ∞,
while transport is called anomalous if κe diverges, e.g., as
Nδ, δ > 0. For the harmonic chain (β ¼ 0) the problem was
solved analytically in [6]: the conductivity is proportional
to N (δ ¼ 1). Such transport behavior, with no temperature
gradient arising in the chain bulk (since wave packets, or
phonons, do not interact), is called ballistic. On the other
hand, for the β-FPUT chain an exponent δ ≃ 0.4 was found
by some authors, while others proposing δ ¼ 1=2 or
δ ¼ 1=3 [14].
In the wave-turbulence formalism [15,17,22,23] we use

the normal variable ak ≔ ðωkqk þ ipkÞ=
ffiffiffiffiffiffiffiffi
2ωk

p
, with

ωk ¼ 2j sinðk=2Þj, and the wave-action spectral density
associated with ak, nk ¼ nðk; x; tÞ. One can derive,
although not fully rigorously, the following wave kinetic
equation [15–20,26]:

∂nk
∂t þ vk

∂nk
∂x ¼ Ik: ð4Þ

The collision integral Ik is conveniently split as a difference
of two terms: Ik ¼ ηk − nk=τk, with

ηk1 ¼ 4π

Z
π

−π
jT1234j2nk2nk3nk4δðk3412Þδðω34

12Þdk2dk3dk4;
1

τk1
¼ 4π

Z
π

−π
jT1234j2ð−nk3nk4 þ nk2nk3 þ nk2nk4Þ

× δðk3412Þδðω34
12Þdk2dk3dk4;

jT1234j2 ¼
9

16
ωk1ωk2ωk3ωk4 ; ð5Þ

in a spatial domain x ∈ ½0; L�, using the notation:
y3412 ≔ yk1 þ yk2 − yk3 − yk4 . The group velocity is denoted
by vk ¼ dωk=dk. The second term in the lhs of Eq. (4)
quantifies advection due to spatial inhomogeneities. τk can
be interpreted as the mean collision time of mode k.
In the harmonic chain, the collision integral is missing

and Eq. (4) predicts ballistic advection of wave action
carried by harmonic excitations with speed vk. The rhs of
(4) is the four-wave collision integral, and represents the
effective mechanism of relaxation to equilibrium [22]. Note
that, for finite N and small nonlinearity, six-wave resonant
interactions dominate [19,20,38], but we made sure that N
in our simulations is large enough for the Fourier space to
be sufficiently dense, thereby making four-wave inter-
actions dominate [22].
Now, nk must be a slowly varying function of x: Eq. (4)

assumes the existence of a mesoscopic scale, λ, that is much
smaller than the macroscopic scale. This suggests an
operative definition of λ as the largest size over which
the system can be considered approximately spatially
homogeneous, i.e., as the largest scale on which the use
of the Fourier transform is justified. When the system is
thermodynamic, the characteristic microscopic interaction
distance is finite. Thus, a mesoscopic scale λ within which
practically all phonons interact, and relaxation takes place,
can be identified [4]. Moreover, boxes of size λ appear as
points of a continuum in the λ=L → 0 limit. In short,
considering a partition of the system consisting of L=λ
adjacent boxes, two limits need to be taken: (i) L → ∞ at
fixed boundary temperatures, so that the object is large
compared to the microscopic scales and a continuum
description makes sense; (ii) λ → ∞, which yields the
continuous k-space formalism (thermodynamic limit) of
(4), at fixed x. In principle, there are different ways of
combining these limits, that correspond to different physi-
cal situations. In our theoretical argument, we will assume
that the separation between the mesoscale and the macro-
scale is of one order of magnitude, i.e., L ∝ λ2; such choice
corresponds to the mesoscopic scale being placed in
between the microscopic and the macroscopic scales (cf. the
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hydrodynamic diffusive scaling of the Boltzmann equation
[2,39]). We will give evidence that our results, obtained
integrating numerically the β-FPUTequation of motion, are
consistent with our assumption.
Having defined the scales, we focus our attention on the

wave kinetic Eq. (4). In stationary conditions, there are two
competing contributions: the collision integral and the
transport term. In order to observe regular heat conduction,
we expect the collision term to guarantee local relaxation to
thermodynamic equilibrium within any homogeneous sub-
domain of width λ. On the other hand, if the collision
integral is not active enough, energy flows in a ballistic way
from one subdomain to the next one, without having been
thermalized. As observed in our numerical simulations, the
situation for the β-FPUT system is hybrid: the collision
integral is able to make the system thermalize locally up to
some critical wave number kc, while lower k waves
scarcely interact and carry energy almost ballistically
between adjacent subdomains. Using a dimensional argu-
ment, the scaling of kc with L can be estimated from the
wave kinetic equation assuming that, in stationary con-
ditions, the transport term and the collision integral
balance:

vkc
λ

∼
1

τkc
: ð6Þ

Assuming very small deviations from local equilibrium
(see discussion at the end of the Letter) and small k, a direct
analytical calculation [16,26] yields

τk ∝ k−5=3; for jkj ≪ 1; ð7Þ

which plugged into Eq. (6) leads to

kc ∝ λ−3=5 ∝ L−3=10; ð8Þ

where we have used the fact that L ∝ λ2 and, for small k,
vk ≃ 1. Based on the above discussion, we conjecture that
(i) the field ak can be split into two parts: the modes with
jkj > kc are essentially in thermodynamic equilibrium
within cells of size λ and verify Fourier’s law, while for
jkj ≤ kc the modes are ballistic or scarcely interacting;
(ii) the scaling of κe with L is strictly related to the scaling
of kc with L, Eq. (8). Numerical evidence of the conjecture
is given below.
Our simulations solve 2N coupled equations ofmotion for

the Hamiltonian (1) with β ¼ 0.1, integrated with fourth
order Runge-Kutta method with time step 5 × 10−2. Fixed
boundary conditions are used for the two walls q0 ¼ 0 and
qNþ1 ¼ 0, and the two particles j ¼ 1 and j ¼ N are
coupled with Nosé-Hoover thermostats at temperatures
Tþ ¼ 0.3 and T− ¼ 0.2, respectively, at the left and the
right ends. In all our simulations we consider N sufficiently
large so that the discrete-k effects, which lead to a lack of

four-wave resonances, do not take place, see [22].
Differently from previous works where the spectral analysis
is performed on the full length of the chain, we are interested
in the local spectral properties of the system. Therefore, we
consider the mesoscopic length λ ¼ ffiffiffiffi

N
p ¼ ffiffiffiffi

L
p

. Macro-
scopic observables are averaged spatially over mesoscopic
boxes of size λ, and in time at the steady state, over 2.5 × 105

time units after an initial relaxation transient of 5 × 104

units. An additional ensemble averaging over five indepen-
dent realizations is used to improve statistical convergence.
In Fig. 1, we show the wave energy spectral density (energy
spectrum), êk ¼ ωknk, computed locally on a spatial win-
dow of mesoscopic size, around two points placed at
x ¼ 0.2L, close to the thermostat at higher temperature
and x ¼ 0.8L, close to the one at lower temperature.
Observe that the energy spectrum is clearly asymmetric
for small k. Moreover, for high wave numbers the spectrum
is almost flat, i.e., those modes are in an equipartition state.
In order to highlight local thermalization, noticing that the
asymmetric part of the spectrum does not contribute to the
total energy, in Fig. 2 we plot the symmetrized energy
spectrum ðêk þ ê−kÞ=2, for different values of N. Local
equipartition is observed for the high wave numbers, say the
modes with jkj > kc. Instead, the energetic content of the
low wave number modes (jkj < kc) tends to the average
temperature T̄ throughout the chain. As N increases, kc
shifts toward the origin and the separation between the two
states becomes sharper. For N ¼ 215, the two states are
clearly separated with a narrow transition region.
In Fig. 3 we show the energy per particle eðxÞ, averaged

in time and in space over mesoscopic boxes of width λ ¼ffiffiffiffi
N

p
for N ¼ 29 and N ¼ 213. The figure shows that as N

increases the profile tends to the expected Fourier profile.
In the lower panel, the case for N ¼ 213 is further
investigated and eðxÞ is decomposed as

eðxÞ ¼ e>ðx; kcÞ þ e<ðx; kcÞ; ð9Þ

using the estimate kc ¼ 0.75 from the central panel of
Fig. 2, and where e>ðx; k0Þ is obtained from qðxÞ and pðxÞ
after they have been filtered in Fourier space and only
contributions from wave numbers jkj > k0 have been
retained; e<ðx; k0Þ has contributions only from jkj ≤ k0.

FIG. 1. Steady state energy spectrum for N ¼ 215.
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As conjectured, the profile for e>ðx; kcÞ is consistent with
the expected linear profile, typical of Fourier’s law, and the
second one is consistent with a flat profile with temperature
T̄; this latter behavior is typical of harmonic (collisionless)
chains.

We now devote our attention to the energy fluxes; in
steady state conditions the flux is independent of x. We
therefore define the net spectral energy current [7], as

ĵeðkÞ ≔ vkωkðnk − n−kÞ=2; ð10Þ

which depends on the asymmetric part of the spectrum.
Note that ĵeðkÞ ¼ ĵeð−kÞ and the Fourier transform for
calculating nk is made on the entire length of the chain.
This is because in stationary conditions the flux is inde-
pendent of x. In Fig. 4, the upper panels show the behavior
of ĵeðkÞ while varying N. As N doubles, ĵe remains
constant for low wave numbers (ballistic modes), while
it roughly halves for higher wave numbers (kinetic modes).
This means that the ballistic-modes contribution to the
energy current is independent of N, as expected for the
harmonic chain [6], while for the kinetic modes it is
proportional to N−1. In the lower left panel we show
the energy conductivity as defined by Eq. (3), where
hJei ¼

P
k ĵeðkÞ. The plot shows a scaling compatible

with previous numerical results, κe ∼ L2=5. We now con-
sider the filtered conductivity

κ>e ðkÞ ¼
N
ΔT

X
jk0j>k

ĵeðk0Þ; κ<e ðkÞ ¼
N
ΔT

X
jk0j<k

ĵeðk0Þ; ð11Þ

FIG. 2. The red and blue solid lines are the symmetrized
stationary local energy spectra computed in windows of widthffiffiffiffi
N

p
centered at x1 ¼ 0.2N and x2 ¼ 0.8N, respectively. The

dashed lines with same colors are at the respective average energy
per particle at x1 and x2. The yellow line is the spectrum
performed on the full chain.

FIG. 3. Top: Numerical profiles of eðxÞ. Bottom: the blue line of the upper panel (N ¼ 213) is decomposed into its contributions from
jkj ≤ kc (light blue) and jkj > kc (dark blue), normalized by the fraction of modes in each set: kc=π and ðπ − kcÞ=π, respectively. Avalue
kc ¼ 0.75 is used, based on numerical estimate from Fig. 2.
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with κe ¼ κ<e ðkÞ þ κ>e ðkÞ. On the lower right panel of Fig. 4
we show three quantities with different scalings: choosing a
threshold k ¼ 1.4 > kc for all N (cf. Fig. 2), we observe
that κ<e ð1.4Þ ∼ N2=5, while κ>e ð1.4Þ converges to constant
(compatible with regular Fourier’s law). On the other hand,
considering wave numbers that are always ballistic
(0.35 < kc for all N), thus excluding modes around kc,
we obtain that κ<e ð0.35Þ ∼ N1, typical of the harmonic
chain but far from the anomalous exponent 0.4. Thus, the
way kc scales with the size L, Eq. (8), plays a key role
concerning the anomaly, as will be shown in the following.
Multiplying (4) by ωk and integrating over k ∈ ½−π; π�
yields

∂τeðx; τÞ ¼ −∂xjeðx; τÞ; ð12Þ

where eðx; τÞ ≔ Rþπ
−π êðkÞdk and jeðx; τÞ ≔

Rþπ
−π ĵeðkÞdk

are the macroscopic energy density and current, respec-
tively. Let us split the current as

jeðx; τÞ ¼ j<e ðx; τ; kcÞ þ j>e ðx; τ; kcÞ; ð13Þ

we then consider j<e ¼ 2
R kc
0 ĵeðkÞdk ∝ k2c—since ĵeðkÞ ∝

k for k ≪ 1, see Fig. 4 top left—and j>e ¼ −κkin∂xe, with
kkin > 0—i.e., Fick’s law for the kinetic modes. Using the
estimate of Eq. (8), kc ∼ L−3=10, we obtain:

κ<e ðkcÞ ∝ L2=5; κ>e ðkcÞ ¼ κkin: ð14Þ
Plugging (13) into (12) and taking into account that in the
bulk the energy associated to ballistic modes is constant, we
obtain

∂x½κkin∂xe>ðx; kcÞ� ¼ 0: ð15Þ
Imposing the fraction 1 − kc=π of kinetic modes to have
“temperature” T� at the boundaries, and that the fraction of
ballistic modes kc=π is at constant “temperature” T̄, we
have

eðxÞ ¼ e<ðx; kcÞ þ e>ðx; kcÞ ¼
kc
π
T̄ þ

�
1 −

kc
π

�
TðxÞ;

ð16Þ
where TðxÞ ¼ Tþ − ðΔT=LÞx is the Fourier profile [17],
attained by the kinetic part as solution to (15). Thus,
Eqs. (14)–(16) highlight how the kinetic modes dominate
the energy density, despite the presence of an anomalous
conduction.
Discussion.—Our numerical simulations show that the

β-FPUT lattice does not thermalize locally; moreover, the
scaling obtained for κe is compatible with the law L2=5.
We have developed a theoretical argument, based on dimen-
sional analysis of the kinetic equation, that supports this view.
Because other numerical simulations and theoretical
approaches have led to different exponents [14], we mention
that the key ingredient in our approach is that the relaxation
time, calculated from the collision integral, scales as k−5=3 for
smallk. Such result is exact if computed at equilibrium, i.e., for
a thermalized spectrum, hence it is subject to not necessarily
universal corrections in nonequilibrium conditions. To verify
its robustness, we have performed a direct numerical compu-
tation of the collision integral and we have calculated the
relaxation timescale in the presence of different kind of
perturbations, including also the introduction of a chemical
potential. The results are contained in the Supplemental
Material [41] and can be summarized as follows: for small
perturbations, the k−5=3 scaling is confirmed; however, as the
perturbation grows, a departure from the k−5=3 scaling,
especially in the very low wave number region, is observed.
To conclude, strictly speaking, the β-FPUT lattice does

not relax to local equilibrium, since only part of its normal
modes reaches such a state. The system can be treated as
made of two independent components, with distinct macro-
scopic behavior: the high-k modes satisfying Fourier’s law,
with linear temperature profile and regular heat transport
with finite heat conductivity, and the low-kmodes, scarcely
interacting, carrying energy in a ballistic way (or close to
ballistic). This differs in essence from heat conduction [45].
Our conclusions are in qualitative agreement with the
efficient transport due to low frequency modes in carbon
nanotubes, offering a simple first-principle interpretation to
the persistence of coherent ballistically conducting modes
observed experimentally at lengths up to more than 0.1 mm
[46–48], about 105 times the tube diameter and 106 times
the interatomic distance.
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