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Abstract

What does it take to survive in the market? Previous literature has proposed sufficient con-

ditions for a trader to vanish, which depend on pairwise comparisons of traders’ discounted

beliefs. We propose a novel condition that focuses on the ratio of traders’ discounted beliefs

and (approximate) equilibrium prices. Unlike existing conditions, ours is both necessary

and sufficient for a trader to vanish and delivers the exact rate at which vanishing traders

lose their consumption shares. As an application, we analyze the performance of two in-

tuitive behavioral strategies: the “Follow the Leader Strategy” that prescribes mimicking

the beliefs of the most successful trader, and the “Follow the Market Strategy” that pre-

scribes to use beliefs which coincide with the state price density. Further, we show that the

relative performance of vanishing traders cannot be studied in isolation. Our analysis high-

lights an intuitive point obscured by the existing conditions: trading in financial markets is

qualitatively different from bilateral trading.

JEL Classification: D51, D01, G1

1 Introduction

More than a half-century ago economists hypothesized that traders with poor forecasting abil-

ities progressively lose wealth against traders with more accurate probabilistic views (market

selection hypothesis, Friedman (1953)). In general equilibrium settings with complete mar-

kets and bounded aggregate endowment, previous literature has formalized this hypothesis and

found sufficient conditions for a trader to vanish based on the pairwise comparison of traders’

discounted beliefs. A trader vanishes if there is another trader who is more accurate (Blume

and Easley (1992, 2006), Sandroni (2000), Yan (2008), Kogan et al. (2016), Massari (2016)).
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This approach greatly simplifies the analysis of heterogeneous-belief economies because it

does not require solving for the competitive equilibrium — traders’ discounted beliefs are ex-

ogenous. However, it overlooks a fundamental aspect of competition: in financial markets, each

trader interacts with all traders in the market simultaneously through prices, not in a pairwise

fashion (Jouini and Napp (2007)). Therefore, in economies with more than two traders, pairwise

comparisons cannot deliver a necessary and sufficient condition for a trader to vanish (Blume

and Easley (2009)) or characterize the relative performance between vanishing traders (Cvitanic

and Malamud (2010)).

To account for these shortcomings, we propose a novel approach that is closer to the actual

trading experience in financial markets. We focus on the ratio between traders’ discounted

beliefs and equilibrium prices. Our approach preserves the central role of prices in market

interactions and delivers a necessary and sufficient condition for a trader to vanish which also

characterizes the exact rate at which vanishing traders lose their wealth. Moreover, it brings

the general equilibrium analysis closer to the temporal equilibrium analysis of market selection

— the latter focusing on the ratio between traders’ investment strategies and equilibrium prices

(Chiarella and He (2001), Evstigneev et al. (2002, 2008), Bottazzi and Dindo (2014)).

To make our condition applicable without solving for the competitive equilibrium, we pro-

vide an approximation of equilibrium prices that only depends on exogenous quantities. Our

main technical contribution is demonstrating that, under standard assumptions, asymptotic

equilibrium prices are well approximated by a convex combination of traders’ discounted be-

liefs. This result proves a longstanding conjecture in economics (e.g. Blume and Easley (1993)):

equilibrium prices, a risk-adjusted average of traders’ beliefs, are qualitatively Bayesian, a non-

risk-adjusted average of probabilities.

If all traders have the same discount factor, our condition reads: a trader vanishes if and only

if his beliefs are less accurate than the probability obtained via Bayes’ rule from a regular prior

on the set of traders’ beliefs.1 By contrast, existing conditions read: a trader vanishes if there

is another trader who is more accurate. Because traders’ beliefs are exogenous and Bayesian

inference is well understood, our condition is easy to verify and compute even in economies

with a large number of traders — a case in which conducting pairwise comparisons between all

traders in the economy might prove computationally challenging.

This paper provides two novel implications. First, our condition makes it possible to analyze

the performance of traders who hold non-standard beliefs or use non-belief-based investment

1A prior is regular if it attaches strictly positive probability to every probability in its prior support.
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strategies. Unlike existing conditions, ours precisely indicates which strategies vanish/survive

when there are no perfectly rational traders in the market. As an illustration, we study the

performance of two intuitive strategies: the Follow the Leader Strategy and the Follow the

Market Strategy, henceforth FLS and FMS, respectively.

In a log-economy with homogeneous discount factors, the FLS coincides with mimicking the

trader in the market that had the highest growth of capital from a given date. This intuitive

strategy is easy to implement, and it is offered by a growing number of internet brokers.2 The

appeal of the FLS is that it guarantees to perform almost as well as the trader with the highest

capital growth, the leader, provided that leaders do not change “too often”. However, what

happens when leaders do change “too often”? Conventional wisdom argues that the FLS would

not perform well because of the transaction costs associated with changing the investment style.

Here we show that the FLS leads to ruin even if there are no transaction costs. In section 6.1,

we illustrate this point in a three-trader economy (traders 1,2 and FLS-trader). In the example,

traders 1 and 2 alternate infinitely often as a leader because they are equally (in)accurate. The

FLS-trader vanishes by the following logic. (i) Every time a leader changes, the FLS-trader

starts copying the new leader with a small delay, because the new leader must first outperform

the previous leader. (ii) During these delays, the FLS-trader does worse than the new leader,

because he is still following the previous leader. And (iii), the delay-induced losses cumulate over

time resulting in ruin. This argument is not compatible with the standard pairwise comparison

approach because it requires comparing the FLS-trader’s performance against that of more than

one trader (leaders change over time). Among the existing conditions for a trader to vanish,

Sandroni (2000)’s condition fails to recognize that the FLS-trader vanishes; Blume and Easley

(2006)’s condition incorrectly implies that the FLS-trader dominates;3 and Blume and Easley

(2009)’s condition is inapplicable.4

The FMS prescribes adopting the next-period state price density as a belief. This strategy is

behaviorally motivated by the Wisdom of The Crowds argument which states that equilibrium

prices might reflect beliefs that are more accurate than the beliefs of all market participants

(Galton (1907)). Our analysis of the FMS shares some similarities with the analysis of the

FLS: the fate of the FMS-trader depends on the presence of a unique leader among the other

traders in the economy. However, unlike the FLS-trader, there are situations in which the

2e.g. signal-trader, collective2 and e-toro: https://www.youtube.com/watch?v=GX041XotWd4
3It is known that Blume and Easley (2006)’s Theorem 8 can lead to incorrect conclusions (Massari (2013)).
4The elegant geometric construction behind Blume and Easley (2009)’s necessary and sufficient condition for

a trader to vanish can only be used in economies in which the distribution of states’ and traders’ beliefs are iid.
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FMS-trader dominates the market. In homogeneous discount factor, CRRA-economies with no

aggregate risk in which all traders are more (less) risk averse than log, the FMS-trader dominates

(vanishes) if leaders among the other traders change infinitely often.5 The intuition goes as

follow. In CRRA economies, equilibrium prices can be decomposed into a belief component

(the state price density), and an endogenously determined discount factor which depends on

traders’ beliefs and consumption shares dispersion. When γ < (>)1 the IES coefficient is

larger (smaller) than in the log-utility case (γ = 1). As a result the demand for saving is

high, interest rates are low, and the market discount factor is larger than traders’ (common)

discount factor: β. The FMS-trader uses the state price density to buy a constant share of the

aggregate endowment, thus, his fate depends on the difference between his discount factor (β)

and the market discount factor. If the consumption share/beliefs distribution quickly becomes

degenerate, the endogenous component of the discount factor vanishes fast and has no effect on

survival. However, if leaders alternate infinitely often, there is an infinite number of periods in

which the consumption share/beliefs distribution is not degenerate. Therefore, the FMS-trader

discount factor differs from the market’s infinitely often and his fate depends on the sign of

their difference.

Related papers that studies the effect of long run heterogeneity on equilibrium prices includes

Jouini and Napp (2010), that analyze the long-run risk-return relationship in an economy with

two agents have equally biased (constant) beliefs; Muraviev (2013) that derives a survival index

with agents with catching up with Joneses preferences who are overconfident in interpreting a

public signal; Branger et al. (2015) which study the survival issue when two agents engage in

learning but commit different types of filtering errors; and He and Shi (2017) which compare the

welfare between subjectively optimal portfolio strategies and an index portfolio in an economy

with no perfectly rational agents.

Second, our condition is the only one that delivers the exact rate at which a vanishing

trader loses his consumption share in economies with more than two traders. As much as

survival is important for understanding the long-run equilibrium behavior of the market, it is

equally important to understand how quickly the non-surviving traders go extinct. If the rate

of extinction is low, non-surviving traders will impact equilibrium behavior for a long time

(Cvitanic and Malamud (2010)). We show that the rate at which a trader vanishes depends

on his discounted beliefs, his risk attitudes and equilibrium prices. Intuitively, the relative

5We assume constant aggregate endowment to avoid known biases due to the interaction between risk attitudes
and fluctuations of the aggregate endowment.
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performance between two traders that vanish cannot be analyzed in isolation because the prices

they use to trade are determined by the trader that dominates.

As an application, we show that the relative performance of two traders can be reversed by

the presence of a new trader in the economy. A result that question the general view according

to which the market always favor traders with more accurate probabilistic views, even among

vanishing traders and believed impossible within the general equilibrium setting (Cvitanic and

Malamud (2010)).

Sections 2-5 introduce the model, provide our approximation of equilibrium prices and

present our necessary and sufficient condition for a trader to vanish. Section 6,7 and 8 are

dedicated to our analysis of the FLS-strategy, FMS-strategy, and relative extinction reversal,

respectively. Proofs are in Appendices.

2 The model

2.1 The environment

Consider an infinite horizon Arrow-Debreu exchange economy with complete markets. Time is

discrete and begins at date 0. At each date, the economy can be in one of S mutually exclusive

states: S := {1, ..., S}, with cartesian product St = ×tS. The set of all infinite sequences

of states, paths, is Σ := ×∞S. σ = (σ1, ...) denotes a representative path; σt = (σ1, ..., σt)

denotes a partial history till period t; C(σt) denotes the cylinder set with base σt, C(σt) = {σ ∈

Σ|σ = (σt, . . .)}; Ft denotes the σ-algebra generated by the cylinders; and F is the σ-algebra

generated by their union. By construction {Ft} is a filtration. For any probability measure p

on Σ, p(σt) := p({σ1 × ... × σt} × S × S × ...) denotes the marginal probability of the partial

history σt, while p(σt|σt−1) = p(σt)
p(σt−1)

denotes the conditional probability of the last observation

of the partial history σt given its first t-1 realizations.6 P is the true probability on (Σ,F).

Next, we introduce a number of economic (random) variables with time index t. These

variables are adapted to the filtration Ft.

2.2 Traders

The economy contains a finite set of traders, I. Each trader, i, has consumption set R+. A

consumption plan c : Σ →
∏∞
t=0 R+ is a sequence of R+-valued functions {ct(σ)}∞t=0. Each

6For notation’s sake, we assume that past realizations constitute all the relevant information, i.e. Ft := σt.
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trader i is characterized by a payoff function ui : R+ → R over consumption, a discount factor

βi ∈ (0, 1), an endowment stream {eit(σ)}∞t=0 and a subjective probability pi on (Σ,F), his

beliefs. With an abuse of notation, I indicates both the set of traders and the set of traders

beliefs: I = {pi : i ∈ I}. Trader i’s utility for a consumption plan c is:

U i(c) = Epi

∞∑
t=0

βtiui(ct(σ)).

As is customary in the selection literature, traders can either vanish or survive.

Definition 1. Trader i vanishes if lim sup
t→∞

cit(σ)∑
j∈I

cjt (σ)
=P -a.s. 0.

He survives if lim sup
t→∞

cit(σ)∑
j∈I

cjt (σ)
>P -a.s. 0. He dominates if lim

t→∞
cit(σ)∑

j∈I
cjt (σ)

=P -a.s. 1.

Finally, we rank the accuracy of beliefs according to their likelihood:

Definition 2. Trader i is more accurate than trader j if lim
t→∞

pj(σt)
pi(σt)

=P -a.s. 0.

This accuracy criterion is an exact version of the one adopted by Sandroni (2000) or Blume

and Easley (2006), which only approximate traders’ likelihood. We adopt this criterion to ensure

that the inability of the pairwise comparison approach to provide a necessary and sufficient

condition for a trader to vanish cannot be attributed to an approximation error. In Appendix

A we discuss the relation between Definition 2 and existing criteria.

2.3 Competitive equilibrium

We derive our results using the time 0 trading setting. q(σt) denotes the date 0 price of a

claim that pays a unit of consumption at the end of σt in terms of time zero consumption. A

competitive equilibrium is a sequence of prices and, for each trader, a consumption plan that is

affordable, preference maximal on the budget set and mutually feasible. Sufficient assumptions

for the existence of the competitive equilibrium are (Peleg and Yaari (1970)):

• A1: The payoff functions ui : R+ → [−∞,+∞) are C1, strictly concave, increasing and

satisfy the Inada condition at 0; that is, u
′
i(c)→∞ as c↘ 0.7

• A2: There are numbers 0 < f ≤ F < +∞ such that for each trader i, all dates t and all

paths σ, f ≤ infσt
∑
i∈I

eit(σ) ≤ supσt
∑
i∈I

eit(σ) ≤ F .

• A3: For all traders i, all dates t and all paths σ, pi(σt) > 0⇔ P (σt) > 0.

7Defining log 0 = −∞.
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A1 is a collection of standard properties for the payoff functions. There is a recent trend in the

market selection literature to relax A1 to allows for preferences which are not time-separable

(Borovička (2016), Dindo (2016)). In this general setting, the market selection hypothesis can

fail, and our characterization of equilibrium prices does not apply. A2 uniformly bounds the

aggregate endowment above and away from 0. This assumption is standard in part of the

selection literature because it ensures that the market selection hypothesis holds. In a growing

(shrinking) economy, Yan (2008) shows that the market selection hypothesis can fail because

risk attitudes affect survival through their impact on optimal savings. In growing (shrinking)

economies, our approximation is valid if we strengthen A1 to require that all traders have

an identical CRRA utility function. A3 rules out pathological cases of non-existence of the

competitive equilibrium due to traders’ disagreement on 0 probability events.

3 Comparing the two approaches

In this section, we use an example to illustrate the main features of our approach and compare

it with the existing one. In the example, all traders have log utility, and equilibrium prices

can easily be obtained analytically. Our approach is shown to be more informative (we directly

characterize equilibrium prices) and more precise (our condition is both necessary and sufficient

for a trader to vanish) than the existing one. The main difficulty in generalizing our approach

from the log case to the general case is that in most non-log economies equilibrium prices can-

not be analytically obtained. In the next section, we address and solve this issue, providing an

approximation of equilibrium prices that applies to every economy that satisfies A1-A3.

Example 1: consider an Arrow’s security economy with S states with iid multinomial distri-

bution P and constant aggregate endowment: ∀t,∀σ,
∑
i∈I

eit(σ) = 1. There are I traders with log

utility, identical discount factors (β), iid beliefs pi and positive initial consumption ci0. Every

trader in the economy aims to solve:

max
{cit(σ)}∞t=0

Epi

∞∑
t=0

βt ln(cit(σ)) s.t.
∑
t=0

∑
σt∈Σt

q(σt)
(
cit(σ)− eit(σ))

)
≤ 0.

Traders’ first-order conditions of the maximization problem are sufficient for the Pareto optimum

and, in every path σt, can be expressed as βtpi(σt)

cit(σ)
= q(σt)

ci0
.

Our approach:

• First step: to characterize equilibrium prices.
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In this simple economy, equilibrium prices can be obtained explicitly from the FOC:

∀t,∀σ ∈ Σ, q(σt) = βt
∑
i∈I

pi(σt)ci0.

Remark: As previously noted (Rubinstein (1974), Blume and Easley (2009)), in a log-

economy with homogeneous discount factors, equilibrium prices coincide with the dis-

counted probabilities (pB(σt)) obtained via Bayes’ rule from a prior distribution C0 =

{c1
0, ..., c

I
0} on I = {pi : i ∈ I}: q(σt) = βt

∑
i∈I

pi(σt)ci0 := βtpB(σt).

• Second step: to use equilibrium prices to discuss survival.

Substituting the price equation in the FOC: cit(σ) =
βtpi(σt)ci0
q(σt) =

pi(σt)ci0
pB(σt)

.

Thus, cit(σ)→P -a.s. 0⇔ pi(σt)ci0
pB(σt)

→P -a.s. 0: trader i vanishes P -a.s. if and only if his beliefs

are less accurate than the probability obtained via Bayes’ rule from C0.

The existing approach:

The existing approach skips the characterization of equilibrium prices and directly focuses on

pairwise comparison of traders’ discounted beliefs. Taking the pairwise ratios of the FOCs of

different traders, prices simplify:

cit(σ)

cjt (σ)
=
pi(σt)ci0

pj(σt)cj0
. (1)

By A2, the aggregate endowment is bounded, thus
pi(σt)ci0
pj(σt)cj0

→P -a.s. 0 ⇒ cit(σ) →P -a.s. 0. Thus,

trader i vanishes if there is another trader who is are more accurate. By taking the log of

Equation 1 and approximating its RHS with the difference of traders’ entropy (see Appendix

A), we obtain Sandroni (2000)’s Proposition 3. By approximating its RHS with the difference

of traders’ sum of expected relative entropy (see Appendix A), we obtain Blume and Easley

(2006)’s Theorem 8.

4 A general approximation of equilibrium prices

In this section, we provide an approximation of equilibrium prices that allows us to generalize

the approach of Example 1 from the log utility/iid beliefs setting to all economies that satisfy

A1-A3. The general setting differs from the example in two important ways. First, fluctuations

of the aggregate endowment alter investment decisions. Second, risk attitudes affect the conver-

gence rates of consumption shares: if traders are less risk averse, they trade more aggressively,
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and consumption shares move faster (Blume and Easley (2006)).

Theorem 1 shows that these differences are asymptotically negligible: equilibrium prices are

asymptotically equivalent to a convex combination of traders’ discounted beliefs. Further, our

approximation is valid on every path — thus for every true probability— and for every finite8

set of beliefs I that satisfies A3: traders’ beliefs need not be iid.

Definition 3. Given two functions f(x) and h(x), f(x) � h(x) if


lim sup
t→∞

f(x)
h(x) <∞

lim inf
t→∞

f(x)
h(x) > 0

.

Theorem 1. In an economy that satisfies A1-A3, ∀σ ∈ Σ :

q(σt) �
∑
i∈I

βtip
i(σt).

Proof. See Appendix B.

In economies in which all traders have the same discount factor, Theorem 1 proves Blume

and Easley (1993)’s conjecture that equilibrium prices, a risk-adjusted average of traders’ beliefs,

evolve in a way that is qualitatively Bayesian, a non-risk-adjusted average of probabilities.

Corollary 1. In an homogenous discount-factors economy that satisfies A1-A3, equilibrium

prices are mutually absolutely continuous with the discounted probabilities obtained via Bayes’

rule from a regular prior, g, on I.

Proof. ∀σ ∈ Σ :, q(σt)

βtpB(σt)
�By Th.1

βt
∑
i∈I

pi(σt)

βt
∑
i∈I

pi(σt)gi
� 1.

5 A necessary and sufficient condition for a trader to vanish

Our condition characterizes the dynamics of traders’ consumption shares by looking at the ratio

between discounted beliefs and approximate equilibrium prices. Instead of taking the ratio of

traders FOCs to eliminate equilibrium prices, we approximate them and determine the fate of

each trader in the economy directly from his FOCs.

8Massari (2016) shows that our approximation does not hold if |I| = |R|.
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Theorem 2. In an economy that satisfies A1-A3,

(i) lim sup
βtip

i(σt)

q(σt)
=P -a.s. 0⇔ trader i vanishes P -a.s.;

(ii) lim sup
βtip

i(σt)∑
i∈I

βtip
i(σt)

=P -a.s. 0⇔ trader i vanishes P -a.s.;

(iii) lim sup
βtip

i(σt)

max
i∈I

βtip
i(σt)

=P -a.s. 0⇔ trader i vanishes P -a.s..

Proof. See Appendix B.

Consistent with previous findings, Theorem 2 highlights that risk attitudes do not affect

survival. The first condition tells us that a trader vanishes P -a.s. if and only if he subjectively

believes that consumption costs too much on a set of sequences that occurs P-a.s.. The second

condition uses the approximation of equilibrium prices of Theorem 1 to provide a “ready to

use” condition that does not depend on endogenous quantities. The last condition is similar

but not equivalent to pairwise comparisons (according to which a trader i vanishes P -a.s. if ∃j ∈

I : lim
t→∞

βtip
i(σt)

βtjp
j(σt)

=P -a.s. 0). It shows that our condition is equivalent to a pairwise comparison

of traders’ discounted beliefs if and only if the limit between the discounted likelihood ratios

between all non-vanishing traders exists.

For homogeneous discount factors economies, condition (ii) simplifies to a likelihood ratio

test between trader i’s beliefs and the probability obtained via Bayes’ rule from a regular prior

on the set of traders’ beliefs. This formulation allows for direct application of known consistency

results in Bayesian statistics to our selection problem. Because traders’ beliefs are exogenous

and Bayesian inference is well understood, this condition is easy to verify and compute.

Corollary 2. In a homogenous discount-factors economy that satisfies A1-A3, trader i van-

ishes P-a.s. iff his beliefs are less accurate than the probabilities obtained via Bayes’ rule from

a regular prior, g, on I:

Trader i vanishes P-a.s.⇔ lim sup
t→∞

pi(σt)∑
j∈I

pj(σt)gj
=P -a.s. 0.

Proof. Regular prior ⇒ ∀j ∈ I, gj � 1. The result follows from Theorem 2 (ii) simplifying the betas.
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6 An analysis of the Follow the Leader Strategy

We are now ready to apply our condition to discuss the performance of the FLS. Let’s start by

defining the beliefs that correspond to this strategy.

Definition 4. The FLS-trader follows the FLS if for ever σt−1 his next period beliefs are:

pFLS(σt|σt−1) =


pi(σt|σt−1), i : pi(σt−1) = arg max

j∈I
{pj(σt−1)};

1
|Kt−1|

∑
i∈Kt−1

pi(σt|σt−1), if ties occur.

Where Kt−1 is the set of indexes corresponding to models with highest likelihood at σt−1:

Kt−1 = {i : pi(σt−1) ∈ arg max
j∈I
{pj(σt−1)}}.

That is, in every period the FLS-trader performs a pairwise likelihood ratio test between

all models in I and uses the model with highest likelihood to make next-period predictions. If

ties occurs, he gives equal weight to all the accurate models.9

In a log-economy with a homogeneous discount factor, the investment decisions implied by

the FLS-trader’ beliefs coincide with the rule of thumb of mimicking the wealthiest trader in

the economy. A strategy which is consistent with the tendency of some investors in financial

markets to “buy winners and sell losers”. The appeal of the FLS is that if there is a unique

best trader/model it guarantees to perform almost as well as the best trader does. However,

what happens when there is not a unique best trader in the market?

Conventional wisdom argues that in this case the FLS does not perform well because of

transaction costs. Here we show that, even with zero transaction costs, the FLS leads to ruin if

leaders (the best statistical models) change infinitely often and their prediction remains different

enough when it matters (distinct). The precise statement of our result requires the following

definitions.

Definition 5. Given a set of beliefs I, trader ît is a leader at t if ît ∈ argi max
i∈I

pi(σt).

Leaders change infinitely often if:

argi max
i∈I

pi(σt) 6= argi max
i∈I

pi(σt−1) infinitely often.

9With this tie-breaking rule, the FLS coincides with the SNML algorithm (Roos and Rissanen (2008)). In-
spection of Proposition 1’s proof shows that the result holds with any tie-breaking rule.
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Where the inequality is as a set inequality.

Definition 6. Beliefs pît and pît−1 are distinct if ∃ε > 0 : lim sup
t→∞

∑
σt∈S
|pît(σt|σt−1)−pît−1(σt|σt−1)| >

ε in all periods t such that traders ît is the leader at t and trader ît−1 is the leader at t− 1.

Proposition 1. In a homogenous discount-factors economy that satisfies A1-A3, the FLS-

trader vanishes if leaders change infinitely often and their beliefs are distinct.

Proof. See Appendix B.

This result does not rely on specific assumptions about the data-generating process. It only

requires leaders to change infinitely often and to have distinct beliefs. If there is a unique

leader, the-FLS trader survives because his beliefs are as accurate as the leader’s. Similarly, the

FLS-trader would survive if leaders change infinitely often, but their beliefs become essentially

identical.

In a log-economy, the changing leader condition is equivalent to verifying that the wealthiest

trader in the economy changes infinitely often. Given that successful investors in financial

markets do change over time relatively often, our result tells us that a trader whose objective

is to maximize the expected growth rate of his wealth (log utility) should avoid the FLS.

Example 2 illustrates Proposition 1 in a simple deterministic setting.

Example 2: consider an economy with two states S = {a, b} and three traders (1,2,FLS-trader)

with identical, discount factors β and log utility. Traders 1 and 2 have fixed beliefs: ∀t, p1(σt =

a) := p1(at) = p2(σt = b) := p2(bt) = 1
3 . The sequence of states is deterministic:{a, b, a, b, a....},

which makes it is easy to verify that

pFLS(at|σt−1) =

 1
2 , if t− 1 = even

p2(at), if t− 1 = odd
.

A quick calculation shows that the FLS-trader vanishes:

lim
t→∞

cFLSt (σ) = lim
t→∞

βtFLSp
FLS(σt)cFLS0

q(σt)
= lim
t→∞

1
3

(
1
2

1
3

) t
2
(

1
3

)I{t is odd}

1
3

(
2
3

1
3

) t
2
(

1
3

)I{t is odd} + 1
3

(
1
3

2
3

) t
2
(

2
3

)I{t is odd} + 1
3

(
1
2

1
3

) t
2
(

1
3

)I{t is odd}
= 0.

An intuition for the result is as follows.

Suppose you are driving in heavy traffic. There are two lines of cars (1, 2). Let’s call the car

in front of you car 1 and the one next to it car 2. Your goal is to stay close to the car that is
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ahead: the leading car.10 The FLS is, qualitatively, equivalent to the strategy that prescribes

to always be in the leading car’s line. This strategy can be summarized as follows.11

• At t=0, you are in line 1, behind car 1, which is next to car 2. If car 1 takes the lead, you

remain in line 1 (behind car 1) until the two cars are next to each other again, t∗1. If car

2 takes the lead, you change lines (loosing a position) and stay in line 2, one car behind

car 2, until t∗1.

• At t∗1, if you are in line 1 you repeat the same strategy. Otherwise, the strategy remains

essentially the same, except that you start in line 2 one car behind cars 1 and 2. If car 2

takes the lead, you remain in line 2 (one car behind car 2) until the two cars are next to

each other again, t∗2. If car 1 takes the lead, you change lines (loosing another position)

and stay in line 1, two cars behind car 1, until t∗2.

Iteratively, you lose one position against the leading car every time a change in leadership

occurs. Thus, if the leading car changes infinitely often, your distance from the leader diverges.

6.1 The FLS cannot be analyzed using the standard approach

In this section, we provide an example in which the standard approach fails to correctly char-

acterize the performance of a FLS-trader. Even when adopting our exact measure of accuracy,

pairwise comparisons of individual characteristics fail to indicate that the FLS-trader vanishes.

This simple example eludes all existing conditions for a trader to vanish exept ours.

Example 3: consider an economy with two states S = {a, b}, iid true probabilities P = [1
2 ,

1
2 ]

and three traders (1,2,FLS), with identical discount-factors β, and log utility. Traders 1 and 2

have iid beliefs: ∀t, p1(σt = a) := p1(at) = p2(σt = b) := p2(bt) = 1
3 . The FLS-trader copies the

beliefs of the wealthiest trader and otherwise gives the two beliefs equal weight:

pFLS(at|σt−1) =

 pi(at); i : pi(σt−1) = arg max{p1(σt−1), p2(σt−1)};
1
2 ; if ties occur.

Proposition 2. In the economy of Example 3,

(i) the FLS-trader vanishes P-a.s.;

(ii) a pairwise comparison of traders’ beliefs does not imply that the FLS-trader vanishes.

10In our economy, the FLS-trader’s consumption share is mostly affected by the leader’s wealth.
11WLOG, we assume that when the two cars are next to each other you do not change lines.
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Proof. In Appendix C we show that:

(i) : lim sup
t→∞

c3(σt) = lim sup
t→∞

pFLS(σt)
q(σt)

= lim sup
t→∞

pFLS(σt)

p1(σt)+p2(σt)+pFLS(σt)
= 0 P -a.s.;

(ii) : for i = 1, 2, lim sup
t→∞

cFLSt (σ)

cit(σ)
= lim sup

t→∞

pFLS(σt)

pi(σt)
=∞ P -a.s..

Proposition 2 (i) is a special case of Proposition 1. It follows after noticing that trader 1

and 2 alternate infinitely often in their leadership because their beliefs are equally (in)accurate.

Proposition 2 (ii) shows that the FLS-trader is infinitely often wealthier than the poorest

between trader 1 and 2: his beliefs pass the pairwise comparison test against traders 1 and 2.

Together, (i) and (ii) show that a pairwise comparison of individual characteristics cannot

deliver a necessary and sufficient condition for a trader to vanish. Although the FLS-trader’s

beliefs pass the pairwise comparison test against traders 1 and 2, he is not fit to survive against

both traders simultaneously. The deviations of the empirical average from the true probability

that favor him against trader 1 (2) make him lose against trader 2 (1).

Continuing with our car intuition, suppose car 1 has 50 percent chance to gain (lose) a posi-

tion against car 2 in every period. (i) tells us that your distance from the leading car diverges.

(ii) tells us that you are going to be ahead of the non-leading car infinitely often. Clearly, (ii)

cannot be used to assess your performance against the leading car.

Remark: the existing conditions for a trader to vanish, an approximation of Proposition 2 (ii),

fail to correctly characterize the performance of the FLS strategy. Specifically,

• no trader satisfies Sandroni (2000)’s condition to vanish. The average beliefs of all traders

are equally accurate because the likelihood ratio diverges at a rate slower than t:

ln
pFLS(σt)

p1(σt)
�
√
t⇒ lim

t→∞

1

t
ln
pFLS(σt)

p1(σt)
= lim

t→∞
[EFLS,t − E1,t] = 0;

• traders 1 and 2 satisfy Blume and Easley (2006)’s condition to vanish (Theorem 8). Its

application leads one to incorrectly conclude that the FLS-trader dominates:

lim
t→∞

[
t∑

τ=1

EP ln
pFLS(στ |στ−1)

P (στ )
−

t∑
τ=1

EP ln
p1(στ |στ−1)

P (στ )

]
= +∞.12

Example 3 shows that relying on short-period notions of accuracy can be misleading

12Because the FLS-trader is more accurate than trader 1 and 2 infinitely often (he uses the correct model:
pFLS(σt+1|σt

∗
) = 1

2
whenever trader 1 and trader 2 are equally wealthy) and never less accurate.
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(e.g. Massari (2013)). The FLS-trader’s next-period beliefs are never less accurate and

infinitely often more accurate than that of traders 1 and 2. Yet, the FLS-trader is not

more accurate than the other traders on long sequences and vanishes P-a.s..

7 An analysis of the Follow the Market Strategy

The FMS prescribes adopting the next-period state price density as a belief. This intuitive

strategy is behaviorally motivated by Wisdom of The Crowds argument that says equilibrium

prices might reflect beliefs that are more accurate than those of all market participants (Galton

(1907)). To avoid known biases due to the interaction between risk attitudes and fluctuations of

the aggregate endowment, we assume constant aggregate endowment (A2’: ∀t, σ,
∑
i∈I

eit(σ) = 1).

Moreover, we assume a homogeneous discount factor and, for tractability reasons, that all

traders have an identical CRRA utility function (A1’: ∀i ∈ I, βi = βj , and ui(c) = c1−γ

1−γ with

γ ∈ (0,∞)). Under the stated assumptions, the FMS-trader’s beliefs have this analytical form.

Definition 7. Under A1’, A2’ and A3, the FMS-trader’s beliefs are given by:

pFMS
γ (σt) =

t∏
τ=1

pFMS
γ (στ |στ−1) ; pFMS

γ (σt|σt−1) =

(∑
i∈I

pi(σt|σt−1)
1
γ ciγ,t−1(σ)

)γ
∑
σ̂t∈S

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ .

Where ciγ,t−1(σ) =
pi(σt−1)

1
γ ci0∑

i∈I
pi(σt−1)

1
γ ci0

is the consumption share of trader i at σt−1.13

Next, we use A1’, A2’ to obtain an analytical equation for next-period equilibrium prices.

Lemma 1. (i) Under A1’, A2’ and A3, next-period equilibrium prices are given by:

q(σt|σt−1) :=
q(σt)

q(σt−1)
= β

(∑
i∈I

pi(σt|σt−1)
1
γ ciγ,t−1(σ)

)γ
∑
σ̂t∈S

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ ×∑
σ̂t∈S

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ

= pFMS
γ (σt|σt−1)× β(1 + δt,γ(σ))

13Our definition of pFMS is circular: pFMS appears on both sides of the equal sign. We opted for this
definition to ease the comparison between pFMS and equilibrium prices. It can be verified, by substitution, that

our definition is equivalent to the more rigorous, pFMS
γ (σt|σt−1) :=

( ∑
i6=FMS

pi(σt|σt−1)
1
γ ciγ,t−1(σ)

)γ
∑

σ̂t∈S

( ∑
i6=FMS

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ .
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(ii) Moreover, δt,γ(σ) ≤ (≥)0 ⇔ γ ≥ (≤)1 with strict equality if and only if γ = 1 or the

consumption share/beliefs distribution is degenerate.

Proof. See Appendix B.

In a log-economy (γ=1), state prices add to the common discount factor. The FMS-trader’s

beliefs and discount factor both coincide with those of the representative agent (Rubinstein

(1974)). The FMS-trader survives in every sequence because he buys a constant share of the

aggregate endowment and discount the future at the same rate of the market. If γ differs

from one, state prices do not add to the common discount factor. An endogenous component

of markets’ discount factor, δt,γ(σ), is generated by traders’ speculative incentives to trade.

In this case, the FMS-trader beliefs’ make him smooth consumption across states, while the

difference between his discount factor and the market discount factor determine his asymptotic

fate. Lemma 1 (ii) shows that the sign and the size of the market discount factor depends on the

risk attitudes of all traders in the economy and on the consumption share/belief distribution.

In order to prove our main result, we need one last technical assumption.

A3’: The next period beliefs’ ratios between all traders in the economy are uniformly bounded

above and below:

∃ε > 0 : ∀i, j ∈ I, ∀σt−1,max
σt

pi(σt|σt−1)

pj(σt|σt−1)
∈ (ε,

1

ε
).

In iid economies, A3’ is equivalent to A3. In economies in which traders’ beliefs change over

time, A3’ rules out pathological cases in which some trader becomes progressively sure that

one event is impossible (Sandroni (2000)). These situations are hard to analyze because traders

likelihood ratios can become dominated by a single observation.

Proposition 3. Under A1’, A2’ and A3’, if leaders among traders I \FMS change infinitely

often and have distinct beliefs,

(i) γ > 1⇒ the FMS-trader dominates;

(ii) γ = 1⇒ the FMS-trader survives without dominating;

(iii) γ < 1⇒ the FMS-trader vanishes.

Proof. Sketch: inspection of the FMS-trader’s FOCs show that his fate depends on the sign and dynamic of

the market discount factor: cFMS
t (σ) =

βtpFMSγ (σt)∏t
τ=1 q(στ |στ−1)

cFMS
0 =

∏t
τ=1

1
(1+δτ )

cFMS
0 . In particular, if leaders with

distinct beliefs among the non-FMS-traders change infinitely often, the consumption share/belief distribution is
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not degenerate infinitely often and δt differs from zero infinitely often. Therefore, the FMS-trader dominates

(vanishes) iff γ > (<)1 because γ > (<)1⇔ ∀t, 1
(1+δt,γ)

≥ (≤)1 and 1
(1+δt,γ)

> (<)1), infinitely often.

The formal proof — in Appendix B — maintain the same intuition but is complicated by the fact that if trader

FMS dominates, then |δt| → 0.

Proposition 3 can be understood in light of these observations. First, the heterogeneity of

beliefs implies that traders subjectively believe assets to be mispriced and trade for specula-

tive reasons. Second, the CRRA parameter affects the price level because it simultaneously

determines traders’ risk tolerance and saving rate. Third, the presence of ever-changing leaders

ensures that a non-trivial amount of wealth is held by traders with different beliefs even in the

long-run.14 Intuitively the argument goes as follows.

In a log-economy (γ = 1), δt,γ = 0 because traders optimally invest a constant share of

their consumption, irrespective of equilibrium prices. The FMS-trader “buys the market” and

discounts the future at the same rate as the representative agent. Therefore, he consumes a

constant share of the aggregate endowment in every period and survives without dominating.

If all traders are less risk averse than log (γ < 1), they subjectively believe prices to be

inaccurate and optimally decide to invest more than they would if they had log utility. In equi-

librium, the price level is higher than it would be in a log economy (δt,γ > 0). The FMS-trader

vanishes because he buys the market – his beliefs coincides with the risk neutral probability—

but his saving rate is lower than that of the market infinitely often.

Conversely, if all traders are more risk averse than log (γ > 1), they subjectively believe

prices to be inaccurate and optimally decide to invest less than they would if they had log

utility. In equilibrium, the price level is lower than it would be in a log economy (δt,γ < 0). The

FMS-trader dominates because he buys the market and his saving rate is higher than that of

the market infinitely often.

If we modify Example 3 by replacing the-FLS trader with the FMS-trader and assuming that

all traders have identical CRRA utility with parameter γ, we find that the standard approach

can be used to discuss the performance of the FMS only in those cases in which the FMS-

trader dominates (γ > 1). Pairwise comparisons of traders’ discounted beliefs cannot be used

to analyze the FMS-trader performance when γ < 1 by the same logic used in the analysis of

the FLS. Although the FMS-trader vanishes, there is no single trader that beats him.

14Inspection of the proof of Proposition 3 shows that this intuition applies even when the consumption share
distribution becomes degenerate because the FMS-trader dominates.
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8 Relative extinction reversal

In this section, we use our condition to study the relative performance of each couple of traders.

Definition 8. Trader i vanishes relative to trader j if lim
t→∞

cit(σ)

cjt (σ)
=P -a.s. 0.

Proposition 4. In an economy that satisfies A1-A3, if trader i, j’s utilities are CRRA with

parameters γi, γj,

trader i vanishes relative to trader j ⇔ lim
t→∞

(
βtpi(σt)

q(σt)

) 1
γi
/(

βtpj(σt)

q(σt)

) 1
γj

=P -a.s. 0. (2)

Proof. It follows taking ratios of the FOC.

Proposition 4 shows that the relative performance between two traders cannot be character-

ized using a pairwise comparison of discounted beliefs alone. The relative performance of two

vanishing traders cannot be analyzed in isolation because the prices they use to trade are not

the ones they would use to trade if they were alone in the economy. The only case in which

our condition coincides with the pairwise comparison of traders’ discounted beliefs is when one

of the two traders dominates. In this case, equilibrium prices can be approximated WLOG

with the discounted beliefs of the dominating trader, and the effect of risk attitudes on traders’

survival becomes mute. Otherwise, if both traders vanish, relative survival depends on their

discounted beliefs, but also on their relative risk attitudes and equilibrium prices.

Proposition 4 can be understood in light of Yan (2008)’s analysis of traders’ survival in

growing (shrinking) economies. Although we assume constant aggregate endowment, the cu-

mulative consumption shares of two vanishing traders shrinks over time. Therefore, the relative

dynamic of two vanishing traders’ consumption shares is, qualitatively, similar to the dynamic

we would observe if they were trading in isolation in a shrinking economy. As in Yan (2008),

we find that the relative performance of the two vanishing traders depends on their discounted

beliefs and on the interaction between their relative risk tolerance and the shrinking rate of

their cumulative consumption shares (aggregate endowment in Yan (2008)).

As an application, we conclude with an example showing that the relative performance of

two traders can even be reversed by the presence of a new trader in the economy. A result

that question the general view according to which the market always favor traders with more

accurate probabilistic views, even among vanishing traders: “...in models with intermediate
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consumption and complete markets, extinction reversal cannot occur because relative extinction

is independent of characteristics of other agents” — Cvitanic and Malamud (2010).

Example 4: consider an economy with two states S = {a, b}, two traders (i,j) with identi-

cal discount factor β, iid beliefs, pi(a)= 6
10 , pj(a)= 7

10 and CRRA utility functions with γi =

1(log), and γj = 5, respectively. Rearranging the FOC we obtain condition 2:
cit(σ)

cjt (σ)
=(

βtpi(σt)
q(σt)

) 1
γi

/(
βtpj(σt)
q(σt)

) 1
γj . The real probability of state a is P (a) = 1

2 in every period. Be-

cause pi is more accurate than pj P-a.s., Theorem 2 (iii) allows to substitute βtpi(σt) for q(σt)

and verify that trader j vanishes relatively to trader i.

Let’s add to this economy a new trader, k, with the same discount factor and correct beliefs

pk = P . By Theorem 2, trader k dominates P-a.s. and we can substitute βtP (σt) for q(σt).

It is easy to verify that, at this price, it is trader i that vanishes relative to trader j.15 The

presence of trader k in the economy causes relative extinction reversal between i and j.

The relative extinction reversal phenomenon can be understood using the analogy we pro-

posed between Proposition 4 and Yan (2008). Adding a dominating trader in the economy

is equivalent to changing the (exogenous) shrinking rate in Yan’s condition. It gives higher

(relative) survival chances to the trader with a higher CRRA parameter because his higher

propensity to defer consumption gets magnified by the shrinking rate of the economy.

9 Conclusions

This paper introduces an alternative approach to market selection. Instead of comparing traders’

performance in a pairwise fashion, we focus on the ratio between traders’ discounted beliefs

and (approximate) equilibrium prices. Unlike existing conditions, ours is both sufficient and

necessary for a trader to vanish and delivers the exact rate at which a vanishing trader loses

his consumption share in economies with more than two traders. We present two applications

to highlight an intuitive point obscured by the standard approach: trading in financial markets

is qualitatively different from bilateral trading.

15

lim
t→∞

cit(σ)

cjt (σ)
= lim
t→∞

(
βtpi(σt)
q(σt)

) 1
γi(

βtpj(σt)
q(σt)

) 1
γj

= lim
t→∞

(
βtpi(σt)

q(σt)

) 1
γi
(

q(σt)

βtpj(σt)

) 1
γj

=Pa.s., by Th.1 lim
t→∞

(
βtpi(σt)

βtP (σt)

) 1
γi
(
βtP (σt)

βtpj(σt)

) 1
γj

=Pa.s. lim
t→∞

(
.6 ∗ .4
.5 ∗ .5

)(1× t
2

) ( .5 ∗ .5
.7 ∗ .3

)( 1
5
× t

2
)

= 0.
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A Appendix

In this Appendix we compare our notion of accuracy with that of Sandroni (2000)’s and Blume and Easley

(2006)’s. Definition 2 ranks traders’ beliefs according to the asymptotic ratio of their likelihood. This criterion is

more precise than Sandroni (2000)’s and Blume and Easley (2006)’s criteria, which only approximate this ratio.

Our criterion relates to their as follows:

Sandroni (2000). Entropy of trader i:

Ei,t := −1

t

t∑
τ=1

EP

(
ln
P (στ |στ−1)

pi(στ |στ−1)

)
. (3)

If we consider EP
(

ln P (στ |στ−1)

pi(στ |στ−1)

)
to be a measure of a trader’s expected accuracy, the comparison of traders’

entropies is a comparison of the average expected accuracy of two traders. As intuition suggests, Ei,t − Ej,t is

a coarse approximation of traders’ average likelihood ratio: if trader i’s expected beliefs are on average more

accurate than trader j’s, then trader i is empirically more accurate than trader j (as an application of the Strong

Law of Large Numbers for Martingale Differences, see Sandroni (2000)). However, the converse implication does

not always follow because the averaging term, 1
t
, “kills” divergence rates that are slower than t. For example,

it cannot distinguish between the different learning rates of two Bayesian traders with different prior support

dimensionality (see Blume and Easley (2006)).

Blume-Easley (2006). Sum of conditional relative entropies of trader i:

Dt(P ||pi) :=

t∑
τ=1

EP

(
ln
P (στ |στ−1)

pi(στ |στ−1)

)
. (4)

This definition suggests that if trader i is in every period, on expectation, more accurate than trader j he

should also be empirically more accurate. This intuitive argument is, however, not always correct: there are cases

in which Dt(P ||pi)−Dt(P ||pj)→∞ even though pj(σt)

pi(σt)
<∞ (Massari (2013)). In these cases we cannot rely on

this measure to discuss survival: it leads to incorrect conclusions. In section 6.1, we present a new case in which

the use of this criterion leads to an incorrect conclusion (see remark 2).

The comparison between Equations 3 and 4 highlights that Blume and Easley (2006)’s criterion can lead

to incorrect results only if the log likelihood divergence between two traders is o(t). Otherwise — if the log

likelihood divergence rate is O(t)—, this criterion is equivalent to that of Sandroni (2000) and it can be used to

delivers a correct sufficient condition for a trader to vanish.

B Appendix

Lemma 2. In an economy that satisfies A1-A3: ∃a, b ∈ (0,∞) : ∀σ ∈ Σ :


lim sup
t→∞

∑
i∈I

1
u′i(c

i
t(σ))

< b

lim inf
t→∞

∑
i∈I

1
u′i(c

i
t(σ))

> a
.

Proof.

(i) lim sup
t→∞

∑
i∈I

1
u′i(c

i
t(σ))

<∞: by contradiction.∑
i∈I

1
u′i(c

i
t(σ))

= ∞ ⇔ ∃i : u′i(ct(σ)) = 0 ⇔ c = ∞ because each ui is strictly concave, increasing. This

condition is impossible. It violates A2 via the market clearing condition:
∑
i∈I

cit =
∑
i∈I

eit < F <∞.
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(ii) lim inf
t→∞

∑
i∈I

1
u′i(c

i
t(σ))

> 0: by contradiction.∑
i∈I

1
u′i(c

i
t(σ))

= 0 ⇔ ∀i ∈ I, u′i(cit(σ) = ∞ which is true if and only if all the traders have 0 consumption

and satisfy the Inada condition at 0. The first requirements is impossible as it violates the market clearing

condition:
∑
i∈I

cit =
∑
i∈I

eit > 0.

Proof of Theorem 1

Proof. By the FOCs: ∀i ∈ I, ∀t, ∀σ ∈ Σ,
q(σt)u′i(c

i
0)

pi(σt)
= βtiu

′
i(c

i
t).

Rearranging and summing over traders: q(σt) =

∑
i∈I

βtip
i(σt) 1

u′
i
(ci0)∑

j∈I
1

u′
j
(c
j
t (σ))

.

By Lemma 2 ∃a, b ∈ (0,∞) : ∀t, ∀σ ∈ Σ, q(σt) ∈

[ ∑
i∈I

βtip
i(σt) 1

u′
i
(ci0)

b
,

∑
i∈I

βtip
i(σt) 1

u′
i
(ci0)

a

]
.

Thus q(σt) �
∑
i∈I

βtip
i(σt).

Proof of Theorem 2:

Proof. By the FOC: ∀σt,
βtip

i(σt) 1

u′
i
(ci0)

q(σt)
= 1

u′i(c
i
t(σ))

. Therefore, ∀σ ∈ Σ:

lim sup
t→∞

βtip
i(σt) 1

u′
i
(ci0)

q(σt)
= 0⇔ lim sup 1

u′i(c
i
t(σ))

= 0⇔ lim inf u′i(c
i
t(σ)) = +∞⇔a lim sup cit(σ) = 0.

(a) By A1 lim
c→0

u′i(c) = +∞ and the payoff functions are strictly concave, increasing.

(i) It follows applying the above argument to a set of sequences of measure one.

(ii) It follows because, by Theorem 1, we can replace
∑
i∈I

βtip
i(σt) for q(σt) WLOG.

(iii) It follows noticing that q(σt) �By Th.1
∑
i∈I

βtip
i(σt) � max

i∈I
βtip

i(σt).

Proof of Proposition 1

Proof. By Theorem 2, the FLS-trader vanishes iff pFLS(σt)∑
i
pi(σt)

→ 0.

Let L̃(t) be the number of times the leader changes before t. By the same logic of Lemma 5 ∀σt, ln pFLS(σt) <

ln

(
max
i∈I

pi(σt)

)
−L̃(t)k. By assumption L̃(t)→∞; the result follows noticing that if leaders have distinct beliefs

∃ > 0 : k > ε infinitely often.

Proof of Lemma 1

Proof.

(i): by the FOCs: ∀σt,
βtip

i(σt) 1

u′
i
(ci0)

q(σt)
= 1

u′i(c
i
t(σ))

. Substituting cit(σ)−γ for ui(cit(σ))′ and ui(ci0)′,

βtpj(σt)cj(σt)−γ = (cj0)−γq(σt) (5)

taking ratio of traders i, j’ FOCs:
βtpi(σt)cit(σ)−γ

βtpj(σt)cj(σt)−γ =
(ci0)−γq(σt)

(c
j
0)−γq(σt)

; solving for ci(σt):

cit(σ) =

(
pi(σt)

pj(σt)

) 1
γ ci0

cj0
cj(σt). (6)
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Substituting Eq.6 in the market-clearing condition (which holds with equality because of monotonicity of

ui): 1 =
∑
i∈I

cit(σ) = cj(σt)

∑
i∈I

pi(σt)
1
γ ci0

pj(σt)
1
γ c
j
0

; solving for cj(σt) we obtain: cj(σt) =
pj(σt)

1
γ c
j
0∑

i∈I
pi(σt)

1
γ ci0

.

Substituting cj(σt) in Eq.5 and rearranging, we obtain q(σt) = βt
(∑
i∈I

pi(σt)
1
γ ci0

)γ
. Therefore,

q(σt|σt−1) :=
q(σt)

q(σt−1)
=

βt
(∑
i∈I

pi(σt)
1
γ ci0

)γ
βt−1

(∑
i∈I

pi(σt−1)
1
γ ci0

)γ = β

(∑
i∈I

pi(σt|σt−1)
1
γ ciγ,t−1(σ)

)γ
(7)

Dividing and multiplying Eq. 7 by
∑
σ̂t∈S

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ
delivers the desired equation.

q(σt|σt−1) = β

(∑
i∈I

pi(σt|σt−1)
1
γ ciγ,t−1(σ)

)γ
∑
σ̂t∈S

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ × ∑
σ̂t∈S

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ
.

(ii): The last thing left to prove is that (1 + δt,γ(σ)) =
∑
σ̂t∈S

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ
≤ (≥)1⇔ γ ≥ (≤)1,

with equality if and only if γ = 1 or the consumption share/beliefs distribution is degenerate.

Define f(x) = xγ ; f(.) is continuous and strictly concave ⇔ γ < 1, linear ⇔ γ = 1 and strictly convex ⇔

γ > 1. Let’s rewrite (1+δt,γ(σ)) as
∑
σt∈S

(∑
i∈I

pi(σt|σt−1)
1
γ ciγ,t−1(σ)

)γ
=
∑
σt∈S

f

(∑
i∈I

pi(σt|σt−1)
1
γ ciγ,t−1(σ)

)
.

Let focus on γ < 1: f(.) is strictly concave. Because
∑
i∈I

ciγ,t−1(σ) = 1, Jensen’s inequality implies:

∑
σt∈S

f

(∑
i∈I

pi(σt|σt−1)
1
γ ciγ,t−1(σ)

)
≥
∑
σt∈S

∑
i∈I

ciγ,t−1(σ)f(pi(σt|σt−1)
1
γ )

=
∑
i∈I

ciγ,t−1(σ)
∑
σt∈S

pi(σt|σt−1)

= 1 Because ∀i,
∑
σt∈S

pi(σt|σt−1) = 1

With equality iff the consumption share is degenerate, or the belief of all traders with positive consumption

are identical. When γ < 1, f(.) is strictly convex and the opposite inequality holds. When γ = 1, f(.) is

linear and equality holds for every beliefs/consumption shares distribution.

Proof of Proposition 3

Proof. By FOC: cFMS
t (σ)γ =

βtpFMSγ (σt)cFMS0 (∅)γ

q(σt)
=

∏t
τ=1 p

FMS
γ (στ |στ−1)cFMS0 (∅)γ∏t

τ=1 p
FMS
γ (στ |στ−1)∗

∏t
τ=1(1+δt,γ(σ))

=
∏t
τ=1

cFMS0 (∅)γ

(1+δt,γ(σ))
.

• γ = 1: by Lemma 1, ∀σ,∀t, δt,γ(σ) = 0 and the result follows.

The analysis of γ 6= 1 is delicate because pFMS endogenously affects the consumption share/beliefs distribution.

• γ < 1, by Lemma 1, ∀σ,∀t, (1 + δt,γ(σ)) ≥ 1, which implies that ∀σ,∀t, cFMS
t (σ) < cFMS

0 : the FMS-trader

consumption share is bounded above by cFMS
0 < 1. This observation allows to derive our result focusing

exclusively on the non-FMS-traders’ beliefs:
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∀σ,∀t, (1 + δt,γ) =
∑
σ̂t∈S

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)γ
=
∑
σ̂t∈S

f

(∑
i∈I

pi(σ̂t|σt−1)
1
γ ciγ,t−1(σ)

)

> min
c̄ = 1−

∑
i6=FMS

ci ≤ cFMS0 (∅)

p̄ :
∑
σt

p̄(σt) = 1

∑
σ̂t∈S

f

 ∑
i 6=FMS

pi(σt|σt−1)
1
γ ciγ,t−1(σ) + p̄(σt)

1
γ c̄t−1(σ)



With γ < 1, f(.) is strictly concave and continuous, therefore, by Jeffrey’s inequality and continuity of f :

∃ε > 0 : min
c = 1−

∑
i6=FMS

ci ≤ cFMS0 (∅)

p̄ :
∑
σt

p̄(σt) = 1

∑
σ̂t∈S

 ∑
i 6=FMS

pi(σt|σt−1)
1
γ ciγ,t−1(σ) + p̄(σt)

1
γ c̄t−1(σ)

γ

> 1 + ε

⇔ ∃ε1 > 0 and i, j ∈ I : min

{
ciγ,t−1(σ); cjγ,t−1(σ);

∑
σt∈S

|pi(σt|σt−1)− pj(σt|σt−1)|

}
> ε1.

The following chain of implications proves the result:

Leaders with distinct beliefs alternate infinitely often

⇒a ∃ε1 > 0 : lim sup
t→∞

[
max
i,j∈I

[
min

{
ciγ,t−1(σ); cjγ,t−1(σ);

∑
σt∈S

|pi(σt|σt−1)− pj(σt|σt−1)|

}]]
> ε1

⇒ ∀t, (1 + δt,γ(σ)) ≥ 1 and ∃ε > 0 : (1 + δt,γ(σ)) > 1 + ε infinitely often

⇒ cFMS
t (σ)γ =

t∏
τ=1

cFMS
0 (∅)γ

(1 + δt,γ(σ))
→ 0

⇒ the FMS-trader vanishes.

(a): Let τ denote those period in which a leader change and îτ , îτ−1 be the leaders at period τ and τ − 1,

respectively. By assumption there are infinitely many periods τ . Here we prove the existence of a uniform

lower bound for the three component of Equation a. To save notation, and WLOG, we assume that all

traders have identical time 0 consumption: ∀i, j ∈ I, c
i
0

c
j
0

= 1.

– First we lower bound at τ the consumption of the trader leading at τ : ∀τ,∃ε2 > 0 : cîτ (σ) > ε2.

By definition of a leader and the FOCs: ∀i 6= îτ and FMS,
ciτ (σ)

c
îτ
τ (σ)

=
(
pi(στ )

pîτ (στ )

) 1
γ
< 1.

Therefore ∀i 6= îτ and FMS, cîττ (σ) > ciτ (σ)⇒ cîττ (σ) >
1−cFMS0
|I| = ε2 > 0.

– Next, we lower bound at τ the consumption of the trader who led at τ−1: ∀τ,∃ε3 > 0 : c
îτ−1
τ (σ) > ε3.

cîττ (σ)

c
îτ−1
τ (σ)

=FOCs

(
pîτ (στ )

pîτ−1(στ )

) 1
γ

=

(
pîτ (στ |στ−1)

pîτ−1(στ |στ−1)

) 1
γ
(

pîτ (στ−1)

pîτ−1(στ−1)

) 1
γ

<

(
pîτ (στ |στ−1)

pîτ−1(στ |στ−1)

) 1
γ

∗ 1 Because îτ−1 is the τ − 1 leader;

<

(
1

ε0

) 1
γ

By A3’.
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Therefore c
îτ−1
τ (σ) > ε

1
γ

0 c
îτ
τ (σ) > ε

1
γ

0 ε2 = ε3.

– Finally, ∀τ, ∃ε4 :
∑
στ∈S

|pîτ (στ |στ−1)− pîτ−1(στ |στ−1)| > ε4, because leaders’ beliefs are distinct.

– The result follows setting ε1 = min{ε2, ε3, ε4}.

• γ > 1, by Lemma 1, ∀σ,∀t, δt,γ(σ) ≤ 1, with equality iff the consumption share/beliefs distribution is

degenerate. The main difficulty is to deal with the fact that δt,γ(σ)→ 0 if the FMS-trader dominates.

First, note that γ > 1 ⇒ ∀σ,∀t, cFMS
t (σ) =

cFMSt−1 (σ)

1+δt,γ(σ)
≥ cFMS

t−1 (σ), which guarantees that lim
t→∞

cFMS
t (σt)

exists in every sequence.

Next, proceed by contradiction assuming that the FMS-trader does not dominate: ∃ε > 0 : lim
t→∞

cFMS
t (σt) =

1− ε < 1. By the same argument used above, the existence of alternating leaders implies ∀t, 1
1+δτ (σ)

≤ 1,

with strict inequality infinitely often, so that cFMS
t (σ) =

∏t
τ=1

1
1+δτ (σ)

cFMS
0 → ∞ monotonically, which

implies that exists a t <∞ : cFMS
t (σ) > 1 =

∑
i∈I

et(σ), a contradiction.

C Appendix

This Appendix is dedicated to the analysis of Example 2. Our goal is to have a P -a.s. approximation of pFLS(σt)

and q(σt) in the economy of Example 3.

Let’s start by expressing the sequence of realizations as a Random Walk:

yτ =

 1 if στ = a

−1 if στ = b
, and St =

t∑
τ=1

yτ .

We are interested about two RVs:

• L(t) :=
t∑

τ=1

ISτ=0: the number of times St = 0 before t (Local Time);

• |St| =
∣∣∣∣ t∑
τ=1

yτ

∣∣∣∣: the absolute distance of the random walk from 0 at t.

The relationship between |St| and L(t) is captured by Tanaka’s formula, which implies Lemma 3.

Lemma 3. Let St be a random walk, |St| its absolute value at t and L(t) its local time at t, then
lim sup
t→∞

|St| − L(t) = +∞ P -a.s.

lim inf
t→∞

|St| − L(t) = −∞ P -a.s..
.

Proof. Define the RV zt = yt (sign(St−1)), with sign(x) :=

 1 if x ≥ 0

−1 if x < 0
.

The discrete time version of Tanaka’s formula implies:
t∑

τ=1

zτ = |St| − L(t) + IyTN+1=1.

Because, zt are iid RVs with E(zt)=0 and V ar(zt)=1, the Law of Iterated Logarithms (Williams (1991)) implies:


lim sup
t→∞

t∑
τ=1

zτ
√

2t log log t
=P -a.s. 1

lim inf
t→∞

t∑
τ=1

zτ
√

2t log log t
=P -a.s. −1

,which implies the desired


lim sup
t→∞

|St| − L(t) =P -a.s. +∞

lim inf
t→∞

|St| − L(t) =P -a.s. −∞
.
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Lemma 4. Let St be a random walk and L(t) its local time at t, then limL(t) = +∞ P -a.s..

Proof. By construction, |S| > 0 and L(t) > 0; by Lemma 3:

lim inf
t→∞

|St| − L(t) = −∞ P -a.s.⇒ lim
t→∞

L(t)→ +∞ P -a.s..

Lemma 5. In the economy of Example 3

∀σ ∈ Σ, ln pFLS(σt) = ln

(
max
i=1,2

pi(σt)

)
− L(t) ln

4

3
. (8)

Proof. Let (σt−1, a) be the sequence whose first t-1 elements coincide with σt−1 and whose last element is a. That

is, (σt−1, a) := {σ1, ..., σt−1, a}. In this setting, pFLS coincides with the SNML algorithm, (Roos and Rissanen

(2008)) and can be equivalently expressed as:

pFLS(at|σt−1) =
max
i
pi(σt−1, a)

max
i
pi(σt−1, a) + max

i
pi(σt−1, b)

=

max
i∈{1,2}

pi(σt−1,a)

max
i∈{1,2}

p(σt−1)

max
i∈{1,2}

pi(σt−1,a)+ max
i∈{1,2}

pi(σt−1,b)

max
i∈{1,2}

p(σt−1)

.

Where the denominator satisfies
max

i∈{1,2}
pi(σt−1,a)+ max

i∈{1,2}
pi(σt−1,b)

max
i∈{1,2}

p(σt−1)
=

 1 if St−1 6= 0

4
3

if St−1 = 0
.

Thus ln pFLS can be equivalently written as (telescopying):

ln pFLS(σt) =

t∑
τ=1

ln pFLS(στ |στ−1)

=

t∑
τ=1

ln

max
i∈{1,2}

pi(σt)

max
i∈{1,2}

pi(σt−1)
−

t∑
τ=1

ln

max
i∈{1,2}

pi(σt−1, a) + max
i∈{1,2}

pi(σt−1, b)

max
i∈{1,2}

pi(σt−1)

= ln max
i∈{1,2}

pi(σt)− L(t) ln
4

3
.

Proof of Proposition 2:

Proof.

• (i) lim pFLS(σt)
q(σt)

= 0 P -a.s. :

By construction, q(σt) = 1
3
p1(σt) + 1

3
p2(σt) + 1

3
pFLS(σt) ≥ 1

3
max
i∈{1,2}

pi(σt).

Using the characterization of Lemma 5,

pFLS(σt)

q(σt)
= e

ln

max
i∈{1,2}

pi(σt)

1
3
p1(σt)+ 1

3
p2(σt)+ 1

3
pFLS(σt)

−L(t) ln 4
3 ≤ e

ln 1
1
3

−L(t) ln 4
3 →P−a.s. 0.

Because we have shown in Lemma 4 that L(t)→∞ P -a.s..
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• (ii) For i = 1, 2, lim sup
t→∞

pFLS(σt)

pi(σt)
= +∞ P -a.s.

WLOG, let’sfocus on lim sup
t→∞

pFLS(σt)

p1(σt)
. Trader’s 1 likelihood is given by:

p1(σt) =

(
1

3

) t∑
τ=1

Iaτ
(

2

3

) t∑
τ=1

Ibτ

=

(
1

3

2

3

) min
j=a,b

{
t∑

τ=1
Iστ=j

}(
1

3

) t∑
τ=1

Iaτ− min
j=a,b

{
t∑

τ=1
Iστ=j

}(
2

3

) t∑
τ=1

Ibτ− min
j=a,b

{
t∑

τ=1
Iστ=j

}

=


(

2
3

1
3

) t−|St|
2

(
1
3

)|St| if St > 0(
2
3

1
3

) t−|S|
2
(

2
3

)|St| if St < 0
.

Because we are focusing on the lim sup of the likelihood ratio we can assume WLOG that St > 0, so that
ln p1(σt) = ln

(
2
3

1
3

) t−|S|
2
(

1
3

)|St|
ln pFLS(σt) =By Lem5 ln max

i={1,2}
pi(σt)− L(t) ln 4

3
= ln p2(σt)− L(t) ln 4

3
=
(

1
3

2
3

)t−|St| ( 2
3

)|St| − L(t) ln 4
3

.

lim sup
t→∞

pFLS(σt)

p1(σt)
= lim sup

t→∞
e

ln

max
i∈1,2

pi(σt)

p1(σt)
−L(t) ln 4

3

= lim sup
t→∞

e
ln

( 1
3

2
3 )t−|St|( 2

3 )|St|

( 1
3

2
3 )t−|St|( 1

3 )|St|
−L(t) ln 4

3

= lim sup
t→∞

e|St| ln 2−L(t) ln 4
3 = +∞ P -a.s., By Lemma 3.

References

Blume, L. and Easley, D. (1992). Evolution and market behavior. Journal of Economic Theory, 58(1):9–40.

Blume, L. and Easley, D. (1993). Economic natural selection. Economics Letters, 42(2):281–289.

Blume, L. and Easley, D. (2006). If you’re so smart, why aren’t you rich? belief selection in complete and
incomplete markets. Econometrica, 74(4):929–966.

Blume, L. and Easley, D. (2009). The market organism: long-run survival in markets with heterogeneous traders.
Journal of Economic Dynamics and Control, 33(5):1023–1035.
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