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Highlights: 

 

• Propose a synchronised integrated manufacturer-buyers inventory model 

• Consider generic distribution of lead times delivering equal and/or unequal batches 

• Derive a minimal total cost solution technique to the model   

• Consider the smallest batch size, total and unequal numbers of batches as variables 

• Demonstrate significant reduction in the minimal total costs by this technique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

A Manufacturer-Buyers Integrated Inventory Model with Generic Distribution of Lead 

Times to Deliver Equal and/or Unequal Batch Sizes 

 

Abstract: Although lead time variation is common in practice, integrated single-manufacturer multi-

buyer model considering this factor is unavailable in the extant literature. This article considers generic 

distribution of lead times of delivering equal and/or unequal batch (sub-lot) sizes of a lot in developing a 

synchronised integrated single-manufacturer multi-buyer model. The batch sizes are assumed to be in 

geometric series. The variables considered in the model are the smallest batch size, total number of 

batches and number of unequal batch sizes delivered from the manufacturer to buyers. The smallest batch 

sizes delivered to the buyers are bounded below by 1 and above by the capacity of the transport vehicle. 

The minimal total cost solution technique to the model is derived by the method of differentiation. 

Significant minimal total cost reductions by the synchronised flow is illustrated through solutions to some 

numerical example problems. Sensitivity analyses on increasing costs of transportation, shortage, 

inventory and increasing mean lead times upon the optimal solution have been performed.  

 

Keywords: Lead time; Integrated inventory; Single-manufacturer multi-buyer; Minimal total cost; 

Generic distribution.  

 

1. Introduction 

Lead times greatly affect production and ordering decisions because of its interaction with other sources 

of inefficiencies in supply chains, such as the variability of consumer demand, and complexities involved 

in managing inventories (Ponte et al., 2018). In practice, if the vendor is geographically dispersed in an 

integrated vendor-buyer system, especially if it involves international transportation, the lead-time is 

stochastic which means that the supplier could provide the buyer with products in variable lead times 

(Hossain et al. 2017). This situation is particularly prevalent for festive products such as Christmas, 



  

Thanksgiving, New Year's Eve, Independence Day, graduation day and many such local, national and 

international festivities. Hossain et al. (2017) further emphasised that the joint cooperative policy ushered 

to some other operational or controlling issues to run such a system smoothly so that no party is at the 

losing end. Christensen et al. (2007) analysed surveys from 210 firms and concluded that the financial 

results of firms was very sensitive to lead times variability. Some researchers reported that longer the 

mean lead time, stronger the bullwhip effect (Chen et al., 2000; Agrawal et al., 2009; Hosoda et al., 

2015). Kelepouris et al. (2008) demonstrated that an increase in mean lead times tended to result in a 

decreased customer satisfaction. Moreover, some researchers emphasised the effect of lead time 

uncertainty on supply chains management (Song et al., 2010; Kouvelis and Tang, 2011; Isotupa and 

Samanta, 2013; Bandaly et al., 2016; Chung et al., 2018; Ponte et al., 2018).  However, collaborative 

solutions to integrated systems have widely shown to outperform traditional systems (e.g. Disney and 

Towill, 2003; Kollberg et al., 2006; Costas et al., 2015; Gunasekaran et al., 2017). Therefore, this 

research intends to develop a collaborative solution technique to the integrated manufacturer-buyers 

system considering variable lead time.  

The integrated vendor-buyer(s) production-inventory literature is enriched with development of models 

assuming deterministic demand and lead time. Delivering lead time of a lot/batch (sub-lot) is one of the 

key factors in the integrated inventory models (Humair et al., 2013; Jha and Shanker, 2013; Hsiao, 2008). 

Researchers have devoted to the development of such models with controllable reduced lead time 

incurring an extra cost (e.g., Arkan and Hejazi, 2012; Yeung and Ye, 2012; Li et al., 2012; Hayya et al., 

2011; Ye and Xu, 2010; Hoque, 2009; Glock, 2009; Chang et al., 2006;  Hoque and Goyal, 2006; Pan and 

Hsiao 2005; Pan and Yang, 2002). In reality, variation in time for setting up machines, inspection, 

loading, transportation and unloading, etc. results in lead time deviation. Integrated inventory policies 

have been developed with variable lead time. Song et al. (2000) dealt with combined supply lead time and 

demand quantity uncertainty and reported that consideration of lead time variability performed better 

instead of ignoring it. Assuming stochastic demand and variable lead time, Ben-Daya and Hariga (2004) 

developed an integrated vendor-buyer inventory model by delivering the lot with equal batch sizes. Glock 



  

(2009) modified this model to permit batch shipments increasing by a fixed factor and illustrated the 

benefit of such shipments with the solution of a numerical example problem. Glock (2012) developed an 

integrated single-vendor single-buyer inventory model assuming stochastic demand and lot size-

dependent variable lead time under different lead time reduction strategies. The lead time formulation of 

Hsiao (2008) was adopted in Glock (2012). In this model, the lead time of the first batch was formulated 

by considering the set up time of a machine, production and transportation times of the first batch, while 

the lead times for the second, third and subsequent batches till the final batch were concerned only with 

their transportation times. Besides, Taleizadeh et al. (2011) presented a multi-supplier multi-buyer model 

with lead time varying linearly and developed a harmony search solution algorithm to that model. Barron 

and Baron (2020) showed that variability of lead times is costly than that of perishability time, and hence 

recommended for this variability reduction. 

Some researchers considered stochastic lead time in developing vendor-buyer integrated production-

inventory models. Sajadieh et al. (2009) developed such a model with exponential distribution of lead 

times while allowing backordering of shortages. Sajadieh and Thorstenson (2014) considered a 

single/two-vendor one-buyer supply chain assuming stochastic lead time of transferring batches and 

minimized the overall system cost. Hoque (2013a, 2013b) presented integrated single-manufacturer 

single-buyer models assuming normal distribution of lead times and permitting backordering of shortages. 

Hoque (2013a) developed the model with the assumption of delivering a lot by a number of equal batch 

sizes while a number of equal and/or unequal batch sizes were used in delivering lots in Hoque (2013b). 

In both cases, the potential benefits of the integrated system were shown by comparative studies on 

solutions to numerical example problems. Thus, particular distribution of lead times in developing models 

for the single-manufacturer single-buyer integrated supply chain has received some attention. 

Glock (2012) adopted various lead time shortening policies for transferring batches of a lot from a vendor 

to a buyer without considering its stochastic case. Assuming fixed and variable parts of lead time 

separately, Sajadieh et al. (2009) developed single-vendor single-buyer models considering exponential 

distribution of variable parts. However, their research did not address other practical problems under 



  

normal or other distributions of lead times. Also, there remains a possibility of early or late arrival of the 

first batch of a next lot. This situation may arise due to lack of notification to the vendor by the buyer in 

proper time to start processing of a next lot, generating extra inventories or shortages. In Hoque (2013a, 

2013b), the reorder point is assumed to be an unknown. The time of meeting demand by this reorder point 

was restricted by equating it to the total time of setting up the production process and processing, 

inspection, loading, transfer and unloading of the first batch of a next lot. So, an extra inventory is built 

up by the reorder point during delivering batches (second to the last) of a same lot. As a result, the mean 

lead time and hence, the reorder point had not been configured appropriately in their models. 

Consequently, formulation of the models with such an ambiguous assumption of the mean lead time may 

lead to incorrect optimal solutions. In practice, the aforesaid limitations are obstacles on the way of 

execution of those models. Also, the literature does not report any generalised integrated single-

manufacturer multi-buyer model with stochastic lead time. In addition, synchronisation of the integrated 

production-distribution flow including a notification time to the manufacturer to start processing of a next 

lot in time is essential. Taleizadeh et al.’s (2011) model dealt with linearly variable lead time.   

Driven by the above motivation, this article contributes to the extant literature by extending Hoque’s 

(2013b) single-manufacturer single-buyer model to a generalised single-manufacturer multi-buyer case by 

updating these assumptions. The production flow of this updated model is synchronised by transferring a 

lot with equal and/or unequal batch sizes and creating a notification point to the manufacturer to start 

production of a next lot for transporting the first batch of that lot to the buyers in time. In this extension, 

we consider an improved independent stochastic mean lead time. The general model has been embedded 

with generic distribution of this mean lead time to facilitate wider application. The variables considered in 

the model are the smallest batch size, total number of batches and number of unequal batch sizes 

transferred from the manufacturer to buyers. The smallest batch size is constrained by the capacity of the 

transport vehicle and the smallest positive integer. A minimal total cost solution technique to the model 

by the method of differentiation is derived, and its potential significance is highlighted with illustration of 

solutions to numerical example problems. The numerical examples resemble some cases of an exhaust 



  

silencer manufacturer selling their products to car producing plants with specific annual rate of demands 

per year. Sensitivity analyses on the effects of increasing parameter values of transportation, shortage, 

inventory costs and increasing mean lead time, upon the minimal total cost solutions are carried out. 

Finally, the shortcomings of the current model are highlighted with a proposal to conduct further studies 

on the topic. 

This paper is organised as follows. Section 2 presents the problem along with the proposed model. 

Section 3 explores solution algorithm details to achieve the minimal total cost solution to the model. 

Next, in section 4, numerical example problems are illustrated to elucidate the efficacy of the solution 

technique. This section further provides detailed analyses on the potential benefits of the proposed model 

through comparative studies on the results of single-manufacturer single-buyer numerical problems, 

followed by sensitivity analyses. Section 5 concludes by highlighting the paper findings, limitations and 

future research scope. 

 

2. Model Formulation 

2.1 Assumptions and notation 

The assumptions made in developing the model are as follows: 

i) Production and demand rates over an infinite time horizon are deterministic constant, where the 

former is greater than the latter;  

ii) The manufacturer processes a lot of a product and transfers it to the buyers with a number of 

equal-and/or unequal- sized batches; 

iii) The buyers start to meet demands at the same time; 

iv) Planned shortages are allowed and backordered completely; 

v) Shortage cost/year is higher than holding cost/year at a buyer (Fujiwara and Sedarage, 1997); 

vi) Lead times to replenish buyers’ orders follow a continuous probability distribution function and 

lead time of a succeeding batch is independent of the lead time preceding it; 



  

vii) Buyers’ inventories are reviewed continuously, and the next batch is ordered when the current 

inventory hits a planned reorder point;   

viii) Sharing of benefit of the manufacturer-buyers integrated inventory system through negotiation is 

agreed with a provision of extra financial incentives to the potential buyers; 

ix) The orders crossing in time is not allowed (Sajadieh et al., 2009). 

 

Following notation are used in developing the model: 

Notations Description 

D Rate of demand per year for all buyers 

P Rate of production per year assuming P > D, (k = P/D) 

Q Size of a lot delivered from the manufacturer to the buyers 

z The smallest of the batches of Q 

n Total number of batches in a lot Q 

m Number of unequal batch sizes ( nm  ) 

b Number of buyers 

S Manufacturer’s set up cost/set up 

St Manufacturer’s set up time/set up 

h Inventory holding cost/unit/year for the manufacturer 

g Capacity of the transport vehicle 

For the ith buyer ( i = 1, 2, ..., b) 

Di Annual rate of demand 
b

ii 1
(D D )

=
=  

Qi Lot size 

zi  The smallest batch size of the lot Qi 

hi Inventory carrying cost per item per year ( hhi  ) 

i  Shortage cost/unit/year ( )iih   

iS  Cost of placing an order 

Ti Transportation cost for transporting a batch from the manufacturer 

il  Lead time to replenish buyer’s order 

i  Standard deviation of the lead times 

it  Usual inspection, loading, transfer and unloading time (yr) 

it  Return time ( yr) of the transport vehicle 

ir  Buyer’s notification point 

 

 



  

2.2 The Model  

2.2.1 The total cost function 

We assume that a manufacturer produces a homogenous product and delivers it to multiple buyers. Our 

aim is to minimise the expected annual total cost of ordering batches, set up of the production process, 

inventory holding during production and meeting demands, shortage and transportation of batches, 

subject to some constraints provided later. Let a manufacturer processes and transfers a lot of size Q to b 

buyers by m batches of size zkzkkzz m 12 ,...,, − and n - m batches of size .1zk m−

 A part of each batch 

)...2,1(1 mjzk j =−
 is transferred to the buyer i (i = 1,2,…,b) by batches of size ,1

i

j zk −
where 

DzkDzk j

ii

j /)( 11 −− =  or DzkDzk j

ii

j // 11 −− = as in Hoque (2008), so that .
1

11  =

−− =
b

i i

jj zkzk  

Thus 
i

m

i

m

iii zkmnzkkzzQ 11 )(... −− −++++= and ( ) =

−−

=
−++++==

b

i

m

i

m

ii

b

i zkmnzkkzzQQ
1

11

1
)(...

                                                               
 

                                                                 ( )1

1

1112 )()(... −

=

−−− −+=−+++++=  mm

j

jmm kmnkzzkmnzkzkkzz  

1

1
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=

− −+
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j
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Q
z  

 =

−− −+
=

m
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i

i

kmnk

Q
z

1

11 )(
and    … (1) 

Also, 
i

m

i

m

iiii zkmnzkzkkzzQ 112 )(... −− −+++++=  

DQDDzkDmnDzkDDzkDDkzDDzD i

m

i

m

iiii //)()(/)(.../)(/)(/ 112 =−+++++= −− .// ii DQDQ =  

 

In addition, 
i

jj

ii

jj

i zkPzkDDPzkDzkD 1111 }/)(){/(/)( −−−− ==  

]/)([/////)( 1111 DzDzDzkDzkPzkDzkPzkk ii

j

ii

jj

ii

jj ==== −−−−   

Accordingly, the production time of any unequal- sized batch equals the time of meeting demand by the 

previous batch, and thus synchronizes the production flow of supplying a product to multiple buyers with 

equal and/or unequal batch sizes after its production at the manufacturer.  

 



  

Since P > D, the next batch of a lot can always be made available at the manufacturer when the current 

one finishes at the buyers ).///( 11 DzkDzkPzk j

ii

jj −− ==
 
Since 

it is the usual time for inspection, 

loading, transportation and unloading of a batch for buyer i, it is assumed that a buyer orders for a next 

batch when his/her stock level hits the reorder point .iitD  The next batch is supposed to arrive at the 

buyer i when these units finish there. So, the mean lead time is .it If the next batch is supplied from the 

same lot, it is always available at the manufacturer and hence maintains its mean lead time it . However, if 

the next batch is the first batch of a next lot, the manufacturer needs the set up time St, processing time of 

the first batch z/P, and the time 
it . So, the manufacturer must be notified by the buyer i, 

it tPzS ++ /

time before finishing the current batch at this buyer, thus maintaining the same mean lead time. Let us 

define the time 
it tPzS ++ / as the notification time. Thus, a buyer i preserves a notification point.  

Initially, a batch z is processed at the manufacturer and then the batch DzDz ii /=  is delivered to buyer i 

in time ti.. The batch zi meets demand in time 
ii Dz / , generating an inventory ).2/(

2

ii Dz  If ),(max i
i

m tt =  

each batch 
i

j zk 1− is kept at the manufacturer for time im tt − , and then it is supposed to deliver to buyer i 

in time it so that all buyers start to meet demands at the same time. Thus each batch i

j zk 1−
is supposed to 

remain idle for time 
im tt − (at the manufacturer) + ti (during transportation) = tm. The sum of the 

inventories at the buyers created by the batch zk j 1− is given by: 

= ( ) 







==+++=+++
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D

z

D

z

D

zk

D

z
zzz

k

D

zk

D

zk

D

zk

i

i
j

b

j

b

b

jjj


2

...
22

...
22

2)1(2

21

)1(22)1(2

2

2

2

)1(2

1

2

1

)1(2

 

The buyer’s inventory per year is given by: 

                                            
2( 1) 2 2( 1) 2 2

2( 1) 1

1 1
( )  ( )  

2 2 2

− −
− −

= =

  
= + − = + − =   

   
 

j m
m m j mi i

j j
i i

D Dk z k z z D
n m k n m k

Q D D Q Q Q
. 

The manufacturer-buyers joint inventory pattern of transferring a lot by 4 batches is depicted in Figure 1, 

where the last two are of equal-sized.    
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Figure 1: The joint inventory of the manufacturer and the buyers when n =4, m =3 

 

Area of the trapezium ABCD denotes manufacturer-buyers joint inventory per cycle, and hence their joint 

inventory per year is given by   







−++

k

Q
Dt

k

z
m

1
1

2
. 

Since manufacturer’s inventory is the joint inventory minus the buyers’ inventory, the inventory cost of 

the manufacturer per year is given by:  

 
 

2( 1) 2( 1)

1

1 1

1

( )1
1

2 2 ( )

m j m

j

m m j m

j

z k n m kz Q
Dt h

k k k n m k

− −

=

− −

=

 + −
  + + − −    + −

  




      … (2) 

Because of variations in the lead time ,il  a batch may arrive early or late, leading to deviation from the 

mean lead time .it  
We assume that this variation in the lead time follows a continuous probability 

distribution function ).( iL lf
i

 By embedding this function we calculate various concerned costs of the 

considered problem following Hoque (2013b) which are shown in the sub-sections below.  

 

(i) Inventory cost when a batch arrives early or on time 

Here the inventory created during meeting demand from the reorder point and from the time of arrival of 

a batch until it reaches to the next reorder point of a cycle are calculated separately. Their sum is 



  

multiplied by the number of cycles in a year in obtaining the inventory per year. After simplification the 

expected inventory cost per year for all the buyers is given by:   

( )
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( )

2( 1) 2( 1)

1

1 0 1 1
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(ii) Shortage and the inventory costs when a batch arrives late 

When a batch 
i

j zk 1−
arrives late to the buyer i limiting lead time li  in the range  ii

j

iii Dzktlt /1−+ , 

the part of the shortage cost at the buyer i per year is obtained as:  

 
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Further, the part of the inventory cost at this buyer per year in this case is derived as:  

( )

1

1

2
/

1

11 1

1

2
/

1

( )
2 ( )

( ) ( )

j
i

i
i

m
i

i
i

t k z Dm ji i
i i L i im j tj m

j

t k z D
j

i i L i i
t

DD h z
k t l f l dl

Dz k n m k

z
n m k t l f l dl

D

−

−

+
−

=− −

=

+
−

  
+ −  

 + − 

 
+ − + −  

  

 




 

So, the total inventory plus shortage costs per year for all buyers in this case is given by expression (4):  
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When a batch i

j zk 1−
arrives late to the buyer i by limiting lead time li in the range + −

iii

j

i lDzkt /1 , 

the shortage cost per year for all the buyers is given by expression (5):  
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If a batch 
i

j zk 1−
 arrives late by the time li – ti, limiting li in the range ,/1

ii

j

iii Dzktlt −+ the extra 

inventory cost per year (assuming that it is kept at the manufacturer for this time) in this case is given by: 
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If a batch 
i

j zk 1− arrives late by a time ,ii tl − limiting li in the range + −

iii

j

i lDzkt /1 , then the 

contribution to the inventory cost of the manufacturer per year by this extra inventory is given by:
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Adding this expression to the previous one, we find the total extra inventory cost per year at the 

manufacturer as .)()(


−
i

it
iiLiii dllftlhD  If a batch i

j zk 1−
arrives early to the buyer i by (ti – li), limiting li 

in the range ,0 ii tl   then the inventory cost per year is obtained as:  

 1 1

1 0 0
( ) ( ) ( ) ( ) ( )

i i

i i

t tm j mi i
i i L i i i i i L i ij

i

D z h
k n m k t l f l dl D h t l f l dl

Q

− −

=
+ − − = −    

Thus, the net extra inventory cost for all buyers per year is given by expression (6):  
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 

= =
− − − = −      … (6) 

 

(iii) Sum of set up, ordering and transportation cost   

Total cost of set up of the production process, ordering and transportation of batches per year is given by 

expression (7):  

( ) ( )
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1
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b b
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 


   … (7) 



  

(iv) The total cost function 

Adding the derived costs of expressions (2), (3), (4), (5), (6) and (7), and then substituting for  

( )1 1

1
( )

m j m

j
Q z k n m k− −

=
= + −  from (1), the total cost function, ( , , )TC z n m , is found as follows: 
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Applying the equation:  
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transforms to expression (8):  
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2.2.2 Constraints 

Note that the manufacturer needs a notification time 
it tPzS ++ / from buyer i before finishing the last 

batch of the current lot meeting demand at this buyer, to maintain its mean lead time ti. In this situation if 

ri is the notification point from the buyer i to the manufacturer, then 

              
/ /i t i iz P t S r D+ + = ( / )i i t ir D S z P t = + +

 
       … (9) 

So, if r is the general notification point to the manufacturer to start processing of a next lot to maintain its 

mean lead time ti considering all buyers, r is given by expression (10): 

 ( / )i t i
i

r Max D S z P t= + +         … (10) 

Also, in order to maintain the reorder point, /i i i iz r z Dr D    / /i iz D z D=  and hence   

( )( ) / 1 1/t iz D S t k + −          … (11) 

In addition, the time of meeting demand by a batch zi cannot be less than sum of the transfer time it and  

return time it of the transport vehicle, which implies,  

   / . ( ) / /i i i i i i i iz D t t z D t t z D z D  +   + =    … (12) 

Besides, the largest batch 
1m

ik z−
cannot exceed the capacity g of the transport vehicle, which implies,   



  

1 1 1/ / ( )m m m

i i ik z g k zD D g z Dg k D− − −        … (13) 

Moreover, 1 / 1 /i i iz zD D z D D     . So, considering expressions (11), (12) and (13), we obtain 

( ) Maximum 1, 2, 3z D D D z z Or z z z=          … (14) 

where ( )        11 Max ( ) / 1 1/ , 2 Max ( , 3 Max / , Min 1/ / m

t i i i i iD D S t k D D t t D D D z Dg D k −= + − = + = =  

Therefore, the objective of the model for the single-manufacturer multi-buyer integrated supply chain 

problem with generic distribution of lead times is to find the minimum of the total cost function as given 

in expression (8) by satisfying the constraint of expression (14). Given z, the notification point r can be 

calculated from expression (10). 

 

3. Solution Algorithm 

Given n and m, convexity of the total cost function ( , , )TC z n m  in z (assuming z as real) is elucidated in 

Appendix A, while convexity of this total cost function in n, with given z, m (assuming n as real), is 

indicated in Appendix B. Given z, n and m, evaluations of the integrals in the total cost function using 

eight probability distribution functions are illustrated in Appendix C.  

From (14) we have 1/{ Min(1/ )}.m

iz z z Dg k D−  =  Note that for given parameter values, z is fixed. 

However, z decreases as the value of m increases. So, determine the value of m, say m0, so that  

0 01
/{ Min(1/ )} /{ Min(1/ )}.

m m

i iDg k D z Dg k D
+

   

Then starting with m = 1 and ,z z=  find the minimal n by a binary search over n and hence, the 

associated minimal total cost. For the known values of m and n, find the minimal z by a binary search 

over z satisfying constraint (14) and the associated minimal total cost. Again, for the known minimal 

values of m and z, find the minimal n and the associated minimal total cost, and hence, for the known 

minimal values of n and m, find the minimal z satisfying constraint (14) and the associated minimal total 

cost. Continue with this process of calculating the minimal n and z for known m along with the associated 



  

minimal total cost until there is no significant difference between two consecutive minimal total costs. 

Record the final minimal total cost along with the associated values of z, n and m. Increase the current 

value of m by 1 at each step and find the minimal total cost along with the associated values of z, n and m 

successively following the above procedure until m exceeds m0. Thus, minimum of all the minimal total 

costs found along with the associated values of z, n and m is the minimal total cost solution to the 

problem. The solution algorithm is presented below.  

 

Algorithm  

Step 1: Set m =1 and z = .z  Increase m by 1 successively until 

                                             1/{ Min(1/ )} /{ Min(1/ )}.m m

i iDg k D z Dg k D+   Set m0 = m & m = 1. 

Step 2: For the known values of m and z, find the minimal total cost by increasing or decreasing n by 1 at   

           each step but keeping .n m Record this minimal total cost as C and set .mC C=   

Step 3: Keeping fixed the current values of n and m, find the minimal total cost by a binary search over z   

           satisfying constraint (14). Record this minimal total cost as .C   If ,mC C   set ,mC C= z = the   

            minimal z and go to step 2.   

Step 4: Record mC along with the associated values of z, n and m. 

Step 5: Set m = m+1. If m < m0 +1, go to step 2.  

Step 6: Find the minimal total cost as minimum of 
01 2{ , ,... }mC C C with associated values of n, m  

           and z.   Stop. 

 

4. Computational Results and Analyses 

4.1 Solution to numerical problems with various distributions of lead times  

A single-manufacturer 5-buyer numerical problem of a car exhaust silencer manufacturer producing 3200 

silencers per year and selling these products to five different car producing plants with a total annual rate 



  

of demand of 1000 silencers is considered in this numerical example. Table 1 illustrates the relevant data 

for this case, using most of the deterministic data from Hoque (2008), where integrated manufacturer-

buyers inventory models with deterministic lead time were developed. However, the car manufacturers’ 

(i.e. buyers) data for i , ti, it   and i emphasise on deviations within a certain range. 

Table 1: Data set 1 for a single manufacturer 5-buyer numerical problem 

P S h g St Di Si hi i  ti ti’ Ti i  

3200 400 4 300 0.001 200 25 7 30 0.009 0.003 25 0.002 
  

   180 15 6 27 0.007 0.003 20 0.001   
   225 25 7.5 31 0.008 0.004 18 0.003   
   230 30 6.5 25 0.007 0.002 25 0.001   
   165 30 6 28 0.006 0.0025 15 0.0015 

1000
1

== =

b

i iDD  

This numerical problem is solved considering eight different continuous probability distributions of lead 

time following the algorithm developed. Note that when m = 1, a lot is delivered with equal batch sizes; 

when n = m all batches of a lot are unequal sizes; when m < n, a lot is delivered by combining equal and 

unequal batch sizes. Comparative results with m =1, n = m and m < n are given in Table 2. 

   Table 2: Comparative results obtained for 8 continuous probabilitry distributions of lead times with nmmnm == &,1  

 Solution with m = 1 Solution with nm =  
 

% 

reduction 

in MTC 

with m = n 

over m =1 

Solution with nm   % 

reduction 

in MTC 

with 

nm   

over  m = n  

Distribution z n Q = 

nz  

r Min T 

Cost 

(MTC)  

Z m

  

Q r Min T 

Cost
 

z n,m  Q r Min T 

Cost
 

Normal 204 3 612 16.50 2765.94 39 3 563.16 4.77 2728.17 1.37 86 3, 2 636.40 8.07 2660.25 2.49 

Uniform 122 5 610 10.61 3410.02 86 2 361.20 8.07 4054.70 -18.91 44 5, 2 607.20 5.19 3396.50 16.23 

Gamma 204 3 612 16.50 2765.99 127 2 533.40 11.43 2749.54 0.60 86 3, 2 636.40 8.07 2660.30 3.25 

Exponential 204 3 512 16.50 2769.40 39 3 563.16 4.77 2750.36 0.69 86 3, 2 636.40 8.07 2663.58 3.16 

Chi-square 206 3 618 16.65 2981.88 39 3 563.16 4.77  2943.36 1.29 87 3, 2 643.80 8.14 2867.17 3.59 

Beta  204 3 612 16.50 2764.01 127 2 533.40 11.43 2747.56 0.60 86 3, 2 636.40 8.07 2658.32 3.25 

Weibull 204 3 612 16.50 2763.97 127 2 533.40 11.43 2747.52 0.60 86 3, 2 636.40 8.07 2658.28 3.25 

Rayleigh 204 3 612 16.50 2762.34 127 2 533.40 11.43 2745.74 0.60 86 3, 2 636.40 8.07 2656.63 3.25 

 

It is observed that the percentages of total cost reductions by transferring the lot with m < n instead of m = 

1 and n = m are considerable except for Uniform distribution with n = m over m = 1. To see further the 

effect of transferring a lot with a combination of equal and/or unequal batch sizes on the minimal total 

cost, we solve a numerical problem for the same exhaust silencer manufacturer producing 4000 silencers 

per year and selling these products to five different car producing plants with a set of different data given 

in Table 3. Comparative results are given in Table 4. 



  

Table 3: Data set 2 for a single manufacturer 5-buyer numerical problem 

P S h g St Di Si hi 
i  ti ti’ Ti 

i  

4000 400 5 300 0.001 400 30 8 27 0.009 0.003 30 0.002 
  

   150 18 6 30 0.007 0.003 25 0.001 
  

   350 30 8 35 0.009 0.004 18 0.003 
  

   190 40 7 25 0.007 0.002 30 0.001 
  

   410 50 6.5 28 0.008 0.0025 20 0.0015 

1500
1

== =

b

i iDD  

 

Table 4: Comparative results obtained for 8 continuous probability distributions of lead times with nmmnm == &,1  

 Solution with m = 1 Solution with m = n  

% 

reduction 

in MTC 

with m = n 

over m =1 

Solution with nm   % 

reduction in 

MTC with 

nm   over  

m = n  

Distribution z n Q = 

nz  

r Min T 

Cost 

(MTC)  

z M Q r Min T 

Cost
 

z n,m Q r Min T 

Cost
 

Normal 247 3 750 29.01 3865.06 57 3 615.54 9.70 3720.27 3.75 124 3, 2 786.16 16.40 3654.37 1.77 

Uniform 150 5 750 19.07 4742.50 48 3 518.35 8.80 5401.89 -13.90 65 5, 2 759.2 10.50 4673.08 13.49 

Gamma 247 3 741 29.01 3865.13 57 3 615.54 9.70  3773.80 2.36 124 3, 2 786.16 16.40  3654.43 3.16 

Exponential 247 3 741 29.01 3873.26 57 3 615.54 9.70 3769.28 2.68 124 3, 2 786.16 16.40 3662.06 2.84 

Chi-square 250 3 750 29.32 4249.95 57 3 615.54 9.70 4150.12 2.35 125 3, 2 792.50 16.50 4031.15 2.87 

Beta  247 3 741 29.01 3862.35 57 3 615.54 9.70 3771.03 2.36 124 3, 2 786.16 16.40 3651.39 3.17 

Weibull 247 3 741 29.01 3860.09 57 3 615.54 9.70 3770.71 2.32 124 3, 2 786.16 16.40 3651.39 3.16 

Rayleigh 247 3 741 29.01 3860.51 57 3 615.54 9.70 3769.49 2.36 124 3, 2 786.16 16.40 3649.73 3.18 

  

 

Note that the percentages of total cost reductions for this problem increase significantly in all cases except 

for Uniform as the case for the previous problem (Table 1). This achievement is the result of better 

synchronisation of the production flow by transferring lots with a combination of equal and/or unequal 

batch sizes. For both the problems the solutions with Normal distribution of lead times have the smallest 

minimal total cost whereas the solutions with Uniform and Chi-square distributions of lead times have the 

highest and the second highest minimal total costs respectively. The presented numerical outcomes (Table 

4) are significantly different for Uniform, Chi-square and the set of all other distributions. For the first 

problem the solutions with Normal, Gamma, Exponential, Beta, Weibull and Rayleigh distributions of 

lead times are found to provide almost the same result. For the second problem the same trend follows 

except for Normal distribution. It can be noted that in certain cases the Weibull distribution is very similar 

to the Normal distribution, and Rayleigh distribution is a particular case of Weibull distribution. The same 

results follow with these distributions of lead time might be due to their similarities. Additionally, 

Gamma and Exponential distributions of lead times result in almost the same solution. Since Exponential 

distribution is a particular case of Gamma distribution, these solutions may be due to their similarities. 



  

Although this trend of results cannot be concluded generally with the solutions to two numerical problems 

only, it certainly hints for better results with such synchronisation. Also, the solution method developed 

here can certainly ensure an optimal solution to a single-manufacturer multi-buyer case with any 

continuous probability distribution of lead times.   

 

4.2 Comparative study on single-manufacturer single-buyer numerical problems 

Since similar treatment of the problem does not exist in the literature, like-to-like comparison on solutions 

to numerical problems cannot be conducted. However, we perform comparative studies on solutions to 

single-manufacturer single-buyer numerical problem using the proposed method, and some earlier 

methods with normal distribution of lead times. In this case we consider the same exhaust silencer 

manufacturer producing 3000 silencers per year and selling these products to one car producing plant with 

annual rate of demand of 1000. The data for this problem is adopted from Hoque (2013a) (Table 5) and 

comparative results are provided in Table 6. 

Table 5: Data for a single manufacturer single-buyer numerical problem 

P S h g St Di Si hi 
i
 ti (yr) ti’(yr) Ti i

 

3000 400 4 300 0.001 1000 25 5 30 0.009 0 0 0.002 

 

 

For the studied three numerical problems, the proposed method provides lesser minimal total cost 

solutions in all cases except for P = 7000 where Hoque (2013b) has provided better solution. Note that the 

assumed mean lead time in developing the model in this paper is different from that of Hoque (2013a, 

2013b). Also, the production flow of this model has been synchronised with the creation of a notification 

point for starting processing of a next lot. Thus, the variation in the minimal total cost solutions in Table 6 

Table 6: Comparative minimal total cost solutions to three numerical problems with different production rate 
P Method Z n, (n, m) Q rm TC 

3000 Hoque (2013a) 

Hoque (2013b) 

This Paper 

112 

15 

15 

5 

(4, 4) 

(13,2) 

560 

600 

915 

47.33 

15 

12.60 

1983.72 

1635.38 

1584.68 

5000 Hoque (2013a) 

Hoque (2013b) 

  This Paper 

127 

17 

27 

4 

(3, 3) 

(19, 1) 

508 

527 

513 

35.4 

13.40 

15.4 

2037.11 

1739.84 

1721.66 

7000 Hoque (2013a) 
Hoque (2013b) 

This Paper 

158 
33 

27 

3 
(3, 2) 

(18, 1) 

474 
495 

486 

32.57 
14.71 

13.86 

2043.12 
1735.55 

1773.85 



  

is due to these differences. However, from Table 6 it can be observed that as the production rate increases 

from demand the minimal total cost solution is obtained by transferring the lot with equal-sized batches.    

 

4.3 Sensitivity analyses of the solutions  

To demonstrate the effect of change in the transportation cost on the minimal total cost, we successively 

increase each of the transportation costs of the single-manufacturer five-buyer numerical problem (data of 

which is given in Table 3) by 5 units. As the transportation cost increases the minimal batch sizes in each 

of the distributions are found to be in the increasing order keeping the minimal values of n and m the 

same. Comparative variations in the minimal total costs are illustrated in Figure 2.  

 

Figure 2: Trends in the minimal total costs in various distribution of lead times for increasing values of 

the transportation cost (Ti) 

It is noticed from Figure 2 that as the transport cost increases, the minimal total cost with uniform 

distribution of lead times has the highest growth rate. The minimal total costs with all other distributions 
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have the similar smaller growth rates. The minimal total system cost is found to increase by 10.03% in 

case of uniform distribution whereas the minimal total system costs in other cases are found to increase 

by around 7.55%.  

Similar analysis has been carried out by increasing each of the shortage costs by 5 units in various 

distributions of lead times. The minimal batch sizes and the associated values of n and m in each of the 

distributions are found to be the same. As the shortage cost increases the variation in the minimal total 

cost for different distributions of lead times is illustrated in Figure 3.  

 

Figure 3: Trends in the minimal total costs in various distribution of lead times for increasing values of 

the shortage cost ( i ) 

 

Figure 3 illustrates that the minimal total cost has the highest growth rate in case of uniform distribution 

and the next highest growth rate in it with Chi-square distribution. In the former case, the minimal total 

system cost is found to increase by 2.69% whereas it increases in the latter case by 1.27%. In all other 

cases almost similar insignificant growth rates were found.  

The minimal total cost solutions for successive increases in each of the inventory costs by 1 unit for 

various distributions of lead times are also calculated. As the inventory cost increases, the minimal batch 
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sizes are found in decreasing trend except for Uniform where they are the same, and the associated values 

of n and m are observed to be the same. The corresponding variation in the minimal total costs in various 

distributions of lead times is illustrated in Figure 4. In all cases the minimal total cost increases. It has the 

smallest growth rate in case of Uniform distribution with 0.66% increase in the minimal total system cost, 

and the highest in case of Normal distribution with 5.44% increase in the same. In all other cases the 

minimal total system cost increases by around 3.95%.     

  

Figure 4: Trends in the minimal total costs in various distribution of lead times for increasing values of hi 
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cost. Note that the initial increase in the minimal total cost is due to the increase in Dhtm (the annual 

inventory cost during transportation), which is remained unchanged because of no change in tm during 

successive increases in other it latter.   

 

Figure 5: Trends in the minimal total costs in various distribution of lead times for increasing values of ti 

 

 

4.4 Managerial implications  

Variable lead times often lead to a higher degree of uncertainty. The harmful impact of this variability on 

production and distribution systems is widely accepted by practitioners and academics (Heydari et al., 

2016). de Treville et al. (2014) reported that managers struggle to quantify the actual financial impact of 

lead times – which greatly obstructs their decision making in this system. However, in practice, lead times 

of delivering batches of a product to a buyer may be approximated to a kind of continuous probability 

distribution. Since the model in this paper has been developed with generic continuous probability 

distribution of lead times, a manager can easily implement this model along with such a distribution. 

Generally, a production manager deals with delivering of their produced products to multiple buyers. As 

the literature is silent on a single-manufacturer multi-buyer integrated production inventory model with 
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stochastic lead times of delivering batches of a lot, a manager has the opportunity to assess the financial 

impact of variable lead time in such a situation. The production flow of the integrated model in this paper 

has been synchronised by delivering the lot with equal and/or unequal batch sizes, and with the 

establishment of a notification point to the buyer for starting production of a next lot. This has opened a 

new scope to managers for finding minimal total cost solution to a problem with such synchronisation and 

employing stochastic lead times of delivering equal and/or unequal batch sizes of a lot. Thus the 

technique developed in this paper has augmented the scope of applications of a required technique to a 

further extent for the managers.  

 

5. Conclusions 

This article develops an integrated single-manufacturer multi-buyer model with generic continuous 

probability distribution of lead times of delivering equal and/or unequal batch sizes of a lot. The 

production-distribution supply chain flow is synchronised by synchronising the transfer of batches and 

generating a notification point to start processing of a next lot in time. The smallest batch size delivered to 

a buyer is constrained to be greater than or equal to the notification point from the corresponding buyer, 

demand of this buyer at the transfer plus return time of a transport vehicle and 1, and it is also kept less 

than or equal to the capacity of the transport vehicle. The total cost of ordering, set up, inventory holding, 

shortage and transportation is minimised by applying the method of differentiation, and it is illustrated 

with numerical example problems. Potential benefit of the model is highlighted with solutions of 

numerical example problems. Sensitivity analyses performed by increasing the values of transportation 

and inventory costs, illustrate significant increase in the minimal total system cost except for uniform in 

the latter. For increasing values of the shortage cost and the mean lead time the minimal total system cost 

increases considerably in case of Chi-square, whereas it increases notably with uniform in the former. 

Besides, variation in the mean lead times is found to have insignificant effect on the minimal total system 

cost, which is in line with the conclusion made based on throughput-based analysis by Ponte et al. (2018). 



  

Demands of the buyers are assumed to be a deterministic constant. However, in practice, the demands of 

buyers may vary under the influence of various factors. Further research on this topic can be conducted 

considering this variation. Generally, distribution of the profit among the concerned parties based on 

negotiation is suggested by researchers. Nonetheless, researchers can focus on finding a reasonable way 

to distribute the earned profit (from the integrated system) among the concerned parties.  

 

Appendix A 

Proof of convexity of the total cost function with respect to the smallest batch size, z keeping n, m 

constant 

Given n and m, assuming z as real, differentiate the total cost function ),,( mnzT with respect to z (Leibnitz 

theorem of differentiation of an integral is used to differentiate an integral) to obtain  
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which is positive. Hence the function ( , , )T z n m is convex in z, given n and m. 

 

Appendix B 

Proof of convexity of the total cost function with respect to the total number of batches, n keeping z, 

m constant 

Given z and m, differentiate ),,( mnzT with respect to n (assuming n as real) to obtain  
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Note that the first and the second differences of the above expression are positive. The third difference 

can be transformed to  

                             
1 2( 1)

1 1 2

21 0 0

1 ( 1)( 1)
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Adding it (along with the corresponding denominator in 22 /),,( dnmnzd ) with its first term obtain   

 

 
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The numerator can be transformed to:  

1 1
2( 1) 2 2
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+ −
, a contradiction. Hence 

( 1) /mk m−  is increasing in m. Note that for m = 1 the above numerator is zero and all other terms in 

2 2( , , ) /d z n m dn are zero except the last one. The last term is positive. For m > 1, all terms in 
2

2

( , , )d z n m

dn  

are positive and hence the function ( , , )T z n m is convex in n, given z and m. 

 

 

 



  

Appendix C 

Evaluation of integrals involving various kinds of continuous probability distribution functions  

C.1. For the uniform distribution of the lead time: 

Substituting for 
1 1

1 1
( )

0iL i j j

i i

f l
k z t k z t− −

= =
+ − +

 in (8), the integrals there can easily be evaluated. 

C. 2. For the normal distribution of the lead time: 

In this case
2

2

1
( )

2
1

( ) .
2

i i

i

l t

L if l e 



− −

=  We have   
2

2

1
( )

21
( ) ( ) ( )

2
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i

i

l t

i i L i i i i i

i

l t f l dl l t e dl




− −

− = −   

Substituting for
2( )i i il t u− =  obtains
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2
( ) ( )

2

i i

i

i

l t

i
i i L i il t f l dl e





−
−

− =−  

Also, substituting for i i il t u− = in 2( ) ( )
ii i L i il t f l dl− derives 

                                                                     

2

2

( )

22 2( ) ( ) ( ) ( )
2

i i

i

i i
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i
i i L i i i i i L i il t f l dl l t e f l dl
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



−
−

− = − − +   

Using the above integral results, the integrals in (8) can be evaluated. 

C.3. For the gamma distribution of the lead time: 

The total cost function (8) in terms of gamma distribution function 

1( ) ,0 , 0, 0
( )

i

i

l

L i i if l l e l


 
 



− −
−=     


 can be assessed by evaluating the integrals 

2 ( ) and ( )
i ii L i i i L i il f l dl l f l dl  respectively as follows: 

( 2) ( 1)
/ /2 ( 2) 1 ( 1) 1( 1) and

( 2) ( 1)
i il l

i i i il e dl l e dl
 

   
   

 

− + − +
− −+ − + −+

 +  +   

Here the mean lead time, it=  and the variance 2 y = (say), which imply 2 / , / .i it y y t = =  Thus 

for given mean lead time ti, variance y and other parameter values, the minimal z, m and n can be 

calculated following the developed algorithm. 

C.4. For erlang, exponential and chi-square distributions of the lead time: 



  

The gamma distribution function transforms to erlang distribution function when  is an integer, and the 

exponential distribution function is a special case of erlang distribution when 1. = Thus the exponential 

distribution function for the mathematical model in this paper is given by 
1

( ) ,0

i

i

i

l

t

L i i

i

f l e l
t

−

=    , when 

1and it = =  are set in the gamma distribution function. So, the minimal z, m and n for each of erlang 

and exponential distributions can easily be obtained by following the solution procedure described for the 

case of gamma distribution but by setting 1and it = = .  

Chi-square distribution function is a particular case of the gamma distribution function when 

/ 2 and 2.v = =  So, the minimal z, m and n considering chi-square distribution function can be found 

by setting / 2, 2 and iv v t = = =  in the gamma distribution function. 

C.5. Considering beta distribution of the lead time: 

Consider the total cost function (8) in terms of the beta distribution function 

1 11
( ) (1 ) ,0 , 0, 0.

( , )iL i i i if l l l l
B

   
 

− −= −       The minimal z, m and n can be obtained from (8) 

 by evaluating the integrals 2 ( ) and ( )
i ii L i i i L i il f l dl l f l dl  respectively as follows: 

( 2) 1 ( 1) 1
1 1( 1)

(1 ) and (1 ) ,
( )( 1) ( 2, ) ( ) ( 1, )

i i
i i i i

l l
l dl l dl

B B
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− −+

− −
+ + + + + +  where the mean lead time,

it


 
=

+
 and the variance 

2( ) ( 1)
y



   
=

+ + +
(say), which imply

{(1 ) }/ , (1 )({(1 ) }/ .i i i i i it t t y y t t t y y = − − = − − −  Note that 0, 0 1 .it y     +  Thus for given 

mean lead time ti , variance y, and other parameter values, the minimal z, m and n  can be calculated 

following the developed algorithm.  

C.6. Considering Weibull distribution of the lead time: 

Consider the mathematical model of the problem in terms of the Weibull distribution function 

/1( ) ,0 , 0, 0.i
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l

L i i if l l e l
    −− −=       



  

Following the algorithm the minimal z, m and n can be obtained considering (8) and evaluating the 

integrals 2 2

/ /
( ) , ( ) , ( ) , ( ) ,

i i i i
i i i i i i i i i i i i
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for k = 2, 1, 0, 

transform to the gamma distribution format 
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Here the mean lead time, 1
1 it



 
 + = 
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 and the variance 
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(say), which imply
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Letting 1/ ,x =  this equation transforms to   ( )
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2 2

2 1
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x y
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 +
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 +

           … (15) 

Now      

( )  ( )  ( )  ( ) 
2 2 2 2

2( 1) 1 2( 1) {2( 1} 2 {(2 1) 1} 2(2 1) {(2 1)}

1 1 ( 1) 1 ( 1) 1 ( 1) 1

x x x x x x

x x x x x x x

 + + +  +  + + +  +
= = =

 + + +  + +  + +  +

 

( )  ( ) 
2 2

{(2 1)} {(2 1)}
2 1

1 1 1

x x x

x x x

 +  + 
= +  

+   +  +

 

This shows that ( ) 
2

{(2 1)}/ 1x x +  +  is an increasing function of x. Thus for the given mean lead time 

ti  and variance y, the value of x that satisfies equation (15) can easily be calculated by a binary search 

over x. Using this value of x, the value of  and hence the value of   can be determined. Using these 

values of  and ,  the values of 2 2

/
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evaluated, and hence the minimal z,  m and n considering (8). 



  

If 1=  and the mean lead time ( )1/ 1 ,it  + = then it= and the variance 
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So the Weibull distribution function 
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which is the Rayleigh distribution function.  

C.7. Considering Rayleigh distribution of the lead time  

Consider the function (8) in terms of the Rayleigh distribution function ,0,
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using 2 = and 2 =  along with ( )2 / it = ), the minimal z, m and n can be found using (8).  

 

References 

Agrawal, S., Sengupta, N.R., Shanker, K., 2009. Impact of information sharing and lead times on 

bullwhip effect and on-hand inventory. European Journal of Operational Research 192(2), 576-593. 

Arkan, A, Hejazi, S.R., 2012. Coordinating orders in a two echelon supply chain with controllable lead 

time and ordering cost using the credit period. Computers & Industrial Engineering 62(1), 56-69. 

Barron, Y., Baron, O., 2020. QMCD approach for perishability models: The (S, s) control policy with 

lead time. IISE Transactions 52(2), 133-150. 



  

Ben-Daya, M., Hariga, M., 2004. Integrated single vendor single buyer model with stochastic demand and 

variable lead time. International Journal of production Economics 92(1), 75-80. 

Bandaly, D., Satir, A., Shanker, L., 2016. Impact of lead time variability in supply chain risk 

management. International Journal of Production Economics 180, 88-100. 

Chang, H.C., Ouyang, L.Y., Wu, K.S., Ho, C.H., 2006. Integrated vendor–buyer cooperative inventory 

models with controllable lead time and ordering cost reduction. European Journal of Operational 

Research 170(2), 481-495. 

Chen, F., Drezner, Z., Ryan, J.K., Simchi-Levi, D., 2000. Quantifying the bullwhip effect in a simple 

supply chain: the impact forecasting, lead times and information. Management Science 46(3), 436-

443. 

Christensen, W.J., Germain, R.N., Birou, L., 2007. Variance vs average: Supply chain lead-time as a 

predictor of financial performance. Supply Chain Management: An International Journal 12(5), 349-

357. 

Costas, J., Ponte, B., De la Puente, D., Pino, R., Puche, J., 2015. Applying Goldratt’s theory of constraints 

to reduce the bullwhip effect through agent-based modelling. Expert Systems with Applications 42(4), 

2049-2060. 

Chung, W., Talluri, S., Kovács, G., 2018. Investigating the effects of lead-time uncertainties and safety 

stocks on logistical performance in a border-crossing JIT supply chain. Computers & Industrial 

Engineering 118, 440-450. 

de Treville, S., Bicer, I., Chavez-Demoulin, V., Hagspiel, V., Schürhoff, N., Tasserit, C., Wager, S., 2014. 

Valuing lead times.  Journal of Operations Management 32(6), 337-346. 

Disney, S.M., Towill, D.R., 2003. The effect of vendor managed inventory (VMI) dynamics on the 

bullwhip effect in supply chains. International Journal of Production Economics 85(2), 199-215. 

Fujiwara, O., Sedarage, D., 1997. An optimal (Q, r) policy for a multipart assembly system under 

stochastic part procurement lead times. European Journal of Operational Research 100(3), 550-556. 



  

Glock, C.H., 2009. A comment: “Integrated single-vendor single-buyer model with stochastic demand 

and variable lead time”. International Journal of Production Economics 122(2), 790–792. 

Glock, C.H., 2012. Lead time reduction strategies in a single-vendor–single-buyer integrated inventory 

model with lot size-dependent lead times and stochastic demand. International Journal of Production 

Economics 136(1), 37–44. 

Gunasekaran, A., Subramanian, N., Papadopoulos, A., 2017. Information technology for competitive 

advantage within logistics and supply chains: a review, Transportation Research Part E: Logistics and 

Transportation Review 99, 14-33. 

Hayya, J.C., Harrison, T.P., He, X.J., 2011. The impact of stochastic lead time reduction on inventory 

cost under order crossover. European Journal of Operational Research 211(2), 274–281. 

Heydari, J.,Mahmoodi, M., Taleizadeh, A.A., 2016. Lead time aggregation: A three-echelon supply chain 

model. Transportation Research Part E: Logistics and Transportation Review 89, 215-233. 

Hoque, M.A., Goyal, S.K., 2006. A heuristic solution procedure for an integrated inventory system under 

controllable lead-time with equal and unequal sized batch shipments between a vendor and a buyer. 

International Journal of production Economics 102(2), 217-225. 

Hoque, M.A., 2008. Synchronization in the single-manufacturer multi-buyer integrated inventory supply 

chain. European Journal of Operational Research 188(3), 811-825. 

Hoque, M.A., 2009. An extended vendor-buyer integrated inventory model and its minimal cost solution 

technique. International Journal of Mathematical Modelling and Numerical Optimisation 1(1/2), 56-

74. 

Hoque, M.A., 2013a. A vendor-buyer integrated production-inventory model with normal distribution of 

lead time. International Journal of Production Economics 144(2), 409-417. 

Hoque, M.A., 2013b. A manufacturer-buyer integrated inventory model with stochastic lead times of 

delivering equal and/or unequal sized batches of a lot. Computers & Operations Research 40(11), 

2740-2751. 

http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273


  

Hossain, M.S.J, Ohaiba, M.M., Sarker, B.R., 2017. An optimal vendor-buyer cooperative policy under 

generalized lead-time distribution with penalty cost for delivery lateness. International Journal of 

Production Economics 188, 50-62. 

Hosoda, T., Disney, S.M., Gavirneni, N., 2015. The impact of information sharing, random yield, 

correlation, and lead times in closed loop supply chain. European Journal of Operational Research 

246(3), 827-836. 

Hsiao, Y.C., 2008. A note on integrated single vendor single buyer model with stochastic demand and 

variable lead time. International Journal of Production Economics 114(1), 294–297. 

Humair, S., Ruark, J.D., Tomlin, B., Willems, S.P., 2013. Incorporating stochastic lead times in the 

guaranteed service model of safety stock optimization. Interfaces 43(5), 421-434. 

Isotupa, K.S., Samanta, S.K., 2013. A continuous review (s,Q) inventory system with priority customers 

and arbitrarily distributed lead times. Mathematical and Computer Modelling 57(5-6), 1259-1269. 

Jha, J.K., Shanker, K., 2013. Single-vendor multi-buyer integrated production-inventory model with 

controllable lead time and service level constraints. Applied Mathematical Modelling 37(4), 1753-

1767. 

Kelepouris, T., Miliotis, P., Pramatari, K., 2008. The impact of replenishment parameters and information 

sharing on the bullwhip effect: a computational study. Computers & Operations Research 35(11), 

3657-3670. 

Kollberg, B., Dahlgaard, J.J. Brehmer, P.O., 2006. Measuring lean initiatives in health care services: 

issues and findings. International Journal of Productivity and Performance management 56(1), 7-24. 

Kouvelis, P., Tang, S.Y., 2011. On optimal expediting policy for supply systems with uncertain lead‐

times. Production and Operations Management 21(2), 309-330. 

Li, Y., Xu, X., Zhao, X., Yeung, J.H.Y., Ye F., 2012. Supply chain coordination with controllable lead 

time and asymmetric information. European Journal of Operational Research 217(1), 108–119. 

Pan, J.C., Hsiao, Y.C., 2005. Integrated inventory models with controllable lead time and backorder 

discount consideration. International Journal of Systems Science 93-94, 387-397. 



  

Pan, J.C., Yang, J., 2002. A study of an integrated inventory with controllable lead time. International 

Journal of production Research 40(5), 1263-1273. 

Ponte, B., Costas, J., Puche, J., Pino, R., de la Fuente, D., 2018. The value of lead time reduction and 

stabilization: A comparison between traditional and collaborative supply chains. Transportation 

Research Part E: Logistics and Transportation Review 111, 165-185. 

Sajadieh, M.S., Jokar, M.R.A., Modarres, M., 2009. Developing a coordinated vendor-buyer model in 

two-stage supply chains with stochastic lead times. Computers & Operations Research 36(8), 2484-

2489. 

Sajadieh, M.S., Thorstenson, A., 2014. Comparing sourcing strategies in two-echelon supply chains. 

Computers & Operations Research 45, 108–115. 

Song, J.S., Yano, C.A., Lerssrisyuria, P., 2000. Contract assembly: Dealing with combined supply lead 

time and demand quantity uncertainty. Manufacturing & Service Operations Management 2(3), 287-

296. 

Song, J-S, Zhang, H., Hou, Y., Wang, M., 2010. The effect of lead time and demand uncertainties in (r, q) 

inventory systems. Operations Research 58(1), 68-80. 

Taleizadeh, A.A., Niaki, S.T.A., Barzinpour, F., 2011. Multiple-buyer multiple-vendor multi-product 

multi-constraint supply chain problem with stochastic demand and variable lead-time: A harmony 

search algorithm. Applied Mathematics and Computation 217(22), 9234 -9253. 

Ye, F., Xu, X., 2010. Cost allocation model for optimizing supply chain inventory with controllable lead 

time. Computers & industrial Engineering 59(1), 93-99. 

Yeung, J.H.Y., Ye, F., 2012. Supply chain coordination with controllable lead time and asymmetric 

information, European Journal of Operational Research 217, 108-119. 

 

 


