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ABSTRACT. It is now thirty years since the first report of a potent zinc-dependent 

histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have 

received regulatory approval for cancer chemotherapy, while many others are in clinical 

development for oncology as well as other therapeutic indications. This perspective 

reviews the biological and medicinal chemistry advances over the last three decades 

with an emphasis on the design of selective inhibitors that discriminate between the 

eleven human HDAC isoforms.

Introduction

The human genome contains a modest number of 20,000-25,000 genes coded by only 

5% of its DNA sequence. However, it is not the case that ‘one gene = one protein’, as 

processes such as mRNA editing lead to a transcriptome that is several-fold higher than 

the number of genes. A further expansion occurs after protein synthesis through the 

post-translational modification (PTM) of amino acid side chains. The majority of PTMs 
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are dynamic in nature, enabling a single protein to exist in multiple functional states and 

move from one state to another in a reversible manner. The -amino side chain of 

lysine, in particular, is the conduit for a plethora of PTMs (Figure 1) via alkylation or 

acylation reactions.1,2 Alkylation increases the size of the lysine side chain while 

preserving its positively charged nature at physiological pH, whereas acylation results in 

neutral or even negatively charged side chains ranging from the addition of a single 

carbon in formylation to the conjugation of proteins such as ubiquitin. Two of these 

processes, acetylation and methylation, occur in the lysine-rich N-terminal tails of 

histone proteins where they play a central role in the epigenetic regulation of chromatin 

structure and the recruitment of its binding partners to modulate gene transcription. 

Consequently, the enzymes involved in lysine acetylation and methylation and their 

removal have become important targets for small molecule drug discovery.3 At the 

present time, five inhibitors of lysine deacetylation, and one of lysine methylation, have 

received regulatory approval as anticancer agents. This year marks the 30th 

anniversary of the disclosure of the natural product trichostatin A as the first potent 

inhibitor of histone deacetylation. In this perspective, we summarize the progress since 
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then regarding the biology of lysine deacetylase enzymes, the compounds currently in 

clinical development against this target and the discovery of isoform selective inhibitors. 

Previous reviews in this journal provide a snapshot of the state of the art at earlier time 

points.4,5
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Figure 1. Examples of lysine post-translational modification in proteins.

Lysine acetylation was first observed in the early 1960s in histones due to the 

abundance of the PTM in these proteins. Soon thereafter, enzymes that catalyze the 

Page 5 of 111

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

forward acetylation reaction and the reverse deacetylation reaction were discovered and 

logically named histone acetyltransferases (HATs) and histone deacetylases (HDACs) 

respectively.  Unfortunately, this historical nomenclature is well entrenched despite its 

inaccuracy, as we now know that lysine acetylation is not restricted to histones but a 

widespread PTM in thousands of human proteins present in diverse cellular 

compartments.6 The PTM is produced via the transfer of an acetyl group from acetyl 

CoA to a lysine residue, either by a reaction catalyzed by HATs or through an enzyme-

free process. Acetylation can dramatically alter the biological properties of a protein 

(Table 1) as well as being the chemical signal for recognition by bromodomains, a 

protein-protein interaction subunit found in transcriptional activators.7 Meanwhile, a 

variety of other acyl CoA species undergo a similar reaction with lysine residues in vivo 

to create distinct PTMs.8 These include short and medium-chain saturated carboxylic 

acids such as formic, propionic, butyric and myristic; short-chain dicarboxylic acids such 

as malonic, succinic and glutaric; and carboxylic acids with additional functionality such 

as 2-hydroxyisobutyric, crotonic, phosphoglyceric, lipoic and biotin. Although the precise 

physiological roles of many of these recently discovered acyllysine PTMs are yet to be 
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7

deciphered, the inadequacy of the nomenclature’s emphasis on histone proteins and 

acetylation is apparent. 

Acetylation consequence Examples

Reduced nucleic acid binding Histone-DNA, E2F-DNA

Increased protein binding Histone-PCAF, Histone-BRD4 

Reduced protein binding Hsp90-GR, Ku70-p23

Increased stability p53, -tubulin

Decreased stability DNMT1, HIF1

Reduced enzymatic activity Aurora B kinase, RNase II

Altered cellular localization STAT3, c-Abl

Altered aggregation Tau, GRP78 

Table 1. Examples of the consequences of lysine acetylation in human proteins.

The eleven human HDACs

The reversal of lysine acetylation is accomplished by enzymatic cleavage catalyzed by 

the HDACs. In humans, there are 18 HDACs that fall into two families based on their 

catalytic mechanism.9 Eleven of the HDACs are zinc-dependent metalloenzymes 

named HDAC1-11 that hydrolyze the amide bond using water as a nucleophile. The 

remaining seven sirtuins 1-7 employ NAD+ as a cofactor and transfer the acyl group to 
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the C2 position of the ribose sugar.10 Although both enzyme families perform the same 

chemical reaction of acyllysine cleavage, the term HDAC usually refers to the zinc-

dependent enzymes that are the focus of this perspective.11 

X-ray crystal structures are available for the majority of HDAC isoforms with the free 

protein, protein-inhibitor complexes as well as substrates bound to mutated proteins that 

do not turnover. These extensive studies have provided a detailed understanding of the 

catalytic mechanism, as exemplified in the model for HDAC8.12 The acetyllysine 

substrate sits in a narrow channel lined with hydrophobic residues, with a tyrosine 

residue flipping in conformation to enable hydrogen bonding with the carbonyl oxygen 

(Figure 2A).  The hydrophobic nature of the channel, and the conformational change by 

the tyrosine residue, serve to provide enzyme specificity for the acyllysine side chain. A 

zinc cation, coordinated to aspartate and histidine residues, sits at the end of the 

substrate channel, bound to a water molecule activated by a charge relay mechanism 

with two adjacent histidine residues. Nucleophilic attack of the carbonyl by the water 

produces a tetrahedral oxyanion intermediate (Figure 2B), which collapses to give rise 
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to the free lysine and acetate products (Figure 2C). In some HDAC isoforms, there is an 

additional hydrophobic internal cavity lateral to the active site also known as the ‘foot 

pocket’. This cavity accommodates acyl side chains longer than acetyl in the case of 

HDAC8 and HDAC11 (see below) and may aid the entry of water and the release of 

acetate. 
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Figure 2. A simplified illustration of the catalytic mechanism of deacetylation by HDACs: 
A. Enzyme-substrate complex, with binding interactions between the acetyllysine 
bearing protein substrate and a tyrosine residue and the zinc cation in the HDAC active 
site. B. The tetrahedral oxyanion enzyme intermediate arising from nucleophilic attack 
by water. C. Enzyme-product complex, with the lysine residue and acetate prior to 
release from the active site. 

It is worth highlighting a few key points regarding the HDAC enzymes:
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1. Substrate binding is predominantly through the acetyllysine side chain entering the 

hydrophobic channel rather than recognition of the protein backbone. In some cases, 

bonding interactions are observed between HDACs and the amino acid residues that 

are +1 or -1 with respect to the scissile acetylysine. However, extended contacts such 

as occur in peptide backbone recognizing proteases are rare in HDACs which are 

relatively nonspecific in their substrate sequence preferences. The compact nature of 

substrate binding is an advantage for medicinal chemistry, as small molecule inhibitors 

need only simulate acetyllysine rather than a longer peptide sequence.

2. Coordination between acetyllysine and the active site zinc cation is critical for 

substrate binding and catalysis. Indeed, all high affinity HDAC inhibitors barring covalent 

modifiers achieve their potency by zinc coordination, acting as either monodentate or 

bidentate ligands to mimic the tetrahedral oxyanion intermediate.

3. In broad terms, the features of the HDAC8 catalytic mechanism hold true for other 

isoforms. Nevertheless, there are significant variations in the geometry of the active site, 

the nature of the catalytic residues, the substrate channel, presence or absence of the 
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11

internal cavity and positioning of adjacent protein loops. Selective inhibitors that 

discriminate between HDAC isoforms will need to take advantage of such differences.

The human histone deacetylases are further subdivided into four classes according to 

their sequence homology and cellular localization: Class I = HDAC1, HDAC2, HDAC3 

and HDAC8; Class IIa = HDAC4, HDAC5, HDAC7 and HDAC9; Class IIb = HDAC6 and 

HDAC10; Class III = sirtuins 1-7; Class IV = HDAC11. However, this classification is 

somewhat arbitrary and masks the similarities or differences between isoforms in terms 

of structure and function. In cell-free biochemical assays, HDAC1, HDAC2, HDAC3 and 

HDAC6 have high enzymatic activity against simple acetyllysine containing peptides 

and will be discussed first, followed by the other isoforms that are more mysterious in 

their substrate preferences.

HDAC1, HDAC2

These isoforms are core HDACs that are co-expressed and are ubiquitous within and 

between species.13 Although they efficiently hydrolyze acetyllysine peptide substrates 

on their own in vitro, they predominantly exist in the nucleus as homo- and heterodimer 
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constituents of the NuRD, Sin3A, CoREST, MiDAC and MIER transcriptional repressor 

complexes. While there is >80% homology between HDAC1 and HDAC2, they perform 

independent roles in development and embryonic knockout of either isoform is lethal. 

On the other hand, in conditional knockouts, there is a level of redundancy with 

knockout of both isoforms usually needed for a phenotypic effect. HDAC1 and HDAC2 

are truly HDACs in the sense that they play a major role in histone deacetylation. In 

addition, they deacetylate many other nuclear proteins involved in transcriptional 

regulation including p53, E2F, ATM kinase and CAF1. There is crosstalk with other 

epigenetic processes such as methylation, as both DNMT1 and LSD1 are among their 

substrates.

HDAC3

HDAC3 shares ~50% sequence homology with HDAC1 and HDAC2. The divergence is 

mainly in the C-terminal region, with HDAC3 containing a domain for binding to the 

nuclear NCoR/SMRT complexes.14 In fact, HDAC3 is unstable without the presence of 

either NCoR or SMRT, and their association is also necessary for the activation of 
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catalysis. Interestingly, the X-ray crystal structure of HDAC3 with the deacetylase-

activating domain of SMRT contained a molecule of inositol tetraphosphate at the 

interface, bringing the two proteins together. Like HDAC1/HDAC2, HDAC3 is 

ubiquitously expressed and involved in the deacetylation of histones, while other 

nuclear protein substrates include STAT3 and FOXP3. In addition to distinct roles in 

embryonic development, HDAC3 is implicated in a number of physiological processes 

including circadian rhythms, energy metabolism, neuronal function and bone 

remodeling.

HDAC6

If HDAC1-3 are the nuclear workhorses of lysine deacetylation, then HDAC6 is the 

cytoplasmic equivalent.15 HDAC6 is the largest in size among the HDACs, with a C-

terminal ubiquitin-binding zinc finger domain. A nuclear localization sequence (NLS) is 

opposed by a nuclear export sequence (NES) and Ser-Glu-containing tetrapeptide 

(SE14) repeats that result in the protein mainly being in the cytoplasm. Through the 

deacetylation of -tubulin and cortactin aided by an N-terminal microtubule-binding 
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domain, HDAC6 directly impacts upon the cytoskeleton and cell mobility. Moreover, 

HDAC6 is involved in the repair of protein misfolding, as deacetylation of Hsp90 

restores its chaperone activity while HDAC6’s ubiquitin-binding domain fosters binding 

to misfolded proteins and their targeting for destruction by aggresomes. Additional 

cytoplasmic substrates include Ku70, whose deacetylation leads to a loss in binding to 

BAX and thereby inhibition of apoptosis, and Tau, in which deacetylation alters the 

propensity for aggregation. Further to these cytoplasmic roles, HDAC6 can also localize 

in the nucleus where it functions as a transcriptional repressor similar to HDAC1-3.

Uniquely among the HDACs, HDAC6 contains two catalytic domains CD1 and CD2. 

While CD2 is a robust lysine deacetylase in vitro, CD1 was considered inactive for a 

long time. However, recent studies reveal that CD1 is a competent deacetylase with the 

right substrates, expressing a preference for C-terminal acetyllysine sequences aided 

by the presence of a lysine residue in CD1 that forms electrostatic interactions with the 

carboxylate.16,17 Another unusual feature of HDAC6, unlike other isoforms, is that 
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knockout mice are viable and healthy, and do not express an obviously defective 

phenotype.

HDAC8

HDAC8 is the only isoform for which the gene lies in the X chromosome. Although it is 

grouped as a Class I nuclear HDAC, it is fundamentally distinct from the HDAC1-3 

isoforms in this Class.18 Unlike the others, HDAC8 is smaller in size and acts 

independently, as it is bereft of C-terminal protein-protein interaction domains that 

promote incorporation into multiprotein complexes. In vitro, HDAC8 has a lower kcat/Km 

value for the hydrolysis of acetyllysine containing peptides compared to HDAC1-3 or 

HDAC6. Nevertheless, the catalytic activity is significantly higher against tetrameric 

histone H3/H4 proteins suggesting that histones are, to some extent, in vivo substrates 

for HDAC8.19 Additional nuclear substrates have been identified such as SMC3, p53, 

ERR and ARID1a. Recently, Lin demonstrated that HDAC8 hydrolyzes acyllysine 

peptides with acyl chains of 2-16 carbons, and kcat/Km for the longer acyl chains of 

octanoyl-, dodecanoyl-, and myristoyllysine was higher than for acetyllysine.20 These 
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longer chain acyl groups are likely to be accommodated by extending beyond the active 

site zinc cation to occupy the hydrophobic internal cavity lateral to the substrate 

channel. It may be that fatty acid deacylation is a more important physiological function 

of HDAC8 than deacetylation, which would explain the relatively small number of known 

validated HDAC8 substrates. Physiologically, the incorporation of these longer acyl 

chains into lysine PTMs could act as a sensor of energy metabolism by reporting on the 

relative abundance of different acyl CoA species. Alternatively, some fatty acid acylation 

may occur adventitiously in which case HDAC8 and HDAC11 (see below) could be 

operating as proofreading repair enzymes to remove these PTMs.

HDAC11

HDAC11 was first reported only in 2002 and is the smallest of the HDAC isoforms, with 

its catalytic domain accounting for >80% of the protein sequence. Primarily localized in 

the nucleus, it functions as a transcriptional regulator with an important role in 

immunomodulation.21  As an enzyme, HDAC11 has weak activity against acetyllysine 

substrates. Instead, like HDAC8, it efficiently hydrolyzes acyllysine residues with longer 
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chain lengths such as the C12 dodecanoyllysine and the C14 myristoyllysine.22,23 

Although an X-ray structure of HDAC11 is unavailable, homology modeling suggests 

long chain acyl groups are accommodated within an internal cavity in the same manner 

as HDAC8. Interestingly, HDAC11 is susceptible to product inhibition by free fatty acids 

such as myristic, palmitic, and stearic acids while palmitoyl-coenzyme A and myristoyl-

coenzyme A serve to enhance the fatty acid deacylase activity.  

HDAC4, HDAC5, HDAC7 and HDAC9

These so-called Class IIa isoforms, unlike other HDACs, are expressed in a tissue 

specific manner. They are relatively large in size, with an N-terminal domain that binds 

to the MEF2 family of transcriptional repressors.24 Both an NLS and NES are present, 

enabling the Class IIa isoforms to move between the nucleus and cytoplasm. The 

shuttling is regulated by the reversible phosphorylation of multiple serine residues, with 

the unphosphorylated form being nuclear and acting to influence transcriptional 

regulation. The C-terminal region contains the active site in which the key tyrosine 

residue (Figure 2) is replaced by a histidine, resulting in weak catalytic activity. By using 
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more electrophilic trifluoroacetyllysine containing peptides, it is possible to carry out in 

vitro assays and profile HDAC inhibitors against these isoforms. Whether they are truly 

enzymes in vivo or serve to recognize and bind acetyllysine containing proteins is 

unclear. The evidence suggests they act as a scaffolding protein, bringing together the 

acyllysine substrate and HDAC3 containing multiprotein complexes, with the actual 

hydrolysis carried out by HDAC3. On the other hand, it is worth noting that the 

archetypal zinc amidohydrolase thermolysin contains a histidine residue in a similar 

location within the active site that participates in catalysis.25 Thus, it is conceivable that 

the Class IIa isoforms are catalytically competent, and their true substrates have yet to 

be identified. Alternatively, these HDACs may perform dual functions of recognition of 

an acetyllysine signal followed by slow catalysis as a means of eventual signal 

termination, in a similar fashion to the binding of GTP to GTPases which then destroy 

the nucleotide.

HDAC10
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HDAC10 is found in both the nucleus and cytoplasm, and involved in processes such as 

autophagy, immunoregulation and DNA repair.26 While it appears to function as a 

transcriptional repressor, this activity was puzzlingly independent of lysine 

deacetylation. Recent studies from Christianson have clarified this anomaly and 

convincingly demonstrated that HDAC10 is an acetylpolyamine hydrolase evolutionarily 

related to the prokaryotic homologue.27,28 In HDAC10, a unique 310 helix defined by the 

P(E,A)CE motif  serves to narrow the hydrophobic substrate channel, leading to 

selectivity for acetylpolyamines over more bulky peptides or proteins containing 

acetyllysine residues. While the HDAC10 active site contains the conserved tyrosine 

and histidine residues and the zinc activated water typical in HDAC catalysis (Figure 2), 

an additional negatively charged glutamate residue unique to this isoform acts as a 

gatekeeper to favor the binding of cationic acetylpolyamine residues. In fact, the 

substitution of this glutamate residue by leucine was sufficient to restore acetyllysine 

hydrolytic activity in the mutant enzyme.

Overview
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Our understanding of HDACs is continually evolving with new insights regarding their 

substrates. Until recently, it seemed the family could be unified under the nomenclature 

of protein lysine deacylases or KDACs that would encompass both deacetylation as well 

as the hydrolysis of other amides. However, the discovery that HDAC10 is a small 

molecule polyamine deacetylase means that even the KDAC terminology is no longer 

accurate. Meanwhile, whether HDAC4, HDAC5, HDAC7 or HDAC9 are truly enzymes is 

debatable. The traditional subdivision of human HDACs according to Class I-IV does 

not take these recent developments into account, and we prefer to group them 

according to their in vitro substrate tolerance (Figure 3, Table 2).

While this perspective is focused on the human HDACs, homologues in other species 

offer additional opportunities for drug discovery. The selective targeting of fungal 

HDACs as a means to create novel antifungal agents is one example.29 The 

combination of fluconazole and MethylGene’s MGCD209, an inhibitor of the fungal 

Hos2 HDAC,30 reached Phase 2 clinical trials for the treatment of severe vulvovaginal 

candidiasis, but unfortunately did not show improved efficacy over fluconazole alone. 
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Another major area of research is the HDACs present in parasites responsible for 

neglected tropical disease. The approved HDAC inhibitors and clinical candidates as 

well as novel compounds intended to selectively inhibit the parasite enzymes have 

shown promising results in in vivo models, as summarized in a recent review.31

In vitro Acetyl-Lys peptide hydrolases
Isoform Major

localization
Key features Substrate examples

HDAC1, HDAC2 Nucleus Exist in vivo as 
NuRD, Sin3A, 
CoREST, MiDAC 
and MIER  
complexes

Histones, 
transcriptional 
regulators

HDAC3 Nucleus Complexation with 
NCoR/SMRT 
needed for catalysis

Histones, 
transcriptional 
regulators

HDAC6 Cytoplasm Ubiquitin and 
microtubule binding 
domains, two 
catalytic domains

Tubulin, cortactin, 
Hsp90, Tau

In vitro longer chain Acyl-Lys peptide hydrolases
HDAC8 Nucleus Moderate AcLys 

hydrolysis with 
extended sequence 

Histones, p53, 
SMC3,
longer chain 
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recognition, superior 
for C8, C12, C14 
acyllysine

acyllysine residues

HDAC11 Nucleus Preference for C12, 
C14 acyllysine

longer chain 
acyllysine residues

In vitro Ac-polyamine hydrolase
HDAC10 Cytoplasm Narrow substrate 

channel with 
glutamate 
gatekeeper

Acetylpolyamines

In vitro trifluoroAc-Lys peptide hydrolases
HDAC4, HDAC5, 
HDAC7, HDAC9

Nucleus and 
cytoplasm

Tissue-specific, 
MEF2 binding 
domain

None? Recruit 
substrates for 
HDAC3

Table 2. The eleven human HDAC isoforms summarized according to substrate 
preference, localization, and key features.
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1, 2
3

64
5

7
9

8

11

10

Figure 3. A ‘solar system’ of human HDACs: at the core are HDAC1, HDAC2 and 
HDAC3 which exist in multiprotein complexes in the nucleus. These isoforms 
deacetylate histones and transcriptional regulators, and homologues are ubiquitous 
across life forms. Next is HDAC6, responsible for the deacetylation of cytoplasmic 
proteins, followed by an ‘asteroid belt’ of the pseudoenzymes HDAC4, HDAC5, HDAC7 
and HDAC9 with poor catalytic activity. The ‘outer planets’ HDAC8 and HDAC11 
preferentially hydrolyze non-acetyl acyllysine substrates while the distant HDAC10 is a 
polyamine deacetylase.
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Profiling HDAC inhibition

The in vitro profiling of HDAC inhibitors in cell-free enzymatic assays invariably involves 

the monitoring of product formation using acetyllysine derivatives or peptides based on 

the N-terminal histone tail sequence that contain an acetyllysine residue.32 Assay kits 

often employ peptides with an AcLys-AMC (aminomethylcoumarin) residue at the C-

terminus which undergoes acetyllysine hydrolysis by HDACs (Figure 4). The resulting 

C-terminal lysine is recognized by the exopeptidase trypsin, which cleaves the 

backbone amide to release free aminomethylcoumarin that fluoresces at a longer 

wavelength than the substrate. Although less amenable to high-throughput screening, 

direct detection of product formation by chromatographic separation or mass 

spectrometry without the need for trypsin cleavage are among the alternative formats.33 

In the past, crude cell extracts were used as the source of HDACs, and these mainly 

contained the nuclear isoforms in an unknown ratio. Nowadays, using recombinant 

HDAC proteins, the detailed profiling of compounds to determine their subtype 

selectivity against all eleven isoforms can be accomplished.
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Figure 4. A fluorescence-based assay for measuring HDAC activity based upon product 
cleavage by trypsin to release aminomethylcoumarin.

Due to differences in protein stability and substrate preference, running HDAC assays 

against individual isoforms is actually complicated in practice. With regards to the 

protein, there are options involving full-length enzyme or catalytic domain only, or the 

addition of binding partners to more closely approximate the cellular environment. 

Purity, with the possibility of residual contamination by other isoforms, and batch to 

batch variation are further issues. Simple acetyllysine containing substrates undergo 

efficient hydrolysis by recombinant HDAC1, HDAC2 and HDAC6 in the fluorescent 

assay, as well as HDAC3 when co-expressed with NCoR.34,35 Although such assays are 

operationally convenient, it should be kept in mind that the true substrates are proteins 
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(or multimeric complexes thereof) rather than acetyllysine derivatives or peptides. 

Beyond these isoforms, further tinkering is needed for the other HDACs which have 

lower catalytic activity for acetyllysine hydrolysis. By switching to more labile (but 

artificial) trifluoroacetyllysyl substrates in lieu of acetyllysine derivatives, or using 

mutated enzymes with higher turnover, the inhibition can be quantitatively measured. 

However, these assays may not accurately reflect the in vivo functions of the enzyme. 

For example, HDAC11 preferentially acts upon non-acetyl lysine PTMs and a recent 

assay employing a longer acyllysine substrate showed significant differences compared 

to the traditional trifluoroacetyllysine-based method.36 Similarly, the current HDAC10 kits 

are based on peptides rather than more meaningful acetylpolyamine substrates. As a 

result of all these complexities, care should be exercised in the interpretation of 

literature HDAC IC50 or Ki values taken at different times or from different laboratories, 

and the experimental procedures consulted for the exact assay method employed and 

the data obtained for reference standards.
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In cell-based studies, HDAC inhibitors are usually profiled by their growth inhibition of 

human cancer cell lines, with readouts in other cell types used for non-cancer 

therapeutic indications. Evidence of HDAC target engagement is commonly 

demonstrated by western blotting of the substrate proteins such as histones for nuclear 

HDACs, p53 for HDAC1 and tubulin for HDAC6, to show a dose-dependent elevation of 

acetylation levels. Cellular thermal shift assays (CETSA) are a version that allow for the 

quantification of ligand binding in intact cells.37 The NanoBRET technology based on 

competitive binding between inhibitor and a fluorescent tracer is an alternative approach 

that enables the measurement of target engagement and drug reisdence time in cells.38 

In addition, downstream effects as a result of HDAC inhibition can be measured, 

ranging from phenotypic changes such as cell differentiation to altered protein 

expression levels such as induction of the p21 (CIP1/WAF1) cyclin-dependent kinase 

inhibitor.

Natural product HDAC inhibitors
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To inhibit a HDAC, the logical starting point is to mimic the tetrahedral oxyanion enzyme 

intermediate (Figure 2B) and design a molecule that coordinates to the active site zinc 

cation with a slender hydrophobic linker to fit the substrate binding channel. In addition, 

it is helpful to anchor the molecule at the other end with a cap that can potentially 

engage in additional binding interactions with the rim of the enzyme. In fact, this simple 

model for a HDAC pharmacophore composed of three elements - zinc binding group, 

linker and cap - is sufficiently powerful to account for the vast majority of HDAC 

inhibitors and is widely used since it was proposed by Jung in 1997.39

As the medicinal chemist par excellence, nature has successfully used the three-point 

model for the design of nanomolar HDAC inhibitors with a variety of zinc binding groups, 

linkers and caps. As mentioned in the introduction, the Streptomyces metabolite 

trichostatin A (1, Figure 5) was the first potent HDAC inhibitor to be identified, by 

Yoshida thirty years ago.40 Trichostatin A perfectly illustrates the HDAC 

pharmacophore: the hydroxamic acid functions as a bidentate zinc chelator, as later 

confirmed through X-ray crystallography of trichostatin A-HDAC complexes, while the 
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diene is a rigid linker that sits in the substrate channel and terminates with a substituted 

phenyl ring as the cap. The cap’s tertiary amine substituent, protruding out of the 

enzyme surface, presumably aids in drug solvation by the aqueous environment. 

Psammaplin A (2) isolated from a marine sponge is a symmetrical prodrug, undergoing 

disulfide reduction to the active molecule which conforms to the three-point 

pharmacophore with the thiol as a monodentate zinc binding group.41 Since thiols have 

poor bioavailability, the disulfide protection ensures higher stability and cell permeability 

prior to metabolic activation. A masked thiol prodrug features once again in the 

depsipeptide family of HDAC inhibitors, either as a reducible disulfide in the bacterial 

natural products romidepsin (FK228, 3) and spiruchostatin A (4) or as a hydrolytically 

labile thioester in largazole (5) of cyanobacterial origin.42 Upon metabolism, the free 

thiol common to all three natural products becomes the zinc binding group, as observed 

in the X-ray structure of largazole with HDAC8.
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Figure 5. Examples of potent natural product HDAC inhibitors, with zinc binding atoms 
indicated in red.

While trichostatin A with its simple aromatic cap is a nonselective HDAC inhibitor, both 

romidepsin and largazole contain larger macrocyclic caps that contribute to their 

enzyme affinity as well as enable isoform discrimination.43 The importance of 
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augmenting zinc and substrate channel binding with additional interactions is illustrated 

by the marine sponge natural product azumamide E (6). Synthetic carboxylic acids have 

fared poorly as HDAC inhibitors despite their successful use as zinc binding groups 

against other metalloenzymes. Although the short chain butyric, phenylbutyric and 

valproic acid have been explored as HDAC inhibitors in the clinic, their sole redeeming 

factor is the existence of prior human safety and pharmacokinetic data. The actual 

inhibition of HDACs by these carboxylic acids is weak, verging upon the high 

micromolar level, and they will not be discussed further. Azumamide E, on the other 

hand, achieves submicromolar potency with selectivity for HDAC1 over HDAC6 and the 

macrocyclic scaffold presumably makes a significant contribution to these aspects. 

Interestingly, a synthetic analogue with the carboxylic acid replaced by a bidentate 

hydroxamic acid is even more active as a HDAC inhibitor.44 Trapoxin A (7), one of a 

family of fungal cyclic tetrapeptide HDAC inhibitors, is another interesting example as 

ketones are normally inefficient ligands for zinc. The X-ray structure of 7 with HDAC8 

indicates the ketone is a substrate mimic, reacting with the active site water to form a 

tetrahedral gem-diolate which then functions as a bidentate zinc binding group.45
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Although medicinal chemists work on many epigenetic targets for drug discovery, 

HDACs are apparently the only one that nature has taken seriously and the only one 

against which highly active secondary metabolites have been discovered. This 

emphasis probably reflects the producing microbial or marine organism’s need for 

chemical defense against competing species or predators. In this regard, the rapid 

toxicity arising from HDAC inhibition is evolutionarily more helpful compared to the 

slower consequences of the disruption of DNA or histone methylation. A further 

question is which HDAC should be inhibited, with the core HDAC1/HDAC2 isoforms 

being prime candidates due to their direct impact upon gene transcription and the 

existence of homologues in virtually all species. Indeed, it is unlikely to be a coincidence 

that all the natural products in Figure 5 strongly inhibit HDAC1/HDAC2 with nanomolar 

IC50 values, and except for the nonselective trichostatin A, are less active against the 

cytoplasmic HDAC6. Turner has suggested that evolutionary exposure to natural 

product and environmental HDAC inhibitors may have forced organisms to develop 

resistance mechanisms, and these same pathways are now subverted by tumor cells to 

their advantage upon chemotherapy with such agents.46 
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Clinical candidate and approved HDAC inhibitors

In a tour de force of chemical biology, Breslow started with DMSO as a lead for cell 

differentiation and eventually progressed to a more active series of hydroxamic acids 

culminating in suberoylanilide hydroxamic acid (SAHA).47 Later acquired by Merck, 

SAHA now known as vorinostat (8, Figure 6) became the first HDAC inhibitor to receive 

FDA approval, in 2006 for the treatment of cutaneous T-cell lymphoma. In parallel, the 

depsipeptide natural product romidepsin (3) was also discovered on the basis of 

phenotypic activity before its molecular target was identified. Romidepsin advanced to 

clinical development by Gloucester Pharmaceuticals before receiving FDA approval in 

2009, for cutaneous T-cell lymphoma as well. Another natural depsipeptide, 

spiruchostatin A (OBP-801, 4) is under investigation in Phase 1 clinical trials for the 

treatment of solid tumors.48 Meanwhile, the elucidation of the mechanism of action of 

trichostatin A led to tremendous medicinal chemistry interest in hydroxamic acids as 

HDAC inhibitors and they remain the most popular choice of zinc binding group against 
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this target. Subsequent to vorinostat, six other clinical candidates tefinostat (9),49 

CG200745 (10),50 ricolinostat (11),51 citarinostat (12),52 CUDC-101 (13)53 and 

tinostamustine (14)54 have appeared that feature similar aliphatic hydroxamic acids with 

linear methylene chains. The X-ray structure of the vorinostat-HDAC8 complex (Figure 

7) illustrates the typical bidentate coordination observed with hydroxamic acids within 

the HDAC active site.55
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Figure 6. Clinical candidate HDAC inhibitors with aliphatic hydroxamic acids.
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Figure 7. The binding interactions in the vorinostat-HDAC8 X-ray structure. The zinc 
cation is displayed as a centroid with the coordinating Asp and His residues in pink. The 
His and Tyr residues involved in water activation and substrate binding respectively are 
indicated in blue. Reprinted with permission from ref. 55.

A second family of HDAC inhibitors, inspired by trichostatin A, contains a more rigid 

alkenyl hydroxamic acid. In 2014, belinostat (15, Figure 8) originating from Prolifix and 

now marketed by Onxeo/Spectrum, became the third HDAC inhibitor to be approved for 

T-cell lymphoma after vorinostat and romidepsin.56 A year later, Novartis’s panobinostat 

(16) was approved for the treatment of relapsed or refractory multiple myeloma by both 
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the FDA and the EMA.57 Two other alkenyl hydroxamic acids resminostat (17)58 and 

pracinostat (18)59 are in clinical trials. A newer series of compounds contains an even 

more rigid phenylhydroxamic acid: givinostat (19, Figure 9),60 abexinostat (20),61 AR-42 

(21)62 and bisthianostat (22).63 A more polar pyrimidinyl heteroaromatic hydroxamic acid 

was employed in quisinostat (23),64 nanatinostat (24)65 and fimepinostat (25).66
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Figure 8. Clinical candidate HDAC inhibitors with alkenyl hydroxamic acids.
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Figure 9. Clinical candidate HDAC inhibitors with aromatic hydroxamic acids.

Page 37 of 111

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



38

Pharmacodynamic data against individual HDAC isoforms is available for the approved 

drugs and the majority of clinical candidates (Table 3). Romidepsin has the typical 

profile of natural product HDAC inhibitors, with a high activity against the nuclear 

isoforms HDAC1-3.67 There is selectivity, as the natural product is sparing against 

HDAC8 and HDAC6 although the non-acetyllysine hydrolyzing HDAC10 and HDAC11 

are also strongly inhibited. Compared to romidepsin, the forerunner of the hydroxamic 

acids, vorinostat, has a saturated aliphatic linker and a phenyl cap. With its relatively 

simple and unconstrained structure, vorinostat would not be predicted to be selective 

(nor was it intended to be, since the subtleties of isoform function were unknown at the 

time), and in biochemical enzyme assays it inhibits both the nuclear and cytoplasmic 

HDACs indiscriminately at submicromolar levels. Although the later hydroxamic acids 

show an extensive diversity in the architecture of their linker and cap regions, they 

share a common pharmacological profile insofar that all potently inhibit HDAC1-3 just 

like vorinostat or romidepsin.

HDAC isoform IC50, nM

Cpd. 1 2 3 8 4 5 7 9 6 10 11
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romidepsin 
(3)

1 1 1 >100
0

647 >100
0

>100
0

>100
0

22
6

1 0.3

vorinostat 
(8)a

60 42 36 173 20 36 129 49 29 60 31

ricolinostat 
(11)

58 48 51 100 >1000 >1000 >1000 >1000 5 - >1000

citarinostat 
(12)

35 45 46 137 >1000 >1000 >1000 >1000 3 - -

belinostat 
(15)a

26 22 19 22 15 25 51 24 10 59 27

panobinostat 
(16)a

3 2 2 22 1 1 2 1 1 31 4

pracinostat 
(18)a

28 27 19 48 16 21 104 24 247 23 24

givinostat (19) 133 293 136 837 >1000 532 524 512 312 331 287

abexinostat 
(20)

21 63 148 370 60 48 350 168 12 52 14

bisthianostat 
(22)

4 13 6 17 >1000 >1000 >1000 >1000 2 2 78

quisinostat 
(23)

0.1 0.3 5 4 0.6 4 119 32 77 0.5 0.4

fimepinostat 
(25)

2 5 2 191 409 674 426 554 27 3 5

Table 3. IC50 values of clinical candidate and approved thiol and hydroxamic acid HDAC 
inhibitors. aFor these compounds, Ki values are given, from a side-by-side comparison in 
ref. 59. Data for other compounds compiled from refs. 51, 52, 60, 61, 63, 64 and 66.
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Besides the hydroxamic acids, ortho-aminoanilides (or benzamides) are a second class 

of synthetic HDAC inhibitors that have yielded clinical candidates. X-ray crystallography 

of enzyme-inhibitor complexes shows bidentate coordination of the carbonyl oxygen 

and aniline nitrogen with the active site zinc cation. Nevertheless, ortho-aminoanilides 

would be expected to be weaker metal binders than hydroxamic acids, and this is 

reflected in their typical micromolar IC50 values in standard assay conditions compared 

to the nanomolar potency of the latter. However, the ortho-aminoanilides exhibit unusual 

kinetics, being tight-binding inhibitors with slow-on/slow-off rates that benefit from pre-

incubation and equilibration compared to the fast-on/fast-off behavior observed with 

hydroxamic acids. For example, with pre-incubation, an ortho-aminoanilide had Ki 

values of 148 and 5 nM respectively against HDAC1 and HDAC3, compared to 5 and 8 

nM respectively for vorinostat (whose activity was unchanged upon pre-incubation).68 

Pfizer’s tacedinaline (26, Figure 10)69 was an early clinical candidate with a simpler cap 

compared to entinostat (27)70 and mocetinostat (28).71 Tucidinostat (29) from Shenzen 

Chipscreen Biosciences received approval from the CFDA in 2015 for the treatment of 

peripheral T-cell lymphoma and marks the first example of a ‘Made in China’ drug 
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where the entire drug discovery process was carried out there.72 Domatinostat (30)73 

and CXD101 (31)74 are additional ortho-aminoanilides in clinical trials.

The available literature data on ortho-aminoanilides (Table 4) indicates they are similar 

as a class, inhibiting HDAC1-3 while poorly active against HDAC6 and HDAC8. The 

larger dimensions of the ortho-aminoanilide compared to a thiol or hydroxamic acid zinc 

binding group can be accommodated by the lateral cavity present in HDAC1-3 but 

absent in HDAC6. Although HDAC8 contains the lateral cavity, the substitution of a 

tryptophan residue for a leucine present in HDAC1-3 leads to a shallower channel that 

does not bind to the ortho-aminoanilide. To some extent, the ortho-aminoanilides are 

similar in their activity profile to romidepsin and related depsipeptide natural products in 

that they predominantly inhibit HDAC1-3.
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Figure 10. Clinical candidate ortho-aminoanilide HDAC inhibitors.

HDAC isoform IC50, M

Cpd. 1 2 3 8 4 5 7 9 6 10 11

tacedinaline 
(26)

0.
9

0.
9

1.
2

>1
0

- - - - - - -

entinostat (27) 0.
2

1.
2

2.
3

>1
0

>1
0

- >1
0

0.5 >1
0

- -

mocetinostat 
(28)

0.
2

0.
3

1.
7

>1
0

>1
0

>1
0

>1
0

- >1
0

- 0.
6

tucidinostat 
(29)

0.
1

0.
2

0.
1

0.7 >1
0

>1
0

>1
0

>1
0

>1
0

0.1 0.
4

domatinostat 
(30)

1.
2 

1.
1

0.
6

>1
0

>1
0

>1
0

>1
0

>1
0

>1
0

>1
0

9.
7
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CXD101 (31) 0.
1

0.
6

0.
6

- - - - - - - -

Table 4. IC50 values of clinical candidate and approved ortho-aminoanilide HDAC 
inhibitors compiled from refs. 69-74. Note that values are in M, unlike the nM in Table 
3 and assay conditions may not have involved enzyme pre-incubation.

In addition to the compounds discussed above, there are HDAC inhibitors in Phase 1 

clinical trials with undisclosed structures: CKD-504 and CKD-506 (Chong Kung Dan 

Pharmaceutical Corp.), CS3003 (CStone Pharmaceuticals), HG146 (HitGen), KA2507 

(Karus Therapeutics) and OKI-179 (OnKure). The majority are reported to be HDAC6 

selective inhibitors, while OKI-179 is a synthetic analogue of largazole (5).

HDAC inhibitors as cytotoxic agents

After the DNMTs, HDACs were the next epigenetic target to receive scrutiny for drug 

discovery and this rapidly accelerated with the early discovery of compounds that 

displayed potent antiproliferative activity in human cancer cell lines that was 
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recapitulated in tumor xenograft animal models. At the same time, the simplicity and 

flexibility of the HDAC pharmacophore provided medicinal chemists with the freedom to 

operate and design and optimize independent lead series. Since the first-in-human 

experiments with vorinostat in 2000, HDAC inhibitors have been investigated in nearly a 

thousand clinical trials, primarily in oncology but numerous other indications as well. It is 

fair to say the accumulated clinical experience from the last two decades is 

disappointing as it did not fulfill the promise of the earlier data from in vitro and in vivo 

models. Efficacy with an acceptable margin of safety and tolerability has mainly been 

observed in certain hematological cancers.75,76 To date, we have four approvals for T-

cell lymphoma,  one for multiple myeloma and one for combination therapy against 

breast cancer, and the HDAC inhibitors are not first-line therapy against any of these 

indications.

What HDAC inhibitors actually do in cells is an extremely complicated question. 

Microarray experiments indicate that <10% of the genome undergoes significantly 

altered expression upon treatment with a HDAC inhibitor.77 In a cancer cell, these 
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perturbations appear to disrupt their metastable state and drive the cell towards non-

proliferative fates involving a combination of differentiation, immunomodulation, 

chromatin instability, reduced DNA damage repair, reactive oxygen species production, 

cell cycle arrest, apoptosis, autophagy, and the reduction of angiogenesis and cell 

migration.78 These effects are most strongly felt in hematological cancers, perhaps due 

to the fact that the tumor is derived in a complex process of hematopoiesis from stem 

cells. Epigenetic programming plays a heavy role in this transformation, and the blood 

cell lineages appear to be more plastic and susceptible to reprogramming compared to 

more terminally differentiated cancer types. The particular success in the treatment of T-

cell lymphoma is strongly linked to immunomodulation, as HDAC inhibitors cause a 

reduction in the ‘cytokine storm’ characteristic of this disorder.79 Meanwhile, it has 

proven challenging to find a therapeutic window that allows the higher dosing needed 

against more aggressive cancers without compromising patient tolerability.80 Resistance 

to HDAC inhibitors is a further issue,81 mainly arising via compensating changes in 

HAT/HDAC expression levels, the induction of p21 (CIP1/WAF1) and thioredoxin, and 

drug efflux by ABC transporters.
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The first clinical candidates vorinostat and romidepsin have limited oral bioavailability 

and their trials required intravenous administration. Romidepsin, with its complex 

structure, was considered intractable for analogue generation although this would 

eventually change through the design of efficient total synthesis routes by academic 

groups.82 While vorinostat is a much simpler molecule and an oral formulation was later 

developed, it suffers from extensive metabolism through hydroxamic acid 

glucuronidation and oxidative cleavage of the aliphatic methylene chain. For fast 

followers, the main challenge was to improve target affinity and the pharmacokinetic 

liabilities and both aspects were successfully addressed in second generation HDAC 

inhibitors. However, the primary focus was cancer, in which the cytotoxic activity is 

largely driven by the inhibition of HDAC1-3. Thus, medicinal chemistry lead optimization 

consciously or subconsciously selected for compounds with high activity against these 

nuclear isoforms. In the clinic, both the older and the newer compounds exhibit a similar 

pattern of dose limiting toxicities and adverse events dominated by fatigue, diarrhea, 

bone marrow toxicity, thrombocytopenia and in some cases cardiac abnormalities. 

Since these are observed regardless of the nature of the inhibitor, they are likely to be 
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on-target effects due to systemic HDAC inhibition rather than compound specific 

idiosyncrasies. The pleiotropic nature of the cellular response to HDAC inhibition is 

indicative of a global disruption of gene expression, which leads to the following 

conclusions:

1. The clinical effects are driven by HDAC1, HDAC2 and HDAC3 inhibition

The inhibition of these isoforms increases the acetylation of histones and other nuclear 

proteins, leading to gene activation through increased accessibility of DNA by RNA pol 

II and the promotion of protein-protein interactions between bromodomain containing 

proteins and acetyllysine residues. Our current portfolio of clinical candidates (Tables 3 

and 4) is unanimously identical in its high activity against HDAC1-3 and we believe this 

is the reason why compounds are not particularly differentiated from one another in their 

biological effects.
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2. The inhibition of isoforms in addition to HDAC1-3 by current candidates is likely to be 

undesirable

The clinical compounds primarily vary in their selectivity between the nuclear isoforms 

HDAC1-3 and the cytoplasmic HDAC6. Some inhibit both the nuclear and cytoplasmic 

enzymes strongly (e.g. vorinostat and fast followers) while others are either selective for 

HDAC1-3 (e.g. romidepsin, ortho-aminoanilides) or HDAC6 (e.g. ricolinostat). However, 

these differences have not translated into major shifts in therapeutic application or 

dramatic clinical benefit for one compound over another. Meanwhile, a lack of activity 

observed in enzyme assays against HDAC4, HDAC5, HDAC7 and HDAC9 is a 

misleading measure of selectivity, as a compound may still be capable of binding to the 

active sites and thereby abrogate their non-enzymatic role in protein scaffolding. As for 

HDAC8, HDAC10 and HDAC11, the traditional assays indicate differing levels of 

inhibition that may again be of questionable relevance given their preference for non-

acetyllysine substrates. Although there are fine distinctions in biochemical in vitro 

selectivity between the clinical inhibitors in Tables 3 and 4, this may conceal a broader 
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in vivo spectrum of activity against the majority of isoforms. While the inhibition of 

isoforms other than HDAC1-3 may be beneficial, in nonselective compounds any 

advantage that accrues is likely to be swamped out by the side effects arising from 

HDAC1-3 inhibition. The history of medicinal chemistry suggests that improved target 

selectivity usually leads to a superior safety profile, and this is likely to hold true for 

HDACs as well.

3. The clinical compounds are cytotoxic agents

Although HDAC inhibitors are a modern chapter in drug discovery, their phenotypic 

effects are widespread and not restricted to a particular cellular pathway or 

compartment. Their activity profile as drugs, at least in its present manifestation, is 

reminiscent of classical cytotoxic agents rather than a targeted therapy. In their account 

of the discovery of vorinostat (SAHA),47 Breslow and Marks made these prescient 

comments: ‘Even if some increase or decrease in transcription of particular genes is 

helpful in the anticancer effects of SAHA, as has been proven to be the case, a 

continuing long-term modulation induced by a drug that is slowly released from the 
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receptor pocket—and indeed might bind reasonably strongly to other sites—could 

cause undesirable effects. SAHA has hit the happy medium. It is potent enough to be 

useful and tolerated in patients. If the dosing is intermittent, such as not to maintain a 

continuous ‘therapeutic’ level of SAHA, it can be released from the binding site 

periodically so as to allow the deacetylation activities in cells. This is a general 

consideration, which could well be true of many other medicinal compounds. Thus, it is 

probably a mistake for medicinal chemists to set out first to find the most potent 

compound they can achieve in a series and then to look at any question of toxicity, as is 

often done. As with SAHA, in other series there will be examples in which the medium 

potency compound has enough efficacy to be a useful drug but not so much as to cause 

unacceptable side effects.’

Clinical performance of HDAC inhibitors

Monotherapy

Aside from the approvals in hematological cancers, HDAC inhibitors are under 

exploration in single agent Phase 2/3 clinical trials for other oncology applications as 
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well as non-cancer indications (Table 5). Among these examples, tefinostat is designed 

to have selective toxicity in liver cancer. Hepatocytes express carboxylesterase-1 that 

hydrolyzes the tefinostat ester to a pharmacologically active carboxylic acid which is 

retained due to its ionized nature, whereas in other cells efflux of the neutral drug limits 

exposure. Panobinostat, aside from its approval in multiple myeloma, is under 

investigation as an immunomodulator for graft-versus-host diseases following allogeneic 

hematopoietic stem cell transplantation.83 Outside oncology, vorinostat is in early 

studies for the treatment of epilepsy84 and Cushing’s disease.85 Meanwhile, Italfarmaco 

is pursuing the development of givinostat for Duchenne and Becker muscular 

dystrophy,86 while Regenacy is targeting ricolinostat for diabetic neuropathic pain.87 

Early indications from multiple myeloma clinical trials are encouraging regarding the 

tolerability of ricolinostat, 10-fold selective for HDAC6 over HDAC1-3, compared to 

inhibitors with lower selectivity.88 

Cpd. Organization Indication Status
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romidepsin Bristol Myers 
Squibb

cutaneous T-cell lymphoma

peripheral T-cell lymphoma

HIV, +3BNC117

FDA approved

FDA approved

Phase 2, #03041012

vorinostat Merck cutaneous T-cell lymphoma

epilepsy

Cushing’s disease

breast cancer, + 
pembrolizumab, tamoxifen

FDA approved

Phase 2, #03894826

Phase 2, #04339751

Phase 2, #04190056

tefinostat GlaxoSmithKline hepatocellular carcinoma Phase 1/2, 
#02759601

ricolinostat Regenacy diabetic neuropathic pain Phase 2, #03176472

belinostat Onxeo, Spectrum peripheral T-cell lymphoma FDA approved

panobinostat Novartis multiple myeloma

graft-versus-host disease

myelodysplastic syndrome, 
+ azacitidine

FDA, EMA approved

Phase 3, #04326764

Phase 2, #03151304

pracinostat Helsinn, Menarini acute myeloid leukemia, + 
azacitidine

myelodysplastic syndrome, 
+ azacitidine

Phase 3, #03151408

Phase 2, #03151304

givinostat Italfarmaco Duchenne muscular 
dystrophy

Phase 2/3, 
#03373968
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polycythemia vera, 
+hydroxyurea

Phase 2, #00928707

abexinostat Xynomics follicular lymphoma

renal carcinoma, + 
pazopanib

Phase 2, #03934567

Phase 3, #03592472

entinostat Syndax breast cancer, + 
exemestane

renal carcinoma, + IL-2

Phase 3, #02115282 
and #03538171

Phase 2, #03501381

tucidinostat Chipscreen peripheral T-cell lymphoma

B-cell lymphoma

breast cancer, + 
exemestane

soft-tissue sarcoma, + 
toripalimab

CFDA approved

Phase 3, #04231448 

NMPA approved

Phase 2, #04025931

domatinostat 4SC GI cancers, +avelumab Phase 2, #03812796

Table 5. Drug approvals and examples of Phase 2/3 trials conducted with HDAC 
inhibitors. For combination trials, the other drugs involved are indicated with ‘+’. The 
clinical trial is identified by the ClinicalTrials.gov NCT number.

Combination therapy
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The development of resistance is a major obstacle to cancer chemotherapy, and one of 

the contributing factors is the stem cell-like tumor phenotype that fosters epigenetic 

reprogramming in response to the drug. This suggests that combination with a HDAC 

inhibitor could be valuable in sensitizing cancer cells to the treatment, and many clinical 

trials have investigated this hypothesis.89,90 Combination therapy of HDAC inhibitors 

with cytotoxic agents has not shown significant promise, and this further supports our 

conclusion that nonselective HDAC inhibitors themselves behave as cytotoxic agents. 

Meanwhile, the approval of panobinostat for multiple myeloma has led to multiple trials 

with first-line therapies against this indication such as bortezomib and lenalidomide.91 

Numerous studies have focused on the potential synergy between kinase and HDAC 

inhibitors, and a Phase 3 trial is investigating the combination of abexinostat and 

pazopanib.92

Promising results were observed in the treatment of postmenopausal breast cancer 

using the combination of the aromatase inhibitor exemestane and the ortho-

aminoanilide HDAC inhibitor entinostat.93 A larger Phase 3 trial in China with a similar 
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combination of exemestane and tucidinostat reported positive results that led to the 

2019 NMPA approval of this combination for the treatment of breast cancer.94 This 

landmark event represents the first approval of a HDAC inhibitor for an indication 

outside hematological cancers.

Since both HDACs and DNMTs are transcriptional repressors, combined epigenetic 

therapy against these two targets is an attractive proposition. Pracinostat is in late stage 

trials in combination with the DNMT inhibitor azacitidine for the treatment of 

myelodysplastic syndrome and newly diagnosed acute myeloid leukemia.95,96 At an 

earlier stage, biologic antibodies, including immunotherapy agents,97 are being explored 

in combination trials with various HDAC inhibitors. Among the non-oncologic indications, 

the ability of HDAC inhibitors to reactivate latent reservoirs of the HIV virus to undergo 

replication appears to be the most promising for combination therapy. The potency of 

romidepsin in inhibiting the nuclear HDAC1-3 isoforms suggests it is a good candidate 

for viral transcriptional activation, and Phase 2 trials with the neutralizing antibody 

3BNC117 are underway.98
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Dual mechanism agents

An interesting approach to leveraging HDAC inhibitors is to take advantage of their 

simple three-point binding model. Since the cap region is not involved in critical contacts 

with the active site, it is possible to introduce an independent second pharmacophore 

here to give dual mechanism of action agents that achieve the equivalent of 

combination therapy within a single entity.99,100 The US company Curis has pioneered 

this strategy, and their first clinical candidate CUDC-101 is a hybrid of vorinostat and 

erlotinib with a nanomolar activity profile against both HDACs and receptor tyrosine 

kinases.101 A second Curis candidate fimepinostat is a hybrid of pyrimidinyl HDAC 

inhibitors and the PI3K inhibitor pictilisib, with nanomolar IC50 values against all four 

PI3K isoforms in addition to its HDAC inhibition. Fimepinostat has received FDA Fast 

Track status for the treatment of relapsed or refractory diffuse large B-cell lymphoma.102 

It was shown to be similarly potent as romidepsin in the reversal of HIV-1 latency, 

without a negative effect on T cell proliferation.103 Mundipharma’s tinostamustine is a 

more recent dual mechanism of action agent related to the DNA alkylating agent 
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bendamustine, and combines this activity with HDAC inhibition. Serendipitously, the 

HDAC inhibitor domatinostat was recently found to have a second target as it potently 

inhibits tubulin polymerization.104 Larger late stage trials are needed before the efficacy 

and tolerability of these four multitargeting drugs can be evaluated in a clinical setting.

Atypical HDAC inhibitors

Not all HDAC inhibitors fully adhere to the classical zinc binding group-linker-cap model 

and some outliers illustrate the possibilities for such non-conformist compounds. 

Intriguingly, Olsen’s romidepsin analogue 32 (Figure 11) has the thiol zinc binding group 

removed.105 While the compound is two orders of magnitude weaker in HDAC inhibition 

than romidepsin, it still possesses a respectable level of activity. Since zinc binding 

groups generally come with associated pharmacokinetic issues, this example suggests 

that it is possible to avoid them altogether if sufficient binding by other means is 

possible. Meanwhile, in the HDAC8 bound X-ray structure of Novartis’s phenylalanine 

derivative 33, the two aromatic rings sit within the hydrophobic substrate channel and 
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the internal cavity (Figure 12), meaning that this inhibitor has no cap.106 The X-ray 

structure shows coordination between the zinc cation and the -aminoamide, a rare 

motif for a zinc binding group. As the internal cavity is absent in HDAC6, 33 is inactive 

against this isoform and moreover shows selectively for HDAC8 over HDAC1 and 

HDAC2. The cyclopentenyl hydroxamic acid 34 is an even more minimal ‘capless’ 

HDAC inhibitor with some selectivity for HDAC6.107

Two other unusual HDAC inhibitors are 35 and 36. The benzoylhydrazide 35 is a typical 

example of this class with reported selectivity for the nuclear isoforms HDAC1-3.108 

Although X-ray crystallographic evidence of the binding mode is unavailable, docking 

studies suggest zinc coordination is not involved and the compound has unusual fast-

on/slow-off kinetics. On the other hand, the vorinostat analogue 36 highlights that the 

linker is not just a space filling moiety. By switching from the suberoyl linker to its 

perfluorinated variant, the activity of the approved drug is virtually lost against human 

HDACs. However, 36 gains in potency against two bacterial HDAC-like enzymes 

PA3774 and PA0321 from the pathogen Pseudomonas aeruginosa.109
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32
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HDAC5 18 M
HDAC7 13 M
HDAC9 >30 M
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HDAC8 11 nM
HDAC5 110 nM
HDAC7 220 nM

HDAC8
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H

N

S

+

S

N

Enz Enz

HDAC1 4 M
HDAC2 32 M
HDAC3 >50 M
HDAC6 7 M
HDAC4 9 M

Figure 11. Some examples of unusual HDAC inhibitors. In this and subsequent figures, 
IC50 values (or in some instances Ki) against individual isoforms are given, with values 
below 1 M highlighted in red.
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Figure 12. X-ray structure of the 33-HDAC8 complex showing active site interactions. 
Reprinted with permission from ref. 106.

The heterocycle 37, despite its compact nature and apparent lack of a linker or zinc 

binding group, was reported to selectively inhibit HDAC8. Further investigation revealed 

that 37 is an electrophilic thiol-reactive species that leads to covalent modification of the 

Cys28, Cys153, Cys244, Cys314 and Cys352 residues within HDAC8.110 Both mixed 

disulfide and thiocyanate adducts were identified, and enzyme inhibition was predicted 

to be predominantly due to reaction with the Cys153 residue within the substrate 

binding channel of this isoform. Perhaps the romidepsin analogue 32 has a similar 

mechanism of action involving allosteric modification of Cys residues by conjugate 
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addition to the dehydroalanine residue, as this would explain why a similar largazole 

analogue lacking the unsaturated alkene was devoid of activity.

Naturally, allosteric modulators need not adhere to the standard model for HDAC active 

site binding. However, there are few examples of small molecules reported to bind with 

high affinity to HDACs outside the active site. Tasquinimod (38) is an antagonist of the 

calcium-binding protein S100A9 in Phase 3 clinical trials for castration-resistant prostate 

cancer. It was also shown to bind HDAC4 with a Kd of 10-30 nM, and homology 

modeling suggests allosteric binding that locks HDAC4 in an inactive conformation that 

is unable to interact with HDAC3.111 In endothelial cells, the administration of 

tasquinimod induced the same phenotype of reduced vascular inflammation as HDAC4 

silencing, suggesting that the interaction between HDAC4 and tasquinimod does have a 

functional consequence.112

Isoform selectivity
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At the preclinical stage, the most exciting development in HDAC inhibitor discovery is 

the identification of compounds with an enhanced isoform selectivity profile compared to 

those in clinical development. At the same time, it is worth asking what selectivity 

actually means. The enzymatic activity of HDAC1, HDAC2, HDAC3 and HDAC6 can be 

reliably tracked with acetyllysine containing peptides and provides meaningful data on 

inhibitor selectivity between these isoforms, keeping in mind that in vivo kinetics while 

bound to other proteins and acting upon protein substrates will be different. For all other 

HDAC isoforms, in vitro selectivity as measured by commercial assays is of varying 

physiological relevance and needs to be backed up by independent demonstration of 

cellular target engagement through orthogonal detection methods. Despite these 

caveats, highly selective compounds are now available that are valuable tools for 

understanding the optimum specificity for cancer and neurodegenerative disorders, two 

of the most important targets for HDAC inhibitors.113,114 In addition, selective inhibitors 

are likely to be crucial for extending HDAC inhibition therapy to chronic diseases that 

require wider safety profiles such as inflammation,115 T-cell regulation,116 obesity,117 

fibrosis,118 and alcohol use disorder.119
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There are several patterns of isoform selectivity that appear particularly promising. 

Firstly, targeting transcriptional regulation would benefit from the selective inhibition of 

the nuclear enzymes HDAC1, HDAC2 and HDAC3 (or a subset of these three) with 

minimal activity against other isoforms. Conversely, selective cytoplasmic HDAC6 

inhibition will have its own therapeutic applications if unaccompanied by interference 

with nuclear isoforms. Next, there is the opportunity to focus on the turnover of non-

acetyllysine PTMs or polyamine acetylation through the selective inhibition of HDAC8, 

HDAC11 or HDAC10. Finally, the active site occupancy of HDAC4, HDAC5, HDAC7 or 

HDAC9 (without necessarily affecting catalysis) might be sufficient for pharmacological 

activity and eliminate their ability to bind acetyllysine containing proteins. Moreover, 

more complex composite patterns of selectivity can be envisioned that combine one or 

more of the above options without reaching the unwanted inhibition of all eleven 

enzymes to a substantial degree.

HDAC1 and HDAC2
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Selective inhibitors of these nuclear isoforms would be particularly useful against 

indications such as cancer and viral replication in which the deacetylation of histone and 

transcriptional regulators plays a vital role. Although the clinical compounds adequately 

inhibit HDAC1 and HDAC2, they are also active against some or all of the other 

isoforms at physiologically relevant concentrations (Tables 3 and 4) and a cleaner 

profile could be advantageous. Merck discovered that the addition of a 5-phenyl or 5-

thienyl substituent to ortho-aminoanilide HDAC inhibitors, as exemplified by 39 and 40 

(Figure 13),120,121 or by Acetylon’s ACY-957 (41), conferred high HDAC1/HDAC2 

selectivity. The aryl group of the biphenyl moiety occupies the internal cavity, and in 

these two isoforms there is a Ser107 residue while HDAC3 contains a bulkier Tyr 

residue that limits access. Compound 39 outperformed nonselective HDAC inhibitors in 

vitro and in vivo against B-cell acute lymphoblastic leukemia, but not other B-cell–

derived malignancies, suggesting the selective inhibition of HDAC1/HDAC2 is sufficient 

for this condition.122 As a single agent and in combination with the DNMT inhibitor 

azacitidine, 41 had promising results against acute myeloid leukemia, including activity 

against primary patient derived cells and in vivo xenograft models.123 The PROTAC 
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approach of recruiting an E3 ubiquitin ligase to foster degradation of a protein of interest 

has recently been applied to epigenetic targets.124 The ortho-aminoanilide 42 

incorporates a ligand for the von Hippel-Lindau E3 ligase.125 Treatment of HCT116 cells 

with 10 M of 42 for 24 hours led to nearly complete degradation of HDAC1 and 

HDAC2.

HDAC2 is implicated in the negative regulation of memory formation and synaptic 

plasticity in the brain, with long-term potentiation impaired in HDAC2 overexpressing 

mice.126 Treatment with vorinostat ameliorated contextual fear conditioning but had no 

effect in HDAC2-deficient mice, suggesting non-redundancy between HDAC2 and 

HDAC1. While the high sequence homology between these two isoforms is an obstacle 

to the development of inhibitors that discriminate between the two, there are examples 

of ortho-aminoanilides that achieve a level of kinetic selectivity. Although the Broad 

Institute’s BRD4884 (43) inhibits HDAC1 more strongly, it has a residence time half-life 

of 20 minutes with HDAC1 compared to 143 minutes with HDAC2.127 In the BRD4884-
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HDAC2 X-ray structure (Figure 14), there is a bridging water molecule between the 

pyran oxygen and the enzyme that provides additional stabilization to the complex. 
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H
N
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S
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HDAC3 10 M
HDAC4-8 >10 M

NH2H
N

O

N

N
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O
HN
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HDAC3 7 M
HDAC4-7 >10 M
HDAC8 20 M
HDAC11 25 M

40

HDAC1 7 nM
HDAC2 49 nM

HDAC1 6 nM
HDAC2 45 nM
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N

O

S

NN
HN
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HDAC3 1 M
HDAC4-9 >20 M

HDAC1 7 nM
HDAC2 26 nM

HDAC3 2 MHDAC1 84 nM
HDAC2 346 nM
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Figure 13. Examples of biaryl ortho-aminoanilide selective HDAC1/HDAC2 inhibitors.
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Figure 14. The X-ray structure of 43-HDAC2 is typical of ortho-aminoanilides. Bidentate 
coordination is observed with the zinc cation, while the addition of a 5-aryl substituent 
enables occupancy of the lateral internal 14Å cavity. Reprinted with permission from ref. 
127.

HDAC3

HDAC3 exists in multiprotein complexes that contain NCoR/SMRT which are distinct 

from the repressor complexes occupied by HDAC1/HDAC2. Furthermore, the selective 

inhibition of HDAC3 offers the ability to indirectly modulate the tissue-specific 

HDAC4/HDAC5/HDAC7/HDAC9, since they recruit acetyllysine containing substrates 

for hydrolysis by HDAC3. The design of selective HDAC3 inhibitors has recently been 
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comprehensively reviewed.128 The 4-fluoro derivative (44, Figure 15) of the clinical 

candidate tacedinaline has a markedly HDAC3 selective profile compared to the latter 

attributed to both steric and electronic effects.129 The more extended cap in RGFP996 

(45) from Repligen results in even higher selectivity for HDAC3 over other isoforms. 

More recently, the amide bearing HDAC3 selective inhibitor 46 has been reported,130 

which will be useful in teasing out any compound class specific properties of the ortho-

aminoanilides 44 and 45.

The availability of HDAC3 selective probes has proven to be illuminating in a number of 

in vivo disease models. In CNS applications, 45 has promoted the extinction of drug-

seeking behavior,131 induced memory enhancement,132 reduced cognitive decline in 

Huntington’s and Alzheimer’s disease,133,134 and was protective in a stroke model.135 

Furthermore, 45 activated brown and beige fat suggesting potential cardiovascular 

applications arising through the involvement of HDAC3 with the transcriptional 

coactivator PRDM16.136 Meanwhile, 44 was shown to reactivate HIV-1 replication from 

resting CD4+ T cells isolated from antiretroviral-treated, aviremic HIV+ patients,137 and 
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to suppress pancreatic islet inflammation and β-cell apoptosis in non-obese diabetic 

mice.138

NH2H
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H
N

O

HDAC1 1 M
HDAC2 1 M
HDAC4-9 >30 M

HDAC3 64 nM

44
F

NH2H
N

O

HDAC1,2,4-11 > 15 MHDAC3 80 nM

45
F

NN
N

N
H

OHN

N

H
N

N

O

N

CN

46

HDAC1 1 M
HDAC2 4 M

HDAC3 26 nM

Figure 15. Examples of selective HDAC3 inhibitors.

HDAC6

The inhibition of HDAC1-3 is critical for achieving a truly epigenetic effect involving 

transcriptional regulation in the nucleus. On the other hand, orthogonal inhibition of the 
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major cytoplasmic isoform HDAC6 is potentially valuable against a host of human 

diseases. HDAC6 knockout mice are viable and fertile, and although abnormalities were 

reported in dopaminergic signaling,139 this is in stark contrast with the lethality or clearly 

defective phenotypes observed with other isoforms. This suggests that a highly 

selective HDAC6 inhibitor would be well tolerated and avoids the on-target side effects 

of more promiscuous compounds. The substrate channel in HDAC6’s second catalytic 

domain (CD2) is wider and shallower compared to HDAC1-3, favoring compounds with 

shorter linkers and larger, extended caps. However, because of similarities in the active 

sites between HDAC6 and HDAC8, discriminating between these two isoforms is more 

challenging. Kozikowski has pioneered the development of HDAC6-selective 

arylhydroxamic acid inhibitors such as tubastatin A (47, Figure 16) which is widely 

employed as a tool compound.140  Kozikowski’s SW-100 (48) and Liou’s MPT0G211 

(49) are examples of more recent brain-penetrant inhibitors with a superior 

HDAC6/HDAC8 selectivity profile compared to tubastatin A.141,142 Instead of a phenyl 

linker, Acetylon’s ACY-1083 (50) contains a pyrimidinyl ring and is reported to be > 250-

fold selective for HDAC6 over other isoforms.143
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A PROTAC example with a nonselective hydroxamic acid HDAC iunhibitor linked to a 

cereblon ligand nevertheless led to the selective degradation of HDAC6.144 

Subsequently, the group reported 51 in which the HDAC6 selective scaffold of 

nexturastat A was affixed to the cereblon ligand pomalidomide.145 In MM1S cells, 51 

had a DC50 of 1.6 nM for the selective degradation of HDAC6.
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Figure 16. Examples of selective HDAC6 inhibitors. See also the HDAC10 discussion 
on tubastatin (47) and analogues.

X-ray crystallographic studies with HDAC6 selective arylhydroxamic acids indicate 

mono-coordination within the shallower active site compared to the more common 

bidentate zinc coordination observed against other isoforms.146  Meanwhile, the aryl 

group engages in  interactions with the substrate channel while the cap extends into 

the solvent exposed enzyme rim, as illustrated by the binding of 50 to HDAC6 (Figure 

17). Recent studies (see below), suggest that tubastatin and related compounds with a 

basic amine in the linker or cap region are also capable of inhibiting the 

acetylspermidine hydrolysis activity of HDAC10. 
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Figure 17. a) Simulated annealing omit map of the 50-HDAC6 (catalytic domain 2) 
binding. The hydroxamic acid engages in mono-coordinate interactions with the zinc 
cation while the carbonyl group hydrogen bonds the active site water involved in amide 
hydrolysis. The linker makes an additional hydrogen bond with Ser531. b) Cut-away 
view of the active site surface highlighting the zinc coordination polyhedron and the 
aromatic interactions between the inhibitor and the substrate binding channel. Reprinted 
with permission from ref. 146.

The inhibition of HDAC6 has been extensively studied in cell-based and in vivo disease 

models, although some examples involved compounds with lower selectivity profiles 

than 47-51 and phenotypic effects may be due to residual effects against other HDAC 

isoforms. Robust data has been obtained in animal models for cancer and 
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neurodegenerative disorders, with early stage clinical trials ongoing for the treatment of 

hematological malignancies, solid tumors and Huntington’s disease, as well as 

Regenacy’s planned Phase 2 trial with ricolinostat for diabetic neuropathic pain.147,148 In 

addition, earlier preclinical studies are promising against a number of other 

indications.149

HDAC8

The challenge with HDAC8 inhibition is to avoid hitting the other nuclear isoforms 

HDAC1-3 as well as the cytoplasmic HDAC6.150 With regards to the latter, ortho- or 

meta-substituted aromatic linkers are helpful, compared to the para-substitution typical 

in HDAC6 selective inhibitors. Pharmacyclic’s PCI-34051 (52, Figure 18) was the first to 

exhibit high selectivity for HDAC8 and is the most widely used tool compound for this 

isoform.151 Newer examples include Huang’s cinnamoyl terphenylhydroxamic acid WK2-

16 (53) and Beeler’s phenylalanine derived hydroxamic acid 54.152,153 In animal models, 

selective HDAC8 inhibitors have shown promise in neuroblastoma154 as well as different 

Page 74 of 111

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



75

inflammatory settings such as hypertensive inflammation,155 neuroinflammation156 and 

airway inflammation.157 Recently, 52 was shown to resensitize melanoma tumor 

xenograft cells to inhibition by the tyrosine kinase inhibitor erlotinib.158

HDAC1 8 M
HDAC2 >20 M
HDAC3 >20 M
HDAC6 20 M
HDAC4 >20 M
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HDAC8 56 nM
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HDAC1 3 M
HDAC2 >20 M
HDAC3 3 M
HDAC6 >20 M
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HDAC8 27 nM
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HDAC1 4.3 M
HDAC2 >20 M
HDAC3 >20 M
HDAC6 1 M
HDAC4 >20 M
HDAC5 >20 M
HDAC7 >20 M
HDAC9 >20 M

HDAC8 1 nM
54

Figure 18. Examples of selective HDAC8 inhibitors.

HDAC11

The first selective HDAC11 inhibitor FT895 (55, Figure 19) was recently reported by 

FORMA, and modeling suggests that the pyrazine ring extends into the internal cavity 

adjacent to the zinc cation.159 While fluorescent acetyllysine peptide substrates were 
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used in FORMA’s enzymatic assays, Lin employed a potentially more relevant 

myristoyllysine peptide with HPLC monitoring to discover acylhydrazide inhibitor 56.160 

In this assay, 55 and 56 were of similar potency in inhibiting demyristoylation. 

Presumably, 56 binds to HDAC11 with the alkyl chain occupying the internal cavity. 

With the availability of such probes, in vivo investigations will become possible to 

validate the importance of HDAC11 as a therapeutic target.

HDAC1-7,9,10 >10 M
HDAC8 6 M

HDAC11 3 nM
55

O

N
H

OH
N

N

N

F3C

O

N
H

H
NS

HDAC1-7,9,10 >10 M
HDAC8 6 M

HDAC11 830 nM
56

Figure 19. Examples of selective HDAC11 inhibitors.

HDAC10

The profiling of approved and clinical candidate HDAC inhibitors indicates that many 

strongly inhibit HDAC10 in assay kits employing trifluoroacetyllysine substrates. 
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Although we now know that HDAC10 is a small molecule polyamine deacetylase, the 

assay results indicate that many HDAC inhibitors are capable of entering and occupying 

the substrate channel. Recently, instead of the conventional monitoring of product 

formation, Miller employed a FRET ligand displacement assay. In this assay, the 

HDAC6 selective inhibitor tubastatin A (47) actually bound more strongly to HDAC10 

than HDAC6.161 Since tubastatin A was much more effective than other HDAC inhibitors 

tested, it is likely that the molecule’s amine forms a favorable electrostatic interaction 

with the glutamate gatekeeper residue unique to HDAC10. From a library of tubastatin A 

analogues, compounds 57 and 58 (Figure 20) were slightly more potent in HDAC10 

binding, perhaps due to a greater rotational flexibility to accommodate interaction with 

the glutamate. Furher improvements will be needed to ensure HDAC6/HDAC10 

selectivity with these tubastatin A based compounds.
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H2N
H
N

N
H

OH
O

HDAC10 120 nM

59

HDAC1 1 M
HDAC2 6 M

HDAC10 5 nM
HDAC3 631 nM
HDAC8 398 nM

O

N
H

OH

N
N

57

O

N
H

OH

N
N

58

HDAC2 6 MHDAC10 4 nM
HDAC1 794 nM
HDAC3 398 nM
HDAC8 316 nM

HDAC1 1 M
HDAC2 13 M
HDAC3 2 M
HDAC8 1 M

HDAC10 13 nM

O

N
H

OH

N
N

47

Figure 20. Tubastatin A (47), analogues 57 and 58, and the spermidine hydroxamic acid 
59. Note that IC50 values for 47, 57 and 58 correspond to a FRET displacement assay 
for HDAC10 and enzymatic assays for other isoforms. The value for 59 comes from an 
assay monitoring N-acetylputrescine hydrolysis.

Christianson examined a number of spermidine derivatives as potential inhibitors, using 

an enzymatic assay based on N-acetylputrescine hydrolysis. The hydroxamic acid 59 is 

a submicromolar HDAC10 inhibitor, and the X-ray structure (Figure 21) of 59 omplexed 

to Danio rerio (zebrafish) HDAC10 has provided useful information on the binding 

interactions. The hydroxamic acid engages in bidentate coordination with the zinc 

cation, while the methylene chain features a bifurcated hydrogen bond between the 

secondary amine NH proton and the gatekeeper glutamate residue.162
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Figure 21.  Polder omit map of 59 bound to the active site of HDAC10. The hydroxamic 
acid is coordinated as a bidentate ligand to the zinc cation, while the NH proton 
engages in hydrogen bonding with the Glu274 gatekeeper residue. Reprinted from ref. 
162.

HDAC4/HDAC5/HDAC7/HDAC9

Since these isoforms have low catalytic activity, assays have employed mutant 

enzymes or reactive trifluoroacetyllysine substrates. While the physiological relevance 

of such data is questionable, it does give an idea of active site occupancy. The highly 

selective inhibitor TMP269 (60, Figure 21) was reported by Tempero and contains an 
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unusual oxadiazole zinc binding group.163 The X-ray structure of 60 bound to HDAC7 

revealed a U-shaped conformation with interactions between a fluorine and the 

oxadiazole oxygen with the zinc, at relatively long distances of 2.7 Å and 3.0 Å 

respectively compared to the ~2 Å observed with hydroxamic acids. Thus, the binding 

involves weak electrostatic interactions with zinc rather than direct coordination. 

Because these HDACs have an active site tyrosine (Figure 2) replaced by the smaller 

histidine, the more roomy substrate binding channel is able to accommodate the bulky 

trifluoromethyloxadiazole unlike the other isoforms, leading to high selectivity. In mouse 

models, 60 demonstrated protective activity against pulmonary arterial hypertension and 

cerebral ischemia/reperfusion injury.164,165 The structurally related analogue TMP195 

reduced mycobacterial infection in a zebrafish embryo model for tuberculosis.166

The CHDI Foundation reported a more conventional hydroxamic acid inhibitor 61 but 

with an unusual chiral cyclopropane scaffold.167 The first generation compound lacking 

the cyclopropyl fluorine substituent had poorer pharmacokinetic properties due to 

glucuronidation. An X-ray structure of des-fluoro-61 with HDAC4 (Figure 22) indicates 
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bidentate coordination of the hydroxamic acid with the phenyl ring in a lower pocket 

engaged in -stacking interactions. More recently, CHDI have disclosed the aromatic 

hydroxamic acid CHDI-390576 (62) with good plasma, muscle and brain exposure in 

vivo upon oral administration in mice.168

O

N
H

OH

F

H
N

S
O O

HDAC1 >23 M
HDAC2 >19 M
HDAC3 >43 M
HDAC8 4 M
HDAC6 2 M
HDAC10 >10 M
HDAC11 >19 M

HDAC4 126 nM
HDAC5 80 nM
HDAC7 36 nM
HDAC9 19 nM

60

N O

N
CF3

O

H
N

O

N S

F

N
H

O

OHN

NF

61

HDAC1 14 M
HDAC2 >50 M
HDAC3 7 M
HDAC8 4 M
HDAC6 3 M

HDAC4 10 nM
HDAC5 10 nM
HDAC7 30 nM
HDAC9 60 nM
HDAC8 280 nM

N

N

F3C

62

HDAC1 40 M
HDAC2 >50 M
HDAC3 26 M
HDAC8 9 M
HDAC6 6 M

HDAC4 54 nM
HDAC5 60 nM
HDAC7 31 nM
HDAC9 50 nM

Figure 21. Examples of selective HDAC4/HDAC5/HDAC7/HDAC9 inhibitors.
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Figure 22. The binding interactions of des-fluoro-61 (with H instead of F at C1) within 
the HDAC4 active site, showing the occupancy of the selectivity pocket by the phenyl 
ring. Reprinted from ref. 167.

Summary

The timeline from bench to bedside was remarkably speedy for HDACs. The clinical 

trials of a HDAC inhibitor began in 2000, only four years after the first mammalian 

HDAC was characterized. In the last twenty years, over 30 HDAC inhibitors have 

entered clinical development with five regulatory approvals. Nevertheless, these 

medicinal chemistry successes have occurred despite the biological complexity of the 

target. Although there are only eleven human HDACs, this small number carries out a 
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set of at least five cellular functions: nuclear lysine deacetylation (HDAC1/2/3), 

cytoplasmic lysine deacetylation (HDAC6), fatty acid deacylation (HDAC8/11), 

polyamine deacylation (HDAC10) and acetyllysine recognition (HDAC4/5/7/9). We 

believe that selectivity will be the key to unlock the full therapeutic value of HDAC 

inhibitors, and a toolkit of compounds is now available (Table 6) that will fuel future 

discoveries in HDAC biology and drug discovery. 

Isoform Compound class Examples Selectivity 
challenge

HDAC1/2 5-aryl-ortho-aminoanilides 39-43 HDAC1 vs 2

HDAC3 4-fluoro-ortho-aminoanilides 44, 45 HDAC1/2

HDAC6 para-arylhydroxamic acids 47-51 HDAC8/10

HDAC8 ortho/meta-arylhydroxamic acids 52-54 HDAC6

HDAC11 ortho/meta-arylhydroxamic acids 55 HDAC8

HDAC10 basic hydroxamic acids 47, 57-59 HDAC6

HDAC4/5/7/9 oxadiazoles, -branched hydroxamic 
acids

60-62 HDAC4 vs 5 vs 7 vs 
9

Table 6. Summary of the major isoform selective HDAC inhibitors, and the selectivity 
issues faced within each class.
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While the next 30 years are too distant for accurate predictions, we anticipate that major 

advances will already occur within the next decade along many fronts including the 

following:

 Target validation to identify the ideal HDAC inhibitor profile for specific 

therapeutic indications.

 Unconventional approaches to HDAC drug discovery e.g. dual mechanism 

agents, PROTACs, covalent inhibitors, non-active site modulators.

 Personalized medicine and patient stratification strategies, which are rare at the 

present time for HDAC inhibitor therapy.

 Clinical optimization of HDAC dosing regimens, particularly the timing of 

administration for combination therapies.
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